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Abstract

In this paper, we present Functional Encryption (FE) schemes for finite languages from standard
static assumption, viz., Decisional Linear (DLIN) assumption. These finite languages are described by
Deterministic Finite Automatas (DFAs). Our first scheme is ciphertext-policy functional encryption
(CP-FE), where a key SK,, is labeled with a string w over a fixed alphabet ¥ and a ciphertext Cag
is associated with a DFA M over the same alphabet ¥. The key SK,, can extract the message from
the ciphertext Cq if the DFA M accepts the string w. This CP-FE scheme is constructed based on
attribute-based encryption (ABE) structure of Okamoto-Takashima in Asiacrypt, 2012. To achieve the
adaptive security, we put bounds on number of occurrences of any symbol in a string and in the set of
transition tuples of a DFA. Due to this restriction, the size of key space (where the keys are indexed
with strings) is reduced to finite. Hence, the functional scope of any DFA in our system can capture
only finite language. Similarly, we obtain our second adaptively secure FE scheme in key-policy flavor
from DLIN assumption. Both the schemes are shown to be secure in the standard model.

1 Introduction

Functional Encryption provides a smart way of setting a fine-grained share of a secret among many users in a
distributed system. In this encryption, message (resp. user’s key) is encoded with an expressive parameter ¢ (called
policy) and user’s key (resp. message) is encoded with a less expressive parameter ¥ (called attributes). The
decryption will be legitimate if relation R(®, ¥) holds. There are two types of FE, viz, Ciphertext-Policy Functional
Encryption (CP-FE) [BSW07, LOS*10, OT10, Wat11, LW12], where message is associated with a policy and key
is encoded with a set of attributes and Key-Policy Functional Encryption (KP-FE) [GPSW06, OSW07, LOS™10,
OT10, ALdP11], where the role of policy and set of attributes are interchanged.

FEs are partitioned again into two ways: FE with “public index” [LW12, GPSW06, Wat11, OSW07, LOS*10,
OT10, ALdP11], where message is hidden but not the function and the other is FE “without public index”
[KSW08, SW08, OT09, OT11, OT12a], where the ciphertext conceals both the plaintext and policy. Attribute-Based
Encryptions (ABE) form one of the larger class of the former category. In ABE, the policies (access structures) are
represented by access trees, span programs or the sets of minimal sets. Other FEs that exist in the literature are
spatial-encryption [Ham11, BHOS8], inner-product encryption [OT12a, KSW08, OT12b], hidden-vector encryption
[BWO07, TP08], identity-based broadcast encryption [BHO8, SF07].

Sahai and Waters [SWO05] introduced the concept of ABE, through the construction of Fuzzy IBE, in which an
identity was viewed as a set of attributes. Although, the IBE is a special case of ABE, where policy is equality of
IDs, yet the Fuzzy IBE was the first step (in the sense of non-trivial functionalities) towards exploration of many FE
schemes.

Later, Boneh et al. [BSW11] formalized the functional encryption to capture all the FEs under the same template:
The functionality f over (K x X) is defined in [BSW11] as function f : K x X — {0,1}*, where K is the key space



and X is the message space. The message space may be of the form X = (M x I), where M is the payload space
and I is the policy space. Let ¢ = enc(PP,z = (m,®)) be the encryption of the (m, ®), then secret key SKy, for
U € K can evaluate f(U,z = (m,®)) as dec(PP,¢,SKy). For all aforementioned FEs (or predicate encryptions),
functionality f : K x X — {0,1}* is defined as f(¥,z = (m,®)) = m if R(®, ¥) holds and else it is defined as
f¥ z = (m,®)) = (len(m), ®) for “public index” and f(¥,z = (m,®P)) = len(m) for “without public index”.
Therefore, all the aforesaid FEs are sub-class of formalized FE.

Till date, there are very few adaptively secure FE schemes [LW12, OT10, LOST10, OT12b] without random
oracles, where the policy is more expressive and fine-grained and surprisingly, most of them belong to the ABE
family. However, the existing ABE (FE) systems support only bounded policies, where the policies can give access to
a bounded number of users, i.e., if the formula is defined over fixed n variables, then it supports at most exponential
number of users.

Recently, Waters [Wat12] proposed a Key-policy functional encryption for regular languages over an alphabet.
Since, the size of a regular language may be unbounded, their system can support unbounded access control over the
encrypted messages. The KP-FE scheme of [Wat12] was shown to be selectively secure under a non-static assumption,
the decisional ¢-Expanded BDHE assumption.

Very recently, S.C.Ramanna [Ram13] proposed an adaptively secure DFA-based FE over an alphabet in the
standard model. To capture the adaptive security, they first obtained the basic FE construction by imposing two
restrictions, viz., the DFA (policy) must contain at most a single transition corresponding to each symbol and the
string must contain at most a single occurrence of each symbol. In their full construction, these restriction are
relaxed to support a large class of regular language but they put bounds on number of occurrences of any symbol
in a string and in the set of transition tuples of a DFA. This emphasizes that their system supports nothing but
the finite languages over a fixed alphabet. However, their system is proven secure under non-standard assumptions,
Decisional SubGroup (DSG) assumptions over composite order bilinear groups.

1.1 Ouwur Contribution

We propose an adaptively secure CP-FE scheme for finite language over an alphabet 3. The security of the proposed
scheme relies on standard, static assumption, DLIN in the standard model. Our construction follows the ABE
construction of [OT12b] based on Dual Pairing Vector Spaces (DPVS) technique. In this construction, the ciphertext
components are generated by the bases of a DPVS and the keys are obtained by it’s dual. Let M = (Q, X, qo, F, )
be a deterministic finite automaton for which the ciphertext components will be generated. For each state ¢, € Q,
random d, is chosen from F,. There will be two initial components, viz, Cy,, the masking of the message m using
a random exponent ¢ and C_"o, the encoding of initial state gy and it is connected with C,, via the random £. For
each transition ¢ = (g, qy,0n), there will be three ciphertext components, i.e., C_"t,l,C_"t,g and C_:t,?, which encode
respectively the target state g, and transition ¢, the source state g, and the transition ¢, and the transition ¢. The
common symbol o is embedded in all the above three components. For each final state ¢, € F', the ciphertext
component 0’274 represents the encoding of ¢, .

Let SK,, denote the secret key of a user for a string w = wy - - - wy of length £ over the alphabet X. Let 79,71, ..., 1
be chosen at random from F,. The key SK,, consists of the following components: One initial key component Kg,
the encoding of rg. For each ¢ € {1,...,£}, there are three key components, I?ifl, I?;Q and 1?33, wherein the values
ri, ri—1 and r; + r;_1 are embedded respectively. All these three components are related via a common ** symbol

w;. There is a final component I_(';HA to embed the random r,. For all ¢ € {1,...,¢}, j € {1,2,3}, the components
K;j ; are connected chain-wise via the random values rg ..., 7.

If the pairing between Cp and ff{; is computed, we have Ay = g§?d°+§, where gr is an element from target group

of the pairing groups and since, C,, = m.ggw, we have to compute gg from Ay using the others key and ciphertext

components to unmask the message m. If the i'" symbol w; of w matches® with a transition ¢t = (g, gy, o), then

we have e(ét’j,ﬁzj) = g¥(5‘+d”) for j = 1. Similarly, for j = 2 and j = 3, we have respectively g;”’l(fsﬁd“) and

(Zri=ric0se If we multiply last three terms, we have a coupling value of the form g;fdy_r“ld”. Now, if the DFA

It means the i*" symbol w; is equal to the symbol o}, that appears in the transition ¢



M accepts the string w, then there exist a sequence of ¢ + 1 states ¢y, 9z, qass - - - ¢z, and transitions ¢i,..., 1%,
where xyp = 0 and ¢,, € F and for i = 1,2,...,¢, we have t; = (¢z,_,,qx;,0) with w; = . The first coupling

. . 1dyy —Tod . . . . .
value through this sequence, is computed as A; = g "'~ °%. Tteratively, the i*" coupling value is obtained as

ridy, —Ti—1dg, _ ri—1de, ;—7odo Tidy,—Ti—1dg, ridy, —rod, .. .
A=A 197 =gy ! gp =g " Similarly, the ¢*" coupling value through

this path, is calculated as A, = g;fd”imdo. Then, we compute the final value as Ay = Ag.e(Cﬁ”A,I@;M) =

do,—rodo —7edy _ .
g;f e °.ngZ = gTTOdO. Thus, the message can be extracted from C,, using Ay and Ay1;. Our KP-FE scheme

is found in Appendix C.

Limitation: Most of the adaptively secure FE schemes [LW12, OT10, LOS*10, OT12b] supporting wide
functionalities are proven by putting a burden on the functionalities. These restrictions are required to pass through
some crucial arguments to the sequence of hybrid games in dual system proof methodology [Wat09]. For example, in
[OT10, LOS™10, OT12b], an adaptively secure basic scheme is first constructed by imposing a restriction that the
attributes must not repeat in the span programs. Then this basis scheme is lifted to a full adaptively secure scheme
without the above restriction, but it imposes another restriction on degree of the span programs, i.e, maximum
number of times an attribute can repeat in the span programs, are bounded by a pre-fixed threshold value. Similarly,
we first impose some restrictions on the DFAs and the strings to achieve a basic adaptively secure scheme under a
standard static assumption. The imputed restrictions are: for each symbol, there is at most a single transition and
the strings for key can have at most a single occurrence of symbol. Likewise, the above restrictions are relaxed but
an additional burden is put on the DFAs and the strings for keys to obtain full adaptively secure scheme for DFAs
under the same assumption. If ¢,,,, and w4, are the bounds on maximum number of times a symbol may repeat
in the transitions of a DFA and string respectively, then the size of the new alphabet 3, will be ¢4 W times the
size of old alphabet X. Indeed, for each symbol o € 3, we have a matrix W, with order ¢,,4: X Wae of new symbols
for ¥p. Suppose M and w are respectively the DFA (to be embedded in ciphertext) and ¢-length string (for key)
over the alphabet X without any restrictions on both the symbols and the transitions. Then, this DFA M and string
w are converted to DFA N and a matrix W of order t,,4,, X £ over the new alphabet . If the DFA M accepts w,
there is exactly one string wy,, comprising exactly one symbol from each column of the matrix W such that the DFA
N accepts wp. And if DFA M rejects the string w, then, for all possible strings wy, by choosing exactly one symbol
from each column of W, the DFA A rejects the strings wy,.

1.2 Related Work

From opening [SW05], many FE schemes [KSW08, SW08, OT09, Wat11, LW12, OT10, LOS*10, OT12b, ALdP11]
have been proposed on focusing several issues. But there are very few schemes [LW12, OT10, LOST10, OT12b]
supporting wide functionalities and capture adaptive security in the standard model at the same time. The CP-ABE
and KP-ABE schemes in [OT10, LOS*10, OT12b], are proven adaptively secure under static assumption in the
standard model but the policies are restricted by imposing a bound on the degree. In [Raml3], similar kinds of
restrictions are imposed on DFAs and strings to get the adaptive security from static, non-standard assumptions
over composite order bilinear groups. The above bounds diminish the performance of the scheme by increasing either
key size or ciphertext size by a factor or both. In contrast, there is no such imposition in the scheme of [LW12] but
the adaptive security has to rely on non-static assumption and some other assumptions.

2 Preliminaries

Basic notation, definitions and hardness assumptions are provided in this section. For definition and security model
of CP-FE for DFAs, refer to Appendix A.

Deterministic Finite Automaton A deterministic finite automaton (DFA) M is a quintuple (Q, X, qo, F’, 9),
where @ is a finite set of states, ¥ is a set of symbols, called alphabet, gy € @ is called the start state, F' C @ is
called the set of final states and the function o : Q x ¥ — @ is called transition function.



Notation Let 7 denote the set of all transitions ¢ = (¢, gy, 0) of a DFA M = (Q, X, qo, F, 6), where t = (¢, qy,0)
carries meaning of 6(¢,, o) = g,. £(M) stands for the language recognized by the DFA M. The notation [¢] stands

for the set {i € N:1 < i < {}. Foraset X, x & X denotes that  is randomly picked from X according to

the distribution, R. Likewise, x <L X indicates z is uniformly selected from X. For a basis B := (51, .. .,EN),
(z1,...,2N)B represents vazl x;b;. The vector €1 and € stand for (1,0) and (0, 1) respectively. Let F; stand for

Fq\ {0}

2.1 Dual Pairing Vector Spaces

A prime order bilinear pairing groups are a tuple (¢, G, G, €), where ¢ is prime, G and Gy are cyclic groups of prime
order g and e : G x G — G is a efficiently computable map such that

1. (Bilinear) VP, Py € G,a,b € Fy,e(aPr,bPy) = e(Py, Py),
2. (Non-degenerate) 3P € G such that e(P, P) has order ¢ in Gr.

Let Gypg denote an algorithm that takes x as input parameter and generates a description of a prime order bilinear
pairing paramg = (¢, G, Gr, P, e).
Definition 2.1 ([OT12b]). Dual Pairing Vector Spaces (DPVS)(q,V,Gr, A, e) is defined as a direct product over
symmetric prime-order pairing groups (¢, G, G, P, e), where

N

—
— V:=G x ... x G is a N-dimensional vector space over F,

Gr is a cyclic group of order ¢ (as in the pairing)

—— —
— A :=(dy,...,dy) is the canonical basis of V with @; = (0,...,0, P,0,...,0)
— e:VxV — Gr is a bilinear map defined by e(Z,9) = Hf\il e(zi,y:), where & := (x1,...,zn) € V and ¢ :=
(y1,...,yn) €V

Let Ggpys denote an algorithm that takes x, a dimension N and paramg as input and outputs a description of a dual
pairing vector spaces paramy := (q,V,Gr, A, e).

To construct our encryption system based on DPVS, we need dual orthogonal bases for a DPVS. Let G, denote
the dual orthogonal basis generator.
gob(H)NO7N13N27N3aN4):

U
paramg = (Qa Gv GT? P7 6) — gbpg(li% ¢ — F;a
For t =0,...,4, paramy, := (q,Vy,Gr, Ay, €) < Gapus(k, Ny, paramg),
U ‘ _1.,U

Xo = (Xeij)ig=1...N ¢ GLIN.,Fo), Xf o= (Yeig)ig=1,..n = W(X]) 7! «— GL(N,, Fy),

where X, ; and Y; ; respectively denote the ith vector of X; and Xffori=1,...,NV;

ﬁt,i = ()St,i)At = Zg:tl Xiigaeg fori=1,..., Ny, By = (ft,la cee 79t,Nt)

by = (X;i)At = Zj:tl Yiijag; fori=1,..., Ny, Bf = (b} 4, .. .,b;Nt)

gr = e(P, P)wv param:=({paramy, }t=0.1,... 4, VP, gr), return (param, {B;, B} };=0,1,.4)

2.2 Hardness Assumptions

We describe here two Decisional SubSpace (DSS) assumptions, DSS1 and DSS2 in dual pairing vector spaces over
prime order groups. We show that both the assumptions hold if DLIN assumption holds in the source groups. The
assumption DSS1 (resp. DSS2) is obtained by taking two parallel copies of 5 dimensional vector and three parallel
copies of a 14 dimensional vector from assumption 1-ABE (resp. 2-ABE) of [OT12b]. (Here, 1-ABE (resp. 2-ABE)
is an assumption weaker than assumption DSS1 (resp. DSS2)). But some of the scalars of interest are same for each



copy and some are independent for different copies. Due to this independence, we are unable to reduce DSS1 (resp.
DSS2) from 1-ABE (resp. 2-ABE). Although the approach for obtaining reductions of 1-ABE and 2-ABE from DLIN
is adapted from [OT12b], we modify some of the intermediate “basic problems” to “modified” basic problems. A
brief reduction of DSS1 and DSS2 from DLIN is given in Appendix B.

Assumption Decisional Linear (DLIN)
Define the following distribution :

paramg = (¢,G,Gr, P,e) «— Gypg(K), &N, 0,0 < F,

D := (paramg, EP, AP, 6P, 0AP), Ty = (5 +0)P, Ty +— G
Now, the advantage of an algorithm 7 in breaking Assumption DLIN is defined by

AdVDFN(k) = |Pr[e? (D, Ty) = 1] — Prla/(D,T) = 1]

We say that the DLIN assumption holds if for every PPT algorithm </, the advantage Adv%LIN (k) is a negligible

function in the security parameter k.

Assumption DSS1
Choose ¢g, ¢4, w < F, and 7 & Fy. Also choose VANV AN AL < GL(2,F,) for h=1,...,d.

(param, (B()a IB8)7 (1331718*1()7 (IB%ZJB%;)a (B?nB;)a (Béh BZ)) — gob(’%7 57 147 147 147 5)

-~ - — -

Bj := (bj1, bj3, bjs), B :=(bjy, b3, b54) for j=0,4
Bj := (bj1,- -, b4, bjas, bjra), B := (071, b4, bj11s 05 12) for j=1,2,3

é% = (w’ 0’ 0’ 0’ ¢J)BJ7 égl = (OJ, T, 07 07 (bj)]B] forj :074

For h=1,..,d,i=12,j =123, choose 8 ;. 6} . 1,0}, » ¢ F,

4 6 2 2
; e R N e
€0,h,i "= ( 5h,i(17h’)’wei7 0>, 0%, ¢h,i,1’¢h,i,2 )B;
4 6 2 2
ejl,h,i = ( 5i,i(17h)7weiﬂ 7€;,0 aTeiZ}J«n 0%, %,i,l’¢i,i,2 )B;

D := (param, {I/B\%ﬁ@;}jzo,l,...,él) For 8 =0,1,define Ty := ({é%}j:O,47 {é%,h,i}hzl,.“,d; i=1,2; j=1,2,3)

Now, the advantage of an algorithm & in breaking Assumption DSS1 is defined by
AdvDSSY (k) = |Pr[e? (D, Ty) = 1] — Prl«/ (D, T) = 1]|

We say that the DSS1 assumption holds if for every PPT algorithm 7, the advantage Adv@sa(ﬁs) is a negligible
function in the security parameter .

Lemma 2.1. If the decisional linear (DLIN) assumption holds for a bilinear pairing group generator G, then the
decisional subspace assumption, DSS1 also holds for G

Proof. Proof of the lemma 2.1 is found in Appendix B.1 (lemma B.3). O



Assumption DSS2
Choose ¢o, a, 0o, N, Cyw F, and 7, p & F. Also choose Z}, Z}, Z}) & GL(2,F,) and set U} = ((Z])~")T for
h=1,..d,j=123

(paramv (BOa B8)7 (BLBT)a (]B27B§)7 (B?n ]B;); (184; BZ)) — gob(K}? 5, 147 147 147 5)

—

@j = (bj,lv gj’g, l_))j’f,), I/[% (b;kl,...7 ]4) fO’I’ _] = 0 4
@j = (5j717"‘75j747 gj,lS’ gj,14)7 @ (b;l, ..,b;4, g;,llﬂ le) fOTj —1 2 3
T = (w, 7, 0, 0, ¢;)B;, T := (¢, 0, 0, m;, 0)B;, T{" = (¢, p, 0, 15, O)B; for j =0,4

_ _ _ Y R, J J J
Forh=1,...,d,v=1,2, j =1,2,3, choose Mh,z"5h,i7nh,i,1777h,i,2’¢h,i,1’¢h,i,2 — I,

4 6 2 2
y J 6 2 g j
P 5 *
T0 hyi T ( Nh,i(hv —1),¢é;, 0~ 0% Mhins Mo )Bj
4 6 2 2
L. —_— T/H ~ —_———
Jr J - S 77d J j
Tl,h,z’ = lu’h,i(h7_1)?cei’ 0%, peily, 0% M1 Mo )B;
4 6 2 2
5 J 2 J 2 Jj J
eh,i = ( 5h}i(17h’)’wei7 Teiao aTeiZ]—“ 0 3 h7i’17¢h7i)2 )B]

D= (pamm7 {BjaB;}j:O,l,...,47 {fj}j:0,4» {éﬂﬁ,i}hzl,...,d; i=1,2; j:l,z,g)

For 8 =0,1,define T := ({T%*}j:0,4, {T%Th7i}h:1,...,d; i=1,2; j=1,2,3)
Now, the advantage of an algorithm .o/ in breaking Assumption DSS2 is defined by

AdvDS52 (k) = |Pr[e? (D, Ty) = 1] — Prl«/ (D, T) = 1]|

We say that the DSS2 assumption holds if for every PPT algorithm <7, the advantage AdvDssz( ) is a negligible
function in the security parameter .

Lemma 2.2. If the decisional linear (DLIN) assumption holds for a bilinear pairing group generator G, then the
decisional subspace assumption, DSS2 also holds for G

Proof. Proof of the lemma 2.2 is found in Appendix B.2 (lemma B.18). O

3 Basic CP-FE Construction

In this section, we describe a basic Ciphertext-Policy Functional Encryption scheme for DFAs in the prime order
bilinear pairing groups. This scheme is based on the structure of ABE construction of [OT12b], where encryption
is done using the bases of a dual pairing vector spaces and the keys are generated by it’s dual. In their basic
construction([OT12b]), they restricted the access structures by putting a limitation that the attributes must not
repeat in the access structures. This type of restrictions is required to guarantee the adaptive security of the basic
construction. Similarly, our basic construction involved here has the following restrictions (similar to [Ram13]).

— There is at most a single transition corresponding to each symbol in the DFAs (policies)

— The strings for keys can have at most a single occurrence of each symbol (keys)

We illustrate how to relax the above restrictions in section 5.

Setup(k): (param, (Bo,Bj), (B1,BY), (B2, B3), (Bs, B}), (Bs,B})) «— Gop(1*,5,14,14,14,5)
:(ﬁj,1,bj3»b‘sl» . IE%* 3_(1_791>b;37 b]4) fOl"j 0,4 .

= ( bj,l bj 4, 0511, bj’lg ), B; ( b; 1yee ,bj 45 bj,l?)’ bj 14 ) for J:1,2,3

====N
RN



Choose a set, alphabet of symbols ¥ = {o1,...,04} C F,, where d = poly(x). The public parameters and master
secret are given by

PP = (EA,param, {@j}j:O,l,Q,?&,‘l)v
MSK:= ({B}}j=0,1,2,3.4)-

Encrypt(PP, M = (Q, X%, qo, F,6), m): For each ¢, € Q, pick d, & F,. For each g, € F, choose ¢, < F,. Pick

. U > 2 o U
random § € F,. For each transition ¢ = (gz, gy, 0n) € T, choose s¢,0¢1,01,2,013 ¢— Fy; dr1, Gr2, 13 — Fg. Now,
compute

60 = ( d07 07 57 Ov ¢0)B0 CYm = mgg“

For each transition ¢t = (g, qy,0n) € T, compute the ciphertext components
2 2 6 2 2

— —— —_— /6\ /2\ /=

Ct,l = ( 515,1(13 h)7 (St + dy)(]-a Uh)v O ) 0 ) ¢t,1 ) Bl
2 2 6 2 2

S (o T, o T

Cia = (0t2(1,h), (=st+ds)(L0n), 07, 07 ¢r2) By

2

2 2 6 2
N —_—N— —N— ,/6\ /2\ ’j\
Ci3:= (6¢3(1,h), s¢(L,on), 0%, 0%, ¢y3) B3

For each g, € F', compute the ciphertext component

—

Cz,4 = ( d,, 0, 0, 0, ¢Z)B4

CM = ( M7 Cma C_;Ov {C_;t,la C_;t,Qa é’t,3}t:(qw,qy,nh)€7—; {C_:ZA}quF)

KeyGen(MSK,w = wy ---wg): For each ¢ € [{], choose p;1, fi2, i3, 0,7 S Fy: i1, 2, i3 Al IF?,. Pick
70,705 Me+1 & F,. Now compute

KS = ( To, 0, 1, Mo, O)BB
For each i € [¢], (let w; = o}, for some index h) continue to compute

2 2 6 2 2

’ Ot

Ky = (pia(h,—1), ri + Gion, —0;, 0%, i1, 07 ) BY
2 2 6 2 2

, et

Ky = (piz(h,=1), —=ri1 + Oion, —0;, 0%, 72, 07 ) B3
2 2 6 2 2

= ANty

Krs = (pis(h,=1), =ri —ri_1 + 0iop,—0;, 07, i3, 07 ) B3

—

KZF+1.,4 = ( Te, 07 07 Ne+1, O)BZ
The secret key for the string w is given by

SKy = (w,KS, {Ki*,lv K’i*,27 K;,3}ie[E]aK2k+1,4)
Decrypt(Cpq, SKy): Suppose the DFA M accepts the string w = wy - - - wy, then there exist a sequence of ¢ + 1

states gzy, Qs Guss - - - Gz, and transitions ty,...,¢,, where zop = 0 and ¢,, € F and for ¢ = 1,2,...,¢, we have
ti = (Gu;_1,9s,,0) € T with w; = 0. First, compute the initial value

Ao = e(Co, Kg) = g™
Then, compute the first value A; of intermediate values as

5 > = = 5 = gy —rod
A = e(ctl,b Kik,l)'e(ctl,% Kf,2)‘e(ct1,37 KTS) :g;} e

Next, compute the intermediate values A; (for i =2,...,¢) as follows:

B = 5 = S = Zx y _ Ti—1de, y—rodo ride,—ri—1da, ridy;—rodo
Ai = Ai—1.e(Cy, 1, Ki,l)'e(cti,Q’ Ki,2)-€(cti,37 Kz‘,e.) =9r 9r =9r



. oy —rod
Similarly, the ¢t intermediate value is obtained in the form A, = g;é Trodo

The final value Ayy; is computed as
reds, —Todo 77‘2de - g*TOdO

App1 = Aé-e(cpra Ke+1 1) =97 97

Using Ay, A¢+1 and C,y,, the message is extracted as m = Cy, /(Ao Aey1).

4 Security Proof

We prove the adaptive security of our basic CP-FE construction by adopting the proof technique of Okamoto—
Takashima [OT12b] and the dual system methodology of Brent Waters [Wat09]. This methodology requires to define
semi-functional ciphertexts and keys. Here, we define two types of semi-functional ciphertexts, viz., type 1 and type
2. Three forms of semi-functional keys are considered here — type 1, type 2 and type 3. In the sequence of games,
challenge ciphertext is first changed from normal to semi-functional type 1. Then each queried key is changed from
normal to semi-functional type 1, then semi-functional type 1 to type 2 and lastly from semi-functional type 2 to
type 3. In the final game, the semi-functional type 1 ciphertext is changed to semi-functional type 2 ciphertext,
where the message is masked by an independently and uniformly chosen value.

In the following material, the part framed by a box indicates that either it will be changed in next description
or it has been changed from previous description. Also, we use the abbreviation ‘sf’ for ‘semi-functional’.

Semi-functional Type 1 Ciphertext For each ¢, € Q, pick d,, < F,. For each transition t = (¢z, gy, 0n) €
T choose 5, & IE" Zh, Z,%, Z‘5 & GL(2,F,). The st- type 1 ciphertext is obtained by modifying normal ciphertext
(M Cm, Oo, {Ct 1 Ct 129 Ct B}t (Qz7Qy7U}L)ET7 {CZ 4}qz€F) as glven below

C_;O = ( do, , f, 07 (bo)Bo Cm = m.gT

6
2 2
N /—’L /—’2— — = 9 N = 1 "/2\ -~
Ct-,l = ( 5&1(1? h)7 (St + dy)(170h)7 (St + dy)(]-vah) 5 0 3 (st + dy)(lvoh)Zh 5 0 5 ¢t,1 ) IB1
2 2 6 2 2
N —_—— —_ = 5 [, — P 5 /2\ =
Ci 2 ( 515 2( ) (7825 + dz)(l’ah)a (75t + df)(]-vo'h) 70 ) (75t + dr)(lvo—h)Zh ) 0 ¢t,2 ) By
2 2 6 2 2
— — — — — e ines
Ci3 = ( 0y, 3(1 h), se(L,on), |5:(1,0n) | 0%, 7 0%, ¢r3) Bs

C_V’z,4 = ( d., 7 0, 0, ¢Z)B4

Semi-functional Type 2 Ciphertext. This is same as sf-type 1 ciphertext except the following
Co = ( do, Jo, , 0, 90)By Cp, = m.g% where &' < F, (independent of & e F,)

Semi-functional Type 1 Key. For each i € [{], choose 7, 0; F,. Also choose 7 < F,. For i € [{],
let w; = o}, for some index h, choose ZZ & GL(2,Fy) for j =1,2,3 and set U,] = ((Zj)*l)T. The sf-type 1 key
generation algorithm first creates a normal key SK,, = (w KO, {Kz 15 Kz 2 K 3}16[4], K“_1 4) and then modifies
its components as shown below.

Ky = (ro [Fo] 1, mo. OB
2

6
2 2 2
- = = A~ 7
K = (pia(h,=1), ri + Oion, —0;, 04| (i + bion, —-0)Uy |, i, 07 ) B
2 2 2 2 2
7 4 o~ 0 ANTT2 CIREY
K:y = (pip(h,—1), —ri1 + Oiop, —0;, 0% (=Ti1 +0ion,  —0)Uy | 72, 0° ) B




6
2 2 2 2
=~

> 4 ~ ~ n n 3 . — 2 *
Ki,s = ( ﬂi,B(ha —1), =ri —ric1 + Oi0n,—0;, 0%, (=7 —Ti1 + Oi0n, —0,)U;, |, 7,3, 0 ) B3
K;+1,4 = ( Te, 7 07 Ne+1, O)BZ

Semi-functional Type 2 Key. This is same as sf-type 1 key except KS
I?g == (7o, [r], 1, no, 0)Bf, where r < F, (independent of 7 & F,)

Note that 7y appears in I_('TQ and I_('f3

Semi-functional Type 3 Key. This is same as normal key except K

[?6* == (ro, [r], 1, no, 0)B, where r < F,

A legitimate normal key (resp. sf-type 1 key, sf-type 2 key, sf-type 3 key) SK,, can extract the message from an sf-
type 1 ciphertext (resp. normal ciphertext) Caq. Similarly, a legitimate sf-type 1 key SK,, can succeed in decrypting
an sf-type 1 ciphertext Caq, because the mimicked parts get canceled just like the normal components. But, if a
legitimate st-type 2 key or st-type 2 key SK,, runs decryption on an sf-type 1 ciphertext Cpq, it will get an extra

term g}d" hampering the message extraction.

Theorem 4.1. The proposed Basic CP-FE scheme is adaptively secure under the DLIN assumption.

Proof Sketch of Theorem 4.1

The proof technique of the above theorem is adopted from that of ABE of Okamoto—Takashima [OT12b]. By applying
hybrid arguments over the sequence of games Gameg.q;, Gameg, {Gamey, 1, Gamey, 2, Gamek’g}ke[y] and Gameg;nal,
the game Gameg.y; is changed to Gamep;,q;-

In Gamey, the challenge ciphertext is changed from normal to sf-type 1. If there are at most v secret key queries
made by an adversary 7, there are 3v game changes from Gameg (Gameg 3), Game; 1, Game; 5, Game; 3 through
Game, 2 and Game, 3. In Gamey; (for 1 < k < v), the challenge ciphertext is sf-type 1, the first (k — 1) keys are
sf-type 3, k' key is sf-type 1 and the rest are normal. Gamey 5 (for 1 < k < v) is same as Gamey,; except that k"
key is sf-type 2. Gamey 3 (for 1 < k < v) is same as Gamey, o except that kth key is sf-type 3. Gamep;,q is similar
to Game, 3 except that the challenge ciphertext is a sf-type 2 ciphertext, i.e., in Gamepjnq1, the challenge message is
masked with an uniformly and independently chosen value implying that </ has no advantage in breaking the final
game. We prove that the gap advantage between any two consecutive games are at most negligible.

In lemma 4.2, we show that the advantage gap between Gamepg., and Gamey is equivalent to that of DSSI1:
we establish a PPT simulator Z for Gameg., and Game, against a PPT adversary /. The simulator 4 takes an

instance of DSS1 (with g & {0,1}) and simulates either Gameg., or Gamey for adversary «/. We show that the
distribution of secret keys and challenge ciphertext replied by 2 is equivalent to Gamepgeq; (resp. Gameg) if 5 =0
(resp. B =1).

In lemma 2.1, we prove that assumption DSS1 holds for a bilinear pairing groups if DLIN assumption holds for
the same pairing groups. Therefore, Gameg.,; and Gamey are indistinguishable under DLIN assumption. Seemingly,
this shows that the normal ciphertext and sf-type 1 ciphertext are indistinguishable under DLIN assumption.

Similarly, in lemma 4.3, we show that the advantage gap between Game(_1) 3 and Gamey ; is bounded by the
advantage of DSS2. Likewise, in lemma 2.2, we prove that assumption DSS2 holds for a bilinear pairing groups if
DLIN assumption holds for the same pairing groups. Thus, Game(_1) 3 and Gamey, ; are indistinguishable if DLIN
assumption holds. In other words, it shows that the k' normal key and k' sf-type 1 key are indistinguishable if
DLIN assumption holds.

Then, we show that gap advantage between Gamey, 1 and Gamey, o is zero (without any assumption) (lemma 4.4)
as: the distribution of (PP, {SKu:}i=1...1, Ca+) in Gamey 1 and that in Gamey, o are exactly same except at k"
key, where w* is (! query string. So, we have to show that the joint distribution of k" key SIC,,» and the challenge



ciphertext in both the games are equivalent. In lemma 4.4, we basically show that the scalar 7y in I?g of kt" key
SK,» (described in definition of sf-type 1 key) is uniformly and independently distributed from the other variables
in the joint distribution of .7’s view. This shows that distribution of k** sf-type 1 key and k" sf-type 2 key are
indistinguishable by any polynomial time adversary.

In a similar manner, we show that the advantage gap between Gamey, » and Gamey, 3 is bounded by the advantage
of DSS2 adversary (lemma 4.5). This implies that k' sf-type 2 key and k** sf-type 3 key are indistinguishable under
DSS2.

Finally, we show that Game, 3 and Gamep;yq are indistinguishable (without any assumption) (lemma 4.6). In
lemma 4.6, we first apply a suitable transformation to form new bases (Dg, Dj) from original bases (Bo,Bj). Then,
we show that the distribution of keys and ciphertext over (Bo,Bj) (resp. (Do, D)) is identical with Game, 3 (resp.
Gamerinal),

Proof. The security proof consists of hybrid argument over a sequence of 3v+ 3 games. The games are defined below:

o Gamey (Gameg 3) is just like Gamepeq; except that the challenge ciphertext is sf-type 1 ciphertext.

e In Gamey ; (for 1 < k < v)2, challenge ciphertext is sf-type 1, the first k — 1 keys returned to the adversary
are sf-type 3, k" key is sf-type 1 and the rest are normal.

e In Gamey o (for 1 < k < v), challenge ciphertext is sf-type 1, the first £ — 1 keys returned to the adversary are
sf-type 3, k' key is sf-type 2 and the rest are normal.

e In Gamey 3 (for 1 < k < v), challenge ciphertext is sf-type 1, the first k keys returned to the adversary are
sf-type 3 and the rest are normal.

o Gamep;nq is similar to Game, 3 except that now the challenge ciphertext is a sf-type 2 ciphertext.
Let Adv®? (), Adv%, (), Advfj(n), Advfzf(m), Advif’( ) and AdvEi"?! (k) denote the advantages of an adversary

&/ in Gamegeqr, Gamey, Gamey 1, Gamey 2, Gamey 3 and Gamep;inq; for 1 < k < v respectively. In Gamepsnqi, the
value of b is independent from the adversary’s view implying that Adv " (k) = 0.

Using lemmas 4.2, 4.3, 4.4, 4.5 and 4.6, we have the following inequalities

AdvSSTFE (k) = AdvE?l (k)

< AV (k) — AdvY, (k)] + ) (JAdvE, V2 (k) — Adv! (k)] + [AdVE) (1) — AdvE (k)|
k=1

+ AV (k) — AdVER (k)]) + |AdVY (k) — AdvE™ (k)]
< Advi S (k) + v(Adv ™ (k) +2/q + Advi ™ (k) + 2/q) +1/q
< AdvEPSY (k) + 20AdVDPS? (k) + (40 + 1) /g

Final conclusion follows from lemmas 2.1 and 2.2. O

Lemma 4.2. Gamepg., and Gamey are indistinguishable under the DSS1 assumption. That is, \AdvReal( ) —
Adv, (k)| < AdvESSL (k).

Proof is in Appendix A.3.

Lemma 4.3. Game(,_1) 3 and Gamey; are indistinguishable under the DSS2 assumption. That is, |Advk L 3( ) —
AdVE! (k)] < AdVDPS? (k) 4 2/q for 1 <k <w.

Proof can be found in Appendix A.4.

Lemma 4.4. Gamey 1 and Gamey, o are indistinguishable. That is, Advi}l(m) = Adv];f(ﬁ) for1 <k<w.

2In both the games, Gamey 1 and Gamey » (for 1 < k < v), the matrices ZZ in sf-type 1 ciphertext and the matrices U,{ in
st-type 1 key(resp. sf-type 2) of Gamey 1 (resp. Gamey o) are related by U] = ((Zfb)fl)T for j=1,2,3
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Refer to Appendix A.5 for proof.

Lemma 4.5. Gamey o and Gamey s are indistinguishable under the DSS2 assumption. That is, |Adv§;3(f<a) —
A2 (k)] < AV (k) 4+ 2/q for 1 <k <w.

For proof, see Appendix A.6.

Lemma 4.6. Game, 3 and Gamepinq are indistinguishable. That is, |Advy"™ (k) — Adv? (k)| < 1/q

Proof is described in Appendix A.7.

5 Full CP-FE Construction

In this section, we illustrate our full CP-FE construction for finite languages over an alphabet ¥ accepted by a DFA.
The size of the language accepted by a DFA may be infinite (unbounded). But our system supports only bounded
number of users by restricting the size of strings. Let w;,q, be a bound on maximum number of times a symbol may
repeat in a string. So this bound automatically restricts the size of strings. Let Trans, = {(¢s, ¢y, 0n) € T :0p =0}
for 0 € ¥. We also assume that for each symbol o € ¥, |Trans,| is bounded by ¢4, i-e., each symbol may
repeat in the transitions of a DFA M at most t,,,, times. These bounds are fixed during setup. Suppose, we are
interested in full CP-FE construction for DFAs over a fixed alphabet . Then, this full construction is obtained
from the basic construction over a new alphabet X, where ¥, = {o! = A(0,¢,t) 0 € 35,6 € [tmaz), ¢ € [Wmaal},
A Y X [tmas) X [Wmaez) = Fq is an injective function i.e., 3, can be thought of as a collection of ¢,,43Wmaes copies of
each symbol o in ¥. Therefore, for each symbol ¢ in ¥, we have a matrix W, of order ;40 X Winaz, with (¢, ¢)-entry
Wols][t] = ob = Ao, ¢, 1).

A string w = wy ---wp over ¥ is converted to a matrix® W with order t,,4, X £ of symbols from X by the
following rule

e for the i'" occurrence w; = o, the it" column W; of the matrix W is obtained as (ot = A(o,1,4),...,
of  =A(0,tmaz,1))". Note that all the entries in W are distinct.

A set of transitions, 7 of a DFA M over ¥ is converted to a set of transitions, T, for DFA N (satisfying the
restrictions of basic construction as stated in Section 3) over X, by the following rules:

e for each o € X, first transfer the set Trans, to an another set Trans? by enumerating the symbol ¢ in each
transition of Trans,. (Seemingly, in TransZ, all the transitions of Trans, are enumerated)

E

o

e Then for each transition* ¢t = (qs, qy,0¢) € Trans
t € [Wmag]. (Tp is initially empty)

add the transitions ta(y.c,) = (¢z,qy,0L) to Ty for each

In other words, the above rules convert a DFA M = (Q, 3, qo, F, ) to a restricted DFA N = (Q, %y, qo, F, 8). Note
that if a string w is in £(M) over X, then there is exactly one string wy, comprising exactly one symbol from each
column of the matrix W, is legitimate in L(N) over X, and else, for all strings w;, (by picking exactly one symbol
from each column of W), wy, & L(N).

SEtup(H): (param, (BOa 38)7 (]Bgl;B*l()v (E27B§)a (B3vB§)a (Béb BZ)) — gob(l)\a Sa 14a 14a 14a 5)
Bj = (bj1, bjss bjs), B := (0], )3, bj4) for j=04

Ej = ( bj71 .. .,bj’4, bj711, bj712 ), @; = ( b;f’l, o ’b;‘l’ b;,l?ﬂ b;’14 ) for J:1,2,3

Choose a set, alphabet of symbols ¥ = {o1,...,04} C F,, where d = poly(x). The public parameters and master
secret are given by

PP = (Eiparam, {@j}j:0,1,2,3,4)>
MSK:= ({B}}j=0,1,2,3.4)-

3For each occurrence of symbol w; = ¢ in w, we have t;,q., copies of that symbol o in it* column of the matrix W.
4Note that all the transitions have a common symbol o in Transs, but in Trans?, ¢ is enumerated as o. to make all
copies of o distinct.
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Remark : 3, is not given in PP, since it can be computed using the public function A : ¥ X [tmas] X [Winae] = Fy-
The variable h appearing in key and ciphertext, indicates the index of the symbol A(o,¢,¢) in Xp.

Encrypt(PP, M =

(Q,%,qo, F,8),m): First, obtain the restricted DFA N = (Q, %y, qo, F, ) from given DFA

M by applying the above rules. Let 7, be the set of transition for §,. For each ¢, € @, pick d, & F,.
For each ¢, € F, choose ¢, & F,. For each transition ty(sc.) = (¢, qy,0f = Ao,5,t)) € Ty, choose

U 7 nd U 2 .
StA(O',C,L)76tA(O‘,§,L)7175tA(G,§,L)>2’5tA(0‘,§,L)73 ]Fq7 ¢tA(a,<,L),1’ ¢tA(a,<,L),2’ ¢tA(a,<,L)73 IFq' Pick random € € FQ' Now,

compute

60 = ( d07 07 67 07 ¢O)BU Cm = mg;‘

For each transition 5 (s.c,.) = (¢, @y, o0& = A(0,5, 1)) € Ty, compute

2 2 6 2 2
AN AN T

C;tA(a,w)’l = ( 5tA<o,<,L>71(1’h)v (st/\(m,L) +dy) (1,00 = A(o,5,1)), 0%, 0%, ‘Etz\(a,swi ) By

2 2 6 2 2

étA(a,q,l,)32 = ( 515/\(0;,1,),2(17}7‘)’ (_StA(¢,<,,,) + d$)(17gé = A<U’§7L))7 06 ) 02 (;tA(o,w,)Q ) By
2

2 2 6 2
; T o
OtA(,,S’L),S = ( 6tA(a’g’L),3(17 h’)a StA(,:,,gyL) (17 O’i = A(O’, S, [’))7 0 ) 0 ’ ¢tA(g,<,L),3 ) B?)

For each g, € F', compute the ciphertext component
Cz,4 = ( dza 0, 0, 0, ¢Z)IB4

CM = ( M) CTTM CO? {CtA(n,s',L)717 Ct/\(o’,s‘,l,)’Q’ CtA(a,<,L)’3}tA(a,s,L)Z(QJVvaO':-=A(‘77§75))€7-b7 {CZ’4}qz€F)
KeyGen(MSK,w = w; ---wy): Convert this string w to the matrix W of order t,,4, x ¢ by aforesaid law, i.e.,

if w; = o is the ¢

A(Ua tmara Z))T

th

occurrence in the string w, the i*" column of the matrix W is (o} = A(0,1,4),...,07 =

For each Symb01 A(Jagvi) of Wv choose N/\(a,g’,i),l; ,LI’A(U,C,i),27 .uA(U,g',i),330A(o,§,i) — ]qu

- . . U . . U U
TA(0,5,1), 1> TA (06,1),25 TA (0,6,),8 Fg. For each ¢ € [¢] U {0}, pick r; «— F,. Also choose ng,ne+1 <— F,. Now

compute
K; = (

—

KX(U,C,i),l = (

K;(U,C,i),2 = (

To, 07 17 Mo, O)BS
For each symbol 0! = A(c,¢,) of the matrix W, compute

2 2 6 2
—_— . A~
MA(O',g,i),l(hv _1)5 ri + 0A(0’,§,i)02? _GA(U,c,i)7 0, NA(o,5,i),15 0 ) BT

2 2 6 2
—_— : AN
BA(o,s,i),2(hy =1), =ri1 + Or(5c.0)0L, —OA(0,s,i)s 0%, Ma(oys,i),2, 07 ) B3

2 2 6 2

; 6 z T2

HA(oc,i),3(Ry =1), =1 =751+ On(oc.i)T8, —OA(0r,i)s 0%, MA(oys,i),3, 07 ) B3

K/t(cr,g,i),i% = (

K2k+1,4 = (

Te, 07 07 Ne+1, O)BZ

The secret key for the string w is given by

Decrypt(Cpy, SKy):
states GuqsQeys Gros - - -

SKw = (vag7 {KX(U,C,i)717 KZ(O'SJ),Q’ KX(US»i)ﬁ}ie[é]’ Ce[tmaw]’Klz‘la‘l)

Suppose the DFA M accepts the string w = w; - - - wy, then there exist a sequence of ¢ + 1
,qz, and transitions t1,...,ty, where zo = 0 and ¢,, € F and for ¢ = 1,2,...,¢, we have

t; = (Gu;_1,4z,,0) € T with w; = 0. First, compute the initial value

AO = 6(60, I?S) = g,;_?doJrg

For each transition® ¢; = (qu,_,,¢z,,0 = 0¢) € T, there are wpq, many transitions tas.c) = (Go_ysGas> 0L =

SHere, ¢ indicates that ¢; is the ¢ transition in TransZ. If i is changed then ¢ will change accordingly. In computation of
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A(o,6,0)) in Ty, for ¢ € [Wimas]. Also, for each occurrence w; = o in w, there are t,,4, many symbols represented as
the column vector W; = (o} = A(o,1,4),...,0} = A(0,tmaz, 1))

To get the success in decryption, we have to choose an unique ¢ length sequence of transitions from 7, and an
unique ¢ length string wy, from the matrix . The i** candidate of above is the pair < i" transition,it" bit of wy, >,
obtained by choosing a transition ta(s.c,,) from {ta(c,) = (Gzi G, 0L = A(0,5,1)) 1 t € [Winas|} and a symbol
A(o,3,4) from W, = (ot = Ao, 1,i),. .. ,U,fmw = A(0, tmaz,1))T such that i*" symbol of wy is equal to the symbol of
i*" candidate transition, i.e., we have < tA(o,,i)> Wi = A(0,5,1) >. Therefore, to compute A; for i € [], we use the
ciphertext and key components corresponding to the transition 54, ;) and symbol A(c,<, ) respectively. Compute
the first value A; of intermediate values as

_ ~ % ~ % = Tk _ ridgy —7Todo
A= e(CtA(a,<,1)717 KA(U,g,l),l)'e(CtA(a,g.U-,2’ KA(a',g,l),?)'e(CtA(a,g,l)137 KA(J,c,l),S) =9r

Next, compute the intermediate values A; (for i = 2,...,¢) as follows:

o - - - - o -
A; _Al—l'e(CtA(a-,g,i)al’ KA(U,(,i),l)'e(CtA(cr,g,i)72’ KA(a,g,z‘),2)-e(ctma,g,i)737 KA(a,c,z‘),3)

_ riidg,_y—rodo Tidg; —Ti—1de;  ridy; —70do
=Jdr T =g

. . . duy —rod
Similarly, the intermediate value has of the form: A, = g;l w700

The final value Ay is computed as

gth

rede,—rodo —reds, g*”‘odo

Apyr = Af-e(C_:MA’ RZ+1,4) =9r 9r
Using Ag, A¢g+1 and C),, the message is unmasked as m = C,,, /(Ag Agt1)-

Theorem 5.1. The proposed Full CP-FE scheme is adaptively secure under the DLIN assumption.

Proof. Since each entry of W is distinct and there is at most a single transition of 7, corresponding to each symbol
in X, proof of this theorem is follows from theorem 4.1. [
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A Ciphertext-Policy Functional Encryption for DFAs

A.1 Definition

A ciphertext-policy functional encryption (CP-FE) scheme for DFAs consists of four PPT algorithms - Setup, KeyGen,
Encrypt and Decrypt.

e Setup: It takes a security parameter x, an alphabet ¥ as input, outputs the public parameters PP which
explicitly contains ¥ and the master secret MSK.

o KeyGen: It takes as input a string w = wyws - - - wy over ¥ and master secret MSK and outputs a secret key
SK, corresponding to w.

e Encrypt: takes a message m, the description of a DFA M and public parameters PP and returns a ciphertext
Caq which implicitly contains M.

e Decrypt: It receives a ciphertext Caq and secret key SK,, as input. If the DFA M accepts w, the algorithm
returns m.

A.2 Security definition of CP-FE for DFAs

The adaptive security model is defined as an indistinguishability game, Gamepge,; between a challenger C and an
adversary o, where the adversary has to distinguish the ciphertexts under a chosen plaintext attack (CPA). The
game, Gamep,.,; consists of the following phases:

Setup: The challenger C runs the Setup algorithm to produce the master secret key MSK and the public parameter
PP. Then, C gives PP to the adversary «/ and keeps MSK to itself.

Phase 1: The adversary & queries for the secret keys corresponding to the strings wi,...,w;. The challenger C
returns the secret keys sk,,, by running the KeyGen algorithm on w;, for i =1,... 1.

Challenge: The adversary provides two equal length messages mg, m; and a challenge DFA M* = (Q*, %, ¢§, F*, §%)
with the condition that the DFA M™ does not accept any queried string w; for ¢ = 1,...,l. The challenger chooses

15} < {0,1} and encrypts the message mg using the challenge DFA M* and gives the challenge ciphertext C - to
the adversary A

Phase 2: &/ again queries for the secret keys corresponding to the strings w1, ..., w, with the restriction that no
w; is accepted by the challenge DFA M*. C answers to the adversary & in similar manner as in Phase 1.

Guess: The challenger &/ outputs a bit 3’
The advantage of &7 in above game is defined by
_ 1
AdvSSTFE (k) = ‘Pr[ﬂ = p'] - 2’ :
The CP-FE scheme is said to be adaptively secure if all PPT adversary <7, the advantage AdefﬁFE(ﬁ) is at most
a negligible function in security parameter x.
Lemma A.1 ([OT10]). Forp e Fy, let C, = {(¥,0)[Z.0 = p} CV x V*, where V is n-dimensional vector spaces Ty
and V* its dual. For all (Z,7) € Cp, for all (¥,8) € C,, PrliU = U AGZ = ®] = Pr[iZ = U AGU = 8] = 1/|C, |,
where Z <~ GL(2,F,), U = (Z~1T.

A.3 Proof of Lemma 4.2
We  establish a PPT  algorithm %  (Simulator) who receives an  instance of  DSSI,

(param, {@j,ﬁ;}jzo,l,w%{é%}j:o’zl,{é%yhx}hzlw’d; ¢=1,2; j=1,2,3) and depending on the distribution of 3, £
either simulates Gamegeq or Gameg.
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Setup: Z fixes an alphabet of symbols ¥ = {o1,...,04} € F,, where d = poly(x). It provides PP =
(2, param, {B;};=0,1,2,34) to & and keeps MSK to itself.
Key Query Answering: % can handle the key queries of &7, since the MSK is known to him.

Challenge: < provides two equal length messages mg, m1 and challenge restricted DFA M* = (Q*, %, ¢}, F*, 6).
% chooses b - {0,1}; do, 9o, & & F,. For each state ¢, € Q*, & picks dy, Vs L

t = (qu,qy,0on) € T*, it chooses &, fi il F, and encrypts my to M* as follows.
Cy = Joe_% +Yobo,1 +Eboz, O = mug%

F,. For each transition

For each transition t = (gg, Ay, o) € T*, it computes

Cra = (€4, + O’hea h, 2)(d +381) + Uy + f)(1, O’h)(lzl,:’n b1.4)
Cra = (&)1 +0ne% ) (de — 1) + (Vo fo)(1, on)(b2,3, b2,4)
Cp3 = (€5 1+ n€ly0)5 + fu(l, U})(bs 3,03.4)

For each ¢, € F, it computes

52,4 = dzé% + 19z54,1
% returns Cpg- = (M*, Cr, Co, {Cit, Cray Crsbic(quayonyer s 1Ceitqer-) to 2.
Guess: &/ sends a guess V' to 4. If b = b’ then % returns 1; otherwise it returns 0.

The simulator # implicitly sets s; = w3y + f;, dy = w(fy + 3y, 5 = 75, and c?y = Tciy. Since $, Jy, fr and 9, are
uniformly and independently® distributed over F,, so are s4,d,, s, and Ey

It is obvious to show that if 3 = 1, then Caq- is properly distributed sf-type 1 ciphertext (Gamey), else it is
properly distributed normal ciphertext (Gamegeq;).

A.4 Proof of Lemma 4.3

We establish a PPT algorithm % to whom an instance
(param, {@j, @;‘ }i=0,1,.. 45 {1 }i=0.4, {5i7§}h:1,“.,d; s=1,2; j=1,2,3
for 8=0,1, Tp = ({T{;}j:o,% {T];h,g}h:l,...,d,; ¢=1,2; j=123))
of DSS2 is given and it simulates either Gamey_; 3 or Gamey, ; depending on the distribution of 5.
Setup: Z fixes an alphabet of symbols ¥ = {o1,...,04} C Fy, where d = poly(k). It provides PP =
(2, param, {@j}j:0,1,273’4) to & and keeps MSK to itself.

Key Query Answering: For both the games, the first (k — 1) keys are sf-type 3 and last (v — k) are normal keys.
For Gamey,_1 3, the k*" key is normal and it is sf-type 1 for Gamey, ;. Let w!,... , w” be the query strings issued by
/. The simulator & answers the key SIC,,. for the string w* depending on ¢ as follows.

o If L > k, then £ runs the KeyGen algorithm and gives the normal key to <.

o If v <k, then it is sf-type 3 key. First note that the distribution of sf-type 3 key and normal key are almost
the same except KO 2 first generates Sy «— KeyGen(MSK, w*) and then modifies the component KO as
shown below to obtain type 3 component KO

K «— Ki+ 7‘5{5,2, where r < F,
o If 1 = k then it is either normal or sf-type 1 key. % generates SK,» using the challenge T as bait from the
instance of DSS2. Let w* = w¥ -~ w}. For each i € [(] U {0}, & picks o, 0,7, Ll F,

First, note that C’t’j (resp. [?Z* ;) is represented as the linear combination of 14 dimensional basis vectors B; =
(Z;jyl,..ng,u) (resp. B = (5}1, .. .,5214). In lemmas 4.2, 4.3 and 4.5, we only show that the scalars of 3rd, 4th, 5th,
6th, 9th and 10th basis vectors either in the ciphertext part or in the key part or in both are properly distributed, since the
rest of the scalars are either defined to be zero or can be properly randomized by the supplied vectors from the problem.

16



Fori=1,...,¢;, ¢c=1,2; j=1,2,3, let w = o}, for some index h. Then % defines the following

Agjﬂ',c - TrZT,Bh +0 bj 2+¢ Hﬁzg = QzTBhl +7’1bj3
The simulator % computes the k" key Slek as described below
K = 00T +7obg 1 + b5 3

For each i € [E] it computes key components
Ki*l = UhAB“ A*l 2—|—H5“

ffi*a =0 Aau A?azzz H B,(i—1),1
Ki*,?) =0 AB%I Az3z2 szl HE (i—1),1

Kjpq = 0005 + 7l 4
For each i € [¢] U {0}, £ implicitly sets 0; = m;( + 0;, 7 = 0:C + T4, é\z = mp and 7; = g;p. Since 6;,7;, m; and
0; are uniformly and independently distributed over Iy, so are 0;,7;, @ and 7;. Now, it can be easily verified
that if 3 = 0, then SIC,,« is properly distributed normal key (in Game;_1) 3) except that ¢ defined in DSS2
is zero, i.e., except with probability 1/q. Similarly if 5 = 1, it is properly distributed sf-type 1 key (Gamey, 1)
except with probability 1/q.

Challenge: % receives two equal length messages mg,m; and challenge restricted DFA M* = (Q*, %, ¢, F*, §)
from . B chooses b +2— {0,1}; do, 9o, & < F,. For each state ¢, € Q*, % picks dy, Uy & F,. For each transition
t = (qs,qy,0n) € T, it chooses &, f; Pl F, and encrypts my, to M* as follows.

Co = do YO +Uobo + Eboz,  Crm = myp.g5

For each transition ¢ = (¢, qy,0n) € T*, it computes

Con = (Eh, + Uhgi,z)(dy +5) + (O + fo) (1, op)(brs,bia)
Cia = (&1 +0né} ,)(dx — 51) + (Vs - ), o) (ba,3, b2.4)
Chs = (€ 1+ oné} 5)5: + fi(1, on)(b3,3,b3.4)

For each ¢, € F, it computes
C,a:= d, 1%+ Vb

2 returns C./\/l* = (M*a CTYM 605 {ét,la ét,2a ét,3}t:(q$,qy,oh)67*v {6274}%617*) to .

In ciphertext simulation, % implicitly sets s; = w5; + f;, dy = wcfy + 9y, 5 = 75; and c?y = Tciy. Since ét,ciy,ft
and v, are uniformly and independently distributed over I, so are s¢,d,,s; and d,. Therefore, Caq+ is a properly
distributed semi-functional ciphertext.

Guess: &/ returns its guess b'. If b = b’ then % returns 1; otherwise it returns 0.

Thus, the distribution of the keys and the challenge ciphertext is the same as that of Gamey_1 3 (resp. Gamey, 1)
except with probability 1/q if 8 =0 (resp. 5 =1).

A.5 Proof of Lemma 4.4

The distribution of (PP, {SKu:}.=1....,, Cam+) in Gamey, ; and that in Gamey, » are exactly same except at k*" key.
We show that the joint distribution of k" key SKC,» and the challenge ciphertext in both the games are equivalent.
It is sufficient to show that the scalar 7y in I?g of k" key SK,,x(described in definition of sf-type 1 key) is uniformly
and independently distributed from the other variables in the joint distribution of &’s view. Since 7o is related
to {®;, 1,@12,@23}Ze[( and U} = ((ZJ)* )T (for j = 1,2,3) holds, so, 7 is only related to joint distribution of

{®i1,D; 2, Bistici and { Uy 1, U2, 0y 3Yhefa soa=wh for ic[e)y> Where

‘Iji,l = (7 +010hL_9i)Uﬁ\ \I_{h,l = (5 +dyl(170h)zﬁ
Do = (—Ti_1 + aighljai)Ui Upo = (=5 + dz)(lvgh)Z]%
Q, 3 := (=7 — Ti1 + bion, _Hi)Us U3 1= 5(1, ah)Zi
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Forie [, j=1,2,3, (Zf;7 U,JZ) with w? = oy, is independent from the other variables, since each symbol w! in the
string w¥ is distinct and no two transitions have a common symbol. For each i € [¢], there are two cases

Case Matching : For i*" symbol wf in the string w”, there exist a transition t = (q,, gy, or) such that wf =op

1. By Lemma A.1l, the joint distribution of (\I_)h’l,(f)'i,l) is uniformly and independently distributed on
Crevid,) = {(T,D)|0. =7(5 + c?y)} (over the choice of Z} & GL(2,F,))

=

2. By Lemma A.1, the joint distribution of (\I7h72,<1> 2) is uniformly and independently distributed on

Cr(card) = {(T,8)|0.® = —7;_1(—5; + dy)} (over the choice of z; & GL(2,F,))

3. By Lemma A.1, the joint distribution of (\f’h)37q)i73) is uniformly and independently distributed on
Cirrirys = {(U,8)| 0.8 = (—7; — 75_1)5:} (over the choice of Z3 <~ GL(2,F,))

Therefore, in the matching case, the adversary .o/ could get the legitimate value ﬂc/i\y — ?i_lc/i; by taking the
sum of values in above three cases.

Case Non-Matching : For i** symbol w¥, for every transition t = (¢z,qy,0n) we have wF # op,. Then, for
7 =1,2,3, the distribution of <f>,] is uniformly and independently distributed on FqQ.

The vectors appearing in non-matching case are obviously independent of 7. Since <7 is allowed the key query
for the string w with the restriction w & L(M*), we can infer that 7y is independent from the joint distribution of dy

and {?zciy — ﬁ,lc@;\ ith symbol w matches with the unique transition ¢ = (¢z, gy, on = w; )} (this is found in Case
Matching). Therefore, 7y is umformly and independently distributed from the other varlables in the joint distribution
of &/’s view.

A.6 Proof of Lemma 4.5

We establish a PPT algorithm % to whom an instance

(param, {B;, B}, 0.1.. 4 {0 047{€h§}h Lod; <=1,2; j=1,2,3;
for B - 07 17 Tﬁ - ({Tg }j 0,45 {T,B h, g}h 1,...,d; ¢=1,2; j:1,2,3))
of DSS2 is given and it simulates either Gamey, » or Gamey, 3 depending on the distribution of f.

Now Z proceeds the same way as in Lemma 4.4 except the I_('a‘ component in k" key SK,x

— o~ 240 — — ) T , U
K§ = 00Y5 +7robg 1 + 055 +|1obg 2 |, where 1y «— Fy

So, the coefficient of 5’3,2 in I_('a‘ is uniformly and independently distributed over F,. Thus if 8 = 1, then SKx is
properly distributed sf-type 2 key (Gamey, o) except with probability 1/q, else it is properly distributed sf-type 3 key
(Gamey, 3) except with probability 1/q.

A.7 Proof of Lemma 4.6

The proof is similar to that of lemma 29 in [OT12b]. Indeed, we show that the distribution of
(param,{B;};=01,...4, {SKw}i=1,....v, Cpm+) in Game, 3 and that in Gamep;,q are equivalent except with proba-
bility 1/q. We define new bases Dy of Vy and D of V§ as follows: Choose 6 & F, and set

CZE),z = 50,2 - 95073 (1_:6,3 = 53 3 9b0 2

Dy = (bo,1,|do2 | bo.3, bo.asbos) D = (b1, b2, doys | 6640 b6 5)
It is easily verified that (]D)O,]D)O) are dual orthonormal bases and are distributed the same as the original bases,

(Bo,Bg). For v =1,...,v, K& component of the key SK,, and Cy component of the challenge ciphertext C - are
expressed over By and IB%O as
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KV(L)* = (TO, T, 1a Mo, O>BS 60 = (do’ C/l\(), g’ 0’ ¢O)BO

Then we can express these over the bases (IDg, D) as shown below

[_()(L)>'< = (TOaa 1a 7o, O)DS C_:O = (dOa;l\Oa §+0gl\0 B 07 ¢0)D0
Ké* = (TOar/a 1a 7o, O)DS CO = (dOadOagla 07 ¢)O)DO

Since 0 is uniformly distributed over Fy, so v’ =r —0 and £’ = £+ 030 are uniformly and independently distributed
over [Fy.

Therefore, the distribution of the keys and ciphertext, ({SKu:},=1,...», Car+) is the same as that of Game, 3
(resp. Gamep;nqr) over the bases (Bo,Bf) (resp. (Do, D§)). Thus two games Game, 3 and Gamep;nq are equivalent

o~

from &7’s view if dg # 0, i.e., except with probability 1/q.

B Reduction of DSS1 and DSS2 from DLIN

The assumption, 1-ABE in [OT12b], consists of the vectors computed over a dual bases (Bg, B§) of dimension 5 and
another dual bases (B1,B?) of dimension 14. There are (14-2d) many vectors in 1-ABE, of which, one is 5-dimensional
vector, €3, computed by the basis By and others are 14-dimensional vectors {€3 ¢ ; }t=1,....a; i=1,2, constructed using
the basis By. These (1+2d) many vectors either belong to a class § = 0 or belong to another class 5 = 1. So, the task
of an adversary & is to classify these (14+2d) many vectors, i.e., to guess 8 € {0,1}. All these vectors are connected
via a common variable w (and 7 if 3 = 1). If 3 = 1, then, for t = 1,...,d; i = 1,2, the 9" and 10*" scalars in the

vector € ; (while expressing over the basis B;) are randomized by Z;, where Z, < GL(2,F,).

But, in DSS1, we consider two 5-dimensional dual bases (B}, IB%;‘) for j = 0,4 and three 14-dimensional dual bases
(Bj,Bj) for j = 1,2,3. The assumption, DSS1 consists of two 5-dimensional vectors é% for j = 0,4 and 6d many
14-dimensional vectors & , ;, i.e., for each t = 1,...,d; i = 1,2, there are three vectors &}, for j = 1,2,3. As
usual, all these vectors {é%}j:OA and {éﬂﬁ,t,i}tzlwwﬁb j=1,2,3; i=1,2 are connected via a common variable w (and 7 if
B=1). If B=1, then, for t =1,...,d; j =1,2,3, the 9" and 10" scalars in the vector &}, ; (when expressed as a
combination of basis vectors in B;) are randomized by ZJ, where Z} & GL(2,F,). So, it is obvious that 1-ABE is

weaker assumption than DSS1 assumption. Note that th ’s are independent for j = 1,2, 3. Due to this independence,
we could not deduce DSS1 from 1-ABE by employing the usual transformations W; and ((W;)~1)7 respectively over

the bases B; and B} for j =0,...,4, where W; i GL(5,F,) for j =0,4 and W; < GL(14,F,) for j =1,2,3.

The assumption, 2-ABE in [OT12b], consists of (1+2d) many vectors €10, {€1.¢,i }t=1,....a; i=1,2 (i.e., 8 = 1 instance
of 1-ABE) expressed over the bases By, B; and (14+2d) many vectors 5270, {E;‘j’t,i}tzlw’d; i=1,2 over the bases B, B.
The task of the adversary is to guess 8 € {0,1}. The later (1+2d) many vectors, hj; ; and h} , ;’s are connected via
a common variable ¢ (and p if 3 = 1). Likewise, if 8 = 1, then, for t = 1,...,d; i = 1,2, the 9" and 10" scalars in
the vector €;; (while expressing over the basis B}) are randomized by Uy, where Z; & GL(2,F,) and U; = (Z;1)T.

Similarly, DSS2 consists of the vectors expressed over the 5-dimensional dual bases (]B%j,B;f) for j = 0,4
and 14-dimensional dual bases (B;,B%) for j = 1,2,3. There are (4+12d) many vectors {e’, f_i%* }j=04 and
{éﬁ’i,ﬁ‘gt’i}t:1,_“,d; i=1,2; j=1,2,3 and the task of &/ is to guess 8 € {0,1}. For ¢t = 1,...,d; j = 1,2,3, let
Zl & GL(2,F,) and set U} = ((Z])™")T. Then, the 9" and 10" scalars in the vector eﬁz (when it is ex-
pressed over the basis B;) are randomized by the matrix Z; and those in fL[JB*“ (over the basis B}) are randomized by
Utj, where fort =1,...,d; j =1,2,3, th & GL(2,F,) and Ug = ((th)’l)T. Similarly, as discussed above, 2-ABE
assumption is weaker than DSS2 assumption and we are unable to deduce DSS2 from 2-ABE.

In [OT12b], 1-ABE (2-ABE) was shown to be intractable under DLIN assumption by defining 1-ABE (2-ABE)
as a hybrid of some experiments, where first (resp. final) experiment was defined to be the 8 = 0 (resp. 8 = 1)
case of 1-ABE (2-ABE). The first experiment (Exp 0) and final experiment (Exp 2-d-2-2 if 1-ABE and Exp 2-d-8
if 2-ABE) were shown to be indistinguishable under some intermediate basic problems. Our approach for proving
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intractability of DSS1 and DSS2 under DLIN assumption follows the same proof technique of above but we change
the intermediate basic problems to “modified” basic problems and then apply these modified basic problems (MBP)
to show that the neighboring experiments are equivalent from /’s point of view.

Some intermediate basic problems of [OT12b] described here, may not be using in the reduction of DSS1 and
DSS2 but, are still given to differentiate these intermediate basic problems from the modified basic problems.

B.1 Reduction of DSS1 from DLIN
Definition B.1. For (t1,i1), (t2,i2) € N?, we define

(t1,71) < (t2,i2) <= (t1 < ta) or (t1 =tz and iy < ia)

(t1,11) > (t2,i2) < (t2,42) < (t1,71)
Definition B.2 (Basic Problem 1 in [OT12b]). Choose ¢g,w & F, and 7 & Fx.
(param, (Bo,BS), (B,B*)) <— Gop(k, 5, 14)
By o= (85,15 Boar- - bys) BT = (07,05, B3, BL)
&= (w, 0, 0, 0, ¢9)Bo, & :=(w, 7, 0, 0, ¢o)Bg

For i = 1,2, choose ¢;1, ¢i2 ¢— Fy

4 6 2 2
2 6 2
eO,’L = ( O , WEj, 0 ) O ) ¢i,17 ¢i,2 )B
4 6 2
2 4 2
€1,i = ( 0 , WEq, Tei70 9 0 ) ¢i,17¢i,2 )B

D := (param, IB%O,I/B\%S,IB%,I@*) For 8 =0,1,define Tp := (é%, {€3.i}i=1,2)
Now, the advantage of an algorithm &7 in breaking this Basic Problem 1 (BP1) is defined by
AdVEFY (k) = |Prle/ (D, Ty) = 1] — Pr[«/(D,Ty) = 1]|

The BP1 assumption holds if for all PPT adversary <7, the advantage Advl?jl(n) is a negligible function in security
parameter k.

Lemma B.1 (lemma 34 in [OT12b]). For any adversary <7, there exist a PPT algorithm B, such that AdvS) ' (k) <
AV ™N (k) +5/q, for all k.

Definition B.3 (Modified Basic Problem 1). Choose ¢3, ¢3,w & F, and 7 & Fy.
(param, (BOa 35)7 (BDBT)a (B27 B;)a (1837 B;)a (1843 BZ)) A gob(”, 57 147 14,14, 5)

~ -

By == (b1, by 3,---,0;5) for1=0,4; B} i= (bj 1,5 0545 D57y, b5 14) for j=1,2,3
e, = (w, 0, 0, 0, ¢3)B,, € :=(w, 7, 0, 0, ¢y)B, for . =0,4

Fori=1,2,j=1,2,3, choose ¢g’1,¢g_’2 < F,

4 6 2 2

€f),i = ( 0 y WEs, 0 ) 0 ’ ¢g,1’¢212 )B]
4 6 2 2
éfi,i = ( 0%we;, 76,05 0° ¢3717¢§,2 )Bj
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D := (param, {B;,B}};—0,1,..4) For 8 =0,1,define Tj := ({&};=0,4, {&}  }im1,2 j=12)
Now, the advantage of an algorithm 7 in breaking this Modified Basic Problem 1 (MBP1) is defined by
AV PP (k) = |Pr(e/ (D, Ty) = 1] — Prle/ (D, T)) = 1]|

The MBP1 assumption is said to hold if for all PPT adversary 7, the advantage AdeBPl(ﬁ) is a negligible function
in security parameter k.

Lemma B.2. For any adversary <f , there exist a PPT algorithm 91, such that AdeBpl( ) < AdePl( ), for all
K.

Proof. %8, is given the instance (param,IB%o,@S,IB,@*,é’g,{6'571'}1-:172) of Basic Problem 1, where @3 =
G125 55 b5)s B i= (B, b5, b5 ..., Bty). B chooses Wo, Wy - GL(5,F,), Wi, Wa, W3 <>~ GL(14,F,).
Now, %, defines new bases (D;,D}) for j =0,...,4 by setting the following

ci;-,L = 5j7LWj, d_j = b* (W DT for j=0,4,0=1,...,5

dj, =0b,W;, d;, = b* JWHT forj=1,2,3,1=1,...,14

éﬂ@ = egWj for j =0,4

€. 2652Wf0r]—1231—12

D = (d1seeordrs)  Df = (o idis), Dy = (41, dis, o dy5) for t = 0,4

Dy = (dp,e.odiga) D} o= (dfq,.o. digg), D o= (diy,.. digodip. . dyyy) fort =1,2,3
It is verified that (D¢, D}) for ¢t = 0,...,4 are dual orthonormal bases. Then, %#; returns G :=
(param, {Dj7ﬁ);}j:0,1,...,4, {6_%};‘:0,4, {é’é,i}izl’g; j=1,2,3) to the adversary <. It is straightforward that G is an in-
stance of MBP1 for 8. This concludes the lemma. O

Lemma B.3. If DLIN assumption holds for a bilinear pairing group generator G, then the DSS1 assumption also
holds for G. That is for any adversary <f , there exist PPT algorithms %1, %5, such that for any k, AdVDSSl(FL) <

Adv ™ () + Ty Xl AV () + O(d) /g, where Fap () = Fa(pyi )

Proof. The proof technique of lemma B.3 is adapted from that of lemma 23 in [OT12b], i.e., DSS1 is organized as

hybrid of the experiments Exp 0, Exp 1,..., Exp 2-d-2-2. Thus, the advantage of o7 in DSS1 is the advantage gap

between Exp 0 and Exp 2-d-2-2, i.e., we have AdvDSS! (k) = \Pr[Expd( ) = 1] — Pr[Exp%**%(k) = 1]|. Therefore,

from the lemmas B.1, B.2, B.4, B.5 and B.6, we have

AV (k) = [Pr{Expl, () = 1] — Pr{Exp’ () = 1]

< Pl (k) = 1] = PrEpl () = 1| + Yoo (1PrExes ") = 1] = PriEel M (s) =
Ul + [PriExp” (s) = 1] = PrExp(s) = 1] + [PrExpl () = 1] = PrExpl " (x)

U] + |PriExps (k) = 1] = PriExpl” " (r) = 1]])
= 1PrEel (k) = 1] = PriBey () = 1| + o (PrEes %) = 1] - Prieel (s =
1|+ [PrExp (k) = 1] = Pr(Exps> ™ (r) = 1]]

g AdVMllgpl( ) + Zp:l Zi:l Ad %];_Ppl_,;(n)
< Adv ™ () + 3 S0 AV () + O(d) /g
This concludes the lemma B.3. O

Experiments

One can define the sequence of experiments almost the same as in lemma 23 of [OT12b], except that one considers
here, two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to
change Exp 0 to Exp 2-d-2-2 under MBP1.

MBPl MBPl

|Eap 0] =

]Exp 1 \ = ] Exp 2-0-2- 2\ ]Exp 2-1-1-1 \ ~ ] Exp 2-1-1-2\

[Bap 2112 "R [Bap 2-1-2-1] - [Bap 2-d-12| "R [Bap 2-d-2-1 |~ [ Eap 2-d-2-2]
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Exp 0 : This is defined to be the 8 = 0 case of DSS1, i.e.,
& = (w, [0], 0, 0, ¢})B; for j =0,4
forh=1,...,d; 7=1,2,3; i=1,2

4 6 2 2
—_—
,—/H

&= ( o,0n,we [02] 02 [02] 02, ¢l.¢l, B,

Rest of the variables are defined as in DSSI1.

Exp 1 : This is Same as Exp 0 except the following
&= (w, [7] 0, 0, §})B; for j = 0,4
forh=1,...,d; j=1,2,3 i=1,2
4 6 2 2
&= ( 8,(Lh)wé, [re] 0% 07 '62\ ¢l ¢, )Bj, wherer ¢ F,

Exp 2-p-i-1 (for p=1,...,d; i = 1,2) : This is same as Exp 2-(p-1)-2-2 if i = 1 and Exp 2-p-1-2 if i = 2 except the
following: for j =1,2,3; i =1,2

4 6 2 2
€pi = ( 6p’7;(1,p),w€i, Té;, 07, Up,i(17p) ) 0”, (bi,la ¢i’2 )B]a where Op,i $— IFq

This shows that Exp 2-0-2-2 is Exp 1.
Exp 2-p-i-2 (for p=1,...,d; i = 1,2) : This is same as Exp 2-p-i-1 except: for j =1,2,3; i =1,2

4 6 2 2
5 j > > J J VY ,
Cpi = ( (sp,i(l?p)vwe“ T€;, 07, T(Zp,i,l’zp,i,Q) s 0%, by, dis )B;

J J )
where z, ;1,2 ;5 «— Fy

So, the distribution of é’{”- in Exp 2-d-2-2 can be written as: for h=1,...,d; i =1,2; j=1,2,3,

4 6 2 2
—j L - — — 2 = r7]) 2 J J
eni= ( 0, (L h),we, 76, 0%, reiZy, 07, ¢l,,¢;5 )B;

where Z; < F2*? (Implicitly, the (1, ¢)-entry of the matrix 7] is set as Zimg). Therefore, Exp 2-d-2-2 is identical
to the 5 =1 case of DSS1, except for the case, det(Z,J;) = 0 for some h, i.e., except probability 3d/q

Lemma B.4. For any adversary </, there exist a PPT algorithm %y, such that |Pr[Exp, (k) = 1] — Pr[Exp, (k) =
1] < Advg?m(ﬁ), for all k.

Proof. The proof of the lemma B.4 is almost the same as that of lemma 45 in [OT12b]. In lemma 45 in [OT12b],
Exp 0 and Exp 1 were shown to be indistinguishable under BP1. But, in this lemma, rather we use MBP1.

P receives an instance of MBP1, (param, {B;, IE%;‘ }i=01,..4, {é%}j:()A, {575 i Ji=1,2; j=1,2,3) and its task is to decide
whether 8=0or s =1. For h=1,...,d; i=1,2; j =1,2,3, # computes

éﬂﬁ,h,i = 5i,¢(bj,1 + hbj2) + é'za,i + ¢§1,i,1bj713 + ¢g1,¢,2bj¢14

J Jj J u
where 5h,iv ¢h,i,1’ ¢h,i,2 «— F,.
Now, % sets
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L= (ELJ,ELg,bLS) B, = (571,573,574) for o = 0,4

j o= (bjyl, .. bj 4,bj’13,b ) J (b; 15+ '7b;,4>b;,11’b;12)7 for ] = 1,2,3

P, gives the parameters G = (param, {I@j,l@j }i=0,1,. 45 {é%}j:o}zl, {é%,h,z‘}h:lw,d; i=1,2; j=1,2,3) t0 & and outputs a
bit b € {0, 1} if the adversary o/ outputs b. It is straightforward that if 8 = 0 (resp. 8 = 1), the distribution of G is
exactly same as that of Exp 0 (resp. Exp 1). O

&) &8

Lemma B.5. For any adversary <, there exist a PPT algorithm %Bs, such that for any x, |Pr[Exp2 (p-1)-2- 2( )=1]—
PriExpl P (k) = 1]| < Advig?"! (k), if i = 1, and | PrExp>” " *(k) = 1] — Pr(Exp2?” 2 k) =1]] < AdvP! (k)
if i =2, where Bo_p—i(.) = B2(p,7,.).

Proof. The proof of the lemma B.5 is almost the same as that of lemma 46 in [OT12b]. In lemma 46
in [OT12b], Exp 2-(p-1)-2-2 and Exp 2-p-1-1 (also Exp 2-p-1-2 and Exp 2-p-2-1) were shown to be indis-
tinguishable under BP1. But, in this lemma, we rather use MBP1. %, receives an instance of MBPI,
(param {IB],]B }] =0.1 47{6%}]':0,47{575@}1':1,2; j:1,2,3) and its task is to decide whether ﬂ = 0 or 5 = 1. For

IEEREEE)

j=1,2,3, B deﬁnes new dual bases (D;,D}) as follows

D; = (dj1,...,dj,14) = (b 3,054,05.1,b5.2,05.9,05,10,05,7, 05,8, 05,5, 5.6, 05,115 - - -, bj 14)
* _:k _ _}* _’* _'* _’* _'* _‘* _‘* _)* _'* _‘* _’* _}*
D = (e iag) = (555554550050 B5.0 85,00, 057 D5 055 056 5115 1)
Now %, sets
~ - ~ % -
B, := (b,1,b0.3,b.5), B, =" 17bLJ‘3va4) for 0 = 0,4
(T 7 7 7 % Tk Tk T .
Dj := (dj1, .-, dj1,dj13,dj14), (dg SRR adj,4v dj,ua dj,12)a for j=1,2,3

ZB, can handle é? for (h,t) < (p,i) as in Exp 2-p-i-2 and the same for (h,¢) > (p,%) as in Exp 1 using D; and

~ ; U . . .
J _ 1 9. i _ =4
T, h . 1,zh . 1,(;5 10 Ph, 0 < Fg. Now, fori=1,2; j=1,2,3, 5 computes €, ; as shown below

El

éo ((’D T, Oa Oa (Z)O) é‘ﬁlL ((.:} T, Oa 07 ¢4)

o = ~d ~d
€pi = €31 T DG o + Wdjopi + Wdjay

where ¢, ¢g < F,.

PBs gives the parameters G = (param, {B;, B} }—0.4, {D;, D} }j=12.3, {€]} =04, {é%,i}h:lw i=1,2; j=1,2,3) to &7 and
outputs a bit b € {0, 1} if the adversary &7 outputs b. It is straightforward that if + = 1 and 6 0 (resp. 8 = 1), the
distribution of G is exactly same as that of Exp 2-(p-1)-2-2 (resp. Exp 2-p-1-1). Similarly, if i = 2 and 8 = 0 (resp.
B = 1), the distribution of G is exactly same as that of Exp 2-p-1-2 (resp. Exp 2-p-2-1). O

Lemma B.6. For any adversary <, and for any k, we have Pr[Exp2 Py =1] = Pr[Expif_i_g(n) =1].

Proof. The proof technique of this lemma is adapted form that of lemma 47 in [OT12b]. For j = 1,2,3, pick
77 & GL(2,F,) and set U7 = ((Z7)~1)T. Now, we define new bases (D;, D7) for j = 1,2, 3, by setting the following

Go Yooy (B ) (B0 ) [ B
dj 10 bj,10 d5 10 b 10

— — - - —

o ) ) ] ] ) 7 * * % T T Tk 7%
Dj = (bj,lv AR b]78’ dJ-,9a dJJO ,bg,n, RS bJ,14) ]D)j = (b] 1o bg 8 dj,97dj,10 abj,llv sy bj,14)

It is easily verified that (]DJj,]D);) are dual pairing orthonormal basis and are distributed the same as the original
bases, (B;,B}).
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For (h,t) < (p,i), we express é%’b using the bases (B;, BY) and (ID;,D}) as:
2 2

4 6
=) — J - = ) J J .
eh,L T ( 5h,L<1’ h)7 We,, Ty, 0 ’ TZh,L’ 0 ’ h,L,l’¢h,L,2 ) B]
4 6 2 2
—_——
/j—/% 5 Y /2\ /J_/T
= ( (5h’L(1,h)7 wé,, Tée, 0%, 72", ,, 0%, Dhi1Phio ) D;

For (h,t) = (p,i), we express éfm- using the bases (B;, B;) and (D;,D}) as:

4 6 2 2
é";)ﬂ‘ = ( 5;77(171?)7 we;q, TEq, 0 ) Up,i(lap)7 0 ) g),i’l?qsi;ﬂ'j ) ]Bj
4 6 2 2
J 2 J 2 J J
= ( 6p,i(lap)7 weq, TE;, 0 ) TZpﬂ‘? 0 ) ¢p’i)1a¢p,i,2 ) D]

For (h,t) > (p,i), we express é’;u using the bases (B;, B}) and (D;,D}) as:

4 6 2 2
j j 2 2 //2\ YRR
&, = (03 ,(1,h), we, &, 0%, 0% 0%, h,1Phio) By
4 6 2 2
J 2 02 2 J J
= ( 6h’b(1? h)7 wew 7'6“ 0 9 O I O b h7L71a¢h)L)2 ) D]

where Z;i = Tfl.&pyi(l,p‘).Zj and Z{M = (zi,hl,z{b,w), z_;im = Z{L,L.Zj for (h,t) < (p,i). Thus, for j = 1,2,3 and for
(h,t) < (p, 1), Z;’i and z_;iw are uniformly and independently distributed. Therefore, for h =1,...,d; 7=1,2,3;. =
1,2, the distribution of e”{w is identical to that of Exp 2-p-i-1 (resp. Exp 2-p-i-2) expressed over the bases (B;, B})
(resp. (D;,D%)). This concludes the lemma. O
B.2 Reduction of DSS2 from DLIN

The Sketch of reduction of intermediate modified basic problems :

DLIN Lemma B.8 BP2 LemgB.Q MBP2

Lemg}B.ll Lemg}B.lQ Lem%B.IO

Lem%B.ll Lem%B.13
LemgB] Lem%B.l4 MBP6 Lemg}B.lﬁ

Definition B.4 (Basic Problem 0 in [OT12b]). Choose p1, pi2, $1, 92, X1, X2, 05 O & Fy.
(paramppo, (B,B"), AP,€P) <— Gu(r,5) B* = (57, B, B5)
hy = (w1, p, 0, 0, 0)B*,  hj3 = (u2, 0, p, 0, 0)B*
€= (0, 0, 0, ¢1, ¢2)B, €1 := (0, x1, X2, P1, 2)B
D := (paramppo, B, B*, {h}}iz1.2, AP,EP, ptP) for 8 =0,1, define T := &3
Now, the advantage of an algorithm & in breaking this Basic Problem 0 (BPO0) is defined by
AdVES (k) = |Pr(e/ (D, Tp) = 1] — Pr(</(D,T1) = 1]|

We say that the BP0 assumption holds if for all PPT adversary <7, the advantage AdvE{PO(n) is a negligible function
in security parameter k.



Lemma B.7 (lemma 32 in [OT12b)). For any adversary <7, there exist a PPT algorithm B, such that AdvE) % (k) <
Adv ™ (k) +5/q, for all k.

Definition B.5 (Basic Problem 2 in [OT12b]). Choose (,w,ng < F,. For i = 1,2, pick 01,72 & F, and

0, T & Fy.
(param, (Bo, BS), (B,B*)) <— Gop(k, 5,14)

ﬁO = (50717 50,37"'750,5)7 ﬁ:: (517"'7545 597“-’514)
HS,O = (C, 07 07 7o, O)BSa _»}{,0 = (<7 P, Oa Mo, O>B(§ 50 = (Wa T, 07 07 O)BO
For ¢ = 1,2, define

4 6 2
2
— e =
- 3 o 6 — 5
he,:= ( 0°,¢é, 0°, Mia,ma2, 0% B
4 6 9 2
— ~ =
“ 2 ,o S o SN 2
h’ii = ( 0 ’Ceiv pe’iao s Mi1, M2, 0 )B*
4 6 2 2

. — = =
Y= ( 0% wé, 7é,0% 0%, 02 B

D := (param, Bo, B, B, B*, &, {¥:}i21.2) For 8 = 0,1, define Tp := (B30, {5, }i=1,2)
Now, the advantage of an algorithm o7 in breaking this Basic Problem 2 (BP2) is defined by
Adve,? (k) = |Prle/ (D, Ty) = 1] — Pr[«/(D,T1) = 1]]

The BP2 assumption is said to hold if for all PPT adversary <7, the advantage Advgfm(/@) is a negligible function in
security parameter s.
Lemma B.8 (lemma 35 in [OT12b]). For any adversary <, there exist a PPT algorithm 2, such that AdvE}? (k) <
Adv ™ (k) +5/q, for all k.
Definition B.6 (Modified Basic Problem 2). Choose (,w, 19, 74 A Fy. Forj=1,2,3,i=1,2, pick 77?,17 77{72 <

u X
F, and p, 7 «— F7.

(param, (Bo, Bp), (B1,BT), (B2, B3), (Bs, B3), (B4, B))) +— Gov(k, 5,14, 14,14, 5)

FOI‘ ] = O, 4, deﬁne I/B\%j = (5j71, [)]‘737 e 75]',5) FOI‘ ] = 1, 2, 3, deﬁne @j = (5j717 ey bj74, bj79, ey bj,14)
For j = 0,4, define
"= (¢ 0,0, my, OB;, hi"i=(C, p, 0, my, OB; &= (w, 7, 0, 0, 0)B,

For j =1,2,3,i=1,2, define

4 6 2 2

hi* 2 6 i 02

h’O,i = ( 0 a<6i7 0 ) 7]@17771"27 0 )B;
4 6 2 2

hjl,l' = ( 0 7Cei7 peiao ) 771{1777?727 0 )B;k
4 6 2 2

o — =~ =

Y= ( 0%we, 76,0% 0, 0° )B,

D := (param, {IE%L,]B’;}L:OA,{Iﬁ%j,Bj}j:LQ,Ba{%}j:0,4,{fz}j:17273; i=1,2). For 8 = 0,1, define the challenge T :=

({5 Y im0.as (RS imr 2.0 im1.2).
Now, the advantage of an algorithm &7 in breaking this Modified Basic Problem 2 (MBP2) is defined by

Adv "% (k) = |Prle/ (D, Ty) = 1] — Prl«/(D,Ty) = 1|
The MBP2 assumption is said to hold if for all PPT adversary <7, the advantage AdvgBPQ(/{) is a negligible function

in security parameter k.
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Lemma B.9. For any adversary <7, there exist a PPT algorithm A, such that Adv%BPZ(m) < Ade@PQ(Fa), for all k.

Proof. This is proven in the same manner as lemma B.2. O

Definition B.7 (Basic Problem 3-p in [OT12b] for p = 1,...,d). For i = 1,2, choose fip.i,0p isNp.i1sMp,i2 & F,
and T «— Fy.
(param, (Bo, BS), (B,B*)) <— Gop(k, 5, 14)

@ = (bh. . .,54, gg, .o .,514), 50 = (0, T, 0, 0, O)Bo
For ¢ = 1,2, define

4 6 2
2
— =~ =~
_'* /_/H *
hovp»i = ( M;D,’L‘(p7 _1)7027 06 ’ Mp,i, 15 Mp,i, 25 02 )B
4 6 9 2
=~
7 = = —
R pai= ( ppi(p,—1),0% —0,:6;,0,:6;,0°, Tpi1,mpi2, 07 )B*
4 6 2 2
o = —_—— = =
T, = 0, T, 7€, 0%, 0%, 0> B
4 6 2 2
= —~ = =
gi = ( 04 ) 0477-51'7 02 ) 02 )]B

D := (param, BO,BS,I@,B*,E’O, {"ﬁ-,gi}izl,g) For 8 =0,1,define T3 := ({ﬁﬂ,p,i}izl,g)
Now, the advantage of an algorithm &7 in breaking this Basic Problem 3-p (BP3-p) is defined by
AVEPIP () = | Prlef (D, Ty) = 1] — Prles/(D, Ty) = 1]

The BP3-p assumption is said to hold if for all PPT adversary <7, the advantage Advzps_p(/f) is a negligible function
in security parameter k.
Definition B.8 (Modified Basic Problem 3-p for p = 1,...,d). For i = 1,2, pick 6,; «— F,. For j = 1,2,3,
i =1,2, choose ”ixi’ni,i,l’ 77;71',2 & F, and 7 & Fx.

(param, (B()a ES)) (BDBT)? (B27 B;)v (B?n B;), (1847 BZ)) — gob('l{/v 57 147 147 147 5)

— —

FOI‘ j = 1, 2, 3, deﬁne I/B\gj = (gj,ly ey I_)’j’4, b]‘797 - ,bj714)
For.=0,4, &, :=(0, 7, 0, 0, 0)B,
For 7 =1,2,3,i=1,2, define

4 6 2 2
Tk j 2 6 7 J ooy
hopi = ( 11:(p,—1),0% 0%, Tpits Tpizr 07 )Bj
4 6 2 2
L 7 2 2 J J 2
hl,p,i = ( Mp,i(p,—l)ﬂ ) _Hp,ieia‘gp,iei’o y o Mpi1sMpi,2o 0 )B;
4 6 2 2
. = —_— = ~ =
di= 0t 78, 7,07, 0%, 0% )B;
4 6 2 2
. = —~ = =
7= 0* 0%, ré;, 0%, 02 )B;
D = (param,{B,, B }i—o04, {B;,Bi} =123 {& =04, {&], 7 }jm1.2.3, i=12). For B = 0,1, define Ty :=

({h i bim1,2.3: i=12)-
Now, the advantage of an algorithm 47 in breaking this Modified Basic Problem 3-p (MBP3-p) is defined by

AdVYPP3P () = |Prle/ (D, Ty) = 1] — Prle/ (D, Ty) = 1]]
The MBP3-p assumption is said to hold if for all PPT algorithm 7, the advantage AdvﬁBm*p(/@) is a negligible

function in security parameter .
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Lemma B.10. For any adversary <, there exist a PPT algorithm A, such that AdvﬁBPS_p(m) < Advg’?’_p(fi), for
all k.

Proof. Similar to the proof of lemma B.2. O
Definition B.9 (Basic Problem 4-p in [OT12b] for p =1,...,d). For i = 1,2, choose pp i, 8p.i, Mp,i1; Mp,i,2 < F,.
(param, (BO7BS)7 (]B’ B*)) < gob(’l{a 57 14)

@ = (517...,66, 595-'-7514)
For i = 1,2 define

4 6 2
2
—_—— =~

- ———
h37p7i = ( :up,i(pa _1)7 027 06 ) np,i,lv np,i,27 02 )B*

4 6 9 2
T - ——T— *
hl,p,i = ( :up,i(pa _1)a 027 02a ep,ieia 027 Mp,i15Mp,i,2, 02 )B

D= (param,]Ro,IBS,@,]B%*) For = 0,1,define T3 := ({lﬁzgypyi}i:m)
Now, the advantage of an algorithm & in breaking this Basic Problem 4-p (BP4-p) is defined by

AdVE 4P (k) = |Pr[e/ (D, Ty) = 1] — Prle/(D,Ty) = 1]|
The BP4-p assumption is said to hold if for all PPT algorithm .7, the advantage Advf}m_p(/ﬁ) is a negligible function
in security parameter k.

Lemma B.11 (lemma 38 in [OT12b]). For any adversary <7, there exist a PPT algorithm %, such that for all k,
AdedIZ4_p(m) < 21‘2:1 Adv%;\liN(/i) +10/q, where @,(.) = </ (p,.) and B, .(.) = B(p,i,.)

Lemma B.12 (lemma 37 in [OT12b]). For any adversary o, there exist a PPT algorithm 9B, such that for all k,
Advg?_p(/i) <37, Advgppﬁ_p(n), where <7,(.) = </ (p,.) and By(.) = B(p,.)

Definition B.10 (Modified Basic Problem 4-p for p = 1,...,d). For i = 1,2, pick 0,; +— F,. For j = 1,2,3,
- J J J Y

i =1,2, choose iz, ;, 1, ;1,142 < Fo.

(param, (BOa B8)7 (BMBT)7 (B27B;)7 (B3aB§)a (B47 BZ)) — gob(ﬁa 5, 147 147 147 5)

— — —

For ] = ]., 27 3, define @j = (Ej,la ey bj,(;, bjyg, N ,bj714)
For j =1,2,3, i = 1,2 define

4 6 2 2
7 J 2 6 J J 2
Ropi = ( ppi(p,—1),0%, 0%, Mpiis Mz 07 )Bj
4 6 2 2
1,p,0 "7 lup,i b, )7 ) > Up,i€i, ’ T’p,i717np,i727 ) 7

D := (param, {B,, B} },—0.4, {B;,B}}j=1.23) For 8 =0,1,define Ty := ({h} , ;} ;=123 i=1.)
Now, the advantage of an algorithm ¢/ in breaking this Modified Basic Problem 4-p (MBP4-p) is defined by
Advy"T P (k) = | Pried (D, Ty) = 1] = Prl/(D,Ty) = 1]|
The MBP4-p assumption is said to hold if for all PPT algorithm 7, the advantage Advi\gBm_p(ﬁ) is a negligible

function in security parameter x.

Lemma B.13. For any adversary <7, there exist a PPT algorithm A, such that AdvlﬁBM*p(n) < Adv%P47p(n), for
all k.
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Proof. This proof is similar to that of lemma B.2. O
Definition B.11 (Basic Problem 6 in [OT12b]). For i = 1,2, choose wu;, 0, p i Fy; Xi, q’_;i i Fi.

(param, (Bo,Bp), (B, B*)) +— Gou(k, 5, 14)

~

B* = (b],...,b5, by,....01y),  h:=pbyy, hi = pb! for 1 =5,6,9,10
For i = 1,2, define

4 6 2 2
. —~ =
h;k = ( :quO 3 027/761‘7027 02 ) 02 )B*
4 6 2 2
—~ = ~~ /=
é‘0,1 = ( 017037 06 ) 02 3 d)l )IB
4 6 2 2
—~ —— N
gl,i = ( Jivog, 027%2';023 02 5 ¢z )B

D = (param,IBo, BS, B,@*7 HS, {BT}L=576,9,103 {E;‘}i=1,2) FOI‘ ﬂ = O7 1, deﬁne T/} = ({a@,i}i:l@)
Now, the advantage of an algorithm &7 in breaking this Basic Problem 6 (BP6) is defined by
AdvE (k) = |Pr(e/ (D, Ty) = 1] — Prle/(D,Ty) = 1]|
The BP6 assumption is said to hold if for all PPT algorithm 7, AdvE}PG(n) is a mnegligible function in security
parameter s.
Definition B.12 (Modified Basic Problem 6). For j =1,2,3, i = 1,2, choose ug,0g7p & Fg; X’Z,(EZ < Fg.

(param, (BOa B8)7 (BMBT)7 (B27B;)7 (B3aB§)a (B47 BZ)) — gob(ﬁa 5, 147 147 147 5)

For j =1,2,3, B} := (05 ,....bq, big,...,b51y), N5, = pbs, for 1 =5,6,9,10; hj := pby o, I := pbj ,
For j =1,2,3,i=1,2, define

4 6 2 2
—_—— N =

* -
W= ( pl,0% 0%,p6,0°, 0°, 0° )B:
4 6 2 2

, e T

é(ﬂJ,z‘ = O’ZJ’O ) 0, (U ¢Z )BJ
4 6 2 2

- 5 o T

éii = ( 0—1450 ’ 0 7Xga0 ) 0 s ¢Z )B]

D := (param, {BL,BT}L=0,47{Bj’@;}jzm,&flé,ﬁz,{E;’L}jzl,z,:ﬂ; 1=5,6,9,10: {0 }j=1,2,3; i=1,2). For f = 0,1, define

Tp = ({€}}j=1,23; i=1,2)-

Now, the advantage of an algorithm &7 in breaking this Modified Basic Problem 6 (MBPG6) is defined by
AdVYPPO (k) = |Pr(e/ (D, Ty) = 1] — Prle/(D,T)) = 1]|

The MBP6 assumption is said to hold if for all PPT algorithm .7, the advantage Adv%BP(j(/i) is a negligible function
in security parameter k.

Lemma B.14. For any adversary <f, there exist a PPT algorithm 91, such that for all k, Adv%BP(j(Fa) <
Zj‘:l E?:l Adv.]%Pl)Ej—i(K>f where %1*j*i(') = ‘%1(j77;7 )

Proof. The proof technique of lemma B.14 is adapted from that of lemma 43 in [OT12b], i.e., MBP6 is organized as
hybrid of the experiments Exp 0, Exp 1-1-1, Exp 1-1-2, Exp 1-2-1, ...,Exp 1-3-2. Thus, the advantage of &/ in MBP6 is
the advantage gap between Exp 0 and Exp 1-3-2, i.e., we have Adv¥iP 0 (k) = | Pr[Exp%, (k) = 1] — Pr[Exp’*2(k) = 1]].

Therefore, from lemma B.15, we conclude the lemma B.14. O
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Experiments

Below, we define the sequence of experiments almost the same as in lemma 43 in [OT12b], except we consider here,
two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to change
Exp 0 to Exp 1-3-2 under BPO.

’ExpO‘:’ExplOQ‘ ]Ex 111\ ’ExpllQ‘ ’ExplZl‘ ’ExplSl‘ ]Exp132

Exp 0 : It is defined to be the 8 = 0 case of MBP6 as shown below
for 5 =1,2,3, ﬁ;’b = PE;',L for 1 = 5,6,9,10; ES = pl;aQ,fzz = pl;j‘l,2
for j =1,2,3; i=1,2

4 6 2 2

}_7:‘3* = ( MZ? 037 027 pg’ba 02 02 ’ 02 )B;
4 2
—~

&= ( o0 02 02, 02 & B,
Rest of the variables are defined as in MBP6.
Exp 1-j-i (for j =1,2,3,4 =1,2): This is Same as Exp 1-j-(i-1) if ¢ = 2, or this is Same as Exp 1-(j-1)-(i+1) if i =1
except the following

4 6 2 2
/—/h
j i 03 2 2 T i U o2
&= ( ¢,0°, 0% O 0°, ¢ )Bj, wherey] «— T,

Thus, Exp 1-0-2 is Exp 0.
Lemma B.15. For any adversary , there exist a PPT algorithm By, such that for all k, j = 1,2,3, we have
|PriExp (k) = 1] = PriExp "V (k) = 1)] S AVE® _ (w), if i = 2, [PrlExpl/ (k) = 1] — Pr{ExpL, " (7 (5) =
1] < Ade@TJ_ﬁ( ), if i =1, where B1_;_i(.) = $1(J,1,.).

Proof. We only prove the case i = 2. Similarly, lemma B.15 for the case ¢ = 1 can be proven. The
proof of the lemma B.15 is almost the same as that of lemma 44 in [OTI12b]. % is given the instance
(parameo,B,]B%*,{ﬁf}izlyg,é'g,)\RﬁP,pEP) of Basic Problem 0. Now, using paramg = (q,G,Gr,P,e) of
paramppo, %1 computes paramy, = (¢, Vi, Gp, Ay, e) < Gapys(k, Ny, paramg) for ¢ = 0,...,4, where Ny = 5

for t = 0,4 and Ny = 14 for t = 1,2,3. Then, %, sets param := ({paramy, }+=o,... 4, 9r), where gr = e(AP,£P)
belongs to paramppg. %1 chooses Wy, Wy & GL(5,F,), Wi, Wo, W i GL(14,F,). Now, #; defines new bases
(D;,D3) for j =0,...,4 by setting the following

d},L = ("L APOT)W,  dy, = (007 EP0P ) (W )T for t = 0,4, 0= 1,...,5

= (61, 0W;  diy = (67, 0°) (W, )T for t =1,2,3
dt? = (b2,0”)W, diq = (527 Wy 1) ; dt_,'8 = (bBLO YWy deS = (b3,09)(W )T fort=1,2,3
dt 13 = (b4709) t dt 13 = (b4, f)( )T, dt’14 = (b5,09)Wt t 14 -+ (b5,09)(W )T for t = 1 2 3
diy = (0°,02 AP0 W, df, 1= (0,02, 6P, 010 ) (W; )T for t =1,2,3,1=2,...,6
diy = (0FL AP0 W, df, i= (041, 6P, 0127 ) (W, )T for ¢ = 1,2,3, 1 =6,..., 12

: = i v i

éﬂﬁg = (€p ) J 6,8 1= (0170117¢j)wj7 01 «— Iy, ¢1
é’tﬂ7b = (o! Oll,gbt)Wtfortfl?Styéj,L712U <—]Fq,(j>t%lﬁ‘2
pr = (0,peP, 0% (W, HT for t=0,4 p* = (071, pe P, 0M ) (W, HT for t =1,2,3, 1 = 5,6,9,10

= (

ot e 00) (W, T 4 6ty for t =1,2,3, 0= 1,2, 6 ¢~ F,

Dy = (diy,..vdys) D= (diq,....dis) fort =0,4

Dy = (diy,....dyaa) Df = (diy,....dj1y) fort=1,2,3
It is verified that (D;,Dj) for ¢ = 0,...,4 are dual orthonormal bases. Note, that %; can com-
pute almost all the vectors in (D;,Dy) for ¢t = 0,...,4 from B,B* := (b7,b},0%),\P and &P except
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d_;,'hcz;)g for t = 1,2,3. % sets I@);‘ = (_ik’l,...,cﬁ"(;, 3’9,...,ﬁ’14) for ¢t = 1,2,3. Then %; returns G

= (param, {Dg, D} b—o,4, {D¢, D} h=1,2,3, {7 }=0,4 {D" }t=1,2,3: 1=5,6,9,10, {P" }e=1,2,3: 1=1,2. {4, H1=12,3 1=12) to .
Finally, %#; outputs a bit b € {0,1} if the adversary o returns b. Therefore, it shows that if 5 = 0 (resp. § = 1),
O

the distribution of G is exactly the same as that of Exp 1-j-(i-1) (resp. Exp 1-j- i) for i = 2; 5 =1,2,3.
Definition B.13 (Basic Problem 5-p in [OT12b] for p =1,...,d).

(param, (Bo, BY), (B, B*)) <— Gop(k,5,14), choose p «— F,

—

B* := (5{,...,53, 53,...7_"{4), ES = pE(’;,Q, h = pgf for . =5,6,9,10

For (=1,...,p—1,p+1,...,d, i =1,2, choose flpi, Xei» be,i ¢ F2; fip.is 00 ¢ F,

4 6 2 2

Y 2 2 > 02 = 0 2
h;,i = ( Hopi (pa 71)7 0 ) 0 y PEis 0 ) Tp,i 0 )B*
4 6 2 2
e T T g
€0,0,i ‘= ( Uzai(:l?E)?O ) 0 5 0 5 d)@,i )]B
4 6 2 2
2 2 2 2 g
€1,0,i ‘= ( Jf,i(lv£)70 ) 0 7X€,i70 ) 0 ’ ¢E,i )B

D := (param,Bo, By, B, B*, kY, {h!}.=5.6.9,10, {fl;,i}i=1,2) For 8 =0,1,define T := ({€3,0,i }e=1,... p—1,p+1,....d; i=1,2)
Now, the advantage of an algorithm & in breaking this Basic Problem 5-p (BP5-p) is defined by

AdVEY5 P (k) = |Pr[e/ (D, Ty) = 1] — Prl«/(D,Ty) = 1]|

The BP5-p assumption is said to hold if for all PPT adversary <7, the advantage Advips*p(m) is a negligible function

in security parameter k.
Definition B.14 (Modified Basic Problem 5-p for p = 1,...,d). Choose p «— F,.
(param, (Bo, BY), (B1,BY), (B, BY), (Bs, BS), By, BY)) «— Gob(r, 5,14, 14, 14, 5)

For j =1,2,3, B i= (b3,..., b5, 0lg,...,bl14)
Y= pbt,, for j=0,4, hi*:=pbs, for j=1,2,3;1=56,9,10
For (=1,...,p—1,p+1,...,d; j=1,2,3;i=1,2, choose 7, ;, ¥}, &), ¢ F2 (i) .0}, + F,

4 6 2 2
P J 2 2 9] 2
D,i = ( Mpz(p7_1)70 ) 0 apeivoa 77,,71-, 0 )B*
6 2 2
. ——— A o
€00, = ( Uz,i(1>f),0 ) 0~ 0%, 0 )B;
4 6 2 2
4 TR N
=7 . J o7 J
el’é’i C ( Uz’i(lvg)ao 5 0 7Xg’i70 5 0 5 0 )BJ

D := (param, {B,, B} },=0,4, {Bja@;}jzlz,i%a {E;}j:o,zla {hi*}j=1.2,3; 1=5.6,9,10, {E;Z}j:m,s; i=1,2). For 3 =0,1, define

Tp = ({€ it o=1,p—1p+1,....d; j=1,23; i=1,2)-

Now, the advantage of an algorithm ¢ in breaking this Modified Basic Problem 5-p (MBP5-p) is defined by
AV PP (k) = |Pries (D, Ty) = 1] — Pr(e/ (D, Ty) = 1|

The MBP5-p assumption is said to hold if for all PPT adversary <7, AdvgBPE’*p(n) is a negligible function in security

parameter s.
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Lemma B.16. For any adversary <, there exist a PPT algorithm %, such that Advgfps_p(n) <
D=1 ptptl..d Adv}}éif%n), for all k, where 7,(.) = o (p,.) and Bp(.) = B(p,L,.).

Proof. The proof technique of lemma B.16 adapts the same of lemma 40 in [OT12b], i.e, MBP5-p is organized as
hybrid of the experiments Exp 0, Exp 1,...,.Exp p-1, Exp p+1,...,Exp d. Thus, the advantage of &/ in MBP5-p is the

advantage gap between Exp 0 and Exp d ie., AdeBP5 P(k) = |Pr[Exp£¢ (k ) 1] - Pr[Expd (k) = 1]|. Therefore,
from lemma B.17, we conclude lemma B.16. O
Experiments

Below, we define the sequence of experiments almost the same as in lemma 40 in [OT12b], except we consider here,
two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to change
Exp 0 to Exp d under MBPG6.

MBP6

’ExpO‘ ’Expl‘ ’Exp pl‘ ’Exp p+1‘ ’Expdl‘ ’Expd‘

Exp 0 : It is defined to be the § = 0 case of MBP5-p as shown below
fort=1,...,p—1,p+1,...,d,j=1,2,3,i=1,2
4 6 2 2
. —_— = A~ I
é%i = ( O.z77j(17€)7027 02” 027 02 ) (rz%,i )BJ
Rest of the variables are defined as in MBP5-p.

Exp ¢ (for£=1,....,p—1,p+1,...,d) : Thisissame as Exp { —1if £ #£p+1 and Expp—1if £ = p+ 1 except for
i=1,23,i=1,2

6
4 —_— 2 2
. —_ -2 5| 7 5 /2\ - U
. = 2
€= ( 03,(1,0,0° 0%|x;,0° 0 %1 )Bj, where \; «— I}

Lemma B.17. For any adversary <f, there exist a PPT algorithm A, such that for all k, |Pr[ExpfA{p‘£(n) =1] -
Pr[Exprp) (k) =1]| < AdeBPG( ), ifL#£p+1, |Pr[Exp§;;1p+1(m) =1] - Pr[Epo{;’lﬁl(n) =1]| < Adv%?l:fl(m), if
C=p+1, where By (.) = %’(p,f, D, pe() = (p, 4, .).

Proof. We only prove the case £ # p + 1. Similarly, the lemma B.17 for the case { = p + 1 can be proven.
The proof of the lemma B.17 is almost the same as that of lemma 41 in [OT12b]. A is given the in-

stance (param, {B,, B },—o.4, {B;, B} } =123, hg, b, {13, }j=1.2.3: =5.6.9.10, {Hg*aé%,i}j:l,z,s; i=1,2) of Modified Ba-
sic Problem 6 and integers p, ¢. For j = 1,23, Z computes the following

7 B ¢ b ¢
_g,l =7 —'JJ = p —»'771 h Z = P

< dj,2 > ( bj,2 ) ( —1 -1 ) < bj,2 ) , wnere 1 1
dj o bj2 - r i

:(jldjg,bjg,.. bjaa), D) 1= (&5, 50,075, b7 1)
= (

—; —

* * *
d] 7d]27bj3,.A..,bj6,bj9,...7bj714)

2 5 ses 5 U 2 aq
% can compute {€3, }i=1,. dt£pe; j=12;3 using the dual bases B; Bj and 5“, — F? as

t,%
deﬁned n EXp é 1\IOW7 (@ returns (param, {B“ BT}L:0,47 {]D)j, ﬁ;}j:1,2,37 hs, h47 {hj,b}j:1,2,3; 1=5,6,9,10;

{hpweé,t,i}t:17~--,p—17p+17---,d; j=1,2,3; i=1,2) to &. Finally, # outputs a bit b € {0,1} if the adversary .o/ returns
b. If 5 =0 (resp. § = 1), the distribution of G can be shown to be exactly same as that of Exp £ — 1 (resp. Exp ¢)
by using the similar kinds of arguments of claim 6 of lemma 41 in [OT12b]. O
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Lemma B.18. If DLIN assumption holds for a bilinear pairing group generator G, then the DSS2 assump-
tion also holds for G. That is, for any adversary <, there exist PPT algorithms %#1,.%5 such that for any k,

AdvP5? () < AV N ()40 0 (AR (s )+Adv VE () et (AVED L (R)+
AdVD?I;I}j,p ( )) —+ AdVDLIN ,i(K/)) + ( )/Q) where y2—1—p—i<~> = yQ(lapaia'); y2—2—p—i(') = ﬁg(lp,i,.),

yQ—S—p—i—Z() Fa(3, p,z,ﬁ -), Foapi-e(.) = Fa(d,p,i,l,.), Fas pi(.) = F2(5,p,4,.)

Proof. The proof technique of lemma B.18 is adapted from that of lemma 24 in [OT12b], i.e., DSS2 is organized
as hybrid of the experiments Exp 0, Exp 1,...,Exp 2-d-8. Thus, the advantage of & in DSS2 is the advantage gap

between Exp 0 and Exp 2-d-8, i.e. AdvDSSQ( ) = | Pr[Exp%, (k) = 1] — Pr[Exp%*®(x) = 1]|. Therefore, from lemmas
B.7,...,B.17 and B.19,...,B.27, we have

AV () = | PrExply () = 1] — PriBxp’ 8( ) =1]|

< |PrExply(r) = 1] = Pr(Expl, (r) = 1]| + X (|Pr[Exp2 (k) = 1] = PrExp’ (k) = 1]| + [Pr(Expl (x) =
1] - Pr[Exp2p4( ) = 1| + |Pr[Exp>f (k) = 1] — PrlExp>P () = 1]| + |Pr[Exp>P (k) = 1] — PrExp>f" (k) =
1| + | Pr(Exp2" (x) = 1] = Pr{Exps (k) = 1]))

< Advi ™ () + 205 (Advig, TP () + Advig TP () + Advig TR () + Advig TP () + Advi, TR (k)

< AN X S (A () AR Y apena (AR ) ¢
AdvET L (R) FAAVET (k) + O(d)/g.

This concludes the lemma B.18. O
Experiments

Below, we define the sequence of experiments almost the same as in lemma 24 in [OT12b], except we consider here,
two 5-dimensional dual bases and three 14-dimensional dual bases. In the following sketch, we show how to change
Exp 0 to Exp 2-d-8 under M BP2, {MBP3 — p, MBP4 —p, MBP5 — p},—1.

)

ME,PQ] Exp 1] =[Exp 2-0-8] ~[Exp 2-1-1] -+ [Exp 2-(p-1)-8]

’Exp2 p-1) 8‘~’Exp2p1‘MBp3 p’Exp2p2‘~’Exp2p3‘MBP3 p

]Exp 2p8 |~ ] Exp 2—(p+1)—1\ - [Exp 2-d-8\

Exp 0 : It is defined to be the case of DSS2 as shown below
w* = (¢, [0] 0, n}, 0)BE, for j =0,4

&= (w, 1, 0,0, ¢g)]Baj7 for j = 0,4
Fort=1,...,d;7=1,2,3;i=1,2

4 6 2 2
.. ——~ 1 ‘ N A~
Y= (O pd(t—1), ¢ [0°], W, 0 B

4 6 2 2
, —_— — A A
&= ( ol(LtwE, 16,02 raz, 02, @, B
Rest of the variables are defined as in DSS2.

Exp 1 : This is same as Exp 0 except the following

Hé* = (C? 7 0, 7767 O)]B%;(, for 7=0,4
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Fort=1,...,d;j=1,2,3;i=1,2

4 6 2 2
—_—~ ——
S , » = - ~= § -
h;i = /Li,i(tv —1),¢é, ,04, niﬂ», 02 )]B%j, where p +— F,

Exp 2-p-1 (for p=1,...,d) : This is same as Exp 2-(p-1)-8 except the following
Fort=1,...,d;7=1,2,3;i=1,2

4 6 2 2
&= ( ol ,(Lt)wé, r&lrd| ez, 0%, &, By

Thus, Exp 1 is Exp 2-0-8.

Exp 2-p-2 (for p=1,...,d): This is same as Exp 2-p-1 except the following
For j=1,2,3;1=1,2

4 6 2 2

e e A~ A
W= (o (p,—1),CE | (p— 0,8, 0,46 ,0%, P, 0> )B*, wheref,; +—F
p,i L /j/p’i pa I elv p P, 67,7 p,lel7 9 np’ia 70 where D, q

Remark : for j = 1,2, 3, we use the same 6, ;.

Exp 2-p-3 (for p=1,...,d) : This is same as Exp 2-p-2 except the following
For j=1,2,3;1=1,2
4 6 2 2
o —_— et RN
h;),i = ( :U’;),z(p7 _1)) Cé;a ep,ié;h (p - 91777;)51' 70 ) ﬁ;’z ) 0 )B;

Remark : for j = 1,2, 3, we use the same 6, ;.

Exp 2-p-4 (for p=1,...,d): This is same as Exp 2-p-3 except the following
For j=1,2,3;1=1,2
4 6 2 2
7% j 2 2 - /2\
h;{),i = ( ,u] (pa _1)a Ceiv 0 y PE; 70 3 771];,1‘ ) 0 )B;

P,

Exp 2-p-5 (for p=1,...,d): This is same as Exp 2-p-4 except the following
For/=1,....p—1,p+1,...,d;j=1,2,3;i=1,2

6

4 2 2
—_——
) —_— - A~ U
/- J > > | o > 2 i =J 2
€= ( ol’i(l,ﬂ),wei, T€| Xp4 pT€Ze, 0%, @y, )B;, where Xpi < Iy

Remark : for a fixed ¢ and 1, )Z%l are independent for j = 1,2, 3.

Exp 2-p-6 (for p=1,...,d): This is same as Exp 2-p-5 except the following
Forj=1,2,3i=12

4 6 2 2
. - /=~ =
h‘g;; = ( :u’g),q,(pv _]-)a C€Z7 027 gé;a szUp 9 ,’7;‘7)71 9 02 )Bj
4 6 2 2
—N— ~ /=

=

L J = = 2 = 2 7 )
ep,i T ( o—p,q',(]-vp)vweza Tezaa TeZZpa 0 ’ D, )BJ

where € < F2, Z, <*— GL(2F,), U, := (Z; )"
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Exp 2-p-7 (for p=1,...,d): This is same as Exp 2-p-6 except the following
For/=1,....p—1,p+1,....d;j=1,2,3;i=1,2
4 6 2 2

—_—~
—— ~=~

— — — 2 - 2 g
621‘ = ( U;,i(17€)7wei7 T€i77 TeiZKa O ) (b%l )B]

Exp 2-p-8 (for p=1,...,d): This is same as Exp 2-p-7 except the following
For j=1,2,3;1=1,2

4 6 2 2
—_——~—
h?):kz = ( ,Ug)z(p7 _1)3 Cgla 027 7 szUpa ﬁ;,i I 02 )B;

Lemma B.19. For any adversary <, there exist a PPT algorithm %y, such that for all r, |Pr[Exp% (r) = 1] —
PrExpl, (k) = 1]| < AdvPT2 (k).

Proof. The lemma B.19 is proven almost the same way as lemma 48 in _LQT12b]. 9, is given the instance
(param, {B,,B; }.=0,4, {Bj, B} }j=1,2,3,{€) }j=0,4, {97 }i=1,2,3; i=1,2, {I} }i=0,4, {5, }i=1,2,3; i=1,2) of Modified Basic
Problem 2. %#; computes

Fort=1,...,d,7=1,2,3,:=1,2
. . T T . i T e . U
hi,i = Mgl(tb bj 2) h] niz(b] 11’b] 12)’ where lu’iz — IE]‘117 nt K H IEQ

; _., U
éz,z . gz + TZL 1 Zt Byt j 8+ + ZL 1 ¢t iyt j 12400 where d)t iyt F Fq> (Zt,i,b)i7L:1a2 = Zg — GL(27FQ)

€, ::5+¢55 here¢b<—Fq,forL—O4
B, :=(b,1,0.3,b.5) IB%* = ( TR b 4), for 1 =0,4
B/ — (EL,17 b 45 L HL7

g 13,bL 14) B* .= (b*17~'~7bL47bL 11’5’:12) for ¢« = 1,2,3
= (

Then, % returns G := (param, {B L,B b= 047{]]33 37153 bi=1 23;{hﬂ € bi=0,4, {etl,h“}t 1yoonds j=1,2,3; i=1,2) t0 7.
Finally, simuy outputs a bit b € {0,1} if the adversary o returns b. It is to check that ﬁ =0 (resp. 8 = 1), the
distribution of G is exactly the same as that of Exp 0 (resp. Exp 1). O

Lemma B.20. For any adversary <, for any &, Pr[Exp2 (p-1)- S(k) =1] = Pr(ExpZP (k) = 1].

Proof Lemma B.20 is proven almost the same way as the lemma 49 in [OT12b]. Set Jjgﬂ = l_J'ngrL — gj,9+b, J;gﬂ

= b;k 91, T l_)';HL, for = 0,1. Then set

- - —

N 7 * e Tk Tk Tk Tk _
i= (b1 60| djrodys [ by, -y bjaa), D (bj Lo Ui d5 oy dfag b3y, b)), for 0 =1,2,3

Then (D, DY) for j = 1,2,3 are dual orthonormal bases and consistent with (B, B}). The rest of the proof of the
lemma B.20 follow from lemma 49 in [OT12b]. O

D

Lemma B.21. For any adversary <, there exist a PPT algorithm %Ba_y, such that for all k, |PrExp%? " (r) =
1] = PrExp,” (k) = 1]| < Advig) > "P(k), where By 1,(.) = Ba1(p, )

Proof. The proof is similar to lemma 50 in [OT12b]. %Bo_; is given an integer p and the instance
(param, {B,, B }i—o.4, {B;, B} j1.2,3, {6 im0, {6, 0} o123 im1.2, {0, ; }i=1.23; i=1.2) of Modified Basic Prob-
lem 3-p. Fort =1,...,d, j = 1,2,3, $2_1 chooses (Zg7iL)i’L:1’2 = ZJ & GL(2,F,), U = ((Z])™")T and
can compute ﬁ(’-‘),ﬁj, f_ii*z for (t < p) as defined in Exp 2-p-8 and ﬁgt for (¢t > p) as defined in Exp 1 by using
p,(,uz’i,ng,i’l,niu & F, and (Z7,U7) for t # p. %Bo_1 computes

gb ::E_)L'i_ngl"’_q&L_'LBa W(ﬁb(lF fOI'L:04

i U
gg,i : Utz(b]1+tb]2) +°Jb32+1 +€ +ZL 1Zt“9L +ZL 1¢tu j,12+., where Utz’¢t11’¢)t22<—Fq
fort=1,. dj—1232—12
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?\Z):kl h_]@ P, 1_:"_ ij 241 + pr 6+z
I%L (él,bg, >L Bf::(bl,...,f)forb—oél
Lo (b L47bb713’bb714) = ( [ RN L47bL 11’bl,12) fOI‘L:1,2,3
Then, Hr_1 returns § = (pamm, {BL)BL}LIOA? {B j7[Bj }i=1,235 {vagl}j:o,zx, {ﬁf,i}tzl,...,d; j=1,2,3; i=1,25

{ht Z,pp =1, p—1pt1,.d; j=1,2,3; i=1,2) to <. Finally, %1 outputs a bit b € {0,1} if the adversary o
returns b. It is easily verified that 8 = 0 (resp. 8 = 1), the distribution of G is exactly the same as that of Exp 2-p-1

(resp. Exp 2-p-2). O
Lemma B.22. For any adversary <, for any &, Pr{Exp>P?(k) = 1] = PrlExp%? % (x) = 1].
Proof. This follows from lemma 51 in [OT12b]. O

() =

Lemma B.23. For any adversary <, there exist a PPT algorithm %B_o, such that for any k, |Pr[Exp?,
1) - mmf”u—ms%%iﬁ%»mWﬁHﬁu—%ﬁm»

Proof. Similar to that of lemma B.21. O
Lemma B.24. For any adversary <7, there exist a PPT algorithm %Bo_3, such that for any k, |Pr[Exp2 P 4( ) =

1] — PriExp?? (k) = 1]| < AdeBP5 P(k), where By_3_p(.) = Ba_3(p,.).

Proof. The lemma B.19 is proven almost the same way as lemma 53 in [OT12b]. HBs_3 is given an in-

teger p and the instance (param, {B,, B} }.=o.4, {Bj, B} }j=1,2,3, {7 }i=0,0 {hi*}im1,2.8; 1=5,6,0,10, {7] 5 =123 i=1,2,
{6‘75,272-}[:1’,H’pfl,erl,‘“’d; j=1,2,3; i=1,2) of Modified Basic Problem 5-p. %,_3 can compute g, := (w, 7, 0, 0, ¢,)B,

using B, and w, T, ¢, Pl Fy, for « = 0,4. Now, it computes
. . i iU i 7 U
Fort=1,...,d;7=1,2,3;i=1,2; C,Miﬂ-,alj)’i «— Fg, nz’i,éz)’i — F?]
) , U . P
Ul = (uly,)iu=1,2 & GL(2,Fy),  (2);,)iu=1,2:= (U})™H)"
Py oi=h+ ((, 0, 0, n,, 0)B¥, where 7, & F, for 0 =0,4
pz,z - ZL 1ut7, th;:-L (lut z( ) gela 067 ﬁg,i’ 02 )B; if ¢ <p
15;,2’ = ZL 1 p“hﬁ‘ + (02, ¢é;, 010 B if t = p

. 2 . = — .
ﬁz,i = Z =1 ut K /hZ:H (lu’t z( ) Cela 0 ng,m 02 )Bj lf > b
g‘gﬂ = e@m (0 we;, TE;, TE;, T@sz, 0* B ) 5, if ¢ #p

g;z (0),:(1,p), wei, T@Z, T@u T€Z), 07 ¢ By, if t =
B, := (b1 ”Lg, bus), IB%’[ (b’fh..., b 4), forL—O 4
@L = (Buts.- - boasbias,boas), B = (Eb’l,...,bw,bbw bf15), for e =1,2,3

Then, %1 returns G := (param, {BLaBT}L:0747{Bj7B/j Vimt23, 405 G0t im0,4, G0 4o PLi b emt, s =123 i=1,2) tO /.
Finally, %,_1 outputs a bit b € {0,1} if the adversary o returns b. It is easy to see that 8 = 0 (resp. 8 = 1), the
distribution of G is exactly same as that of Exp 2-p-4 (resp. Exp 2-p-5). O

Lemma B.25. For any adversary </, for any k, Pr[Exp2 PRy =1 = Pr[Exp2 PO(k) =1].
Proof. One suitably adapts the proof of lemma 54 in [OT12b]. Choose 3 < F,. Forj =1,2,3, pick Zg & GL(2,F,)

and set UJ = ((Z])™")". Let Iy and O, respectively denote the 2 x 2 identity matrix and null matrix. Now, we
define new bases (D;,D¥) for j = 1,2,3, by setting the following

- — - -

G - bj.7 iz N o b3
dis | ._ < &, 0y ) bjs ds | ._ ( L —E'Uj > b s
4 = N1 e J = J

dj,9 (Zp) I bj79 dj79 O- I bj,9
dj 10 bj.10 d;,w b;,lO
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- - - - -

i 7 * e Tx Tx * 7%
Dj — (bj’17...,bj’6, dj,77"'1dj,10 7bj’117...,bj’14) ID) (b 7"'7bj,67 j777"'7 j,lo 7bj,117""bj,14)

It is easily verified that (]D)j,]D);) are dual pairing orthonormal basis and are distributed the same as the original
bases, (B;, B}).

Fort=1,...,p—1,p+1,...,d; j=1,2,3; i = 1,2, we express ég;,i using the bases B; and ID; as:
4 2

6 2
=i j i J ’/? TN
Cti T ( 6t,i(17t)a Wei,  TEiy X4 T€Zy, O t.i, 1a¢t12 ) B
4 6
J J 2
= ( Jt z( ) wei, TE;, Xt i Teth? (U 71,1’¢t,z,2 ) D;
| J
Where Xii = (X1, — 7. 21 .(Z])~)
Fort=p; j=1,2,3; i = 1,2, we express EZ),i using the bases B; and D; as:
4 6 2 2
PN T T a0
6p77; = ( (Sp,i(lap>7 weq, TE€;, TEq, TeiZZJ)a 0 ) p,i,l’(bp,i,Q ) BJ
4 6 2 2
J 2 J J
= ( Jp,i(lap)v wej, Teia 0 ’ TelZJ 0 ) ¢p,i,17¢p,i,2 ) Dj

Fort=1,...,p—1; 7=1,2,3; i = 1,2, we express Hi*l using the bases B} and D7 as:
4 6 2 2

o —_—— ’4_H —_— /2\
hi,i = ( Mi,i(tv —1), ée;, 07, peiUtjv ng,i,lﬂng,i,% 0% ) B;
4 6 2 2
= ( ﬂi,i(t —1), de;, 07, PeiUtj; ni,i,l,ni,i,g, 0° ) ]D);

Fort=p; 7=1,2,3; i = 1,2, we express ﬁgt using the bases B} and D7 as:
4 6 2 2 ’

)= (i (¢, —1), 06, 02, pé;, 02 J o 0% ) B
pi = :ut,'i 5 , 0€4, y PEis ’ ’r}t,i,l’ nt,i,Z’ J
4 6 2 2

- ~ -
= ( #’iz( ) 56i7 0 56“ pelUp7 nt z 1’nt 1, 29 0 ) ]D)* Where 6 = é-p
Fort=p+1,....d; j=1,2,3; i =1,2, we express h7 , using the bases B} and D} as:

4 6 2
s Srar— — f.—’% -
hii = ( /Li,i(a 71)5 661‘7 PEiy 0 ) ng,;‘)lang,iga 0 ) B;
4 6 2 2
—_——— — —_— ~
= ( Miz(t _1)5 (567;, PEi, 0 ) ngyi?lang,iga 0 ) D;
Fort=1,...,d; j=1,2,3; i = 1,2, since )Z{Vi’s are uniformly and independently distributed over Fg, SO are )ai’s
Therefore, from «/’s view, the distribution of PP, {égt-yi,ﬁ{:»}t:l ,,,,, d; j=1,2,3; i=1,2 is identical to that of Exp 2-p-5
(resp. Exp 2-p-6) over the bases (B;,B}) (resp. (D;,DD})). O

Lemma B.26. For any adversary </, there exist a PPT algorithm %Bo_y4, such that for any k, |Pr[Exp2 P (k) =
1P¢m”%meM£§%»mW%%%w%Hm»

Proof. Similar to lemma B.24. O

Lemma B.27. For any adversary <7, there exist a PPT algorithm %Bo_s, such that for any k, |Pr[Exp2 P 7(/{) =
1] — Pr[Exp‘2 P8(k) =1]| < Adv giiﬁ P(k), where Bo_s5_p(.) = Bas(p,.).

Proof. The proof can be obtained as in lemma B.24. O
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C Key-Policy Functional Encryption for DFAs

C.1 Definition

A key-policy functional encryption (KP-FE) scheme for DFAs consists of four PPT algorithms - Setup, KeyGen,
Encrypt and Decrypt.

e Setup: It takes a security parameter k, an alphabet ¥ as input, outputs the public parameters PP which
explicitly contains ¥ and the master secret MSK.

e KeyGen: It takes as input the description of a DFA M and master secret MSK and outputs a secret key SK g
corresponding to M.

e Encrypt: takes a message m, a string w = wjiws---wy over ¥ and public parameters PP and returns a
ciphertext C,, which implicitly contains w.

e Decrypt: It receives a ciphertext C,, and secret key SK o as input. If the DFA M accepts w, the algorithm
returns m.

C.2 Security definition of KP-FE for DFAs

The adaptive security model is defined as an indistinguishability game, Gamepge,; between a challenger C and an
adversary o, where the adversary has to distinguish the ciphertexts under a chosen plaintext attack (CPA). The
game, Gamep,.,; consists of the following phases:

Setup: The challenger C runs the Setup algorithm to produce the master secret key MSK and the public parameter
PP. Then, C gives PP to the adversary «/ and keeps MSK to itself.

Phase 1: The adversary o/ queries for the secret keys corresponding to the DFAs My,..., M;. The challenger C
returns the secret keys sk, by running the KeyGen algorithm on M;, for i =1,... [

Challenge: The adversary provides two equal length messages mg, m; and a challenge string w* with the condition

that no queried DFA M; can accept the challenge string w*. The challenger chooses (8 & {0,1} and encrypts the
message mg using the challenge string w* and gives the challenge ciphertext C,,» to the adversary A

Phase 2: o/ again queries for the secret keys corresponding to the DFAs M1, ..., M, with the restriction that no
queried DFA M; can accept the challenge string w*. C answers to the adversary <7 in similar manner as in Phase
1.

Guess: The challenger &/ outputs a bit 3’
The advantage of & in above game is defined by

AdVEPTFE (k) = ‘Pr[ﬂ =p41- ;' .

The KP-FE scheme is said to be adaptively secure if all PPT adversary <7, the advantage Advi;PfFE(fi) is at most

a negligible function in security parameter x.

C.3 Basic KP-FE Construction

In this section, we illustrate a basic Key-Policy Functional Encryption scheme for DFAs in the prime order bilinear
pairing groups. This scheme is based on the structure of ABE construction of [OT12b], where encryption is done
using some basis vectors of dual pairing vector spaces. The keys are generated using some basis vectors of it’s dual.
Similar to section 3, this basic construction has the following restrictions.

— The strings for ciphertexts can have at most a single occurrence of each symbol (policies)

— There is at most a single transition corresponding to each symbol in the DFAs (keys)
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Similar to section 5, one can extend the basic KP-FE scheme to a full KP-FE scheme without the attributed
restrictions and the scheme entertains the similar type of security.

Setup(k): (param, (Bo,Bg), (B1,B}), (Ba, B3), (B3, BS), (Bs, B})) «— Gop(1*,5, 14, 14, 14, 5)
@j = ( I_),j’l’ bj’g_,’ bj’S)_,’ . ]f]i;k = ( l_);,h b;’g’_.bj’[ll fOEjZOA
Bj:=(bj1..,0j4, bj11, 502 ), B == (054,054, 0543, 0514 ) forj=1,2,3

Choose a set, alphabet of symbols ¥ = {o1,...,04} C F,, where d = poly(x). The public parameters and master
secret are given by

PP = (Ej\param) {I/B\%j}j:O,I,Q,SA)?

MSK:= ({B}}j=0,1,2,3,4)-
Encrypt(PP,w = wy ---wpg,m): For each i € [f], choose u;1, pia, fis,0i 7 Pl o5 751,72, 7:,3 & Fg. Pick
£,70,10, Ne41 & F,. Compute the ciphertext components

CVO = ( To, 07 67 07 UO)BO Cm = mgg“
For each i € [¢], (let w; = oy, for some index h) continue to compute
6 2
} 2 2 2
i1 = (pi1(h,—1), 7+ 0;0n, —0;, 0°, 0%, 1) By

2 2 6 2 9

. AN AN A

Cia = (piz(h,—1), —ri_1+6;0n, —0;, 0° ) 02 Ti2) Bo
2 2 6 2 2

. AN AN A

Ciz = (pis(h,—1), —ri—ri1+0ion,—0;, 0°, 0%, 73) Bs

C;f+174 = ( Te, 07 07 07 772+1)B4
The ciphertext is given by C,, := (w, Cpy, Co, {Cﬂitl, Cﬂi’g, é‘i’g}ie[g], ég+1’4)

KeyGen(MSK, M = (Q, %, qo, F,)): For each ¢, € Q, pick d, i F,. For each g, € F, choose ¢, Pl F,. Pick

random & € F,. For each transition t = (¢g, gy, 0n) € T, choose s¢,0¢.1, 62,03 & Fg; Q_S'm, th,Q, gt,g & Fg. Now
compute

I?S = ( d07 07 17 QSO? O)BS

For each transition ¢ = (¢, qy,0n) € T, compute the ciphertext components

6 2 2
. z—’Q\ﬂ /—/2\— /6\ ~= ,-/2\
K:,l = ( 6t71<17h)a (St +dy)(170h)a 0°, ¢t1, O ) BI
2 2 6 2 2
4 ———— =T
K;:Q = ( 5t72(17h)5 (7St +dm)(170h)a 0 ) ¢t,27 0 ) IB;
6 2 2
K;:B = ( §t,3(17h)7 St(LJh), 0 ) ¢t,37 0 ) B§

For each ¢, € F, compute the ciphertext component
K;A = ( dZ7 07 07 (bzy O)Bz
The secret key for the string w is given by
SKm = (M7ng {K;,h Kt*,Zv KZ:?)}t:(q;v7Qy7Uh)eT7 {K:A}%EF)
Decrypt(C\y, SKaq): Suppose the DFA M accepts the string w = wj - - - wy, then there exist a sequence of ¢ + 1
states Guy,qzy s Quss - - - dz, and transitions ¢y,...,t,, where zyp = 0 and ¢;, € F and for ¢ = 1,2,...,¢, we have

ti = (Gu;_1,9s,,0) € T with w; = 0. First compute the initial value

Ao = e(Co, K) = gp®™*
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Then, compute the first value Ay of intermediate values as

r1dz, —rodo

Ay =e(Cry, K 1) e(Cha, K th2): e(Ch 3, t13) 97

Then compute intermediate values A; (for ¢ = 2,...,¢) as follows:
= =y = o ri—1dg; ;—rodo Tidy, —Ti—1ds,_ idz; —T0d
Ai = Air.e(Cin, K} )-e(Cin, K} 5)e(Cis, K g)=gr ' "gp i gt
So, the last intermediate value has of the form
Ay = g;[,dz(*mdo
The final value Ay is computed as
= - de,—rodo —Tedy _
Apir = Ape(Coira, K;M) :g;f £ =70 ogTW P :ngdo

Using Ay, A¢+1 and C,y,, the message is unmasked as m = C,,, /(Ag Apg1)-

C.4 Security Proof

The proof technique is similar to section 4. For this, we define two types of semi-functional ciphertexts, viz., type 1
and type 2 and three types of semi-functional keys, viz., type 1, type 2 and type 3.

Semi-functional Type 1 Ciphertext. For each i 6 [4], choose 7, 0; < F,. Also choose 7y & F,. For
i € [¢], let w; = oy for some index h, choose Zh,Zh,Z3 & GL(2,F,). The sf- type 1 mphertext is obtained by
modifying normally generated ciphertext C,, := (w, Cy, Co, {C’z 1 C’Z 5, C; 3Yie[ C(+1 4) as

C_Y’O = ( To, a 67 07 nO)BO Om = m'gT
2

2

6

Cin == (pir(h, =1), r; + Oion, —0;, 7i + Oiom, —0, |, 0%, (7 + O;00, —0:)7Z} |,
2 2

2 2

~

Cio = (pia(h,—1), =ri_1 + ;0 —0;, —Fii1 + bion, —0; 0%, (=71 + Biom, *QAi)Z;% )

@‘,3 = (pis(h,—1), —r; —1i_1 + b;0n, —0;, —Fy = Ti1 + Oion, —0; |, 07, (=7 —Tic1 + Oion, —@)Z;?Z ,

2 2
/\

-
77723)183
Coria = (re, [7e], 0, 0, neg1 ) Ba

Semi-functional Type 2 Ciphertext. This is same as sf-type 1 ciphertext except the following
Co = (1o, To, 7 0, 70)By Ci = m.g% where &’ i F, (independent of & & Fy)

Semi-functional Type 1 Key. For each ¢, € Q, pick d, i F,. For each transition t = (¢, qy,0n) € T,

choose 5y & Fy; ZZ & GL(2,F,) and set U,{ = ((ZZ)*I)T for j = 1,2,3. The sf-type 1 key generation algorithm
first creates a normal key

SKm = (M,K[)", {K;Sk,lv Kt*,za K:,g}tz(qz,QyJTh)ET’ {K:A}qzeF)

and then modifies its components as shown below.
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K; = (do, do, 1, ¢, 0)B

6

2 2
7 ’ - - 2 \ 4 o~ T 1 7 2
K:,l = ( 6t71<17h)a (St + dy)(Lah)’ 0%, (St + dy)(l’ah)Uh ) ¢t717 0 ) BI
2 2 0 2 2
7 ’ - S04 - 7 2| 7 2
K;:Q = ( 6t,2<17h)) (_St + daj)(laah)) O ) (_St + dz>(17gh)Uh ) ¢t727 O ) B;
2 2 0 2 2
i —— —— 4 — 3 = /2\
K;g = ( 51‘,,3(17}7’)5 St(17ah)7 0 5 St(lagh)Uh 5 ¢t,3a 0 ) B§

R;4:: ( dza C/l\za 07 ¢Za O)BZ

Semi-functional Type 2 Key. This is same as sf-type 1 key except I?g
[35‘ := ( do, , 1, ¢o, 0)B§, where drana i F, (independent of do ol F,)

Semi-functional Type 3 Key. This is same as normal key except K

K5 = (do, [drana] 1, do, 0)Bf, where dyung +— F,

A legitimate normal key (resp. sf-type 1 key, sf-type 2 key, sf-type 3 key) SKaq can extract the message from
an sf-type 1 ciphertext (resp. normal ciphertext) C,. Similarly, a legitimate sf-type 1 key SK ¢ can succeed in
decrypting an sf-type 1 ciphertext C,,, because the mimicked parts get canceled just like the normal components.

But, if a legitimate sf-type 2 key or sf-type 2 key SK ¢ runs decryption on an sf-type 1 ciphertext C,,, it will get an
extra factor g}“d”"”d’ masking the message.

Theorem C.1. The proposed basic KP-FE scheme is adaptively secure under the DLIN assumption.

Proof. The theorem C.1 is proven in a similar manner to theorem 4.1 in section 5. O
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