
Improved Analysis of Zorro-Like Ciphers

Achiya Bar-On3, Itai Dinur2, Orr Dunkelman1,∗,
Virginie Lallemand4,†, and Boaz Tsaban3

1 Computer Science Department, University of Haifa, Israel
2 Département d’Informatique, École Normale Supérieure, Paris, France

3 Department of Mathematics, Bar-Ilan University, Israel
4 Inria, France

Abstract. Zorro is a 128-bit lightweight block cipher supporting 128-bit
keys, presented at CHES 2013 by Gérard et al. One of the main design
goals of the cipher was to allow efficient masking, which is a common
way to protect against side-channel attacks. This led to a very uncon-
ventional design, which resembles AES, but uses only partial non-linear
layers. Despite the security claims of the designers, the cipher was re-
cently broken by differential and linear attacks due to Wang et al., re-
covering its 128-bit key with complexity of about 2108. These attacks are
based on high-probability iterative characteristics that are made possible
due to a special property of the linear layer of Zorro, which is shown to
be devastating in combination with its partial non-linear layer.

In this paper, we analyze the security of Zorro-like ciphers with partial
non-linear layers by devising differential and linear characteristic search
algorithms and key recovery algorithms. These algorithms exploit in a
generic way the small number of Sboxes in a Zorro-like round, and are
independent of any specific property of its linear layer (such as the one
exploited by Wang et al.), or its Sbox implementation. When applied to
the Zorro block cipher itself, we were able to find the highest probabil-
ity characteristics for the full cipher and devise significantly improved
attacks. Our differential attack has a time complexity of about 245, re-
quiring about 241.5 chosen plaintexts, and our linear attack has a time
complexity of about 245, requiring about 245 known plaintexts.

Independently of our results, the recently published paper by Rasoolzadeh
et al. found similar iterative characteristics for Zorro by exploiting in a
different way the devastating property of its linear layer, described by
Wang et al. However, our improved key recovery techniques result in
differential and linear attacks which are at least 211 times faster. More
significantly, the surprisingly large number of Zorro-like rounds analyzed
by some of our generic techniques raises questions over the general design
strategy of Zorro, namely, the use of partial non-linear layers.

Keywords: Block cipher, lightweight, Zorro, cryptanalysis, differential
attack, linear attack.

∗The third author was supported in part by the German-Israeli Foundation for
Scientific Research and Development through grant No. 2282-2222.6/2011.
†The fourth author was partially supported by the French Agence Nationale de la

Recherche through the BLOC project under Contract ANR-11-INS-011.



1 Introduction

Zorro is a 128-bit lightweight block cipher that was proposed by Gérard et al.
at CHES 2013 [1]. The cipher supports 128-bit keys, and was designed with
the twofold objective of achieving small performance overhead and resisting side
channel attacks. More specifically, a central design goal of Zorro was to allow
efficient masking (e.g., according to the Rivain and Prouff Scheme [4]).

The resultant design of Zorro is rather unconventional, as it applies a se-
quence of AES rounds, with a partial Sbox layer in each round, containing only
4 out of the possible 16 Sboxes. Although the cipher was published with an analy-
sis which claims it is secure against standard linear and differential cryptanalysis,
this analysis was heuristic and not accompanied by a formal proof (as common
for AES-like designs). Indeed, in the recent paper [5], the authors published a
differential attack with complexity of about 2108 and a linear distinguisher with
complexity 2105 on the full cipher.

The results of [5] are based on 4-round iterative differential and linear char-
acteristics with only 4 active Sboxes. These iterative characteristics are made
possible by a combination of symmetric properties of AES-like ciphers, along
with a special property of the Zorro (or AES) MixColumns matrix MC, namely,
MC4 = I. While it is not clear how to exploit these properties in standard AES-
like designs, in the particular case of Zorro, its partial Sbox layers, combined
with these properties, gives iterative characteristics with a very small number of
active Sboxes.

In this paper, we propose efficient algorithms for the analysis of Zorro-like ci-
phers with partial Sbox layers. Our algorithms exploit in a generic way the small
number of Sboxes in the non-linear layers of the cipher. In fact, our techniques
can even be applied to ciphers with an arbitrary linear layer, and/or Sbox im-
plementation, which do not resemble AES-like designs. More specifically, we first
devise a generic differential/linear characteristic search algorithm for Zorro-like
ciphers, allowing us to search for the best differential/linear characteristics for
many rounds with practical complexity. Then, we devise efficient key recovery
techniques that exploit differential/linear characteristics, and are particularly
efficient for ciphers with partial Sbox-layers, such as Zorro.

By using our characteristic search algorithm, we were able to find higher
probability 4-round iterative differential and linear characteristics for Zorro with
only 2 active Sboxes, and formally prove (with the aid of a computer) that we
found the best characteristics (iterative, or not) for full Zorro. We exploit these
characteristics using our key recovery techniques, in order to mount attacks with
practical complexity: Our best differential attack requires about 241.5 chosen
plaintexts, takes 245 time and uses less than 210 memory. Our best linear attack
requires about 245 known plaintexts, takes about 245 time and uses about 217

memory.
Independently of our work (and a few days prior to the publication of the

initial version of this paper), a related paper [3] was published on the eprint
server. The results of [3] are based on 4-round iterative characteristics of the
same type as in our attacks. However, in contrast to our generic techniques,

2



the characteristics of [3, 5] were found by specifically looking for characteristics
of a particular type, which is based on the property MC4 = I of the Zorro
MixColumns operation. This specific technique was initially used in [5], however,
the recent paper [3] used different AES-based symmetry properties (leading to
fewer active Sboxes).

The techniques that we develop in this paper have several advantages over
all previously and independently published analysis:

1. Our key-recovery technique for the differential attack on Zorro-like ciphers
allows us to mount an efficient attack by exploiting a relatively short dif-
ferential characteristic, which spans only 19 out of the full 24 rounds of the
cipher.
Thus, although we use an iterative characteristic which is similar to the one
independently found in [3], the time and data complexities of our differential
attack are better than that of [3] (which is based on a longer 23-round
characteristic) by a factor of about 211.

2. The key-recovery algorithm of our linear attack is more efficient, giving an
attack which is faster than [3] by a factor of about 212.

3. Our characteristic search algorithm allows us to formally prove that the
extension of the 4-round differential/linear characteristics are the best dif-
ferential/linear characteristics (iterative of not) for 8-round Zorro , and thus
also for the full 24-round Zorro.

4. Our characteristic search algorithm can be used to find in practical time, the
best differential/linear characteristic for 8 rounds (and perhaps more than
10) of almost any modified variant of Zorro, in which the linear layer, and/or
Sbox implementation is changed.

All the previous, independent and our improved results on the full Zorro
block cipher1 are summarized in Table 1.

The algorithms described in this paper are mostly based on linearization
techniques, which may be of independent interest. These techniques exploit the
small number of Sboxes in the non-linear layers of the cipher in order to efficiently
analyze many of its rounds, combining in a novel way methods from simple linear
algebra and combinatorics.

The paper is organized as follows: We first give a brief description of Zorro
in Section 2, and describe our notations in Section 3. Next, we describe our
characteristic search algorithm in Section 4, and our key-recovery techniques
for differential and linear attacks in Sections 5 and 6, respectively. Then, we
describe our specific differential and linear attacks on Zorro in Sections 7 and 8,
respectively. Finally, we conclude in Section 9.

2 Description of Zorro

Zorro is a 128-bit lightweight block cipher that was proposed by Gérard et al.
at CHES 2013 [1], performing 24 AES-like rounds. The key schedule of Zorro
simply adds the 128-bit master key every four rounds, (see Figure 1).

1The table does not include the results of [2], which only attacks a weak-key set.

3



Reference Time Data Memory Attack Technique

[5] 2108 2112 CP negligible Differential

[3] † ≈ 255 †† 255.12 CP 217 Differential

[3] † 257.85 245.44 KP 217 Linear

Sec. 7 245 241.5 CP 210 Differential

Sec. 8 245 245 KP 217 Linear

KP - Known plaintext, CP - Chosen plaintext
† The results were obtained independently of ours.
†† The time complexity is specified as 252.74 in [3].

However, we take into account the 255 time required
to generate the data.

Table 1. Previous, Independent and New Key-Recovery
Attacks on Full Zorro

Each Zorro round is made of four AES-like operations, namely SB∗, AC,
SR and MC (see Figure 2). SR and MC are exactly the same as the ones used
in AES, where AC for round i adds the four constants (i, i, i, i � 3) to the 4
bytes of the first row. The main difference of Zorro from AES-like designs is its
non-linear operation SB∗, which contains only 4 Sboxes (instead of 16), located
in the first row of the state matrix. Moreover, the actual 8× 8 Sbox is different,
and we refer the reader to the design document [1] for its description.

KK K K K K K
1 step

4 rounds 4 rounds 4 rounds 4 rounds 4 rounds 4 rounds

1

Fig. 1. The Key Schedule of Zorro

3 Notations and Conventions

The rounds of Zorro are numbered 1, 2, ..., 24. The 128-bit intermediate states
and keys are viewed as 4× 4 byte matrices, in which the rows and columns are
numbered from 1 to 4, as shown in Figure 2.

We denote by K the key associated to the key addition ARK performed every
4 rounds. As in many previous works on AES-based designs, we can exchange the
order of the final key addition and linear operations SR and MC. We denote by
K̃ = SR−1(MC−1(K)) the equivalent key that is associated with this exchange.

4



SB� AC SR MC

S-box i i i i ! 3

co
lu
m
n
1

co
lu
m
n
2

co
lu
m
n
3

co
lu
m
n
4

row 1

row 2

row 3

row 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

1

Fig. 2. One Round of Zorro

In order to compute the complexities of our attacks, we use the standard
conventions, and measure their time complexity in terms of the number of eval-
uations of the full cipher. The memory complexity is computed in terms of
128-bit words (i.e., the block size of Zorro).

4 Efficient High-Probability Characteristics Search for
Zorro-Like Ciphers

We present a novel efficient high-probability characteristics search algorithm for
Zorro-like ciphers. As there is a strong correlation between the probability of a
characteristic and its number of active Sboxes, the algorithm looks for character-
istics with a limited number of active Sboxes (and thus with high probability).
In the rest of this section, we describe the main ideas of the search algorithm for
differential characteristics, but note that the search algorithm for linear charac-
teristics is very similar.

We define a pattern of a differential characteristic to be a description of the
activity for each of its spanned Sboxes (namely, it is a function that specifies for
each spanned Sbox whether it is active or not). As r-round Zorro only has 4r
Sboxes, our first observation is that it has

(
4r

≤a

)
distinct patterns with at most

a active Sboxes. For reasonably small values of r and a, the number of possible
distinct patterns is quite small, and we can iterate all of them. In particular, for
r = 8 and a = 4, there are only

(
32

≤4

)
≈ 216 distinct patterns.

Our second observation holds, in fact, for any cipher in which the Sboxes
are the only non-linear operation. We notice that once we fix a pattern for such
a cipher (i.e., fix its active and non-active Sboxes), we can typically calculate
the actual characteristics which follow this pattern in an efficient way. This is a
result of the fact that once the activity/non-activity of each Sbox is determined,
all the possible characteristics reside in a restricted linear subspace which can be
easily calculated using linear algebra. After calculating the linear subspace of all
the possible characteristics, we apply a post-filtering phase, which enumerates
the elements of the subspace, and filters out characteristics in which the active
Sbox transitions are impossible (according to the difference distribution table of

5



the cipher). Given that the dimension of the subspace is small enough, we can
efficiently post-filter its elements, and thus output all the possible characteristics
for the given pattern.

Combining the two observations, when r and a are not too large, we conclude
that we can efficiently enumerate all the possible differential characteristics for
an r-round Zorro-like cipher with at most a active Sboxes. The full details of the
algorithm are given in Appendix A. This appendix shows that the complexity
of the algorithm is indeed proportional to

(
4r

≤a

)
, given that the output size (i.e.,

the number of possible characteristics) is not too large.2 This implies that the
algorithm is practical for a surprisingly wide choice of parameters (e.g., for r = 10
rounds with at most a = 10 active Sboxes, its complexity is still below 232).

5 Improved Key-Recovery for Differential Attacks on
Zorro-Like Ciphers

In this section, we assume that we have found a differential characteristic with
probability p for r rounds of a Zorro-like cipher (e.g., by using the search algo-
rithm of Section 4). We show how to recover the secret key after additional 4
rounds (i.e., after a total of r+4 rounds), with data and time complexity of only
about 2 · p−1, using negligible memory.

We denote the difference of the characteristic after i rounds by ∆i, and thus
the characteristic determines ∆i for i ∈ {0, 1, . . . , r}. The algorithm works by
asking for the encryptions of p−1 plaintext pairs with input difference ∆0, and
thus we expect that at least one of them follows the characteristic for r rounds.
However, since we only have the output after r + 4 rounds, it is not clear how
to determine which is the right pair that follows the characteristic.

In order to work around this problem, we first note that given the actual
values at the output of round r + 4, there is, on average, only one 128-bit key,
which leads to the fixed difference3 of ∆r. If we can efficiently find this key (or
keys in general), for each of the p−1 ciphertext pairs, then we can perform a
trial encryption in order to test if it is correct. Thus, we do not actually need
to immediately determine which is the right pair. Indeed, our algorithm uses
the special structure of Zorro-like ciphers to quickly find the (small number of)
possible keys for each ciphertext pair, and tests each one of them.

The main observation that we use is that given an arbitrary output difference
after r + 4 rounds, ∆r+4, the full (undetermined) differential sequence starting
from the known ∆r (i.e., ∆r+1, ∆r+2 and ∆r+3) attains only one value on
average, which we can easily compute using linear algebra. This is due to the
fact that the only non-linearity of the system stems from 4 · 4 = 16 unknown Sbox

2As we are mainly interested in characteristics with the smallest number of active
Sboxes, their number is typically not very large, and thus it is reasonable to assume
that the output size is small.

3When partially decrypting the two ciphertexts until round r with a random key,
their difference is equal to ∆r with probability of 2−128.

6



output differences in the last 4 rounds, which can be described using 16 · 8 = 128
binary variables. Once these output differences are linearized, we can compute
them given the 128-bit constraint imposed by the fixed ∆r and ∆r+4 (which is
the difference of the ciphertexts).

After the differential sequence is determined, then (given the actual cipher-
text values at the output of round r+4), we can efficiently obtain the correspond-
ing key suggestions to test. Indeed, the determined differential transitions for the
16 Sboxes give us the actual possible transition values. Similarly to the difference
resolution, after the values of the Sbox transitions are resolved, the non-linearity
is eliminated from the system, and the key suggestions can be computed using
simple linear algebra.

The full details of the algorithm are given in Appendix B. Its data complexity
is 2 · p−1 chosen plaintexts, its time complexity is a bit more than 2 · p−1, and
its memory complexity is very small (less than 210).

6 Improved Key-Recovery for Linear Attacks on
Zorro-Like Ciphers

In this section, we assume that we have found a linear characteristic with bias
p for r rounds of a Zorro-like cipher (e.g., by using the search algorithm of
Section 4), and show how to recover (a part of) the secret key after an additional
round, with data and time complexity of only about p−2. The details of the
attack depend on the number of active Sboxes4 in round r+ 1, which we denote
by ac ∈ {1, 2, 3, 4}. The memory complexity of the attack is less than 2(8 · ac)+1

32-bit words.
We denote the mask of the characteristic after i rounds by Ωi, determining

Ωi for i ∈ {0, 1, . . . , r}. The algorithm works by asking for the encryptions of
p−2 arbitrary plaintexts, and thus we expect to obtain a strong linear distin-
guisher after r rounds. In order to efficiently exploit this distinguisher, we first
exchange the order of the final linear operations ARK with MC and SR (and
thus we will actually recover bytes of the key K̃ = SR−1(MC−1(K)), as de-
noted in Section 3). This allows us to “peel-off” the final linear operations. As
the last Sbox layer contains only ac active Sboxes with a non-zero mask, given
a plaintext-ciphertext pair, we can actually compute the parity of the linear
equation after r rounds (determined by Ωr) for all, except 8 · ac bits.5 Thus, the
parity of the linear equation after r rounds, depends only on the (8 · ac) bits of
K̃, corresponding to the active Sboxes, and a fixed 1-bit linear combination of
the key.

We now give a rough description of how to efficiently recover the 8 · ac bits
of K̃. The algorithm works in two consequential stages, where in the first stage
we group the ciphertexts according to (8 · ac) + 1 bits:

4Although the characteristic spans only r rounds, it can still limit the number of
active Sboxes in the next round (due to slow diffusion properties of the cipher).

5Up to a fixed parity, which depends on a linear combination of the bits of K̃.

7



1. The single parity bit, computed by application of the maskΩr to SR−1(MC−1(C))
on 128−(8 · ac) bits (XORed with the corresponding bit, computed from the
side of the plaintext).

2. The remaining 8 · ac bits of SR−1(MC−1(C)) (XORed with the correspond-
ing bits computed from the side of the plaintext).

The grouping procedure is implemented by allocating 2(8 · ac)+1 counters for
the possible values of these (8 · ac) + 1 bits, and incrementing the corresponding
counter for each plaintext-ciphertext pair. This initial grouping stage requires
about p−2 time (as we perform very little work for each plaintext-ciphertext
pair).

We now have 2(8 · ac)+1 counters, and we are ready to execute the second
phase, in which we guess the 8 · ac bits of K̃ (corresponding to the active Sboxes).
For each guess, we iterate over the 2(8 · ac)+1 counters and sum all the parities
after r rounds. Thus, we can filter out almost all wrong guesses in which there
is no significant bias (of at least p). The complexity of the guessing phase is
about 28 · ac · 2(8 · ac)+1 = 2(16 · ac)+1. Assuming that p−2 � 2(16 · ac)+1 (which is
indeed the case for our attacks on Zorro), then the time complexity of the attack
remains about p−2.

We note that the guessing phase of the attack is not optimal and can be
further improved (although this improvement does not effect the complexity of
our linear attacks on Zorro). The full details of the key-recovery algorithm, along
with the various optimizations will appear in a future version of this paper.

7 Improved Differential Attack on Full Zorro

In order to mount a differential attack on Zorro, we first apply the differen-
tial characteristic search algorithm of Section 4, and then use the key recovery
technique of Section 5.

Differential Characteristic Search we applied the differential search algo-
rithm of Section 4 on r = 8 rounds of Zorro with a maximum of a = 4 active
Sboxes. The highest probability characteristic that we found is obtained by con-
catenating 2 instances of the 4-round iterative characteristic given6 in Figure 3.
In fact, there are 2 additional linearly-dependant variants (over GF 28) of the
presented characteristic with the same probability, as shown in Table 2. Addi-
tional similar characteristics are obtained by exchanging the order of the two
columns.

As the transition probability for each active Sbox is 6/256, the probability

of the 8-round characteristic is (6/256)
4
> 2−22. Moreover, according to the

difference distribution table of Zorro, any differential characteristic with at least
5 active Sboxes has probability less than 2−4.5 · 5 < 2−22. Thus, our 8-round
characteristic is highest probability differential characteristic for 8-round Zorro
(and it also gives the best differential characteristic for the full 24-round Zorro).

6Similar iterative characteristics were independently found in [3].

8



7b

88

23

83

00

55

00

2a

00

9e

16

af

00

88

16

95

SB� SR

MC

SB�
4

1

00

9e

16

af

00

88

16

95

SR

MC

00

a4

00

af

00

b2

58

cd

SB� 00

a4

00

af

00

b2

58

cd

00

b2

fe

33

00

14

fe

b9

2

SR

MC

3

SB� 7b

88

23

83

00

55

00

2a

00

b2

fe

33

00

14

fe

b9

SR

MC

00

9e

16

af

00

88

16

95

1

The full characteristic has probability (6/256)2 ≈ 2−11. It is obtained by duplicating
the two columns in order to obtain each full state.

Fig. 3. A 4-round Iterative Characteristic for Zorro, Described Using 2 Symmetric
Columns for Each State

A 00

B E

C 00

D F

A B C D E F

1 0x7b 0x88 0x23 0x83 0x55 0x2a

2 0xea 0x5c 0x5d 0xe4 0xa8 0x71

3 0xf7 0x16 0x8c 0x3a 0x4f 0xa8

The full characteristic is constructed similarly to Figure 3. Additional similar charac-
teristics are obtained by exchanging the order of the two columns.
Table 2. Generic Representation of the Three 4-Round Iterative Characteristics of
Probability (6/256)2, Along with Their Values

Key Recovery for the Differential Attack In order to exploit the charac-
teristic in an attack, we extend it up to round 19 (see Figure 5). It has 8 active

Sboxes, and thus has probability (6/256)
8 ≈ 2−43. Our aim is to apply the algo-

rithm of Section 5 in order to recover the secret key. However, the straightforward
implementation of this algorithm recovers the key of the 24-round cipher, given
the output difference after round 24− 4 = 20, rather than round 19.

In this attack, however, we can apply the key recovery algorithm on another
round, with no added complexity. The main observation that we use is that we
can exploit the specific super-Sbox structure of Zorro (and AES-like designs in
general), and extend the characteristic with 2 more inactive Sboxes in round 20
(see Figure 4). Thus, we have a total of 16 active Sboxes (similarly to 4 fully
active Zorro rounds), whose unknown outputs can be linearized using a simple
variant of the algorithm of Section 5.

9



According to Section 5, as the 19-round characteristic has a probability of
about p = 2−43, the data complexity of the attack is about 2 · p−1 = 244 chosen
plaintexts, its time complexity is about 245, and its memory complexity is less
than 210.

Reducing the Data Complexity Using Structures We can reduce the data
complexity of the attack by a factor of 6 by using structures that exploit all the
3 characteristics of Table 2, and the 3 additional ones obtained by rotating their
columns by one byte to the right. This is a common technique in differential
cryptanalysis, and was used (for example) in the related paper of [5].

Each structure we use is an affine subspace of dimension 6, which is con-
structed from an arbitrary plaintext, by XORing to it the all the 26 linear com-
binations (over GF (2)) of the 6 initial differences of the characteristics of prob-
ability p = 2−43. Such a structure contains 6 · 25 plaintext pairs which we can
exploit, thus reducing the data complexity of the attack by a factor of 6 to about
241.5. The time complexity remains the same, as we still need to process each
of the 6 · 25 plaintext pairs in each structure separably. The memory complexity
remains less than 210, as the structures we use contain only 26 elements.

8 Improved Linear Attack on Full Zorro

In order to mount a linear attack on Zorro, we first apply the linear character-
istic search algorithm of Section 4, and then use the key recovery technique of
Section 6.

Linear Characteristic Search We applied the linear characteristic search
algorithm of Section 4 on r = 8 rounds of Zorro with a maximum of a = 4
active Sboxes. Similarly to the differential case, the best characteristics are a
concatenation of two 4-round iterative linear characteristics, which can be viewed
as counterparts of the differential ones, and follow a similar representation as in
Table 2. In particular, we can obtain a 4-round iterative characteristic with a bias
of (56/256)2 by setting the following byte values7 in Table 2: A = 0x88, B =
0x5f, C = 0xaa,D = 0xa3, E = 0x25, F = 0xea. Furthermore, as our linear
characteristic search algorithm indicates (similarly to the differential case), the
extended 8-round characteristic is the highest bias linear characteristic for 8-
round Zorro (and it also gives the best linear characteristic for the full 24-round
Zorro).

Key Recovery for the Linear Attack In order to exploit the linear charac-
teristic in an attack, we extend it up to round 23. It has 10 active Sboxes, and
thus has a bias of p = (56/256)

10 ≈ 2−22. Our goal is to apply the algorithm of

7Similar iterative characteristics were independently found in [3].

10



SB�
SR

MCAC

SB� MC

SB� MC

SB�
SR

MC

AC

SB�

SR

MC

AC

∆20

∆21

∆22

∆23

∆24

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

L L

L

LL

L

LL L

LL L

∆19

20

21

22

23

24

SR

AC

K

88 5555 88

23 2300 00

832a 832a

00 00L L

88 55 5588

23 2300 00

83 2a 83 2a

00 00

00

88

16

95

00

88

16

95

SR

AC

00

88

16

95

00

88

16

95

00

88

16

95

00

88

16

95

L L00

88

16

95

00

88

16

95

ARK

K

ARK

1

The output differences of the 16 Sboxes marked with L are initially unknown. They
are linearized and recovered according to Section 5, leading to an efficient key recovery.

Fig. 4. Key-Recovery Attack on Full Zorro Using a 19-Round Characteristic

Section 6 in order to recover the secret key. Recall that the details of this algo-
rithm depend on the number of active Sboxes in round 24, which is ac = 2 in
our case. Thus, a straightforward application of this algorithm recovers 2 bytes
of K̃ using p−2 = 244 known plaintexts.

In order to recover additional 2 bytes of K̃, we can simultaneously and inde-
pendently (using the same data) exploit the variant of the same linear character-
istic, in which the 2 columns are swapped. Furthermore, we can simultaneously
exploit another variant of the iterative characteristic which spans rounds 2–24
(with the active Sboxes in round 2), and apply the key recovery on the encryp-
tion side. This allows us to recover 2 bytes of K, and additional 2 bytes can
be simultaneously recovered by swapping the columns in the last characteris-

11



tic. As the time complexity bottleneck in all of these 4 simultaneous attacks
is the actual collection of data, the total time complexity of recovering the 8
bytes of key material remains about 244, and the memory complexity is less
than 4 · 2(2 · 8)+1 = 219 words of 32 bits, or 217 words of 128 bits.

After determining the 8 bytes of key material used in rounds 1 and 24 which
contribute to all non-linear operations, we can “peel off” this non-linearity and
apply the same ideas to the inner rounds 2 and 23 in order to recover the 8 addi-
tional (linear combinations of) key bytes, which contribute to the non-linearity in
these rounds. This is done by exploiting the iterative characteristics in which the
active Sboxes are in round 2, and in round 23. However, due to the dependency
of the inner-round attacks on the previously recovered 8 bytes, it is not obvious
how to perform these attacks simultaneously, and thus (in order to avoid the
large memory overhead of storing the original data) we can request additional
244 known plaintexts in order to recover the rest of the key. This leads to an
attack that uses 245 known plaintexts, runs in 245 time, and requires memory of
about 217 words of 128 bits. The full description and additional optimizations
of the attack will be given in a future version of this paper.

9 Conclusions

In this paper, we described several algorithms for the analysis of Zorro-like ci-
phers with partial Sbox layers. These algorithms enable us to significantly im-
prove the previous and independently published attacks on full Zorro. Further-
more, due to the generic nature of our algorithms, they can be efficiently applied
to analyze modified variants of Zorro (where the linear layer and/or the Sbox im-
plementation are completely redesigned), on which the other attacks strategies
appear to fail.

References

1. Benôıt Gérard, Vincent Grosso, Maŕıa Naya-Plasencia, and François-Xavier Stan-
daert. Block Ciphers That Are Easier to Mask: How Far Can We Go? In Guido
Bertoni and Jean-Sébastien Coron, editors, CHES, volume 8086 of Lecture Notes in
Computer Science, pages 383–399. Springer, 2013.

2. Jian Guo, Ivica Nikolic, Thomas Peyrin, and Lei Wang. Cryptanalysis of Zorro.
Cryptology ePrint Archive, Report 2013/713, 2013. http://eprint.iacr.org/.

3. Shahram Rasoolzadeh, Zahra Ahmadian, Mahmood Salmasizadeh, and Moham-
mad Reza Aref. Total Break of Zorro using Linear and Differential Attacks. Cryp-
tology ePrint Archive, Report 2014/220, 2014. http://eprint.iacr.org/.

4. Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of
AES. In Stefan Mangard and François-Xavier Standaert, editors, CHES, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

5. Zhiyuan Guo Yanfeng Wang, Wenling Wu and Xiaoli Yu. Differential Cryptanalysis
and Linear Distinguisher of Full-Round Zorro. Cryptology ePrint Archive, Report
2013/775, 2013. http://eprint.iacr.org/.

12



A Details of the Efficient Search for High-Probability
Characteristics for Zorro-Like Ciphers

In this section, we describe the details of the search algorithm for high-probability
characteristics. We recall that we only explicitly deal with differential character-
istics, and the search algorithm for linear characteristics is very similar.

A.1 Analysis of a Differential Pattern

We describe the 2-step pattern-analysis algorithm which we use in order to ana-
lyze a single differential pattern (using the definitions and notations of Section 4).

Calculating the Linear Subspace of a Pattern We maintain a symbolic
representation of the 128-bit state difference at round i, STi, using 128 linear
combinations. Each linear combination is initialized with a 1-bit variable, repre-
senting the corresponding unknown state difference bit in the first round ∆(X0)
(before the first Sbox layer). Additionally, we allocate a linear equation system
Ei (which is empty at first), and describes linear constraints on the characteris-
tic, which are imposed by the inactive Sboxes. At the end of the algorithm (after
the final round, r), the subspace of all the possible characteristics is described
by the null-space of Er.

The following round-linearization algorithm describes how we update STi
and Ei to STi+1 and Ei+1, according to the activity pattern of the Sboxes in
round i+ 1 (starting from round i = 0).

1. Allocate and initialize STi+1 ← STi, Ei+1 ← Ei.
2. For each non-active Sbox (according to the pattern of round i):

(a) Add 8 equations to the system Ei+1, which equate the corresponding
8 bits in STi+1 to zero. If the dimension of the null-space of Ei+1 is
0 (i.e., there is no non-zero solution to system, and thus no matching
characteristic), return STi+1 and Ei+1 as NULL, and exit.

3. For each active Sbox (according to the pattern of round i):

(a) Replace the corresponding 8 linear combinations in STi+1 with newly
allocated variables.

4. Set STi+1 ← L(STi+1), namely update the symbolic state STi+1 according
to the linear function of the cipher, L.

Given a pattern, the linear subspace of all possible characteristics for r rounds
is calculated with the following algorithm:

1. Initialize ST0 with 128 new variables, and E0 with an empty set of equations.
2. For i = 0 to i = r − 1:

(a) Run the round-linearization algorithm for round i+ 1, in order to calcu-
late STi+1 and Ei+1, if they are NULL, return NULL and exit.

13



3. Output a basis B for all the possible characteristics of the pattern using the
null space of Er. This basis is represented as a set of b free (unconstraint)
linear variables, and linear combinations of these variables, as follows: the 128
linear combinations of the initial state ST0, and the 16 · a linear combinations
of all the inputs/outputs of the a active Sbox transitions (according to the
pattern).

Post-Filtering the Linear Subspace of a Pattern Once we obtain a basis B
for all the possible characteristics of the pattern, we apply a simple post-filtering
algorithm. Recall that B is represented as a set of b free (unconstraint) linear
variables, and linear combinations of these variables.

1. For of the 2b possible values of the free variables:
(a) For each active Sbox transition:

i. Calculate the actual input/output for the Sbox transition by plug-
ging in the values of the free variables.

ii. Check in the difference distribution table of the cipher (e.g., Zorro)
whether the differential transition is possible, and if not, go back to
Step 1.

(b) Output the full characteristic according to the current value of the free
variables.

We note that it is possible to optimize the post filtering in various situations
by choosing the free variables to be input/output bits of a restricted set of Sboxes.
This enables us the iterate in advance only over the input/output difference
transitions, which are possible according to the difference distribution table of
these Sboxes. The optimization can be particularly useful when the filtered linear
subspace is of a relatively large dimension (and thus we have less restrictions on
the choice of free variables).

A.2 The Full Characteristic Search Algorithm

We describe a simple algorithm that outputs all the possible differential charac-
teristics for r-round Zorro with at most a active Sboxes.

1. For each of the possible
(
4r

≤a

)
distinct differential patterns:

(a) Apply the pattern analysis algorithm above to output all the differential
characteristics with the current pattern.

A.3 Optimizing the Search Algorithm Using Pattern-Prefix Search

We describe an optimization of the characteristic search algorithm, which is
based on the observation that we can analyze together many common patterns
with the same prefix. This allows us (for example) to dispose of all the patterns
whose common prefix is not possible (instead of analyzing and disposing each
one separately). In the particular case of Zorro, there is no characteristic in

14



which the first 16 Sboxes (in 4 rounds) are non-active, and we can dispose all of
the patterns in which the first 16 Sboxes are non-active after analyzing only 4
rounds. An additional advantage of this algorithm is that it reduces the average
amount of work (mostly linear algebra) performed for each pattern.

The algorithm PPS (Pattern-Prefix Search) iterates over the tree of possible
prefixes of patterns using the DFS (Depth First Search) algorithm. The global
parameters of PPS are the number of rounds to analyze, r, and the maximal
number of active Sboxes, a. The parameters which are passed to each node of the
tree are: the round number i, the current Sbox index in the round s ∈ {0, 1, 2, 3},
the current number of active Sboxes in the prefix, ca, and STi, Ei (as in the
standard pattern-analysis algorithm). Thus, the PPS algorithm is initially called
with parameters PPS(i, s, ca, ST0, E0), where i = 0, s = 0, ca = 0, ST0 is
initialized with 128 new variables and E0 is an empty set of equations.

1. If i = r (i.e., we finished iterating over all the Sboxes of the pattern), then
the r-round pattern is fully determined by the path to the root of the tree.
Thus, calculate the basis B for all the possible characteristics of the pattern
(using Er). Finally, post-filter the characteristics (as in the pattern-analysis
algorithm), and return them.

2. Allocate a node n1 for the case that Sbox with index s in round i is inactive
(duplicating the current STi, Ei): For this node, add 8 equations to the
system Ei, which equate the corresponding 8 bits in STi to zero. Denote the
(yet undetermined) output set of this node as OUT1.
– If the dimension of the null-space of Ei is 0 (i.e., there is no non-zero

solution to system, and thus no matching characteristic), delete this node
and set OUT1 = ∅.

– Otherwise, the dimension of the null-space is greater than 0. If s = 3 (i.e.,
we finished iterating over all the Sboxes of the current round i), then set
STi+1 = L(STi) (i.e., update the symbolic state STi+1 according to the
linear function of the cipher, L), also set Ei+1 = Ei. Recursively call
PPS(i + 1, 0, ca, STi+1, Ei+1) and set OUT1 according to the returned
output.

– Otherwise, the dimension of the null-space is greater than 0, and s < 3.
Recursively call PPS(i, s+1, ca, STi, Ei) and set OUT1 according to the
returned output.

3. If ca = a (i.e., we have reached the maximum number of active Sboxes),
return OUT1.

4. Otherwise (ca < a) allocate a node n2 for the case that Sbox with index s in
round i is active (duplicating the current STi, Ei): For this node, replace the
corresponding 8 linear combinations in STi with newly allocated variables.
Denote the (yet undetermined) output set for this node as OUT2.
– If s = 3 (i.e., we finished iterating over all the Sboxes of the current

round i), then set STi+1 = L(STi) and Ei+1 = Ei. Recursively call
PPS(i+1, 0, ca+1, STi+1, Ei+1) and set OUT2 according to the returned
output.

– Otherwise, s < 3. Recursively call PPS(i, s+ 1, ca+ 1, STi, Ei) and set
OUT2 according to the returned output.

15



5. Return OUT1
⋃
OUT2.

Complexity Analysis Let T (node) be the average complexity of evaluating a
node in the recursive tree, without iterating and post-filtering the solutions. As
the number of evaluated nodes is proportional to

(
4r

≤a

)
, the complexity of the

algorithm can be estimated by the formula
(
4r

≤a

)
·T (Node) + SOL, where SOL

is the total number of solutions that we need to post-filter.8 Since we cannot
determine in advance the value of SOL, we will estimate it according to the
total number of characteristics which remain after post-filtering (i.e., the actual
output size), which we denote by OUT .

In order to relate SOL and OUT for the particular case of Zorro, we note
that an arbitrary input-output transition for the Sbox is possible with probabil-
ity of about 2−1.5, and thus if we have at most a active Sboxes, then we expect
that OUT ≥ SOL · 2−1.5a, or SOL ≤ OUT · 21.5a. Consequently, the time com-
plexity of the algorithm can be upper bounded by

(
4r

≤a

)
·T (Node) +OUT · 21.5a.

Assuming that the the output size OUT is not too big, then the complexity of
the algorithm is proportional to

(
4r

≤a

)
.

B Details of the Improved Key-Recovery for Differential
Attacks on Zorro-Like Ciphers

In this section, we give the details of the key-recovery algorithm for differential
attacks on Zorro-like ciphers, using some specific notation defined in Section 5.

The Main Key-Recovery Algorithm The algorithm makes use of 2 auxiliary
matrices, A1 and A2, which are independent of the actual key and data, and are
computed during preprocessing.

– Given the 96×128 matrix A1, and∆r+4, the 96-bit vector A1 ·∆r+4 describes
all the 12 · 8 = 96 unknown output differences for the Sboxes of rounds r+1,
r + 2 and r + 3. Note that once the output differences of these 12 Sboxes
are known, computing the full ∆r+1, ∆r+2 and ∆r+3 can be done by simple
linear algebra.

– Given the 128 × (128 + 256) matrix A2, and a (128 + 256)-bit vector v
(comprised of the 128-bit ciphertext, and 2 · (32 · 4) = 256-bit input-output
values of all the Sboxes of the last 4 rounds), the product A2 · v gives a
suggestion of the 128-bit key K.

The full algorithm is as follows:

1. Compute the matrices A1 and A2 (as described at the end of this section).
2. Ask for the encryptions of p−1 plaintext pairs with input difference ∆0. For

each pair (P,C) and (P ′, C ′):

8As post-filtering a solution is very simple, we assume it can be done in unit time.

16



(a) Compute ∆r+4 = C ⊕ C ′, and then calculate A1 ·∆r+4. This allows to
compute the input-output differences of the 16 Sboxes in rounds r +
1, r + 2, r + 3, r + 4.

(b) Check for each of the 16 Sboxes, whether the input-output difference
transition is possible according to the difference distribution table. If it
is impossible, then dispose this pair and analyze the next pair by going
back to Step 2.

(c) Compute according to the difference distribution table, a list of vectors
List, containing 2 · (32 · 4) = 256-bit vectors, specifying all the possible
input-output values of all the 16 Sboxes of the last 4 rounds.

(d) For each 256-bit vector in List, denoted by w:
i. Denote by v the (128 + 256)-bit vector, comprised of the 128-bit

ciphertext C, and the 256-bit vector w (specifying the input-output
values for all the Sboxes of the last 4 rounds). Obtain a suggestion
for the key K by computing product A2 · v.

ii. Test the key using a trial encryption, and if it succeeds, return it.

Complexity Analysis The data complexity of the attack is 2 · p−1 chosen
plaintexts. For each plaintext-ciphertext pair, we perform some simple linear
algebra operations, whose complexity is generally proportional to a full cipher
evaluation.9 As noted in Section 5, we expect to test only 1 key per plaintext
pair, and thus we can estimate the time complexity of the attack to be slightly
higher than 2 · p−1 cipher evaluations (given that the preprocessing complexity
is negligible compared to p−1).

The memory complexity of the attack is less than 210 words of 128 bits,
required in order to store A1 and A2. Note that the elements of List can be
generated “on-the-fly”, and we do not need to store them.

Calculating the Differential Transitions From the Output Difference
This preprocessing algorithm is given as an input ∆r (which is known from the
characteristic) and computes a 96 × 128 matrix A1, such that given ∆r+4, the
96-bit vector A1 ·∆r+4 describes all the 12 · 8 = 96 unknown output differences
for the Sboxes of rounds r + 1, r + 2 and r + 3. Once the output differences of
these 12 Sboxes are known, computing the full ∆r+1, ∆r+2 and ∆r+3 can be
done by simple linear algebra.

The algorithm symbolically maintains the state difference of round i (∆i),
denoted by STi (which is initialized for i = r with the known ∆r).

1. For each round i ∈ {r, r + 1, r + 2, r + 3}:
(a) Given STi, compute STi+1 by allocating 4 · 8 = 32 new linear variables

for the output of the 4 Sboxes of round i + 1, and then symbolically
applying the linear layer L, obtaining STi+1 = L(STi) (i.e., a symbolic
representation of ∆i+1).

9We can further reduce the complexity of the linear algebra using various low-level
techniques (e.g., by using Gray-Codes), but these are out of the context of this paper.

17



2. Given the 128 computed symbolic expressions STr+4 (as functions of a total
of 4 · 32 = 128 linear variables), invert the 128× 128 matrix.
This gives a matrix which calculates the Sbox output differences of rounds
r+ 1, r+ 2 and r+ 3 (and r+ 4) as functions of ∆r+4 (note that we do not
actually need to allocate the 32 variables for ∆r+4 in order to compute this
matrix). Denote by A1 the first 96 rows of this matrix (calculating the Sbox
output differences of rounds r + 1, r + 2 and r + 3).

Calculating the Key From the Ciphertext and Sbox Transition Values
This preprocessing algorithm computes a 128× (128+256) matrix A2, such that
given a (128 + 256)-bit vector v, comprised of the 128-bit ciphertext C, and
2 · (32 · 4) = 256 input and output values of all the Sboxes of the last 4 rounds,
the product A2 · v gives a suggestion for the 128-bit key K.

The algorithm first symbolically describes all the (32 · 4) = 128 Sbox output
values as linear combinations of the 128 bit variables of C, the 128 bit variables of
K, and the (32 · 4) = 128 input values of all the intermediate Sboxes. This is done
by computing iteratively the symbolic description of rounds r+4, r+3, r+2, r+1
(from the decryption side), and expressing for each round the outputs of the
Sbox transitions as linear combinations of the previous variables. Finally, the
algorithm performs Gaussian elimination to express the 128 variables of the key,
as linear combinations of the other 128 + 256 variables, giving the matrix A2.

As the idea of this algorithm is similar to the previous algorithm (which
computes A1), its full description will be given in a future version of this paper.

18



SB�
SR

MCAC 88

00 00

88

16

16

95

16

95

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

00 00

9e 9e

1616

af af

88

00 00

88

5

16

95

16

95

00 00

9e9e

1616

afaf

SB�
SR

MCAC

19

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

17

00 00

fe

33

00 00

1414

b9b9

SB�
SR

MCAC 88

00 00

88

4

16

95

16

95

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

00 00

9e 9e

1616

af af

SB�
SR

MCAC

2

SB�
SR

MCAC

3

fe fe fe

b2

33

b2

88

00 00

88

16

95

16

95

00 00

9e9e

1616

afaf

SB�
SR

MCAC

1

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

18

SB�
SR

MCAC

SB� MC

SB� MC

SB�
SR

MC

AC

SB�
SR

MC

AC

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a20

21

22

23

24

SR

AC

K

88 5555 88

23 2300 00

832a 832a

00 00

88 55 5588

23 2300 00

83 2a 83 2a

00 00

00

88

16

95

00

88

16

95

SR

AC

00

88

16

95

00

88

16

95

00

88

16

95

00

88

16

95

00

88

16

95

00

88

16

95

ARK

K

ARK

L L

L L

L LL L

L L L L

L L L L

...

K

ARK

K

ARK

00

88

16

95

00

88

16

95

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

00 00

58

cd

00 00

a4a4

afaf

00 00 58

b2

cd

b2

00 00

fe

33

00 00

1414

b9b9

fe fe fe

b2

33

b2

00 00

fe

33

00 00

1414

b9b9

fe fe fe

b2

33

b2

00 00

fe

33

00 00

1414

b9b9

fe fe fe

b2

33

b2

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

00 00

fe

33

00 00

1414

b9b9

7b

88

23

83

00

55

00

2a

7b 00

88 55

23 00

83 2a

SB�
SR

MCAC

SB�
SR

MCAC

fe fe fe

b2

33

b2

88

00 00

88

16

95

16

95

00 00

9e9e

1616

afaf

SB�
SR

MCAC88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

88

00 00

88

16

95

16

95

00 00

9e 9e

1616

af af

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

00 00

58

cd

00 00

a4 a4

af af

00 00 58

b2

cd

b2

00 00

58

cd

00 00

a4a4

afaf

00 00 58

b2

cd

b2

00 00

fe

33

00 00

1414

b9b9

fe fe fe

b2

33

b2

00 00

fe

33

00 00

1414

b9b9

fe fe fe

b2

33

b2

00 00

fe

33

00 00

1414

b9b9

fe fe fe

b2

33

b2

Fig. 5. The Differential Attack on Full Zorro


