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Abstract. An isogeny graph is a graph whose vertices are principally
polarized abelian varieties and whose edges are isogenies between these
varieties. In his thesis, Kohel described the structure of isogeny graphs
for elliptic curves and showed that one may compute the endomorphism
ring of an elliptic curve de�ned over a �nite �eld by using a depth �rst
search algorithm in the graph. In dimension 2, the structure of isogeny
graphs is less understood and existing algorithms for computing endo-
morphism rings are very expensive. Our setting considers genus 2 jaco-
bians with complex multiplication, with the assumptions that the real
multiplication subring is maximal and has class number one. We fully
describe the isogeny graphs in that case. Over �nite �elds, we derive a
depth �rst search algorithm for computing endomorphism rings locally
at prime numbers, if the real multiplication is maximal. To the best of
our knowledge, this is the �rst DFS-based algorithm in genus 2.

1 Introduction

Isogeny graphs are non-oriented graphs whose vertices are principally polarized
simple abelian varieties and whose edges are isogenies between these varieties.
Isogeny graphs were �rst studied by Kohel [14], who proved that in the case of
elliptic curves, we may use these structures to compute the endomorphism ring
of an elliptic curve. Kohel identi�ed two types of `-isogenies (i.e. of degree `) in
the graph: ascending-descending and horizontal. The �rst type corresponds to
the case of an isogeny between two elliptic curves, such that the endomorphism
ring of one curve is contained into the endomorphism ring of the other. The
second type is that of an isogeny between two genus 1 curves with isomorphic
endomorphism ring. As a consequence, Kohel shows that computing the `-adic
valuation of the conductor of the endomorphism ring can be done by a depth
�rst search algorithm in the isogeny graph.

In the case of genus 2 jacobians, designing a similar algorithm for endomor-
phism ring computation requires a good understanding of the isogeny graph
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structure. Recent developments on the construction of isogenies between prin-
cipally polarized abelian surfaces [16,5] allowed to compute examples of (`, `)-
isogeny graphs [2]. It was noticed in this way that in the genus 2 case, a con-
tainement relation between the two orders giving the endomorphism rings is not
guaranteed. This is a major obstacle into designing a depth �rst search algorithm
for computing the endomorphism ring.

Let K be a primitive quartic CM �eld and K0 its totally real sub�eld. In this
paper, we study subgraphs of `-isogenies whose vertices are all genus 2 jacobians
with endomorphism ring isomorphic to an order of K which contains the maxi-
mal order OK0

. We show that the lattice of orders meeting this condition has a
simple 2-dimensional grid structure. This results into a classi�cation of isogenies
in the graph: ascending-descending and horizontal, where these quali�catives ap-
ply separately to the two �dimensions� of the lattice of orders. Moreover, we show
that any (`, `)-isogeny which is such that the two endomorphism rings contain
OK0

is a composition of two `-isogenies which preserve real multiplication. As a
consequence, we design a depth �rst search algorithm for computing endomor-
phism rings in the (`, `)-isogeny graph, based on Cosset and Robert's algorithm
for constructing (`, `)-isogenies over �nite �elds. To the best of our knowledge,
this is the �rst depth search algorithm for computing locally at small prime
numbers ` the endomorphism ring of an ordinary genus 2 jacobian. We compare
the complexity of our algorithm to that of existing algorithms [6] and show that,
in most cases, our algorithm performs operations in a smaller degree extension
�eld and is thus faster.

This paper is organized as follows. Section 2 provides background material
concerning OK0

-orders of quartic CM �elds, as well as the de�nition and some
properties of the Tate pairing. In Section 3 we give formulae for cyclic isogenies
between principally polarized complex tori, with maximal real multiplication.
The structure of the graph given by reductions over �nite �elds of these isogenies
is proved in Section 4. In Section 5 we show that the computation of the Tate
pairing allows to orient ourselves in the isogeny graph. Finally, in Section 6 we
give our algorithm endomorphism ring computation when the real multiplication
is maximal and in Section 7 we compare the its performance to the one of
Eisenträger and Lauter's algorithm.

2 Background and notations

It is well known that in the case of elliptic curves with complex multiplication
by an imaginary quadratic �eld K, the lattice of orders of K has the structure
of a tower. This results into a easy way to classify isogenies and navigate into
isogeny graphs [14,7,13].

Throughout this paper, we are concerned with the genus 2 case. Let then K
be a primitive quartic CM �eld, with totally real sub�eld K0. We assume that
K0 has class number one.
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This implies in particular that the maximal order OK is a module over the
principal ideal ring OK0

, whence we may de�ne η such that

OK = OK0
+OK0

η.

The notation η will be retained throughout the paper.
Several results of the article will involve a prime number ` and also the �nite

�eld Fp or its extensions. We always implicitly assume that ` is coprime to p.
Furthermore, the case which matters for our point of view is when ` splits as
two distinct degree one prime ideals l1 and l2 in OK0

. How the ideals l1,2 split
in OK is not determined a priori, however.

2.1 The lattice of OK0-orders in a quartic CM �eld K

A major obstacle to depicting genus 2 isogeny graphs is that the structure of the
lattice of orders of K lacks a concise description. Given an isogeny I : J1 → J2

between two abelian surfaces with degree `, the corresponding endomorphism
rings are such that `OJ1 ⊂ OJ2 or `OJ2 ⊂ OJ1 . Hence, even if a containement
relation is guaranteed OJ2 ⊂ OJ1 , the index of one order into the other may be
as high as `3. Since the Z-rank of orders is 4, it is always possible to �nd several
suborders of OJ1 with the same index.

In this paper, we study the structure of the isogeny graph between abelian
varieties with maximal real multiplication. The �rst step in this direction is to
describe the structure of the lattice of orders of K which contain OK0

. Follow-
ing [9], we call such an order an OK0

-order. We study the conductors of such
orders. we recall that the conductor of an order O is the ideal

fO = {x ∈ OK | xOK ⊂ O}

The following lemma was given by Goren and Lauter [9].

Lemma 1 1. An OK0-order of K is of the form OK0 [mη], for some m ∈ OK0 ,
m 6= 0. This element is unique up to units of OK0

. The conductor of the
order O[mη] is the principal OK-ideal mOK .

2. For any element m ∈ OK0
, OK0

[mη] is an order of conductor mOK .

A �rst consequence of Lemma 1 is that there is a bijection between OK0
-

orders and principal ideals in OK0
, which associates to every order the ideal

f ∩ OK0
, which for brevity we still call the conductor and denote by f.

Using the particular shape of OK as a monogenous OK0-module, we may
rewrite the conductor di�erently. For a �xed element ω ∈ OK , we de�ne the
conductor of O with respect to ω to be the ideal

fω,O = {x ∈ OK | xω ∈ O}

The following statement is an immediate consequence of Lemma 1.

Lemma 2 For any OK0
-order O, we have fO = fη,O.

3



Let now O be an OK0 -order whose index is divisible by a power of `. Assume
that ` splits in OK0

and let ` = l1l2. Then by Lemma 1 the conductor f has a
unique factorization into prime ideals containing le11 le22 . Locally at `, the lattice
of orders of index divisible by ` has the form given in Figure 1. This is equivalent
to the following statement.

Lemma 3 Let O be an OK0-order in K. Locally at `, the position of O within
the lattice of OK0-orders is given by the valuations νli(fO), for i = 1, 2.

νl(Norm(fO)) = 0

νl(Norm(fO)) = 1

νl(Norm(fO)) = 2

νl(Norm(fO)) = 3

l1 l2

Fig. 1. The lattice of orders

2.2 The Tate pairing

Let J be an abelian surface, i.e. the jacobian of a genus 2 curve, de�ned over a
�eld L. We denote by J [m] the subgroup of m-torsion, i.e. the points of order
m. We denote by µm the group of m-th roots of unity. Let

Wm : J [m]× Ĵ [m]→ µm

be the m-Weil pairing.
The de�nition of the Tate pairing involves the Weil pairing and Galois co-

homology. In this paper, we are only interested in the Tate pairing over �nite
�elds. Therefore, we specialize the de�nition to this case, following [18,11]. More
precisely, suppose we have m | #J(Fq) and denote by k the embedding degree
with respect to m, i.e. the smallest integer k ≥ 0 such that m | qk − 1. We de�ne
the Tate pairing as

tm(·, ·) :

{
J(Fqk)/mJ(Fqk)× Ĵ [m](Fqk)→ µm

(P,Q) 7→Wm(π(P̄ )− P̄ , Q),

where π is the Frobenius automorphism of the �nite �eld Fqk and P̄ is any point
such that mP̄ = P . It is easy to check that this de�nition is independent of the
choice of P̄ .

For a �xed principal polarization λ : J → Ĵ we de�ne a pairing on J itself

tλm(·, ·) :

{
J(Fqk)/mJ(Fqk)× J [m](Fqk)→ µm

(P,Q) 7→ tm(P, λ(Q)).
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Most often, if J has a distinguished principal polarization and there is no risk
of confusion, we write simply tm(·, ·) instead of tλm(·, ·).

Lichtenbaum [15] describes a version of the Tate pairing on Jacobian varieties.
Since we use Lichtenbaum's formula for computations, we brie�y recall it here.
Let D1 ∈ J(Fqk) and D2 ∈ J [m](Fqk) be two divisor classes, represented by two
divisors such that supp(D1) ∩ supp(D2) = ∅. Since D2 has order m, there is a
function fm,D2

such that div(fm,D2
) = mD2. The Lichtenbaum pairing of the

divisor classes D1 and D2 is computed as

Tm(D1, D2) = fm,D2
(D1).

The output of this pairing is de�ned up to a coset of (Fqk)r. Given that F∗qk/(F
∗
qk)m '

µm, we obtain the Tate pairing as

tm(·, ·) : J(Fqk)/mJ(Fqk)× J [m](Fqk)→ µm

(P,Q)→ Tm(P,Q)(qk−1)/m.

The function fm,D2
(D1) is computed using Miller's algorithm [17] in O(logm)

operations in Fqk .

3 Isogenies preserving real multiplication

In this paper, we assume that principally polarized abelian surfaces are simple,
i.e. not isogenous to a product of elliptic curves. The quartic CM �eld K is
primitive, i.e. it does not contain a totally imaginary sub�eld. We assume that

K = Q(γ), with γ = i
√
a+ b

√
d if d ≡ 2, 3 mod 4 or γ = i

√
a+ b

(
−1+

√
d

2

)
if

d ≡ 1 mod 4. A CM-type Φ is a pair of non-complex conjugate embeddings of
K in C

Φ(z) = {φ1(z), φ2(z)}.

An abelian surface over C with complex multiplication by an order O ⊂ K is
given by A = C2/Φ(a), where a is an ideal of O and Φ is a CM-type. This
variety is said to be of CM-type (K,Φ). Recall that we focus on the case where
OK0

⊂ O. Since OK0
is a Dedekind domain and the ideal a is a OK0

-module, we
may then write it as a = Λ1α + Λ2β, with α, β ∈ K, and Λ1,2 two OK0-ideals.
Hence we have A = C2/Φ(Λ) and Λ = Λ1 + Λ2τ , with Λ1 and Λ2 lattices in K0

and (τφ1 , τφ2) ∈ H2
1. Note that in the more restrictive setting we have elected,

K0 is principal, which entails that we can choose Λ1 = Λ2 = OK0
.

Every Riemann form is of the form

Hξ(z, w) =

2∑
r=1

ξφrzrw̄r
=(τφr )

,
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for ξ ∈ K0 totally positive. The imaginary part Eξ satis�es

Eξ(z, w) =

2∑
r=1

ξφr (x′ryr − xry′r),

with z = x+ yΦ(τ), w = x′ + y′Φ(τ), where x, y, x′, y′ ∈ R2.
The isogenies discussed by the following proposition were brought to our

attention by John Boxall.

Proposition 4 Let K and K0 be as previously stated. Let ` be a prime, and
l ⊂ OK0

a prime OK0
-ideal of norm `. Let A = C2/Φ(Λ) be an abelian surface

over C with complex multiplication by an OK0
-order O ⊂ K, with Λ = Λ1 +

Λ2τ . We have a one-to-one correspondence between cyclic subgroups of (Λ/l)/Λ
and isogenies on A having these subgroup as kernels, which are written in the
following form:

A→ C2/Φ(
Λ1

l
+ Λ2τ),

z 7→ z,

A→ C2/Φ(Λ1 +
Λ2

l
(τ + ρ)),

z 7→ z,
(1)

where ρ ∈ lΛ1Λ
−1
2 .

Proof. Our hypotheses imply that Λ is an OK0
-module of rank two, from which

it follows that (Λ/l)/Λ is isomorphic to (Z/`Z)2. The ` + 1 cyclic subgroups of
(Λ/l)/Λ may be written as the kernels of the isogenies given in the Proposition.

ut

Isogenies as described by Proposition 4 are called l-isogenies. Alternatively,
if l is a principal ideal αOK0

(which occurs in our setting since K0 is assumed
principal), we also use the term α-isogeny.

The following trivial observation that l-isogenies preserve the maximal real
multiplication follows directly from End(Λil ) = End(Λi). We shall investigate a
converse to this statement later in this article.

Proposition 5 Let A be an abelian surface with End(A) an OK0-order. Let
I : A→ B be a l-isogeny. Then End(B) is also an OK0

-order.

Polarizations can be transported through l-isogenies, and particularly so in
the case where K0 is principal. We consider the cases where l is generated by
α ∈ K0, with α either totally positive or (if the narrow class group Cl+(OK0)
is not trivial, i.e. Z/2Z in our case) of negative norm. In the �rst case, with α
totally positive, we have

Eξ(x+ yτ, x′ + y′τ) = Eξα(
x

α
+ yτ,

x′

α
+ y′τ),

= Eξα(x+
y

α
(τ + ρ), x′ +

y′

α
(τ + ρ)).
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Hence if Hξ de�nes a principal polarization on C2/Φ(Λ1+Λ2τ), then Hξα de�nes
principal polarizations on the varieties C2/Φ(Λ1

α +Λ2τ) and C2/Φ(Λ1+Λ2

α (τ+ρ)).
In the second case, then an l-isogeny maps a principally polarized abelian variety
to a variety in the non-trivial polarization class and vice-versa.

In the sequel, we assume that ` is a prime number, such that `OK0
= l1l2.

Take αi, i = {1, 2}, elements of OK0 such that li = αiOK0 . We show that from
the principal polarization induced by an l-isogeny, we can compute a principal
polarization on the target variety .

Proposition 6 Let I : J1 → J2 be a α1-isogeny and let λξ : J1 → Ĵ1 be
the homomorphism corresponding to the polarization class ξ of J1. Then the
homomorphism λI : J2 → Ĵ2 such that Î ◦ λI ◦ I = `λξ is of the form α2 ◦ λα1ξ,

with λα1ξ : J2 → Ĵ2 corresponding to the polarization class of J2.

Proof. Without loss of generality, we consider the case where the isogeny I be-
tween complex tori is given by

C2/Φ(Λ1 + Λ2τ)→ C2/Φ(
Λ1

α1
+ Λ2τ)

z 7→ z (2)

Then I corresponds to a linear mapping from Λ1 + Λ2τ to Λ1

α1
+ Λ2τ given by

the matrix

M =

(
Ξα1

0
0 I2

)
where Ξα1

denotes the matrix of the multiplication by α1 ∈ K0. The transpose
matrix M t is the rational representation of the dual isogeny with respect to the
dual basis. The dual isogeny is then given by

C2/Φ(
Λ1

α1
+ Λ2τ̄)→ C2/Φ(Λ1 + Λ2τ̄)

z 7→ α1z. (3)

Hence the following diagram commutes:

C2/Φ(Λ1 + Λ2τ) C2/Φ(Λ1

α1
+ Λ2τ)

C2/Φ(Λ1 + Λ2τ̄) C2/Φ(Λ1

α1
+ Λ2τ̄)

I

`λξ α2 ◦ λα1ξ

Î

This concludes the proof. ut

In the remainder of the paper, we denote by J [l] the subgroup

J [l] = {x ∈ J | αx = 0,∀α ∈ l},
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for any ideal l of norm ` in OK0 . For the commonly encountered case where
l = αOK0

for some generator α ∈ OK0
, this matches with the notation J [α]

representing the kernel of the endomorphism reprensented by α.
Recall that ` is such that `OK0 = l1l2, with l1 + l2 = (1). Then the factor-

ization of ` yields a symplectic basis for the `-torsion. Indeed, we have J [`] =
J [l1] + J [l2], and the following proposition establishes the symplectic property.

Proposition 7 Let J be an abelian surface de�ned over a �eld L. With the
notations above, we have W`(P1, P2) = 1 for any P1 ∈ J [l1] and P2 ∈ J [l2].

Proof. This can be easily checked on the complex torus C2/Φ(Λ1 + Λ2τ). Let
P1 = x1

α1
+ x2

α1
τ ∈ J [α1] and P2 = y1

α2
+ y2

α2
τ ∈ J [α2], where x1, y1 ∈ Λ1 and

x2, y2 ∈ Λ2. Then W`(P1, P2) = exp(−2πi`
Eξ(x1+x2τ,y1+y2τ)

` )) = 1. ut

4 The structure of the real multiplication isogeny graph

over �nite �elds

In this Section, we study the structure of the graph given by rational isogenies
between abelian varieties de�ned over a �nite �eld, such that the corresponding
endomorphism rings are OK0

-orders. The endomorphism ring of an ordinary
jacobian J over a �nite �eld Fq (q = pn) is an order in the quartic CM �eld K
such that

Z[π, π̄] ⊂ End(J) ⊂ OK ,

where Z[π, π̄] denotes the order generated by π, the Frobenius endomorphism
and by π̄, the Verschiebung. For simplicity, in the remainder of this paper, we
assume that Z[π, π̄] is a OK0

-order.
By the theory of canonical lifts, we may choose abelian surfaces J̃ de�ned

over an extension �eld L of the re�ex �eld Kr, and a prime ideal p in Kr such
that J is isomorphic to the reduction of J̃ modulo a ideal P lying over p in L.
Let ` 6= p be a prime with ` = l1l2 in OK0

. For i = 1, 2 we have then J [li] ' J̃ [li]
and the reductions of li-isogenies give ` + 1 isogenies towards varieties whose
endomorphism ring is a OK0 -order.

Associated to an abelian surface whose endomorphism ring is an OK0-order,
we de�ne the {l1, l2}-isogeny graph whose edges are either l1- or l2-isogenies as
de�ned by Proposition 4, and whose vertices are abelian surfaces over Fq reached
(transitively) by such isogenies. We will prove that over �nite �elds, the {l1, l2}-
isogeny graph is the graph of all isogenies of degree ` between abelian surfaces
having maximal real multplication. We underline here that this holds as well
for isogeny graphs between abelian varieties de�ned over the complex numbers,
thanks to the following graph isomorphism.

Proposition 8 Let G be an {l1, l2}-isogeny graph with vertices abelian surfaces
de�ned over Fq and whose endomorphism ring is an OK0

-order within K. Let π
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be a q-Weil number, giving the Frobenius endomorphism for any of the abelian
surfaces in G. Then there is a number �eld L and a graph G′ isomorphic to G,
whose vertices are abelian surfaces de�ned over L, having complex multiplica-
tion by a OK0

-order containing Z[π, π̄], and whose edges are l1- or l2-isogenies
between these surfaces.

Proof. Let I : J → J ′ be an edge in G. Let J̃ be the canonical lift of J , de�ned
over an extension �eld L of the re�ex �eld Kr, and a prime ideal p in Kr such
that J is isomorphic to the reduction of J̃ modulo a ideal P lying over p in L. By
de�nition, I is obtained as the reduction of an l-isogeny from J̃ to another variety
J̃ ′, whose reduction is isomorphic to J ′, by the uniqueness of the canonical lift.
Since the reduction is an injective morphism from Hom(J̃ , J̃ ′) to Hom(J, J ′) [19,
Sect. 11, Prop. 12], we conclude that Ĩ is the unique isogeny whose reduction
gives I. ut

We are now interested in determining the �eld of de�nition of l-isogenies
starting from J . For that, we need several de�nitions.

Let l be an ideal in OK0 and α a generator of this ideal. Let O be an order
of K and let θ ∈ O. We de�ne the l-adic valuation of θ in O as

νl,O(θ) := max
m≥0
{m : θ ∈ lmO}.

Recall that for a jacobian J with maximal real multiplication, we are inter-
ested in computing the l-adic valuation of the conductor of the endomorphism
ring OJ . We remark that it su�ces to determine νl,OJ (π − π̄). Indeed, we have
OJ = OK0

+OK0
fη,OJη and π − π̄ ∈ OK0

fη,OJη. Then

νl(fη,OJ ) = νl,OK (π − π̄)− νl,OJ (π − π̄). (4)

In the sequel, we denote by νli,J(π − π̄) := νl,OJ (π − π̄).

Proposition 9 Let ` be an odd prime number, such that (`) = l1l2 in OK0 .
Then the largest integer n such that the Frobenius matrix on J [lni ] is of the form(

λ 0
0 λ

)
mod `n

is νli,J(π − π̄).

Proof. Assume that νli,J(π − π̄) = n. Then (π − π̄)(J [lni ]) = 0. Let D be an
element of J [lni ]. Then π + π̄ acts on D as an element of OK0

/lni ' Z/`nZ.
Hence (π + π̄)(D) = λD for some λ. Since (π − π̄)(J [lni ]) = 0, it follows that
π(D) = λ′D. Hence, if D1, D2 is a basis for J [lni ], the matrix of the Frobenius
for this basis is (

λ1 0
0 λ2

)
. (5)
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The matrix for the Verschiebung is then(
λ2 0
0 λ1

)
. (6)

Since π−π̄ is zero on J [lni ], it follows that λ1 = λ2 (mod `n). Hence any subgroup
of J [lni ] is rational. The reverse implication is obvious.

Remark 1. A natural consequence of Proposition 9 is that the cyclic subgroups
of J [lni ] are rational if and only if νli,J(π − π̄) ≥ n. In particular, the ` + 1
isogenies whose kernel is a cyclic subgroup of J [li] are rational if and only if
νli(π − π̄) > 0.

Example 1. Let H be the genus 2 curve given by the equation

y2 = 31x6 + 79x5 + 109x4 + 130x3 + 62x2 + 164x+ 56

de�ned over F211. The Jacobian J has complex multiplication by a quartic CM
�eld K with de�ning equation X4 + 81X2 + 1181. The real sub�eld is K0 =
Q(
√

1837), and has class number 1. The endomorphism ring of J contains the
real maximal order OK0

. In the real sub�eld K0, we have 3 = α1α2, with α1 =
43+
√

1837
2 and α2 its conjugate. The 3-torsion is de�ned over an extension �eld of

degree 6, but J [α1] ⊂ J(Fq6) and J [α2] ⊂ J(Fq2). We have that ναi(fZ[π,π̄]) = 1,
for i = 1, 2, where π has relative norm 211 in OK .

In particular, Remark 1 implies that if a l-isogeny I : J1 → J2 is such that
Z[π, π̄] ⊂ End(J1) and Z[π, π̄] ⊂ End(J2), then I is an isogeny in the graph
of rational isogenies preserving the real multiplication. We will show that the
{l1, l2}-isogeny graph is in fact the subgraph of rational isogenies preserving the
maximal real multiplication.

Lemma 10 Let A and B be two abelian varieties de�ned and isogenous over Fq
and denote by OA and OB the corresponding endomorphism rings. Let l be an
ideal of norm ` in OK0

. Assume that the l-adic valuations of the conductors of
OA and OB are di�erent. Then for any isogeny I : A → B de�ned over Fq we
have Ker I ∩A[l] 6= ∅.

Proof. We prove the contrapositive statement. Assume that there is an isogeny
I : A→ B de�ned over Fq with Ker I ∩ A[l] = ∅. We then have that I(A[ln]) =
B[ln], for all n ≥ 1. Since πB ◦ I = I ◦ πA, it follows that the l-adic valuations
νl,OA(πA − π̄A) and νl,OB (πB − π̄B) are equal. By equation (4), it follows that
the l-adic valuations of the conductors of endomorphism rings of A and B are
equal. ut

The converse of Lemma 10 does not hold, as it is possible for an l-isogeny to
have a kernel within A[l], and yet leave the l-valuation of the conductor of the
endomorphism ring unchanged.

The following statement is a converse to Proposition 5.
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Proposition 11 Let ` be an odd prime number, split in K0. All cyclic isogenies
of degree ` preserving the real multiplication are l-isogenies, for some degree 1
ideal l in OK0

.

Proof. Let `OK0 = l1l2. Let I : A → B be a rational isogeny which preserves
the real multiplication OK0

. The endomorphism rings OA and OB are orders in
the lattice of orders described by Figure 1. First, by [4, Section 8], we have that
either `OA ⊂ OB , or `OB ⊂ OA. Hence the two orders lie either on the same
level, either on consecutive levels in the lattice of orders. If OA and OB lie on
consecutive levels, then there is an ideal l of norm ` in OK0 such that the l-adic
valuation of the conductors is di�erent. By Lemma 10, it follows that the kernel
of any cyclic `-isogeny between A and B is a cyclic subgroup of A[l].

Assume now that OA and OB lie at the same level in the lattice of orders.
If the two endomorphism rings are isomorphic, then the isogeny corresponds
(under the class group action) to an invertible ideal u of OA such that uū = l,
with l an ideal of norm ` in OK0 . The isogeny is then an l-isogeny, and l is one
of l1,2.

If the two orders lie at the same level and are not isomorphic, then both the
l1-adic and l2-adic valuations of the corresponding conductors are di�erent. It
then follows that the kernel of any isogeny from A to B contains a subgroup of
A[l1] and A[l2]. This is not possible if the isogeny is cyclic. ut

A natural consequence of Proposition 11 is that we may classify cyclic isoge-
nies preserving real multiplication (therefore, l-isogenies) into three categories.
Let l be such that the isogeny I : A → B being considered is an l-isogeny. If
OA ' OB , we say that the isogeny is horizontal. If not, then the two orders lie
on consecutive levels of the lattice given by Figure 1. If OB is properly contained
into OA, we say that the isogeny is descending. In the opposite situation, we say
the isogeny is ascending.

Proposition 12 Let A be an abelian surface de�ned over a �nite �eld Fq such
that its endomorphism ring O is an OK0-order in a CM quartic �eld di�erent
from Q(ξ5). Let l be an ideal of prime norm ` in OK0 .

1. Assume that lOK is prime with the conductor of O, that we denote by f.
Then we have:

(a) If l splits into two ideals in OK , then there are exactly two horizontal
l-isogenies starting from A and all the others are descending.

(b) If l rami�es in OK , there is exactly one horizontal l-isogeny starting from
A and all the others are descending.

(c) If l is inert in K, all `+ 1 l-isogenies are descending.

2. If l is not coprime to f, then there is exactly one ascending l-isogeny and `
descending ones, starting from A.

Proof. The number of horizontal isogenies is given by the number of projective
ideals of norm `. In order to count descending isogenies, we count the abelian
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surfaces lying at a given level in the graph (up to isomorphism), by applying
class number relations. More precisely, we have the exact sequence

1→ O× → O×K → (OK/fOK)×/(O/fO)× → Cl(O)→ Cl(OK)→ 1.

Hence we have the formula for the class number

# Cl(O) =
# Cl(OK)

[O×K : O×]

#(OK/fOK)×

(#O/fO)×
.

We have that O×K = µKO×K0
, with µK = {±1} (see [20, Lemma II.3.3]). Since

OK0
⊂ O, it follows that [O×K : O×K0

]=1.
We note thatO/fO ' Z/fZ, where f = N(f). Hence we have that #(O/fO)× =

f
∏
p|f (1− 1

p ). Moreover, we have

#(OK/fOK)× = N(f)
∏
p|f

(1− 1

N(p)
),

where the ideals in the product are all prime ideals ofOK , dividing the conductor.
Let Ol be the OK0 -order of conductor lf. By using a similar formula for the class
number, we obtain that

# Cl(Ol) = # Cl(O)
(#O/fO)×

(#Ol/flOl)×
N(l)

∏
p|l

(1− 1

N(p)
),

= # Cl(O)
1

`− 1
N(l)

∏
p|l

(1− 1

N(p)
)

if l is prime to f. Hence the number of of descending isogenies is `− 1 if l is split,
` if l is rami�ed and `+ 1 if l is inert. If l divides f, we have

# Cl(Ol) = # Cl(O)
(#O/fO)×

(#Ol/flOl)×

which leads to the fact that the number of descending isogenies is `.

Graph structure for Cl+(OK0
) = 1. In the case of K0 having trivial narrow class

group, Proposition 12 gives the following structure of connected components of
the non-oriented isogeny graph.

1. At each level, if νl,J(π− π̄) > 0, there are `+ 1 rational isogenies with kernel
a cyclic subgroup of J [l].

2. If l is split in OK0
then there are two horizontal l-isogenies at all levels such

that the corresponding order is locally maximal at l. At every intermediary
level (i.e. νl,J(π− π̄) > 0), there is one ascending l-isogeny and ` descending
ones.

3. If νl,J(π − π̄) = 0 there is exactly one ascending l-isogeny.

12



The structure of this graph is similar to the one of an `-isogeny graph between
elliptic curves, called volcanoes [14,7]. If one considers an {l1, l2}-isogeny graphs
and restricts to a connected component reached by edges which are l1-isogenies,
then the structure is exactly that of a volcano. More generally, an {l1, l2}-isogeny
graph can be seen, by the results above, as a direct product of two graphs which
share all their characteristics with genus one isogeny volcanoes. In particular
the generalization of top rim of the volcano turns into a torus if both l1 and l2
split. If only one of them splits, the top rim is a circle, and if both are inert we
have a single vertex corresponding to a maximal endomorphism ring (since all
cyclic isogenies departing from that abelian variety increase both the l1- and the
l2-valuation of the conductor of the endomorphism ring).

MAGMA experiments. Let J a Jacobian de�ned over Fq with maximal real
multiplication. We do not have formulas for computing cyclic isogenies over
�nite �elds. Instead, we experiment over the complex numbers, and use the fact
that there is a graph isomorphism between the l-isogeny graph having J as a
vertex and the graph of its canonical lift.

To draw the graph corresponding to Example 1, it is straightforward to com-
pute the period matrix Ω associated to a complex analytic torus C2/Λ1 + τΛ2,
and compute a representative in the fundamental domain for the action of Sp4

using Gottschling's reduction algorithm [10].
All this can be done symbolically, as the matrix Ω is de�ned over the re�ex

�eld Kr. As a consequence, we may compute isogenies of type (1) and follow the
edges of the graph of isogenies between complex abelian surfaces having complex
multiplication by an order O containing Z[π, π̄]. The exploration terminates
when outgoing edges from each node have been visited. This yields Figure 2.
Violet and orange edges in Figure 2 are α1 and α2-isogenies, respectively. Note
that since α1 and α2 are totally positive, all varieties in the graph are principally
polarized. Identi�cation of each variety to its dual, makes the graph of Figure 2
non-oriented.

4.1 Isogenies with Weil-isotropic kernel

In a computational perspective, we are interested in (`, `)-isogenies, which are
accessible to computation using the algorithms developed by [5]. Our description
of the l1- and l2-isogenies is key to understanding the (`, `)-isogenies due to the
following result.

Proposition 13 Let ` > 3 be a prime number such that `OK0
= l1l2. Then

all (`, `)-isogenies preserving the real multiplication are a composition of an l1-
isogeny with an l2-isogeny.

Proof. Let I : A→ B be an (`, `)-isogeny preserving the real multiplication. Let
OA = End(A) and OB = End(B). If the endomorphism rings are equal, then
the isogeny corresponds, under the action of the Shimura class group C(K) [19],
to an ideal class a such that aā = `OA. It follows that both l1 and l2 split in K.
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OK , f =1

O3a, f = l1 O3b, f = l2

O9, f = l1l2

2

2

1

4

1

4

1

2

2

1

Fig. 2. Graph of `-isogenies preserving real multiplication, for ` = 3, K de�ned
by α4+81α2+1181, and Z[π, π̄] de�ned by the Weil number π = 1

2 (α2+3α+45),
with p = Normπ = 211.

Let li,j , i, j ∈ {1, 2}, be such that li,1li,2 = li. Then, we may assume that the
isogeny I corresponds to the ideal l1,1l2,1 under the action of the Shimura class
group. We conclude that I is a composition of an l1-isogeny with a l2-isogeny.

Assume now that OA and OB are not isomorphic. This implies that νl,OA(π−
π̄) and νl,OB (π − π̄) di�er for some l, and we may without loss of generality

assume l = l1. By considering the dual isogeny Î instead of I, we may also
assume νl1,OA(π − π̄) > νl1,OB (π − π̄).

Let n = νl1,OA(π−π̄). We then have that any subgroup of A[ln1 ] is rational. By
Proposition 9, there is a subgroup of B[ln1 ] which is not rational. Since I(A[ln1 ]) ⊂
B[ln1 ] and the isogeny I is rational, it follows that Ker I contains an element
D1 ∈ A[l1]. Let I1 : A→ C be the isogeny whose kernel is generated by D1. This
isogeny preserves the real multiplication and is an l1-isogeny (Proposition 11).
By [6, Prop 7], there is an isogeny I2 : C → B such that I = I2 ◦ I1. Obviously,
I2 also preserves real multiplication.

Let now 〈D1, D2〉 = Ker I. Since Ker I ⊂ A[l1] + A[l2], we may write D2 =
D2,1 + D2,2 with D2,i ∈ A[li]. As Ker I is Weil-isotropic, we may choose D2

so that D2,1 = 0, whence D2 ∈ A[l2]. He have I1(D2) 6= 0, so that I2 is an
l2-isogeny.

Note that given the D2 ∈ A[l2] which we have just de�ned, we may also
consider the l2-isogeny I

′
2 : A → C ′ with kernel 〈D2〉, and similarly de�ne the

l1-isogeny I
′
1 which is such that I = I ′1 ◦ I ′2. ut
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The proposition above leads us to consider properties of (`, `)-isogenies with
regard to the li-isogenies they are composed of. Let I = I1◦I2 be an (`, `)-isogeny,
with Ii an li-isogeny (for i = 1, 2). We say that I is l1-ascending (respectively l1-
horizontal, l1-descending) if the l1-isogeny I1 is ascending (respectively horizon-
tal, descending). This is well-de�ned, since by Lemma 10 there is no interaction
of I2 with the li-valuation of the conductor of the endomorphism ring.

5 Pairings on the real multiplication isogeny graph

Let J be a jacobian de�ned over Fq, with complex multiplication by a OK0
-order.

Let `OK0
= l1l2. In this Section, l denotes any of the ideals l1, l2.

We relate some properties of the Tate pairing to the isomorphism class of
the endomorphism ring of the Jacobian, by giving a similar result to the one of
Ionica and Joux [13] for genus 1 isogeny graphs. More precisely, we show that
the nondegeneracy of the Tate pairing restricted to the kernel of a l-isogeny
determines the direction of the isogeny in the graph, at least when νl(π − π̄) is
below some bound. This result is then exploited to e�ciently navigate in isogeny
graphs.

Let r be the smallest integer such that J [l] ⊂ J(Fqr ). Let n be the largest
integer such that J [ln] ⊂ J [Fqr ] and that J [ln+1] 6⊂ J [Fqr ]. We de�ne kl,J to be

kl,J = max
P∈J[ln]

{k | T`n(P, P ) ∈ µ`k\µ`k−1}

De�nition 14 Let G be a cyclic group of J [ln]. We say that the Tate pairing is
kl,J -non-degenerate (or simply non-degenerate) on G×G if its restriction

T`n : G×G→ µ
`kl,J

is surjective. Otherwise, we say that the Tate pairing is kl,J -degenerate (or simply
degenerate) on G×G.

For the following few paragraphs we will use the shorthand notation λU,V =
log(T`n(U, V )) for U, V any two ln-torsion points, and where log is a discrete
logarithm function in µ`n .

Since l is principal in the real quadratic order OK0 ⊂ End(J), it follows that
J [l] is the kernel of an endomorphism. Since J is ordinary, all endomorphisms
are Fq-rational. Consequently, we have that π(J [ln]) ⊂ J [ln], for n ≥ 0. The
following result shows that computing the l-adic valuation of π− π̄ is equivalent
to computing kl,J .

Proposition 15 Let r be the smallest integer such that J [l] ⊂ J(Fqr ). Let n be
the largest integer such that J [ln] ⊂ J [Fqr ] and that J [ln+1] 6⊂ J [Fqr ]. Then if
νl,J(πr − π̄r) < 2n, then we have

kl,J = 2n− νl,J(πr − π̄r).
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Proof. Let Q1, Q2 form a basis for J [l2n]. Then πr(Qi) =
∑
aijQj , for i, j = 1, 2.

We have

T`n(`nQi, `
nQi) = W`2n(π(Qi)−Qi, Qi) = W`2n(Qk, Qi)

aik ,

with k ≡ i+ 1 (mod 2). By the non-degeneracy of the Weil pairing, this implies
a12 ≡ a21 ≡ 0 (mod `2n−kl,J ). Moreover, the antisymmetry condition on the
Tate pairing says that

T`n(`nQ1, `
nQ2)T`n(`nQ2, `

nQ1) ∈ µ
`kl,J

.

Since T`n(`nQi, `
nQj) = W`2n(Qi, Qj)

ajj−1, for i 6= j, we have that

W`2n(Q1, Q2)a11−1W`2n(Q2, Q1)a22−1 = W`2n(Q1, Q2)a11−a22 ∈ µ
`kl,J

.

We conclude that `2n−kl,J divides all of a12, a21, and a11−a22. By Proposition 9,
this implies that 2n−kl,J ≤ νl,J(πr− π̄r). Conversely, let k = 2n−νl,J(πr− π̄r).
We know that π = λI2 + `2n−kA, for A ∈M2(Z). Then for P ∈ J [ln] and P̄ such
that `nP̄ = P , we have T`n(P, P ) = W`2n(P̄ , λP̄ + A(`2n−kP̄ )) ∈ µ`k . Hence
k ≥ kl,J and this concludes the proof. ut

From this proposition, it follows that if νl,J(π − π̄) > 2n, the self-pairings of
all kernels of l-isogenies are degenerate. At a certain level in the isogeny graph,
when νl,J(π − π̄) < 2n, there is at least one kernel with non-degenerate pairing
(i.e. kl,J = 1). Following the terminology of [12], we call this level the second
stability level. As we descend to the �oor, kl,J increases. The �rst stability level
is the level at which kl,J equals n.

T`n(P, P ) = 1.

second stability level

T`n(P, P ) has order `k,
with k = 2n−νl,J(πr− π̄r).

�rst stability level

T`n(P, P ) has order `n.

�oor

Fig. 3. Stability levels

We now show that from a computation point of view, we can use the Tate
pairing to orient ourselves in the l-isogeny graph. More precisely, cyclic subgroups
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of the l-torsion with degenerate self-pairing correspond to kernels of ascending
and horizontal isogenies, while subgroups with non-degenerate self pairing are
kernels of descending isogenies. Before proving this result, we need the following
lemma.

Lemma 16 If kl,J > 0, then there are at most two subgroups of order ` in J [ln]
such that points in these subgroups have degenerate self-pairing.

Proof. Suppose that P and Q are two linearly independent ln-torsion points.
Since all ln-torsion points R can be expressed as R = aP + bQ, bilinearity of the
`n-Tate pairing gives

λR,R = a2λP,P + ab (λP,Q + λQ,P ) + b2λQ,Q (mod `n),

We now claim that the polynomial

S(a, b) = a2λP,P + ab (λP,Q + λQ,P ) + b2λQ,Q (7)

is identically zero modulo `n−kl,J−1 and nonzero modulo `n−kl,J . Indeed, if
it were identically zero modulo `k, with k > n − kl,J , then we would have
T`n(R,R) ∈ µ`n−k , which contradicts the de�nition of kl,J . If it were di�erent
from zero modulo `n−kl,J−1, then there would be R ∈ J [ln] such that T`n(R,R)
is a `kl,J+1-th primitive root of unity, again contradicting the de�nition of kl,J .

Points with degenerate self-pairing are roots of L. Hence there are at most
two subgroups of order ` with degenerate self-pairing. ut

In the remainder of this paper, we de�ne by

Sl,J(a, b) = a2λP,P + ab(λP,Q + λQ,P ) + b2λQ,Q

any polynomial de�ned by a basis {P,Q} of J [ln] in a manner similar to the
proof of Lemma 16.

Theorem 17. Let P be a l-torsion point and let r be the smallest integer such
that J [l] ⊂ J(Fqr ). Let n be the largest integer such that J [ln] ⊂ J [Fqr ] and that
J [ln+1] 6⊂ J [Fqr ]. Assume that kl,J > 0. Consider G a subgroup such that `n−1G
is the subgroup generated by P . Then the isogeny of kernel P is descending if
and only if the Tate pairing is non-degenerate on G. It is horizontal or ascending
otherwise.

Proof. We assume n > 1 and that kl,J > 1. Otherwise, we consider J ′ de�ned
over and extension �eld of Fqr and apply [11, Lemma 4]. Let I : J → J ′ the
isogeny of kernel generated by P . Assume that P has non-degenerate self-pairing.
Let P̄ ∈ G such that `n−1P̄ = P . Then by [11, Lemma 5b] and Lemma 6, we
have

T`n−1(I(P̄ ), α(I(P̄ ))) ∈ µ
`kl,J−1\µ`kl,J−2 ,
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where α is a generator of the principal ideal l′ such that ll′ = `OK0 . Since
OK0

/αOK0
' Z/`Z, then for any R ∈ J ′[ln], we have α(R) = λR, for some

λ ∈ Z/`Z. Hence we have

T`n−1(I(P̄ ), I(P̄ )) ∈ µ
`kl,J−1\µ`kl,J−2 ,

There are two possibilities. Either J ′[ln] is not de�ned over Fqr , or J ′[ln] is
de�ned over Fqr . In the �rst case, we have νl,J′(π

r) < νl,J(πr) and the isogeny
is descending.

Assume now that J ′[ln] is de�ned over Fqr . Then let P1 such that I(P̄ ) = `P1.
Then

T`n(P1, P1)) ∈ µ
`kl,J+1\µ`kl,J .

By using Proposition 15, it follows that νl,J′(π
r− π̄r) < νl,J(πr− π̄r). Hence the

isogeny is descending.

Suppose now that the point P has degenerate self-pairing and that the
isogeny I is descending. Since there are at most 2 points in J [ln] with degenerate
self-pairing, there is at least one point in J [ln] with non-degenerate self-pairing.
This point, that we denote by Q, generates the kernel of a descending isogeny
I ′ : J → J ′′ such that End(J ′) ' End(J ′′). We assume �rst that J ′[ln] and
J ′′[ln] are not de�ned over Fqr . Then we have

T`n−1(I(P̄ ), I(P̄ ))) ∈ µ
`kl,J−2 , T`n−1(`I(Q̄), `(I(Q̄))) ∈ µ

`kl,J−3

T`n−1(`I ′(P̄ ), `I ′(P̄ )) ∈ µ
`kl,J−4 , T`n−1(I ′(Q̄), I ′(Q̄))) ∈ µ

`kl,J−1\µ`kl−2

Hence kl,J′ 6= kl,J′′ , which is a contradiction. The case where J ′[ln] and J ′′[ln]
are de�ned over Fqr is similar. ut

6 Endomorphism ring computation - a depth �rst

algorithm

Let ` be a �xed prime. Assume that Z[π, π̄] is a OK0 -order and that `OK0 = l1l2.

A consequence of Proposition 13 is that there are at most (` + 1)(` + 1)
rational (`, `)-isogenies preserving the real multiplication. Since we can compute
(`, `)-isogenies over �nite �elds [5,2], we use this result to give an algorithm for
computing νl,J(π−π̄), and determine endomorphism rings locally at `, by placing
them properly in the order lattice as represented in Figure 1.

We de�ne ui to be the smallest integer such that πui − 1 ∈ liOK , and u the
smallest integer such that πu − 1 ∈ `OK . (we have u = lcm(u1, u2)). The value
of u depends naturally on the splitting of ` in K (see [8, Prop. 6.2]). As the
algorithm proceeds, the walk on the isogeny graph considers Jacobians over the
extension �eld Fpu .
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Idea of the algorithm. As noticed by Lemma 3 and the remark on page 4, we
can achieve our goal by considering separately the position of the endomorphism
ring within the order lattice with respect to l1 �rst, and then with respect to l2.
The algorithm below is in e�ect run twice.

Each move in the isogeny graph corresponds to taking an (`, `)-isogeny, which
is a computationally accessible object. In our prospect to understand the position
of the endomorphism ring with respect to l1 in Figure 1, we shall not consider
what happens with respect to l2, and vice-versa. Our input for computing an
(`, `)-isogeny is a Weil-isotropic kernel. Because we are interested in isogenies
preserving the real multiplication, this entails that we consider kernels of the
form K1 + K2, with Ki a cyclic subgroup of J [li]. By Proposition 7, such a
group is Weil-isotropic. There are up to (`+ 1)2 such subgroups.

Let l be either l1 or l2. The algorithm computes νl,J(π − π̄) in two stages.
Our algorithm stops when the �oor of rationality has been hit in l, i.e. the

only rational cyclic group in J [l] is the one generating the kernel of the ascending
l-isogeny. If (u, `) = 1, one may prove that testing rationality for the isogenies
is equivalent to J [l] ⊂ J(Fqu). Otherwise, in order to test rationality for the
isogeny at each step in the algorithm, one has to check whether the kernel of the
isogeny is Fq-rational.

Step 1. The idea is to walk the isogeny graph until we reach a Jacobian which is
on the second stability level or below (which might already be the case, in which
case we proceed to Step 2). If the Jacobian J is above the second stability level,
we need to construct several chains of (`, `)-isogenies, not backtracking with
respect to l, to make sure at least one of them is descending in the l-direction.
This proceeds exactly as in [7]. The number of chains depends on the number of
horizontal isogenies and thus on the splitting of l in K (due to the action of the
Shimura class group). If l is split, one needs three isogeny chains to ensure that
one path is descending.

If an isogeny in the chain is descending, then the path continues descending,
assuming the isogeny walk does not backtrack with respect to l (this aspect is
discussed further below). We are done constructing a chain when we have reached
the second stability level for l, which can be checked by computing self-pairing of
appropriate `n-torsion points. The length of the shortest path gives the correct
level di�erence between the second stability level and the Jacobian J .

Fig. 4. At least one in three non-backtracking paths has minimum distance to
a given level.
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Figure 4 represents for ` = 3 a situation where only three non-backtracking
paths can guarantee that at least one of them is consistently descending.

Step 2. We now assume that J is on the stability level or below, with respect to l.
We construct a non-backtracking path of (`, `)-isogenies, which are consistently
descending with respect to l. In virtue of Theorem 17, this can be achieved
by picking Weil-isotropic kernels whose l-part (which is cyclic) correspond to a
non-degenerate self-pairing T`n(P, P ). We stop when we have reached the �oor
of rationality in l, at which point the valuation νl,J(π − π̄) is obtained.

Note that at each step taken in the graph, if J [l′] (where l′ is the other ideal)
is not rational, then we ascend in the l′-direction, in order to compute an (`, `)-
isogeny. As said above, this has no impact on the consideration of what happens
with respect to l.

Ensuring isogeny walks are not backtracking As said above, ensuring that the
isogeny walk in Step 2 is not backtracking is essentially guaranteed by Theo-
rem 17. Things are more subtle for Step 1. Let J1 be a starting Jacobian, and
I : J1 → J2 an (`, `)-isogeny whose kernel is V ⊂ J [`]. Recall that there are at
most (`+1)2 Weil-isotropic kernels of the form K1 +K2 within J2[l1]+J2[l2] for
candidate isogenies I ′ : J2 → J1. All such isogenies whose kernel has the same
component on J2[l1] as the dual isogeny Î are backtracking with respect to l1 in
the isogeny graph. One must therefore identify the dual isogeny Î and its kernel.
Since Î is such that Î ◦ I = [`], we have that Ker Î = I(J1[`]). If computing
I(J1[`]) is possible3, this solves the issue. If not, then enumerating all possible
kernels until the dual isogeny is identi�ed is possible, albeit slower.

7 Complexity analysis

In this Section, we give a complexity analysis of Algorithms 1 and 2 and compare
its performance to that of the Eisenträger-Lauter algorithm for computing the
endomorphism ring locally at `, for small `. If ` is large, one should use Bisson's
algorithm [1]. Computing a bound on ` for which one should switch between
the two algorithms and a full complexity analysis of the algorithm for determin-
ing the endomorphism ring completely is beyond the scope of this paper. For
completeness, we give a brief description of the Eisenträger-Lauter algorithm [6].

The Eisenträger-Lauter algorithm For a �xed order O in the lattice of orders
of K, the algorithm tests whether this order is contained in End(J). This is
done by computing a Z-basis for the order and checking whether the elements
of this basis are endomorphisms of J or not. In order to test if α ∈ O is an
endomorphism, we write

α =
a+ bπ + cπ2 + dπ3

n
, (8)

3 Computing isogenous Jacobians by isogenies is easier than computing images of
divisors. The avisogenies software [2] performs the former since its inception, and
the latter in its development version, as of 2014.
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Algorithm 1 Computing the endomorphism ring: Step 1

INPUT: A Jacobian J of a genus 2 curve de�ned over Fq and u the smallest integer
s.t. πu − 1 ≡ 0 (mod `OK), the Frobenius π ∈ K where K is a quartic CM �eld,
and α = a+ b(π + π̄) such that l = αOK divides `OK , and l′ = `/l.
We require that J is above the second stability level with respect to l.

OUTPUT: A Jacobian J ′ on or below the second stability level with respect to l,
and the distance from J to this jacobian.

1: Let n the largest integer such that J [ln] ⊂ J(Fqu).
2: J1 ← J , J2 ← J , J3 ← J .
3: κ1 ← {0}, κ2 ← {0}, κ3 ← {0}.
4: length← 0.
5: while true do

6: length← length + 1.
7: for all i=1,3 do

8: Compute the matrix of π in Ji[`
∞](Fqu).

9: Compute bases for Ji[l](Fqu) and Ji[l
′](Fqu) using α = a+ b(π + π̄).

10: Pick at random Pi ∈ Ji[l](Fqu) such that Pi /∈ κi.
11: Pick at random P ′i ∈ Ji[l′](Fqu).
12: Compute the (`, `)-isogeny I : Ji → J ′i = Ji/〈Pi, P ′i 〉.
13: κi ← I(J [l]); Ji ← J ′i .
14: Compute Sl,J .
15: if Sl,J 6= 0 then

16: return length.
17: end if

18: end for

19: end while

with a, b, c, d, n some integers such that a, b, c, d have no commun factor with
n (n is the smallest integer such that nα ∈ Z[π]). Using [6, Prop. 7], we get
α ∈ End(J) if and only if a + bπ + cπ2 + dπ3 acts as zero on the n-torsion.
Freeman and Lauter show that n divides the index [OK : Z[π]] (see [8, Lemma
3.3]). Since Z[π, π̄] is 1 or p, we have that n divides [OK : Z[π, π̄]] if (n, p) = 1.
Moreover, Freeman and Lauter show that if n factors as `d11 `

d2
2 . . . `drr , it su�ces

to check if

a+ bπ + cπ2 + dπ3

`dii
,

for every prime factor `i in the factorization of n. The advantage of using this
family of elements instead of α is that instead of working over the extension
�eld generated by the coordinates of the n-torsion points, we may work over the
�eld of de�nition of the `dii -torsion, for every prime factor `i. Nevertheless, it
should be noted that the exponent di can be as large as the `i-valuation of the
conductor [OK : Z[π]].

We now give the complexity of the algorithm from Section 6.
First we compute a basis of the �`∞-torsion over Fqu �, i.e. the `-Sylow sub-

group of J(Fqu), which corresponds to J [`n](Fqu) for some integer n. We assume
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Algorithm 2 Computing the endomorphism ring: Step 2

INPUT: A Jacobian J of a genus 2 curve de�ned over Fq and u the smallest integer
s.t. πu − 1 ≡ 0 (mod `OK), the Frobenius π ∈ K where K is a quartic CM �eld,
and α = a+ b(π + π̄) such that l = αOK divides `OK , and l′ = `/l.
We require that J is on or below the second stability level with respect to l.

OUTPUT: The l-distance from J to the �oor.
1: length← 0.
2: while true do

3: Compute a basis of J [`∞](Fqu).
4: Let n the largest integer such that J [ln] ⊂ J(Fqu).
5: if n = 0 then

6: return length.
7: end if

8: Compute the matrix of π in Ji[`
∞](Fqu).

9: Compute bases for Ji[l](Fqu) and Ji[l
′](Fqu) using α = a+ b(π + π̄).

10: Consider P1, P2 a basis of J [ln](Fqu)
11: Compute Sl,J and take x1, x2 ∈ P1(F`) such that Sl,J(x1, x2) 6= 0.
12: P ← `n−1(x1P1 + x1P2).
13: Pick at random P ′i ∈ Ji[l′](Fqu).
14: Compute the (`, `)-isogeny I : J ′ ← J/〈P, P ′〉
15: J ← J ′.
16: length← length + 1.
17: end while

that the zeta function of J and the factorization of #J(Fqu) = `sm are given.
We denote byM(u) the number of a multiplications in Fq needed to perform one
multiplication in the extension �eld of degree u. The computation of the Sylow
subgroup basis costs O(M(u)(u log q + n`2)) operations in Fq [3, �3].

Then we compute the matrix of the Frobenius on the `-torsion. Using this
matrix, we may write down the matrices of α1 and α2 in terms of the the matrix
of π+π̄. Finally, computing J [li], i = 1, 2, is just linear algebra and has negligible
cost. Computing the Tate pairing costs O(M(u)(n log `+ u log q)) operations in
Fq, where the �rst term is the cost of Miller's algorithm and the second one is
the cost for the �nal exponentiation.

The cost of computing an (`, `)-isogeny using the algorithm of Cosset and
Robert [5] is O(M(u)`4) operations in Fq. Let h denote the depth of the graph,
i.e. h = max(νl1,OK (π − π̄), νl2,OK (π − π̄)). We conclude that the cost of Algo-
rithms 1 and 2 is O(hM(u)(u log q + n`2 + `4)).

The complexity of Freeman and Lauter's algorithm for endomorphism ring
computation is dominated by the cost of computing the `-Sylow group of the
Jacobian de�ned over the extension �eld containing the `u

′
-torsion, where u′

is bounded by `-valuation of [OK : Z[π]]. The degree of this extension �eld is
u`u

′−u (by Proposition [6, Prop. 6.3]). The costs of the two algorithms are given
in Table 1.
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Table 1. Cost for computing the endomorphism ring locally at `

Freeman and Lauter This work (Algorithm 1)

O(M(u`u
′−u)(u`u

′−u log q + u′`2)) O(hM(u)(u log q + n`2 + `4))

Example 2. Let J be the jacobian of the hyperelliptic curve de�ned by

y2 = 37835078x6 + 36463111x5 + 37485984x4 + 24269474x3+

41922947x2 + 39564866x+ 21448355,

over Fp, with p = 53050573. The curve has complex multiplication by OK ,
with K = Q(

√
175 + 15

√
13). The real multiplication K0 has class number 1

and 3 is split into K0. The 3-torsion is de�ned over an extension of degree 2
and the corresponding valuations of the Frobenius are να1,OK (π − π̄) = 10 and
να2,OK (π − π̄) = 3.

8 Conclusion

We have described the structure of the degree ` isogeny graph between abelian
surfaces with maximal real multiplication. From a computational point of view,
We exploited the structure of the graph to describe an algorithm computing
locally at ` the endomorphism ring of an abelian surface with maximal real
multiplication. Further research is needed to extend our results to the general
case. Our belief is that the good approach to follow is �rst to determine the real
multiplication and secondly to use an algorithm similar to ours to fully compute
the endomorphism ring.
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10 Appendix A

We consider the quartic CM �eld K with de�ning equation X4 + 81X2 + 1181.
The real sub�eld is K0 = Q(

√
1837), and has class number 1. In the real sub�eld

K0, we have 3 = α1α2, with α1 = 43+
√

1837
2 and α2 its conjugate. We consider a

Weil number π of relative norm 85201 in OK . We have that να1(fZ[π,π̄]) = 2 and
να2

(fZ[π,π̄]) = 1. Note that l1 is inert and l2 is split in K. Our implementation
with Magma produced the graph in Figure 5.
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OK , f =1

O3a, f = l1 O3b, f = l2

O9a, f = l1l2 O9b, f = l22

O27, f = l1l22

Fig. 5. A larger example
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