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Abstract. An isogeny graph is a graph whose vertices are principally polarized abelian
varieties and whose edges are isogenies between these varieties. In his thesis, Kohel describes
the structure of isogeny graphs for elliptic curves and shows that one may compute the
endomorphism ring of an elliptic curve defined over a finite field by using a depth-first
search (DFS) algorithm in the graph. In dimension 2, the structure of isogeny graphs is less
understood and existing algorithms for computing endomorphism rings are very expensive.
In this article, we show that, under certain circumstances, the problem of determining the
endomorphism ring can also be solved in genus 2 with a DFS-based algorithm. We consider
the case of genus-2 Jacobians with complex multiplication, with the assumptions that the
real multiplication subring is maximal and has class number one. We describe the isogeny
graphs in that case, locally at prime numbers which split in the real multiplication subfield.
The resulting algorithm is implemented over finite fields, and examples are provided. To the
best of our knowledge, this is the first DFS-based algorithm in genus 2.

1 Introduction

Isogeny graphs are non-oriented graphs whose vertices are principally polarized simple abelian
varieties and whose edges are isogenies between these varieties. Isogeny graphs were first studied
by Kohel [14], who proves that in the case of elliptic curves, we may use these structures to compute
the endomorphism ring of an elliptic curve. Kohel identifies two types of `-isogenies (i.e. of degree `)
in the graph: ascending-descending and horizontal. The first type corresponds to the case of an
isogeny between two elliptic curves, such that the endomorphism ring of one curve is contained
into the endomorphism ring of the other. The second type is that of an isogeny between two genus
1 curves with isomorphic endomorphism ring. As a consequence, Kohel shows that computing the
`-adic valuation of the conductor of the endomorphism ring can be done by a depth-first search
algorithm in the isogeny graph. In the case of genus-2 Jacobians, designing a similar algorithm for
endomorphism ring computation requires a good understanding of the isogeny graph structure.

Let K be a primitive quartic CM field and K0 its totally real subfield. In this paper, we study
subgraphs of isogenies whose vertices are all genus-2 Jacobians with endomorphism ring isomorphic
to an order of K which contains the maximal order OK0

. Furthermore, we assume that OK0
is

principal and that ` splits in OK0
.

We show that the lattice of orders meeting these conditions has a simple 2-dimensional grid
structure. This results into a classification of isogenies in the isogeny graph: ascending-descending
and horizontal, where these qualificatives apply separately to the two “dimensions” of the lattice of
orders. Moreover, we show that any (`, `)-isogeny which is such that the two endomorphism rings
contain OK0

is a composition of two isogenies of degree ` which preserve real multiplication. As a
consequence, we design a depth-first search algorithm for computing endomorphism rings in the
(`, `)-isogeny graph, based on Cosset and Robert’s algorithm for constructing (`, `)-isogenies over
finite fields. To the best of our knowledge, this is the first depth-first search algorithm for computing
locally at small prime numbers ` the endomorphism ring of an ordinary genus-2 Jacobian. With our
method, as well as with the Eisenträger-Lauter algorithm [6], the dominant part of the complexity
is given by the computation of a subgroup of the `-torsion. Our analysis shows that our algorithm
performs faster, since a smaller torsion subgroup is computed, defined over a smaller field.



This paper is organized as follows. Section 2 provides background material concerning isogeny
graphs, OK0

-orders of quartic CM fields, as well as the definition and some properties of the Tate
pairing. In Section 3 we give formulae for cyclic isogenies between principally polarized complex
tori, with maximal real multiplication. The structure of the graph given by reductions over finite
fields of these isogenies is proved in Section 4. In Section 5 we show that the computation of the
Tate pairing allows to orient ourselves in the isogeny graph. Finally, in Section 6 we give our algo-
rithm for endomorphism ring computation when the real multiplication is maximal, compare its
performance to the one of Eisenträger and Lauter’s algorithm, and report on practical experiments
over finite fields.

2 Background and notations

It is well known that in the case of elliptic curves with complex multiplication by an imaginary
quadratic field K, the lattice of orders of K has the structure of a tower. This results into a easy
way to classify isogenies and navigate into isogeny graphs [14,7,13].

Throughout this paper, we are concerned with the genus 2 case. Let then K be a primitive
quartic CM field, with totally real subfield K0. In this paper, we assume that principally polarized
abelian surfaces are simple, i.e. not isogenous to a product of elliptic curves. The quartic CM field
K is primitive, i.e. it does not contain a totally imaginary subfield. We assume that K = Q(γ),

with γ = i
√
a+ b

√
d if d ≡ 2, 3 mod 4 or γ = i

√
a+ b

(
−1+

√
d

2

)
if d ≡ 1 mod 4. A CM-type Φ

is a pair of non-complex conjugate embeddings of K in C

Φ(z) = {φ1(z), φ2(z)}.

We assume that K0 has class number one. This implies in particular that the maximal order OK
is a module over the principal ideal ring OK0

, whence we may define η such that

OK = OK0 +OK0η.

The notation η will be retained throughout the paper.
Several results of the article will involve a prime number ` and also the finite field Fp or

its extensions. We always implicitly assume that ` is coprime to p. Furthermore, the case which
matters for our point of view is when ` splits as two distinct degree-one prime ideals l1 and l2 in
OK0 . How the ideals l1,2 split in OK is not determined a priori, however.

2.1 Isogeny graphs: definitions and terminology

In this paper, we consider isogeny graphs whose nodes are principally polarized abelian surfaces
(i.e. Jacobians of hyperelliptic genus-2 curves) and whose vertices are isogenies between them.
A natural approach would be to consider the graph given by (`, `)-isogenies, i.e. isogenies with
kernel maximal isotropic to the Weil pairing. Recent developments on the construction of isogenies
between principally polarized abelian varieties [16,5] allowed to compute examples of (`, `)-isogeny
graphs [2]. It was noticed in this way that the corresponding lattice of orders has a much more
complicated structure when compared to its genus-1 equivalent. Figure 1 displays an example of
(`, `)-isogeny graph. The corresponding lattice of orders contains two orders of index 3 (in the
maximal order), which are not contained one into the other. The existence of rational isogenies
between Jacobians corresponding to these two orders shows that we cannot classify isogenies into
ascending/descending and horizontal ones. This is a major obstacle into designing a depth-first
search algorithm for computing the endomorphism ring.

The approach we will take here is to consider the graph of all isogenies between principally
polarized abelian surfaces and decompose it into subgraphs whose vertices are Jacobians with real
multiplication by a fixed order O of K0. Isogenies between Jacobians with real multiplication by
O are called isogenies preserving real multiplication. We call these subgraphs real multiplication
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Fig. 1. Example of an (`, `)-isogeny graph, with the corresponding lattice of orders.

layers. Understanding the structure of the graph then comes down to explaining the structure of
each layer and classifying isogenies beween two vertices lying at different layers of the graph.

In this paper, we fully describe the structure of the maximal real multiplication layer. Working
towards this goal, we first identify cyclic isogenies between principally polarized abelian varieties
with maximal real multiplication. We will see that the existence of cyclic isogenies between prin-
cipally polarized abelian varieties is conditioned by certain conditions on `. We will assume that `
splits and that the class number of K0 is 1. Under these restrictions, we describe the simple and
interesting structure of the graph of cyclic isogenies, which fits into the ascending/descending and
horizontal framework. Using this graph structure, we characterize all isogenies between principally
polarized abelian surfaces which preserve maximal real multiplication. This leads in particular to
viewing Figure 1 as derived from a more structured graph, whose characteristics are well explained.

Remark 1. The case when ` is ramified is similar. In the case of ` inert, all isogenies in the maximal
real multiplication graph of principally polarized abelian varieties are (`, `)-isogenies and we chose
not to treat this case in this work.

2.2 The lattice of OK0-orders in a quartic CM field K

A major obstacle to depicting genus 2 isogeny graphs is that the structure of the lattice of orders
of K lacks a concise description. Given an isogeny I : J1 → J2 between two abelian surfaces with
degree `, the corresponding endomorphism rings are such that `OJ1 ⊂ OJ2 or `OJ2 ⊂ OJ1 . Hence,
even if a inclusion relation is guaranteed OJ2 ⊂ OJ1 , the index of one order into the other may be
as high as `3. Since the Z-rank of orders is 4, it is always possible to find several suborders of OJ1
with the same index.

In this paper, we study the structure of the isogeny graph between abelian varieties with
maximal real multiplication. The first step in this direction is to describe the structure of the
lattice of orders of K which contain OK0 . Following [9], we call such an order an OK0-order. We
study the conductors of such orders. We recall that the conductor of an order O is the ideal

fO = {x ∈ OK | xOK ⊂ O}
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The following lemma was given by Goren and Lauter [9].

Lemma 2. 1. An OK0-order of K is of the form OK0 [αη], for some α ∈ OK0 , α 6= 0. This
element is unique up to units of OK0 . The conductor of the order O[αη] is the principal OK-
ideal αOK .

2. For any element α ∈ OK0 , OK0 [αη] is an order of conductor αOK .

A first consequence of Lemma 2 is that there is a bijection between OK0
-orders and principal

ideals in OK0
, which associates to every order the ideal f∩OK0

, which for brevity we still call the
conductor and denote by f.

Using the particular shape of OK as a monogenic OK0-module, we may rewrite the conductor
differently. For a fixed element ω ∈ OK , we define the conductor of O with respect to ω to be the
ideal

fω,O = {x ∈ OK | xω ∈ O}

The following statement is an immediate consequence of Lemma 2.

Lemma 3. For any OK0-order O, we have fO = fη,O.

Let now O be an OK0 -order whose index is divisible by a power of `. Assume that ` splits in
OK0

and let ` = l1l2. Then by Lemma 2 the conductor f has a unique factorization into prime
ideals containing le11 le22 . Locally at `, the lattice of orders of index divisible by ` has the form given
in Figure 2. This is equivalent to the following statement.

Lemma 4. Let O be an OK0-order in K. Locally at `, the position of O within the lattice of
OK0-orders is given by the valuations νli(fO), for i = 1, 2.

νl(Norm(fO)) = 0

νl(Norm(fO)) = 1

νl(Norm(fO)) = 2

νl(Norm(fO)) = 3

l1 l2

Fig. 2. The lattice of orders

We say that all orders having the same `-adic valuation of the norm of the conductor lie on the
same level in the lattice.

2.3 The Tate pairing

Let J be the Jacobian of a genus-2 curve, defined over a field L. We denote by J [m] the m-torsion
subgroup. We denote by µm the group of m-th roots of unity. Let

Wm : J [m]× Ĵ [m]→ µm

be the m-Weil pairing.
The definition of the Tate pairing involves the Weil pairing and Galois cohomology. In this

paper, we are only interested in the Tate pairing over finite fields. Therefore, we specialize the
definition to this case, following [19,11]. More precisely, suppose we have m |#J(Fq) and denote
by k the embedding degree with respect to m, i.e. the smallest integer k ≥ 0 such that m | qk − 1.
We define the Tate pairing as

tm(·, ·) :

{
J(Fqk)/mJ(Fqk)× Ĵ [m](Fqk)→ µm

(P,Q) 7→Wm(π(P̄ )− P̄ , Q),
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where π is the Frobenius automorphism of the finite field Fqk and P̄ is any point such thatmP̄ = P .
It is easy to check that this definition is independent of the choice of P̄ .

For a fixed principal polarization λ : J → Ĵ we define a pairing on J itself

tλm(·, ·) :

{
J(Fqk)/mJ(Fqk)× J [m](Fqk)→ µm

(P,Q) 7→ tm(P, λ(Q)).

Most often, if J has a distinguished principal polarization and there is no risk of confusion, we
write simply tm(·, ·) instead of tλm(·, ·).

Lichtenbaum [15] describes a version of the Tate pairing on Jacobian varieties. Since we use
Lichtenbaum’s formula for computations, we briefly recall it here. Let D1 ∈ J(Fqk) and D2 ∈
J [m](Fqk) be two divisor classes, represented by two divisors such that supp(D1)∩ supp(D2) = ∅.
Since D2 has order m, there is a function fm,D2 such that div(fm,D2) = mD2. The Lichtenbaum
pairing of the divisor classes D1 and D2 is computed as

Tm(D1, D2) = fm,D2
(D1).

The output of this pairing is defined up to a coset of (Fqk)r. Given that F∗qk/(F
∗
qk)m ' µm, we

obtain the Tate pairing as

tm(·, ·) : J(Fqk)/mJ(Fqk)× J [m](Fqk)→ µm

(P,Q)→ Tm(P,Q)(qk−1)/m.

The function fm,D2
(D1) is computed using Miller’s algorithm [17] in O(logm) operations in Fqk .

3 Isogenies preserving real multiplication

An abelian surface over C with complex multiplication by an orderO ⊂ K is given byA = C2/Φ(a),
where a is an ideal of O and Φ is a CM-type. This variety is said to be of CM-type (K,Φ). Recall
that we focus on the case where OK0

⊂ O. Since OK0
is a Dedekind domain and the ideal a is an

OK0
-module, we may then write it as a = Λ1α + Λ2β, with α, β ∈ K, and Λ1,2 two OK0

-ideals.
Hence we have A = C2/Φ(Λ) and Λ = Λ1+Λ2τ , with Λ1 and Λ2 lattices inK0 and (τφ1 , τφ2) ∈ H2

1,
where H1 is the upper-half plane. Note that in the more restrictive setting we have selected, K0 is
principal, which entails that we can choose Λ1 = Λ2 = OK0 . Every Riemann form is of the form

Hξ(z, w) =

2∑
r=1

ξφrzφr w̄φr

=(τφr )
,

for ξ ∈ K0 totally positive. The imaginary part Eξ satisfies

Eξ(z, w) =

2∑
r=1

ξφr (x′φryφr − xφry′φr ),

with z = x+ yτ, w = x′ + y′τ , where x, y, x′, y′ ∈ R.
The isogenies discussed by the following proposition were brought to our attention by John

Boxall.

Proposition 5. Let K and K0 be as previously stated. Let ` be a prime, and l ⊂ OK0
a prime

OK0
-ideal of norm `. Let A = C2/Φ(Λ) be an abelian surface over C with complex multiplication

by an OK0
-order O ⊂ K, with Λ = Λ1 + Λ2τ . A set of representatives of the cyclic subgroups of

(Λ/l)/Λ, and more precisely of the isogenies on A having these subgroup as kernels is given by
{ϕ∞} ∪ {ϕρ, ρ ∈ Λ1Λ

−1
2 /lΛ1Λ

−1
2 }, where:

ϕ∞ :

{
A→ C2/Φ(

Λ1

l
+ Λ2τ),

z 7→ z,
ϕρ :

{
A→ C2/Φ(Λ1 +

Λ2

l
(τ + ρ)),

z 7→ z.
(1)
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Proof. Our hypotheses imply that Λ is an OK0
-module of rank two, from which it follows that

(Λ/l)/Λ is isomorphic to (Z/`Z)2. The ` + 1 cyclic subgroups of (Λ/l)/Λ are the kernels of the
isogenies given in the Proposition. ut

Isogenies as described by Proposition 5 are called l-isogenies. Alternatively, if l is a principal
ideal αOK0 (which occurs in our setting since K0 is assumed principal), we also use the term
α-isogeny.

The following trivial observation that l-isogenies preserve the maximal real multiplication fol-
lows directly from End(Λil ) = End(Λi). We shall investigate a converse to this statement later in
this article.
Proposition 6. Let A be an abelian surface with End(A) an OK0-order. Let I : A → B be a
l-isogeny. Then End(B) is also an OK0-order.

Polarizations can be transported through l-isogenies, and particularly so in the case where
K0 is principal. Robert [18] shows that if I : (A,E) → (B,E′) is an isogeny between principally
polarized abelian varieties, then the homomorphism corresponding to the induced polarization
writes as λI∗E′ = λE ◦ φ, where φ is a real endomorphism of degree `2. As a consequence, we
consider the cases where l is generated by α ∈ K0, with α either totally positive or (if the narrow
class group Cl+(OK0) is not trivial, i.e. Z/2Z in our case) of negative norm. In the first case, with
α totally positive, we have

Eξ(x+ yτ, x′ + y′τ) = Eξα(
x

α
+ yτ,

x′

α
+ y′τ),

= Eξα(x+
y

α
(τ + ρ), x′ +

y′

α
(τ + ρ)).

Hence if Hξ defines a principal polarization on C2/Φ(Λ1 +Λ2τ), then Hξα defines principal polar-
izations on the varieties C2/Φ(Λ1

α + Λ2τ) and C2/Φ(Λ1 + Λ2

α (τ + ρ)).
In the second case (α of negative norm), then an l-isogeny maps a principally polarized abelian

variety to a variety in the non-trivial polarization class and vice-versa.
In the sequel, we assume that ` is a prime number, such that `OK0

= l1l2. Take αi, i = {1, 2},
elements of OK0 such that li = αiOK0 . We show that from the principal polarization induced by
an l-isogeny, we can compute a principal polarization on the target variety .

Proposition 7. Let I : J1 → J2 be a α1-isogeny and let λξ : J1 → Ĵ1 be the homomorphism
corresponding to the polarization class ξ of J1. Then the homomorphism λI : J2 → Ĵ2 such that
Î ◦ λI ◦ I = `λξ is of the form α2 ◦ λα1ξ, with λα1ξ : J2 → Ĵ2 corresponding to the polarization
class of J2.

Proof. Without loss of generality, we consider the case where the isogeny I between complex tori
is given by

C2/Φ(Λ1 + Λ2τ)→ C2/Φ(
Λ1

α1
+ Λ2τ)

z 7→ z (2)

Then I corresponds to a linear mapping from Λ1 + Λ2τ to Λ1

α1
+ Λ2τ given by the matrix

M =

(
Ξα1

0
0 I2

)
where Ξα1

denotes the matrix of the multiplication by α1 ∈ K0. The transpose matrix M t is the
rational representation of the dual isogeny with respect to the dual basis. The dual isogeny is then
given by

C2/Φ(
Λ1

α1
+ Λ2τ̄)→ C2/Φ(Λ1 + Λ2τ̄)

z 7→ α1z. (3)

Hence the following diagram commutes:
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C2/Φ(Λ1 + Λ2τ) C2/Φ(Λ1

α1
+ Λ2τ)

C2/Φ(Λ1 + Λ2τ̄) C2/Φ(Λ1

α1
+ Λ2τ̄)

I

`λξ α2 ◦ λα1ξ

Î

This concludes the proof. ut

In the remainder of the paper, we denote by J [l] the subgroup

J [l] = {x ∈ J | αx = 0,∀α ∈ l},

for any ideal l of norm ` in OK0
. For the commonly encountered case where l = αOK0

for some gen-
erator α ∈ OK0

, this matches with the notation J [α] representing the kernel of the endomorphism
reprensented by α.

Recall that ` is such that `OK0 = l1l2, with l1 + l2 = (1). Then the factorization of ` yields a
symplectic basis for the `-torsion. Indeed, we have J [`] = J [l1]+J [l2], and the following proposition
establishes the symplectic property.

Proposition 8. Let J be an abelian surface defined over a field L. With the notations above, we
have W`(P1, P2) = 1 for any P1 ∈ J [l1] and P2 ∈ J [l2].

Proof. This can be easily checked on the complex torus C2/Φ(Λ1 + Λ2τ). Let P1 = x1

α1
+ x2

α1
τ ∈

J [α1] and P2 = y1
α2

+ y2
α2
τ ∈ J [α2], where x1, y1 ∈ Λ1 and x2, y2 ∈ Λ2. Then W`(P1, P2) =

exp(−2πi`
Eξ(x1+x2τ,y1+y2τ)

` )) = 1. ut

4 The structure of the real multiplication isogeny graph over finite
fields

In this Section, we study the structure of the graph given by rational isogenies between principally
polarized abelian surfaces defined over a finite field, such that the corresponding endomorphism
rings are OK0

-orders. The endomorphism ring of an ordinary Jacobian J over a finite field Fq
(q = pn) is an order in the quartic CM field K such that

Z[π, π̄] ⊂ End(J) ⊂ OK ,

where Z[π, π̄] denotes the order generated by π, the Frobenius endomorphism and by π̄, the
Verschiebung. Moreover, the assumption that End(J) is an OK0

-order implies that it contains
OK0

[π − π̄] ⊂ OK0
Z[π, π̄], where the two latter orders coincide locally at all primes except 2.

By the theory of canonical lifts, we may choose abelian surfaces J̃ defined over an extension
field L of the reflex field Kr, and a prime ideal p in Kr such that J is isomorphic to the reduction
of J̃ modulo a ideal P lying over p in L. Let ` 6= p be a prime with ` = l1l2 in OK0

. For i = 1, 2
we have then J [li] ' J̃ [li] and the reductions of li-isogenies give ` + 1 isogenies towards varieties
whose endomorphism ring is an OK0-order.

Associated to an abelian surface whose endomorphism ring is an OK0
-order, we define the

{l1, l2}-isogeny graph whose edges are either l1- or l2-isogenies as defined by Proposition 5, and
whose vertices are abelian surfaces over Fq reached (transitively) by such isogenies. We will prove
that over finite fields, the {l1, l2}-isogeny graph is the graph of all isogenies of degree ` between
abelian surfaces having maximal real multiplication. We underline here that this holds as well
for isogeny graphs between abelian varieties defined over the complex numbers, thanks to the
following graph isomorphism.
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Proposition 9. Let G be an {l1, l2}-isogeny graph with vertices abelian surfaces defined over Fq
and whose endomorphism ring is an OK0

-order within K. Let π be a q-Weil number, giving the
Frobenius endomorphism for any of the abelian surfaces in G. Then there is a number field L and
a graph G′ isomorphic to G, whose vertices are abelian surfaces defined over L, having complex
multiplication by an OK0

-order containing OK0
[π − π̄], and whose edges are l1- or l2-isogenies

between these surfaces.

Proof. Let I : J → J ′ be an edge in G. Let J̃ be the canonical lift of J , defined over an extension
field L of the reflex field Kr, and a prime ideal p in Kr such that J is isomorphic to the reduction
of J̃ modulo a ideal P lying over p in L. By definition, I is obtained as the reduction of an l-
isogeny from J̃ to another variety J̃ ′, whose reduction is isomorphic to J ′, by the uniqueness of
the canonical lift. Since the reduction is an injective morphism from Hom(J̃ , J̃ ′) to Hom(J, J ′) [20,
Sect. 11, Prop. 12], we conclude that Ĩ is the unique isogeny whose reduction gives I. ut

We are now interested in determining the field of definition of l-isogenies starting from J . For
that, we need several definitions.

Let l be an ideal in OK0 and α a generator of this ideal. Let O be an order of K and let θ ∈ O.
We define the l-adic valuation of θ in O as

νl,O(θ) := max
m≥0
{m : θ ∈ lmO}.

Recall that for a Jacobian J with maximal real multiplication, we are interested (by Lemma 4)
in computing the l-adic valuation of the conductor of the endomorphism ringOJ . We remark that it
suffices to determine νl,OJ (π− π̄). Indeed, we have OJ = OK0

+OK0
fη,OJη and π− π̄ ∈ OK0

fη,OJη.
Then

νl(fη,OJ ) = νl,OK (π − π̄)− νl,OJ (π − π̄). (4)

In the sequel, we denote by νli,J(π − π̄) := νl,OJ (π − π̄).

Proposition 10. Let ` be an odd prime number, such that (`) = l1l2 in OK0
. Then the largest

integer n such that the Frobenius matrix on J [lni ] is of the form(
λ 0
0 λ

)
mod `n

is νli,J(π − π̄).

Proof. Assume that νli,J(π− π̄) = n. Then (π− π̄)(J [lni ]) = 0. Let D be an element of J [lni ]. Then
π + π̄ acts on D as an element of OK0

/lni ' Z/`nZ. Hence (π + π̄)(D) = λD for some λ. Since
(π − π̄)(J [lni ]) = 0, it follows that π(D) = λ′D. Hence, if D1, D2 is a basis for J [lni ], the matrix of
the Frobenius for this basis is (

λ1 0
0 λ2

)
. (5)

The matrix for the Verschiebung is then (
λ2 0
0 λ1

)
. (6)

Since π − π̄ is zero on J [lni ], it follows that λ1 = λ2 (mod `n). Hence any subgroup of J [lni ] is
rational. The reverse implication is obvious.

Remark 11. A natural consequence of Proposition 10 is that the cyclic subgroups of J [lni ] are
rational if and only if νli,J(π − π̄) ≥ n. In particular, the ` + 1 isogenies whose kernel is a cyclic
subgroup of J [li] are rational if and only if νli(π − π̄) > 0.

8



Example 12. Let H be the genus-2 curve given by the equation

y2 = 31x6 + 79x5 + 109x4 + 130x3 + 62x2 + 164x+ 56

defined over F211. The Jacobian J has complex multiplication by a quartic CM field K with
defining equation X4 +81X2 +1181. The real subfield is K0 = Q(

√
1837), and has class number 1.

The endomorphism ring of J contains the real maximal order OK0
. In the real subfield K0, we have

3 = α1α2, with α1 = 43+
√

1837
2 and α2 its conjugate. The 3-torsion is defined over an extension

field of degree 6, but J [α1] ⊂ J(Fq6) and J [α2] ⊂ J(Fq2). We have that ναi(fOK0
[π−π̄]) = 1, for

i = 1, 2, where π has relative norm 211 in OK .

In particular, Remark 11 implies that if an l-isogeny I : J1 → J2 is such that OK0
[π − π̄] ⊂

End(J1) and OK0
[π − π̄] ⊂ End(J2), then I is an isogeny in the graph of rational isogenies

preserving the real multiplication. We will show that the {l1, l2}-isogeny graph is in fact the
subgraph of rational isogenies preserving the maximal real multiplication.

Lemma 13. Let A and B be two abelian varieties defined and isogenous over Fq and denote by
OA and OB the corresponding endomorphism rings. Let l be an ideal of norm ` in OK0

. Assume
that the l-adic valuations of the conductors of OA and OB are different. Then for any isogeny
I : A→ B defined over Fq we have Ker I ∩A[l] 6= {0}.

Proof. We prove the contrapositive statement. Assume that there is an isogeny I : A→ B defined
over Fq with Ker I ∩A[l] = {0}. We then have that I(A[ln]) = B[ln], for all n ≥ 1. Since πB ◦ I =
I ◦ πA, it follows that the l-adic valuations νl,OA(πA − π̄A) and νl,OB (πB − π̄B) are equal. By
equation (4), it follows that the l-adic valuations of the conductors of endomorphism rings of A
and B are equal. ut

The converse of Lemma 13 does not hold, as it is possible for an l-isogeny to have a kernel
within A[l], and yet leave the l-valuation of the conductor of the endomorphism ring unchanged.

The following statement is a converse to Proposition 6.

Proposition 14. Let ` be an odd prime number, split in K0. All cyclic isogenies of degree `
preserving the real multiplication are l-isogenies, for some degree 1 ideal l in OK0

.

Proof. Let `OK0
= l1l2. Let I : A→ B be a rational isogeny which preserves the real multiplication

OK0
. The endomorphism rings OA and OB are orders in the lattice of orders described by Figure 2.

First, by [4, Section 8], we have that either `OA ⊂ OB , or `OB ⊂ OA. Hence the two orders lie
either on the same level, either on consecutive levels in the lattice of orders. If OA and OB lie on
consecutive levels, then there is an ideal l of norm ` in OK0

such that the l-adic valuation of the
conductors is different. By Lemma 13, it follows that the kernel of any cyclic `-isogeny between A
and B is a cyclic subgroup of A[l].

Assume now that OA and OB lie at the same level in the lattice of orders. If the two endo-
morphism rings are isomorphic, then the isogeny corresponds (under the class group action) to an
invertible ideal u of OA such that uū = l, with l an ideal of norm ` in OK0

. The isogeny is then an
l-isogeny, and l is one of l1,2.

If the two orders lie at the same level and are not isomorphic, then both the l1-adic and l2-adic
valuations of the corresponding conductors are different. It then follows that the kernel of any
isogeny from A to B contains a subgroup of A[l1] and A[l2]. This is not possible if the isogeny is
cyclic. ut

A natural consequence of Proposition 14 is that we may classify cyclic isogenies preserving
real multiplication (therefore, l-isogenies) into three categories. Let l be such that the isogeny
I : A→ B being considered is an l-isogeny. If OA ' OB , we say that the isogeny is horizontal. If
not, then the two orders lie on consecutive levels of the lattice given by Figure 2. If OB is properly
contained into OA, we say that the isogeny is descending. In the opposite situation, we say the
isogeny is ascending.
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Proposition 15. Let A be an abelian surface defined over a finite field Fq such that its endo-
morphism ring O is an OK0

-order in a CM quartic field different from Q(ζ5). Let l be an ideal of
prime norm ` in OK0 .

1. Assume that lOK is prime with the conductor of O, that we denote by f. Then we have:
(a) If l splits into two ideals in OK , then there are exactly two horizontal l-isogenies starting

from A and all the others are descending.
(b) If l ramifies in OK , there is exactly one horizontal l-isogeny starting from A and all the

others are descending.
(c) If l is inert in K, all `+ 1 l-isogenies are descending.

2. If l is not coprime to f, then there is exactly one ascending l-isogeny and ` descending ones,
starting from A.

Proof. The number of horizontal isogenies is given by the number of projective ideals of norm `.
In order to count descending isogenies, we count the abelian surfaces lying at a given level in the
graph (up to isomorphism), by applying class number relations. More precisely, we have the exact
sequence

1→ O× → O×K → (OK/fOK)×/(O/fO)× → Cl(O)→ Cl(OK)→ 1.

Hence we have the formula for the class number

# Cl(O) =
# Cl(OK)

[O×K : O×]

#(OK/fOK)×

#(O/fO)×
.

We have that O×K = O×K0
(see [21, Lemma II.3.3]). Since OK0 ⊂ O, it follows that [O×K : O×K0

]=1.
We note that O/fO ' Z/fZ, where f = N(f). Hence we have that #(O/fO)× = f

∏
p|f (1− 1

p ).
Moreover, we have

#(OK/fOK)× = N(f)
∏
p|f

(1− 1

N(p)
),

where the ideals in the product are all prime ideals of OK , dividing the conductor. Let Ol be the
OK0-order of conductor lf. By using a similar formula for the class number, we obtain that

# Cl(Ol) = # Cl(O)
#(O/fO)×

#(Ol/flOl)×
N(l)

∏
p|l

(1− 1

N(p)
),

= # Cl(O)
1

`− 1
N(l)

∏
p|l

(1− 1

N(p)
)

if l is prime to f. Hence the number of of descending isogenies is `− 1 if l is split, ` if l is ramified
and `+ 1 if l is inert. If l divides f, we have

# Cl(Ol) = # Cl(O)
#(O/fO)×

#(Ol/flOl)×

which leads to the fact that the number of descending isogenies is `.

Proposition 15 gives the following structure of connected components of the non-oriented
isogeny graph.

1. At each level, if νl,J(π− π̄) > 0, there are `+1 rational isogenies with kernel a cyclic subgroup
of J [l].

2. If l is split in OK0
then there are two horizontal l-isogenies at all levels such that the corre-

sponding order is locally maximal at l. At every intermediary level (i.e. νl,J(π− π̄) > 0), there
is one ascending l-isogeny and ` descending ones.
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3. If νl,J(π − π̄) = 0, then no smaller order (whose conductor has larger l-valuation) contains
π− π̄. There are no rational descending l-isogeny, and there is exactly one ascending l-isogeny.

The structure of this graph is similar to the one of an `-isogeny graph between elliptic curves,
called volcanoes [14,7]. If one considers an {l1, l2}-isogeny graphs and restricts to a connected
component reached by edges which are l1-isogenies, then the structure is exactly that of a volcano.
More generally, an {l1, l2}-isogeny graph can be seen, by the results above, as a direct product of
two graphs which share all their characteristics with genus one isogeny volcanoes. In particular
the generalization of top rim of the volcano turns into a torus if both l1 and l2 split. If only one
of them splits, the top rim is a circle, and if both are inert we have a single vertex corresponding
to a maximal endomorphism ring (since all cyclic isogenies departing from that abelian variety
increase both the l1- and the l2-valuation of the conductor of the endomorphism ring).

MAGMA experiments. Let J be a Jacobian defined over Fq with maximal real multiplication. We
do not have formulas for computing cyclic isogenies over finite fields (Section 6 works around this
difficulty for the computation of endomorphism rings). Instead, we experiment over the complex
numbers, and use the fact that there is a graph isomorphism between the l-isogeny graph having
J as a vertex and the graph of its canonical lift.

To draw the graph corresponding to Example 12, it is straightforward to compute the period
matrix Ω associated to a complex analytic torus C2/Λ1 + τΛ2, and compute a representative in
the fundamental domain for the action of Sp4 using Gottschling’s reduction algorithm [10].

All this can be done symbolically, as the matrix Ω is defined over the reflex field Kr. As a
consequence, we may compute isogenies of type (1) and follow the edges of the graph of isogenies
between complex abelian surfaces having complex multiplication by an order O containing OK0 [π−
π̄]. The exploration terminates when outgoing edges from each node have been visited. This yields
Figure 3. Violet and orange edges in Figure 3 are α1 and α2-isogenies, respectively. Note that since
α1 and α2 are totally positive, all varieties in the graph are principally polarized. Identification of
each variety to its dual, makes the graph of Figure 3 non-oriented.

4.1 Isogenies with Weil-isotropic kernel

In a computational perspective, we are interested in (`, `)-isogenies, which are accessible to com-
putation using the algorithms developed by [5]. Our description of the l1- and l2-isogenies is key
to understanding the (`, `)-isogenies due to the following result.

Proposition 16. Let ` ≥ 3 be a prime number such that `OK0 = l1l2. Then all (`, `)-isogenies
preserving the real multiplication are a composition of an l1-isogeny with an l2-isogeny.

Proof. Let I : A → B be an (`, `)-isogeny preserving the real multiplication. Let OA = End(A)
and OB = End(B). If the endomorphism rings are equal, then the isogeny corresponds, under the
action of the Shimura class group C(K) [20], to an ideal class a such that aā = `OA. It follows
that both l1 and l2 split in K. Let li,j , i, j ∈ {1, 2}, be such that li,1li,2 = li. Then, we may assume
that the isogeny I corresponds to the ideal l1,1l2,1 under the action of the Shimura class group.
We conclude that I is a composition of an l1-isogeny with an l2-isogeny.

Assume now thatOA andOB are not isomorphic. This implies that νl,OA(π−π̄) and νl,OB (π−π̄)
differ for some l, and we may without loss of generality assume l = l1. By considering the dual
isogeny Î instead of I, we may also assume νl1,OA(π − π̄) > νl1,OB (π − π̄).

Let n = νl1,OA(π− π̄). We then have that any subgroup of A[ln1 ] is rational. By Proposition 10,
there is a subgroup of B[ln1 ] which is not rational. Since I(A[ln1 ]) ⊂ B[ln1 ] and the isogeny I
is rational, it follows that Ker I contains an element D1 ∈ A[l1]. Let I1 : A → C be the isogeny
whose kernel is generated by D1. This isogeny preserves the real multiplication and is an l1-isogeny
(Proposition 14). By [6, Prop 7], there is an isogeny I2 : C → B such that I = I2 ◦ I1. Obviously,
I2 also preserves real multiplication.
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Fig. 3. Graph of `-isogenies preserving real multiplication, for ` = 3,K defined by α4+81α2+1181,
and OK0

[π − π̄] defined by the Weil number π = 1
2 (α2 + 3α+ 45), with p = NormK/K0

π = 211.

Let now 〈D1, D2〉 = Ker I. Since Ker I ⊂ A[l1] + A[l2], we may write D2 = D2,1 + D2,2 with
D2,i ∈ A[li]. As Ker I is Weil-isotropic, we may choose D2 so that D2,1 = 0, whence D2 ∈ A[l2].
He have I1(D2) 6= 0, so that I2 is an l2-isogeny.

Note that given the D2 ∈ A[l2] which we have just defined, we may also consider the l2-isogeny
I ′2 : A→ C ′ with kernel 〈D2〉, and similarly define the l1-isogeny I ′1 which is such that I = I ′1 ◦ I ′2.

ut

The proposition above leads us to consider properties of (`, `)-isogenies with regard to the
li-isogenies they are composed of. Let I = I1 ◦ I2 be an (`, `)-isogeny, with Ii an li-isogeny (for
i = 1, 2). We say that I is l1-ascending (respectively l1-horizontal, l1-descending) if the l1-isogeny
I1 is ascending (respectively horizontal, descending). This is well-defined, since by Lemma 13 there
is no interaction of I2 with the li-valuation of the conductor of the endomorphism ring.

Proposition 16 is a way to interpret Figure 1 as derived from Figure 3 as follows. Vertices are
kept, and we use as edges all compositions of one l1-isogeny and one l2-isogeny. This fact will serve
as a basis for our algorithms for computing endomorphism rings, detailed in Section 6.

5 Pairings on the real multiplication isogeny graph

Let J be a Jacobian defined over Fq, with complex multiplication by anOK0-order. Let `OK0 = l1l2.
In this Section, l denotes any of the ideals l1, l2.

We relate some properties of the Tate pairing to the isomorphism class of the endomorphism
ring of the Jacobian, by giving a similar result to the one of [13] for genus-1 isogeny graphs.
More precisely, we show that the nondegeneracy of the Tate pairing restricted to the kernel of an
l-isogeny determines the direction of the isogeny in the graph, at least when νl(π − π̄) is below
some bound. This result is then exploited to efficiently navigate in isogeny graphs.
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Let r be the smallest integer such that J [l] ⊂ J(Fqr ). Let n be the largest integer such that
J [ln] ⊂ J [Fqr ]. We define kl,J to be

kl,J = max
P∈J[ln]

{k | T`n(P, P ) ∈ µ`k\µ`k−1}

Definition 17. Let G be a cyclic group of J [ln]. We say that the Tate pairing is kl,J -non-
degenerate (or simply non-degenerate) on G×G if its restriction

T`n : G×G→ µ
`kl,J

is surjective. Otherwise, we say that the Tate pairing is kl,J -degenerate (or simply degenerate) on
G×G.

Since l is principal in the real quadratic order OK0
⊂ End(J), it follows that J [l] is the kernel of

an endomorphism. Since J is ordinary, all endomorphisms are Fq-rational. Consequently, we have
that π(J [ln]) ⊂ J [ln], for n ≥ 0. The following result shows that computing the l-adic valuation of
π − π̄ is equivalent to computing kl,J .

Proposition 18. Let r be the smallest integer such that J [l] ⊂ J(Fqr ). Let n be the largest integer
such that J [ln] ⊂ J [Fqr ] and that J [ln+1] 6⊂ J [Fqr ]. Then if νl,J(πr − π̄r) < 2n, we have

kl,J = 2n− νl,J(πr − π̄r).

Proof. Let Q1, Q2 form a basis for J [l2n]. Then πr(Qi) =
∑
aijQj , for i, j = 1, 2. We have

T`n(`nQi, `
nQi) = W`2n(π(Qi)−Qi, Qi) = W`2n(Qk, Qi)

aik ,

with k ≡ i + 1 (mod 2). By the non-degeneracy of the Weil pairing, this implies a12 ≡ a21 ≡ 0
(mod `2n−kl,J ). Moreover, the antisymmetry condition on the Tate pairing says that

T`n(`nQ1, `
nQ2)T`n(`nQ2, `

nQ1) ∈ µ
`kl,J

.

Since T`n(`nQi, `
nQj) = W`2n(Qi, Qj)

ajj−1, for i 6= j, we have that

W`2n(Q1, Q2)a11−1W`2n(Q2, Q1)a22−1 = W`2n(Q1, Q2)a11−a22 ∈ µ
`kl,J

.

We conclude that `2n−kl,J divides all of a12, a21, and a11 − a22. By Proposition 10, this implies
that 2n−kl,J ≤ νl,J(πr− π̄r). Conversely, let k = 2n−νl,J(πr− π̄r). We know (by Proposition 10)
that π = λI2 + `2n−kA, for A ∈ M2(Z) and for some λ coprime to `. Then for P ∈ J [ln] and P̄
such that `nP̄ = P , we have T`n(P, P ) = W`2n(P̄ , λP̄ + A(`2n−kP̄ )) ∈ µ`k . Hence k ≥ kl,J and
this concludes the proof. ut

From this proposition, it follows that if νl,J(π − π̄) > 2n, the self-pairings of all kernels of
l-isogenies are degenerate. At a certain level in the isogeny graph, when νl,J(π− π̄) < 2n, there is
at least one kernel with non-degenerate pairing (i.e. kl,J = 1). Following the terminology of [12],
we call this level the second stability level. As we descend to the floor, kl,J increases. The first
stability level is the level at which kl,J equals n.

We now show that from a computation point of view, we can use the Tate pairing to orient
ourselves in the l-isogeny graph. More precisely, cyclic subgroups of the l-torsion with degenerate
self-pairing correspond to kernels of ascending and horizontal isogenies, while subgroups with non-
degenerate self pairing are kernels of descending isogenies. Before proving this result, we need the
following lemma.

Lemma 19. If kl,J > 0, then there are at most two subgroups of order ` in J [ln] such that points
in these subgroups have degenerate self-pairing.
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T`n(P, P ) = 1.

second stability level

T`n(P, P ) has order `k,
with k = 2n−νl,J(πr− π̄r).

first stability level

T`n(P, P ) has order `n.

floor

Fig. 4. Stability levels

Proof. We use the shorthand notation λU,V = log(T`n(U, V )) for U, V any two ln-torsion points,
and where log is a discrete logarithm function in µ`n .

Suppose that P and Q are two linearly independent ln-torsion points. Since all ln-torsion points
R can be expressed as R = aP + bQ, bilinearity of the `n-Tate pairing gives

λR,R = a2λP,P + ab (λP,Q + λQ,P ) + b2λQ,Q (mod `n),

We now claim that the polynomial

S(a, b) = a2λP,P + ab (λP,Q + λQ,P ) + b2λQ,Q (7)

is identically zero modulo `n−kl,J−1 and nonzero modulo `n−kl,J . Indeed, if it were identically
zero modulo `k, with k > n− kl,J , then we would have T`n(R,R) ∈ µ`n−k , which contradicts the
definition of kl,J . If it were different from zero modulo `n−kl,J−1, then there would be R ∈ J [ln]
such that T`n(R,R) is an `kl,J+1-th primitive root of unity, again contradicting the definition of
kl,J .

Points with degenerate self-pairing are roots of L. Hence there are at most two subgroups of
order ` with degenerate self-pairing. ut

In the remainder of this paper, we define by

Sl,J(a, b) = a2λP,P + ab(λP,Q + λQ,P ) + b2λQ,Q

any polynomial defined by a basis {P,Q} of J [ln] in a manner similar to the proof of Lemma 19,
and using the same notation λ.

Theorem 20. Let P be an l-torsion point and let r be the smallest integer such that J [l] ⊂ J(Fqr ).
Let n be the largest integer such that J [ln] ⊂ J [Fqr ]. Assume that kl,J > 0. Consider G a subgroup
such that `n−1G is the subgroup generated by P . Then the isogeny of kernel P is descending if and
only if the Tate pairing is non-degenerate on G. It is horizontal or ascending otherwise.

Proof. We assume n > 1 and that kl,J > 1. Otherwise, we consider J ′ defined over and extension
field of Fqr and apply [11, Lemma 4]. Let I : J → J ′ the isogeny of kernel generated by P . Assume
that P has non-degenerate self-pairing. Let P̄ ∈ G such that `n−1P̄ = P . Then by [11, Lemma
5b] and Lemma 7, we have

T`n−1(I(P̄ ), α(I(P̄ ))) ∈ µ
`kl,J−1\µ`kl,J−2 ,

where α is a generator of the principal ideal l′ such that ll′ = `OK0
. Since OK0

/αOK0
' Z/`Z,

then for any R ∈ J ′[ln], we have α(R) = λR, for some λ ∈ Z/`Z. Hence we have

T`n−1(I(P̄ ), I(P̄ )) ∈ µ
`kl,J−1\µ`kl,J−2 ,
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There are two possibilities. Either J ′[ln] is not defined over Fqr , or J ′[ln] is defined over Fqr . In
the first case, we have νl,J′(πr) < νl,J(πr) and the isogeny is descending.

Assume now that J ′[ln] is defined over Fqr . Then let P1 such that I(P̄ ) = `P1. Then

T`n(P1, P1)) ∈ µ
`kl,J+1\µ`kl,J .

By using Proposition 18, it follows that νl,J′(πr − π̄r) < νl,J(πr − π̄r). Hence the isogeny is
descending.

Suppose now that the point P has degenerate self-pairing and that the isogeny I is descending.
Since there are at most 2 points in J [ln] with degenerate self-pairing, there is at least one point
in J [ln] with non-degenerate self-pairing. This point, that we denote by Q, generates the kernel of
a descending isogeny I ′ : J → J ′′ such that End(J ′) ' End(J ′′). We assume first that J ′[ln] and
J ′′[ln] are not defined over Fqr . Then we have

T`n−1(I(P̄ ), I(P̄ ))) ∈ µ
`kl,J−2 , T`n−1(`I(Q̄), `(I(Q̄))) ∈ µ

`kl,J−3

T`n−1(`I ′(P̄ ), `I ′(P̄ )) ∈ µ
`kl,J−4 , T`n−1(I ′(Q̄), I ′(Q̄))) ∈ µ

`kl,J−1\µ`kl−2

Hence kl,J′ 6= kl,J′′ , which is a contradiction. The case where J ′[ln] and J ′′[ln] are defined over Fqr
is similar. ut

6 Endomorphism ring computation - a depth-first algorithm

We keep the same setting and notations. In particular, ` is a fixed odd prime, and we assume that
`OK0 = l1l2. We intend to compute the endomorphism ring of J a Jacobian defined over Fq, with
prior knowledge of the Zeta function of J , and the fact that End(J) is an OK0

-order. We note
that this property holds trivially in the case where Z[π, π̄] itself is an OK0

-order, although this is
not a necessary condition for the algorithm here to work.

6.1 Description of the algorithm

A consequence of Proposition 16 is that there are at most (` + 1)(` + 1) rational (`, `)-isogenies
preserving the real multiplication. Since we can compute (`, `)-isogenies over finite fields [5,2], we
use this result to give an algorithm for computing νl,J(π− π̄), and determine endomorphism rings
locally at `, by placing them properly in the order lattice as represented in Figure 2.

We define ui to be the smallest integer such that πui − 1 ∈ liOK , and u the smallest integer
such that πu − 1 ∈ `OK . (we have u = lcm(u1, u2)). The value of u depends naturally on the
splitting of ` in K (see [8, Prop. 6.2]). As the algorithm proceeds, the walk on the isogeny graph
considers Jacobians over the extension field Fpu .

Idea of the algorithm. As noticed by Lemma 4 and the remark on page 4, we can achieve our
goal by considering separately the position of the endomorphism ring within the order lattice with
respect to l1 first, and then with respect to l2. The algorithm below is in effect run twice.

Each move in the isogeny graph corresponds to taking an (`, `)-isogeny, which is a computation-
ally accessible object. In our prospect to understand the position of the endomorphism ring with
respect to l1 in Figure 2, we shall not consider what happens with respect to l2, and vice-versa.
Our input for computing an (`, `)-isogeny is a Weil-isotropic kernel. Because we are interested
in isogenies preserving the real multiplication, this entails that we consider kernels of the form
K1 + K2, with Ki a cyclic subgroup of J [li]. By Proposition 8, such a group is Weil-isotropic.
There are up to (`+ 1)2 such subgroups.

Let l be either l1 or l2. The algorithm computes νl,J(π − π̄) in two stages.
Our algorithm stops when the floor of rationality has been hit in l, i.e. the only rational cyclic

group in J [l] is the one generating the kernel of the ascending l-isogeny. If (u, `) = 1, one may
prove that testing rationality for the isogenies is equivalent to J [l] ⊂ J(Fqu). Otherwise, in order
to test rationality for the isogeny at each step in the algorithm, one has to check whether the
kernel of the isogeny is Fq-rational.
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Step 1. The idea is to walk the isogeny graph until we reach a Jacobian which is on the second
stability level or below (which might already be the case, in which case we proceed to Step 2). If
the Jacobian J is above the second stability level, we need to construct several chains of (`, `)-
isogenies, not backtracking with respect to l, to make sure at least one of them is descending in
the l-direction. This proceeds exactly as in [7]. The number of chains depends on the number of
horizontal isogenies and thus on the splitting of l in K (due to the action of the Shimura class
group). If l is split, one needs three isogeny chains to ensure that one path is descending.

If an isogeny in the chain is descending, then the path continues descending, assuming the
isogeny walk does not backtrack with respect to l (this aspect is discussed further below). We
are done constructing a chain when we have reached the second stability level for l, which can
be checked by computing self-pairing of appropriate `n-torsion points. The length of the shortest
path gives the correct level difference between the second stability level and the Jacobian J .

Fig. 5. At least one in three non-backtracking paths has minimum distance to a given level.

Figure 5 represents for ` = 3 a situation where only three non-backtracking paths can guarantee
that at least one of them is consistently descending.

Step 2. We now assume that J is on the stability level or below, with respect to l. We construct
a non-backtracking path of (`, `)-isogenies, which are consistently descending with respect to l. In
virtue of Theorem 20, this can be achieved by picking Weil-isotropic kernels whose l-part (which
is cyclic) correspond to a non-degenerate self-pairing T`n(P, P ). We stop when we have reached
the floor of rationality in l, at which point the valuation νl,J(π − π̄) is obtained.

Note that at each step taken in the graph, if J [l′] (where l′ is the other ideal) is not rational,
then we ascend in the l′-direction, in order to compute an (`, `)-isogeny. As said above, this has
no impact on the consideration of what happens with respect to l.

Ensuring isogeny walks are not backtracking As said above, ensuring that the isogeny walk in Step
2 is not backtracking is essentially guaranteed by Theorem 20. Things are more subtle for Step 1.
Let J1 be a starting Jacobian, and I : J1 → J2 an (`, `)-isogeny whose kernel is V ⊂ J [`]. Recall
that there are at most (` + 1)2 Weil-isotropic kernels of the form K1 + K2 within J2[l1] + J2[l2]
for candidate isogenies I ′ : J2 → J1. All such isogenies whose kernel has the same component on
J2[l1] as the dual isogeny Î are backtracking with respect to l1 in the isogeny graph. One must
therefore identify the dual isogeny Î and its kernel. Since Î is such that Î ◦ I = [`], we have that
Ker Î = I(J1[`]). If computing I(J1[`]) is possible1, this solves the issue. If not, then enumerating
all possible kernels until the dual isogeny is identified is possible, albeit slower.

6.2 Complexity analysis

In this Section, we give a complexity analysis of Algorithms 1 and 2 and compare its performance
to that of the Eisenträger-Lauter algorithm for computing the endomorphism ring locally at `, for
small `. If ` is large, one should use Bisson’s algorithm [1]. Computing a bound on ` for which
1 Computing isogenous Jacobians by isogenies is easier than computing images of divisors. The
avisogenies software [2] performs the former since its inception, and the latter in its development
version, as of 2014.
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Algorithm 1 Computing the endomorphism ring: Step 1
INPUT: A Jacobian J of a genus-2 curve defined over Fq and u the smallest integer s.t. πu − 1 ≡ 0

(mod `OK), the Frobenius π ∈ K where K is a quartic CM field, and α = a + b(π + π̄) such that
l = αOK divides `OK , and l′ = `/l.
We require that J is above the second stability level with respect to l.

OUTPUT: A Jacobian J ′ on or below the second stability level with respect to l, and the distance from
J to this Jacobian.

1: Let n the largest integer such that J [ln] ⊂ J(Fqu).
2: J1 ← J , J2 ← J , J3 ← J .
3: κ1 ← {0}, κ2 ← {0}, κ3 ← {0}.
4: length← 0.
5: while true do
6: length← length + 1.
7: for all i=1,2,3 do
8: Compute the matrix of π in Ji[`∞](Fqu).
9: Compute bases for Ji[l](Fqu) and Ji[l′](Fqu) using α = a+ b(π + π̄).
10: Pick at random Pi ∈ Ji[l](Fqu) such that Pi /∈ κi.
11: Pick at random P ′i ∈ Ji[l′](Fqu).
12: Compute the (`, `)-isogeny I : Ji → J ′i = Ji/〈Pi, P ′i 〉.
13: κi ← I(J [l]); Ji ← J ′i .
14: Compute Sl,J .
15: if Sl,J 6= 0 then
16: return length.
17: end if
18: end for
19: end while

one should switch between the two algorithms and a full complexity analysis of the algorithm for
determining the endomorphism ring completely is beyond the scope of this paper.

The Eisenträger-Lauter algorithm For completeness, we briefly recall the Eisenträger-Lauter algo-
rithm [6]. For a fixed order O in the lattice of orders ofK, the algorithm tests whether O ⊂ End(J).
This is done by computing a Z-basis of O and checking whether its elements are endomorphisms
of J or not. In order to test if α ∈ O is an endomorphism, we write

α =
a0 + a1π + a2π

2 + a3π
3

N
,

with ai integers whose greatest common divisor is coprime to N (N is the smallest integer such
that Nα ∈ Z[π]). Using [6, Prop. 7], we get α ∈ End(J) if and only if

∑
i aiπ

i acts as zero on the
N -torsion.

Freeman and Lauter [8] work locally modulo prime divisors of N . For all orders such that
Z[π] ⊂ O ⊂ OK , the denominators N considered are divisors of [OK : Z[π]] (see [8, Lemma 3.3]).
Since [Z[π, π̄] : Z[π]] is 1 or p, we have that N divides [OK : Z[π, π̄]] if (N, p) = 1. Moreover,
Freeman and Lauter show that if N factors as `d11 `

d2
2 . . . `drr , it suffices to check if

a0 + a1π + a2π
2 + a3π

3

`dii
,

for all i. The advantage of working locally is that instead of working over the extension field
generated by the coordinates of the N -torsion points, we may work over the field of definition
of the `dii -torsion, for every prime factor `i separately. Nevertheless, it should be noted that the
exponent di can be as large as the `i-valuation of the conductor [OK : Z[π]].

We now set some notations for giving the complexity of algorithms from Section 6 as well as
the Eisenträger-Lauter algorithm. We consider the complexity for one odd prime ` dividing [OK :
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Algorithm 2 Computing the endomorphism ring: Step 2
INPUT: A Jacobian J of a genus-2 curve defined over Fq and u the smallest integer s.t. πu − 1 ≡ 0

(mod `OK), the Frobenius π ∈ K where K is a quartic CM field, and α = a + b(π + π̄) such that
l = αOK divides `OK , and l′ = `/l.
We require that J is on or below the second stability level with respect to l (see Algorithm 1).

OUTPUT: The l-distance from J to the floor.
1: length← 0.
2: while true do
3: Compute a basis of J [`∞](Fqu).
4: Let n the largest integer such that J [ln] ⊂ J(Fqu).
5: if n = 0 then
6: return length.
7: end if
8: Compute the matrix of π in Ji[`∞](Fqu).
9: Compute bases for Ji[l](Fqu) and Ji[l′](Fqu) using α = a+ b(π + π̄).
10: Consider P1, P2 a basis of J [ln](Fqu)
11: Compute Sl,J and take x1, x2 ∈ P1(F`) such that Sl,J(x1, x2) 6= 0.
12: P ← `n−1(x1P1 + x1P2).
13: Pick at random P ′i ∈ Ji[l′](Fqu).
14: Compute the (`, `)-isogeny I : J ′ ← J/〈P, P ′〉
15: J ← J ′.
16: length← length + 1.
17: end while

Z[π, π̄]], and assume that (`, p) = 1. Following the notation on page 8, we denote hi = νli,OK (π−π̄)
for i = 1, 2. It follows that ν`([OK : OK0

[π−π̄]]) = h1+h2. The order Z[π, π̄] might be smaller than
OK0 [π − π̄], thus we denote h0 = ν`([OK0 [π − π̄] : Z[π, π̄]]). Note though that for most practical
uses of our algorithm, we expect to gain knowledge that End(J) has maximal real multiplication
from the fact that Z[π, π̄] is an OK0

-order itself, which implies h0 = 0. It makes sense to neglect
h0 in this case. Finally, we let as before u be the smallest integer such that πu ≡ 1 mod `OK , so
that the `-torsion on J is defined over Fqu . According to [8, Prop. 6.2], we have u ∈ O(`2) since `
splits in K0.

We now give the complexity of the algorithm from Section 6. First we compute a basis of the
“`∞-torsion over Fqu ”, i.e. the `-Sylow subgroup of J(Fqu), which corresponds to J [`n](Fqu) for
some integer n. We assume that the zeta function of J and the factorization of #J(Fqu) = `sm
are given. We denote by M(u) the number of a multiplications in Fq needed to perform one
multiplication in the extension field of degree u. The computation of the Sylow subgroup basis
costs O(M(u)(u log q + n`2)) operations in Fq, as described in [3, §3].

Then we compute the matrix of the Frobenius on the `-torsion. Using this matrix, we write
down the matrices of α1 and α2 in terms of the the matrix of π + π̄. Finally, computing J [li] for
i = 1, 2 is just linear algebra and has negligible cost. For each i, the cost of computing the Tate
pairing is related to the integers ri and ni as defined in Proposition 18. We bound these by ri ≤ u,
and ni ≤ n. Computing the Tate pairing thus costs O(M(u)(n log ` + u log q)) operations in Fq,
where the first term is the cost of Miller’s algorithm and the second one is the cost for the final
exponentiation.

The cost of computing an (`, `)-isogeny using the algorithm of Cosset and Robert [5] is
O(M(u)`4) operations in Fq. We conclude that the cost of Algorithms 1 and 2 is

costalgorithms 1+2 = O(max(h1, h2)M(u)(u log q + n`2 + `4)).

The complexity of Freeman and Lauter’s algorithm is dominated by the cost of computing the
`-Sylow subgroup of the Jacobian defined over the extension field containing the `d-torsion, where
d is bounded by ν`([OK : Z[π]]) = ν`([OK : Z[π, π̄]]) = h0 + h1 + h2 (recall that ` and π are
coprime). The degree of this extension field is u`d−1 by [8, Prop. 6.3]. This leads to

costEL = O(M(u`d−1)(u`d−1 log q + (n+ d− 1)`2)).
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Freeman and Lauter This work (Algorithms 1 and 2)
O(M(u`d−1)(u`d−1 log q + (n+ d− 1)`2)) O(max(h1, h2)M(u)(u log q + n`2 + `4))

Table 1. Cost for computing the endomorphism ring locally at `; we have u = O(`2), d ≤
h0 + h1 + h2, and h0 = 0 is a typical condition for this work to apply.

6.3 Practical experiments

Let J be the Jacobian of the hyperelliptic curve defined by

y2 = 17422020 + 847562x+ 37917221x2 + 268754x3 + 4882157x4 + 14143796x5 + 50949756x6

over Fp, with p = 53050573. The curve has complex multiplication by OK , with K = Q(ζ),
defined by the equation ζ4 + 175ζ2 + 6925 = 0. A Weil number for this Jacobian, as well as the
corresponding characteristic polynomial, are given as follows:

π =
1

15
(45ζ3 + 422ζ2 + 14940ζ + 79450),

π4 − s1π
3 + s2π

2 − s1pπ + p2 = 0, with s1 = 11340, s2 = 135934954.

The real multiplication subfield K0 has class number 1, and ` = 3 splits in K0 as 3 = α1α2.
The corresponding valuations of the Frobenius are να1,OK (π− π̄) = 10 and να2,OK (π− π̄) = 2. The
analogue to Figure 2 is thus a lattice of 20 possible orders to choose from in order to determine
End(J).

Our algorithm computes the 3-torsion group, which is defined over Fp2 . Note that in contrast,
the Eisenträger-Lauter algorithm computes the 310-torsion group, defined over Fp39366 .

We report experimental results of our implementation, using Magma 2.20-6 and avisogenies
0.6, on a Intel Core i5-4570 CPU with clock frequency 3.2 GHz. Our computation of End(J) with
Algorithms 1 and 2 goes as follows. Computation shows that the Tate pairing is degenerate on
J [l1]. We thus use Algorithm 1 to find a shortest path from J , not backtracking with respect to l1,
and reaching a Jacobian on or above the second stability level. This path is made of (`, `)-isogenies
defined over Fp, and computed with avisogenies from their kernels (here, only what happens
with respect to l1 is interesting). Such a path with length 3 is found in 20 seconds, where most
of the time (15 seconds) is spent on ensuring that the isogeny walks are non-backtracking (see
remark on page 16). From there, a consistently descending path of length 5 down to the floor is
constructed using Algorithm 2 in 3 seconds. This leads to νl1,J(π− π̄) = 8. As for l2, the Jacobian
J is below the second stability level, so Algorithm 2 applies, and finds νl2,J(π− π̄) = 1 in 1 second.
In total, the computation End(J) in this example takes 24 seconds.

7 Conclusion

We have described the structure of the degree ` isogeny graph between abelian surfaces with
maximal real multiplication. From a computational point of view, we exploited the structure of the
graph to describe an algorithm computing locally at ` the endomorphism ring of an abelian surface
with maximal real multiplication. Further research is needed to extend our results to the general
case. Our belief is that the right approach to follow is first to determine the real multiplication
and secondly to use an algorithm similar to ours to fully compute the endomorphism ring.
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A Appendix: additional example

We consider the quartic CM field K with defining equation X4 + 81X2 + 1181. The real subfield
is K0 = Q(

√
1837), and has class number 1. In the real subfield K0, we have 3 = α1α2, with

α1 = 43+
√

1837
2 and α2 its conjugate. We consider a Weil number π of relative norm 85201 in OK .

We have that να1(fZ[π,π̄]) = 2 and να2(fZ[π,π̄]) = 1. Note that l1 is inert and l2 is split in K. Our
implementation with Magma produced the graph in Figure 6.
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OK , f = 1

O3a, f = l1 O3b, f = l2

O9a, f = l1l2 O9b, f = l22

O27, f = l1l
2
2

Fig. 6. A larger example
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