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Abstract

Cloud storage is very popular since it has many advantages, but there is a new threat to cloud stor-
age that was not considered before. Self-updatable encryption that updates a past ciphertext to a future
ciphertext by using a public key is a new cryptographic primitive introduced by Lee, Choi, Lee, Park,
and Yung (Asiacrypt 2013) to defeat this threat such that an adversary who obtained a past-time private
key can still decrypt a (previously unread) past-time ciphertext stored in cloud storage. Additionally, an
SUE scheme can be combined with an attribute-based encryption (ABE) scheme to construct a powerful
revocable-storage ABE (RS-ABE) scheme introduced by Sahai, Seyalioglu, and Waters (Crypto 2012)
that provides the key revocation and ciphertext updating functionality for cloud storage. In this paper,
we propose an efficient SUE scheme and its extended schemes. First, we propose an SUE scheme with
short public parameters in prime-order bilinear groups and prove its security under a q-type assumption.
Next, we extend our SUE scheme to a time-interval SUE (TI-SUE) scheme that supports a time interval
in ciphertexts. Our TI-SUE scheme has short public parameters and also secure under the q-type as-
sumption. Finally, we propose the first large universe RS-ABE scheme with short public parameters in
prime-order bilinear groups and prove its security in the selective revocation list model under a q-type
assumption.
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1 Introduction

Cloud storage is very popular in these days since the cost of service is low, data management is easy, and
data can be accessed through the internet without the restriction of a geographical location. If data that
contains sensitive information is stored in cloud storage, then this data should be encrypted and stored as a
ciphertext. To provide an access control on these ciphertexts, a ciphertext can be specified with a time T ,
and a user who has a master key can delegate his key to other delegator by giving a (delegated) private key
with a time T that only can be used to decrypt a ciphertext with the same time T . In a typical communication
system, this simple method can reduce the damage caused by the exposure of the delegated private key with
a time T since a ciphertext is only used during a short time period and an adversary who obtained a private
key with T cannot decrypt a ciphertext with a time T ′ such that T 6= T ′. However, this adversary can cause a
serious problem in cloud storage since ciphertexts are stored in cloud storage at all times and the adversary
who has a private key with a past time can still decrypt a (previously unread) ciphertext with the past time.
This problem is a new threat to cloud storage.

A naive approach that solves this problem is that cloud storage keeps the master key of a user and a
ciphertext with a past time is decrypted and then it is encrypted again with a new time by cloud storage.
However, this approach requires trusted cloud storage that we would like to avoid and the master keys in
cloud storage can be an easy target of attackers. A better solution for this problem is that cloud storage only
keeps the public key of a user and a ciphertext with a past time is updated to a new one with a new time by
just using the public key. Self-updatable encryption (SUE) that was introduced by Lee et al. [12] is a new
cryptographic primitive that provides this functionality. In SUE, a ciphertext is associated with a time T and
a private key is also associated with a time T ′. If T ≤ T ′, then the ciphertext with T can be decrypted by the
private key with T ′. Additionally, the ciphertext with T can be updated to a new one with T +1 by just using
public parameters. Lee et al. proposed an efficient SUE scheme in bilinear groups and also constructed
an efficient revocable-storage attribute-based encryption (RS-ABE) scheme that provides the key revocation
and ciphertext updating functionality for cloud storage. SUE also can be used for timed-release encryption
(TRE) and key-insulated encryption (KIE) [12].

The previous SUE schemes of Lee et al. have O(logTmax) number of group elements in public parame-
ters if composite-order bilinear groups are used or O(Tmax) number of group elements in public parameters
if prime-order bilinear groups are used where Tmax is the maximum number of times. We ask whether there
is a practical SUE construction that has short public parameters in prime-order bilinear groups.

1.1 Our Results

In this paper, we propose an efficient SUE scheme and its extended schemes by modifying the previous SUE
scheme. The followings are our results:

SUE with short public parameters. We first propose an efficient SUE scheme in prime-order bilinear
groups that has constant number of group elements in public parameters and prove its security under a q-type
assumption. Compared with the previous SUE schemes of Lee et al. [12] that have O(logTmax) (or O(Tmax))
number of group elements in public parameters, our SUE scheme just has O(1) number of group elements
in public parameters, and the number of group elements in a private key and a ciphertext is O(logTmax) and
O(logTmax) respectively as the same as that of the previous SUE schemes. To devise an SUE scheme with
short public parameters, we add additional layer that has a new randomness to the structure of a private key.
This added new layer enables the simulation of a polynomial number of private keys, and the number of
group elements in public parameters can be reduced by the power of a q-type assumption.
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Time-Interval SUE with short parameters. One natural extension of SUE is to specify a time interval
in a ciphertext. By extending our SUE scheme, we propose a time-interval SUE (TI-SUE) scheme with
short public parameters such that a ciphertext is associated with a time interval. In TI-SUE, a ciphertext is
specified with a time interval [TL,TR] and a private key with a time T can be used to decrypt this ciphertext
if TL ≤ T ≤ TR. To devise a TI-SUE scheme, we combine two SUE scheme by using a simple secret sharing
scheme to prevent collusion attacks, and prove its security under a q-type assumption. In the security proof,
we introduce a meta-simulation technique that uses previous simulators of SUE as sub-simulators to simplify
the security proof. This meta-simulation technique has an independent interest.

RS-ABE with short parameters. The main application of SUE is RS-ABE for cloud storage that provides
the key revocation and ciphertext updating functionality if SUE is combined with ABE. Sahai, Seyalioglu,
and Waters [22] introduced the concept of RS-ABE and Lee et al. [12] showed that an efficient RS-ABE
scheme can be constructed from an SUE scheme. We propose a large universe RS-ABE scheme with
short public parameters in prime-order bilinear groups by combining the ciphertext-policy ABE (CP-ABE)
scheme of Rouselakis and Waters [21] and our SUE scheme, and prove its selective revocation list security
under the q-type assumption introduced by Rouselakis and Waters. Our RS-ABE scheme is the first efficient
RS-ABE scheme with short public parameters that supports a large universe of attributes.

1.2 Related Work

SUE is related with timed-release encryption (TRE) since private keys and ciphertexts are associated with
times. In TRE, a ciphertext is specified with a releasing time T and a private key with a time T ′ is broadcasted
to all users by a trusted-center periodically at each time T ′. The ciphertext with T can be decrypted by the
private key with T ′ if T ≤ T ′. The concept of TRE was introduced by May [16] and its extensions were
proposed in [19, 20]. As mentioned, an SUE scheme can be easily converted to a TRE scheme by using the
ciphertext updating property. One notable difference between TRE and SUE is that a past private key that
was broadcasted is used to decrypt a past ciphertext in TRE, whereas a current private key is used to decrypt
a past ciphertext by updating the ciphertext in SUE.

SUE is also related with key-insulated encryption (KIE) and forward-secure encryption (FSE) that miti-
gate the damage of key exposure. In KIE, a master key is stored in a physically secure device and a temporal
key for a time T ′ derived from the master key is used to decrypt a ciphertext with a time T if T = T ′. Note
that the exposure of a temporal key with a time T ′ does not damage the ciphertext security at a time T such
that T 6= T ′. The concept of KIE was introduced by Dodis et al. [9] and its extension was presented in [8].
As mentioned before, SUE can be used to enhance the ciphertext security of KIE by updating ciphertexts
if these are stored in cloud storage. In FSE, a private key with a time T is evolved to another private key
with a next time T + 1 at each time period, and then the past private key is erased. The forward security
ensures that an exposed private key with a time T ′ cannot be used to decrypt a past ciphertext with a time
T if T < T ′. The first FSE scheme was proposed by Canetti et al. [7] by using a hierarchical HIBE (HIBE)
scheme and an efficient FSE scheme was presented in [3]. We may view SUE as the dual concept of FSE
since the role of private keys and that of ciphertexts are reversed.

Identity-based encryption (IBE) that generates a delegated key for an identity is related with SUE since
a delegated (or limited) private key for a time T is generated for a user in SUE. In IBE, a ciphertext is
associated with an identity ID and a private key with ID′ can be used to decrypt this ciphertext if ID = ID′.
The first IBE scheme was presented by Boneh and Franklin [4] by using bilinear maps and other IBE
schemes were proposed in [2, 25]. IBE also can be extended to HIBE, ABE, predicate encryption (PE),
and functional encryption (FE) [5, 6, 10, 11]. To minimize the damage of private key exposure in IBE, the
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revocation functionality that can revoked a user is required. An efficient revocable IBE (RIBE) scheme was
proposed by Boldyreva et al. [1] and its improvement was presented in [13, 15, 18, 23, 24]. Recently, Sahai
et al. [22] introduced the concept of RS-ABE for cloud storage and Lee et al. [12] presented an improved
RS-ABE and RS-PE schemes by using an SUE scheme.

2 Preliminaries

In this section, we introduce the definition of self-updatable encryption and give the necessary background
of bilinear groups and complexity assumptions.

2.1 Notation

We let λ be a security parameter. Let [n] denote the set {1, . . . ,n} for n ∈ N. For a string L ∈ {0,1}n,
let L[i] be the ith bit of L, and L|i be the prefix of L with i-bit length. For example, if L = 010, then
L[1] = 0,L[2] = 1,L[3] = 0, and L|1 = 0,L|2 = 01,L|3 = 010. Concatenation of two strings L and L′ is
denoted by L‖L′.

2.2 Self-Updatable Encryption

Self-updatable encryption (SUE) is a new type of public-key encryption such that a ciphertext associated
with a time can be updated to a future time by using public parameters, and the concept of this primitive was
introduced by Lee et al. [12]. We follow the SUE definition of Lee et al. In SUE, a ciphertext associated
with a time T is stored in a cloud storage. A user who has a private key associated with a time T ′ such
that T ≤ T ′ can decrypt a ciphertext with a time T in the cloud storage. Additional feature of SUE is that a
ciphertext with a time T can be easily converted to a new time T +1 by the cloud storage to prevent a user
who has a past private key from accessing the ciphertext in the cloud storage. The formal syntax of SUE is
defined as follows:

Definition 2.1 (Self-Updatable Encryption). A self-updatable encryption (SUE) scheme consists of seven
PPT algorithms Init, Setup, GenKey, Encrypt, UpdateCT, RandCT, and Decrypt, which are defined as
follows:

Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it outputs a group de-
scription string GDS.

Setup(GDS,Tmax). The setup algorithm takes as input a group description string GDS and the maximum
time Tmax, and it outputs a master key MK and public parameters PP.

GenKey(T,MK,PP). The key generation algorithm takes as input a time T , the master key MK, and the
public parameters PP, and it outputs a private key SKT .

Encrypt(T,PP). The encryption algorithm takes as input a time T and the public parameters PP, and it
outputs a ciphertext header CHT and a session key EK.

UpdateCT(CHT ,T +1,PP). The ciphertext update algorithm takes as input a ciphertext header CHT for a
time T , a next time T +1, and the public parameters PP, and it outputs an updated ciphertext header
CHT+1.
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RandCT(CHT ,PP). The ciphertext randomization algorithm takes as input a ciphertext header CHT for a
time T and the public parameters PP, and it outputs a re-randomized ciphertext header CH ′T and a
partial session key EK′.

Decrypt(CHT ,SKT ′ ,PP). The decryption algorithm takes as input a ciphertext header CHT , a private key
SKT ′ , and the public parameters PP, and it outputs a session key EK or the distinguished symbol ⊥.

The correctness of SUE is defined as follows: For all MK,PP generated by Setup, any SKT ′ generated by
GenKey, and any CHT and EK generated by Encrypt or UpdateCT, it is required that:

• If T ≤ T ′, then Decrypt(CHT ,SKT ′ ,PP) = EK.

• If T > T ′, then Decrypt(CHT ,SKT ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

The security model of SUE was introduced by Lee et al. [12] and we use a selective security model such
that an adversary initially submits a challenge time T ∗. In the selective security game, an adversary initially
submits a challenge time T ∗ and receives public parameters. After that, he may request private keys for a
time that is less than the challenge time. In a challenge step, he is given a ciphertext header and a challenge
session key that is a well-formed one or a random one depending on a random coin. Additionally he can
request private keys and he finally outputs a coin guess. If the guess is correct, then he wins the game. The
formal definition is given as follows:

Definition 2.2 (Selective Security). The selective security of SUE is defined in terms of the indistinguisha-
bility under chosen plaintext attacks (IND-CPA). The security game is defined as the following experiment
between a challenger C and a probabilistic polynomial-time (PPT) adversary A:

1. Init: A initially submits a challenge time T ∗.

2. Setup: C generates a master key MK and public parameters PP by running Init and Setup, and it
gives PP to A.

3. Query 1: A may adaptively request a polynomial number of private keys for times T1, . . . ,Tq′ , and C
gives the corresponding private keys SKT1 , . . . ,SKTq′ to A by running GenKey(Ti,MK,PP) with the
following restriction: For any time Ti of private key queries, it is required that Ti < T ∗.

4. Challenge: C chooses a random bit µ ∈ {0,1} and computes a ciphertext header CH∗ and a session
key EK∗ by running Encrypt(T ∗,PP). If µ = 0, then it gives CH∗ and EK∗ to A. Otherwise, it gives
CH∗ and a random session key to A.

5. Query 2: A may continue to request private keys for additional times Tq′+1, . . . ,Tq subject to the same
restriction as before, and C gives the corresponding private keys to A.

6. Guess: Finally A outputs a bit µ ′.

The advantage of A is defined as AdvSUE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. An SUE scheme is selectively secure under chosen plaintext attacks if for all PPT
adversaries A, the advantage of A in the above game is negligible in the security parameter λ .
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2.3 Full Binary Tree

A full binary tree BT is a tree data structure where each node except the leaf nodes has two child nodes.
Let N be the number of leaf nodes in BT . The number of all nodes in BT is 2N − 1. For any index
0 ≤ i < 2N− 1, we denote by vi a node in BT . We assign the index 0 to the root node and assign other
indices to other nodes by using breadth-first search. That is, if a node v has an index i, then the index of its
left child node is 2i+1 and the index of its right child node is 2i+2, while the index of its parent node (if
any) is b i−1

2 c. The depth of a node vi is the length of the path from the root node to the node. The root node
is at depth zero. The depth of BT is the depth of a leaf node. A level of BT is a set of all nodes at given
depth. Siblings are nodes that share the same parent node.

For any node vi ∈ BT , L is defined as a label that is a fixed and unique string. The label of each node in
the tree is assigned as follows: Each edge in the tree is assigned with 0 or 1 depending on whether the edge
is connected to its left or right child node. The label L of a node vi is defined as the bit string obtained by
reading all the labels of edges in the path from the root node to the node vi. Note that we assign a special
empty string to the root node as a label. We define L(i) be a mapping from the index i of a node vi to a
label L. Note that there is a simple mapping between the index i and the label L of a node vi such that
i = (2d−1)+∑

d−1
j=0 2 jL[ j] where d is the depth of vi. We also use L(vi) as L(i) if there is no ambiguity.

For the notational convenience, we define additional functions in a full binary tree. Parent(L) is a
function that returns the parent node’s label L′ of the input node with the label L. RightChild(L) is a function
that returns the right child’s label L′ of the input node with L. RightSibling(L) is a function that returns the
right sibling node’s label L′ of the input node with L. That is, RightSibling(L) = RightChild(Parent(L)).
Finally, Path(L) is a function that returns a set of path node’s labels from the root node to the input node
with L.

2.4 Bilinear Groups

Let G and GT be two multiplicative cyclic groups of same prime order p and g be a generator of G. The
bilinear map e : G×G→GT has the following properties:

1. Bilinearity: ∀u,v ∈G and ∀a,b ∈ Zp, e(ua,vb) = e(u,v)ab.

2. Non-degeneracy: ∃g such that e(g,g) has order p, that is, e(g,g) is a generator of GT .

We say that G is a bilinear group if the group operations in G and GT as well as the bilinear map e are all
efficiently computable. Furthermore, we assume that the description of G and GT includes generators of G
and GT respectively.

2.5 Complexity Assumptions

In this subsection, we introduce a q-type assumption and the standard assumption for the proof of our
schemes. Before introducing our q-type assumption, we first introduce the q-RW1 assumption that was
introduced by Rouselakis and Waters [21] to prove the security of their ciphertext-policy ABE scheme.
Our q-sRW1 assumption is a simplified version of the q-RW1 assumption. The DBDH assumption is the
standard assumption that was extensively used in the proof of other schemes.

Assumption 2.3 (q-RW1, [21]). Let (p,G,GT ,e) be a description of the bilinear group of prime order p.
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Let g be generators of subgroups G. The q-RW1 assumption is that if the challenge tuple

D =
(
(p,G,GT ,e),g,gc,

{
gai

,gd j ,gcd j ,gaid j ,gai/d2
j
}
∀1≤i, j≤q,

{
gai/d j

}
∀1≤i≤2q,i6=q+1,∀1≤ j≤q,{

gaid j/d2
j′
}
∀1≤i≤2q,∀1≤ j, j′≤q, j′ 6= j,

{
gaicd j/d j′ ,gaicd j/d2

j′
}
∀1≤i, j, j′≤q, j′ 6= j

)
and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)aq+1c from Z = Z1 = e(g,g) f with more than
a negligible advantage. The advantage ofA is defined as Advq-RW1

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,c,{d j}1≤ j≤q, f ∈ Zp.

Lemma 2.4 ( [21]). The q-RW1 assumption is secure in the generic group model.

Assumption 2.5 (q-simplified RW1, q-sRW1). Let (p,G,GT ,e) be a description of the bilinear group of
prime order p. Let g be generators of subgroups G. The q-sRW1 assumption is that if the challenge tuple

D =
(
(p,G,GT ,e),g,ga,gb,gc,

{
gd j ,gcd j ,gad j ,gb/d2

j ,ga/d j
}
∀1≤ j≤q,{

gabd j/d2
j′ ,gacd j/d j′ ,gbcd j/d2

j′
}
∀1≤ j, j′≤q, j′ 6= j

)
and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g) f with more than a
negligible advantage. The advantage ofA is defined as Advq-sRW1

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,{d j}1≤ j≤q, f ∈ Zp.

Lemma 2.6. The q-sRW1 assumption is secure in the generic group model if the q-RW1 assumption is
secure in the generic group model.

The proof of this Lemma is easily obtained since all elements of the q-sRW1 assumption can be derived
from the elements of the q-RW1 assumption by simply setting b = aq where b is a random element in the
q-sRW1 assumption and q is a parameter in the q-RW1 assumption. That is, if there exists an adversary A
that attacks the q-sRW1 assumption, then there exists an algorithm B that attacks the q-RW1 assumption by
using A since B can derive all elements of the q-sRW1 assumption from that of the q-RW1 assumption.

Assumption 2.7 (Decisional Bilinear Diffie-Hellman, DBDH, [4]). Let (p,G,GT ,e) be a description of the
bilinear group of prime order p. Let g be generators of subgroups G. The DBDH assumption is that if the
challenge tuple

D =
(
(p,G,GT ,e),g,ga,gb,gc) and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g)d with more than a
negligible advantage. The advantage of A is defined as AdvDBDH

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,d ∈ Zp.

3 Self-Updatable Encryption with Short Parameters

In this section, we propose an SUE scheme with short public parameters in prime-order bilinear groups and
prove its security under a q-type assumption.
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3.1 Design Principle

To devise an SUE scheme that supports the ciphertext updating property, we follow the design principle of
Lee et al. [12] that constructs an SUE scheme from a CDE scheme that supports the ciphertext delegation
property by carefully reusing the randomness of the CDE ciphertexts. Lee et al. derived a CDE scheme from
the HIBE scheme of Boneh and Boyen [2] by switching the structure of private keys and that of ciphertexts,
but this CDE scheme can not be easily proven by using the partitioning method since a polynomial number
of private keys cannot be simulated. To solve this problem, they constructed a CDE scheme in composite-
order bilinear groups and proved its security by using the dual system encryption method of Waters [26].
Note that they also proposed a CDE scheme in prime-order groups and proved its security in the partitioning
method, but the size of public parameters is depend on the number of tree nodes.

The main reason of this difficulty that prevents the security proof of their CDE scheme by using the
partitioning method is that only one private key of CDE can be simulated since the structure of CDE private
keys is derived from the structure of HIBE ciphertexts. Note that only one challenge ciphertext of HIBE
is simulated in the security proof of HIBE. To solve this difficult problem, we add an additional layer of
Boneh and Boyen’s HIBE [2] to the structure of private keys. By adding this additional layer, we can easily
simulate private keys since the randomness of a private key in Boneh and Boyen’s HIBE can be used to
cancel out an element that cannot be simulated. To achieve constant size of public parameters, we use a
q-type assumption since multiple values can be programmed in shorter public parameters by the power of
this q-type assumption.

3.2 Construction

Our CDE scheme in prime-order bilinear groups is described as follows:

CDE.Init(1λ ): This algorithm takes as input a security parameter 1λ . It generates bilinear groups G,GT

of prime order p. Let g be the generator of G. It outputs a group description string as GDS =(
(p,G,GT ,e), g

)
.

CDE.Setup(GDS, l): This algorithm takes as input the string GDS and the maximum length l of label
strings. It chooses random elements w,v,u,h ∈G and a random exponent β ∈ Zp. It outputs a master
key MK = β and public parameters as

PP =
(
(p,G,GT ,e), g, w, v, u, h, Λ = e(g,g)β

)
.

CDE.GenKey(L,MK,PP): This algorithm takes as input a label string L∈ {0,1}n, the master key MK, and
the public parameters PP. It selects random exponents r,r1, . . . ,rn ∈ Zp and outputs a private key that
implicitly includes L as

SKL =
(

K0 = gβ wr, K1 = g−r,
{

Ki,1 = vr(uL|ih)ri , Ki,2 = g−ri
}n

i=1

)
.

CDE.RandKey(SKL,δ ,PP): This algorithm takes as input a private key SKL = (K0,K1,{Ki,1,Ki,2}), an
exponent δ ∈ Zp, and the public parameters PP. It selects random exponents r′,r′1, . . . ,r

′
n ∈ Zp and

outputs a re-randomized private key as

SKL =
(

K′0 = K0 ·gδ wr′ , K′1 = K1 ·g−r′ ,
{

K′i,1 = Ki,1 · vr′(uL|ih)r′i , K′i,2 = Ki,2 ·g−r′i
}n

i=1

)
.
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CDE.Encrypt(L, t,~s,PP): This algorithm takes as input a label string L ∈ {0,1}d , an exponent t ∈ Zp, an
exponent vector ~s = (s1, . . . ,sd) ∈ Zd

p, and the public parameters PP. It outputs a ciphertext header
that implicitly includes L as

CHL =
(

C0 = gt , C1 = wt
d

∏
i=1

vsi ,
{

Ci,1 = gsi , Ci,2 = (uL|ih)si
}d

i=1

)
.

and a session key as EK = Λt .

CDE.DelegateCT(CHL,c,PP): This algorithm takes as input a ciphertext header CHL =(C0,C1,{Ci,1,Ci,2})
for a label string L ∈ {0,1}d such that d < l, a bit value c ∈ {0,1}, and the public parameters PP. It
selects a random exponent sd+1 ∈ Zp and outputs a delegated ciphertext header for a new label string
L′ = L‖c as

CHL′ =
(

C′0 =C0, C′1 =C1 · vsd+1 ,
{

C′i,1 =Ci,1, C′i,2 =Ci,2
}d

i=1, C′d+1,1 = gsd+1 , C′d+1,2 = (uL‖ch)sd+1
)
.

CDE.RandCT(CHL, t ′,~s′,PP): This algorithm takes as input a ciphertext header CHL =(C0,C1,{Ci,1,Ci,2}),
a random exponent t ′ ∈ Zp, an exponent vector~s′ = (s′1, . . . ,s

′
d) ∈ Zd

p, and the public parameters PP.
It outputs a re-randomized ciphertext header as

CH ′L =
(

C′0 =C0 ·gt ′ , C′1 =C1 ·wt ′
d

∏
i=1

vs′i ,
{

C′i,1 =Ci,1 ·gs′i , C′i,2 =Ci,2 · (uL|ih)s′i
}d

i=1

)
.

and a partial session key as EK′ = Λt ′ that will be multiplied with the session key EK of CHL.

CDE.Decrypt(CHL,SKL′ ,PP): This algorithm takes as input a ciphertext header CHL for a label L∈{0,1}d ,
a private key SKL′ = (K0,K1,{Ki,1,Ki,2}n

i=1) for a label L′ ∈ {0,1}n, and the public parameters PP. If
L is a prefix of L′, then it derives CH ′L′ = (C′0,C

′
1,{C′i,1,C′i,2}n

i=1) by iteratively running DelegateCT
and outputs a session key as

EK = e(C′0,K0) · e(C′1,K1) ·
n

∏
i=1

(
e(C′i,1,Ki,1) · e(C′i,2,Ki,2)

)
Otherwise, it outputs ⊥.

Let BT be a full binary tree with a depth l. For each node in BT , a unique time is assigned by using the
pre-order traversal. That is, the root node is assigned to 1 and the right most leaf node is assigned to 2l+1−1.
Let ψ be a mapping from a time T to a label L by the pre-order traversal. We define TimeLabels(L) =
{L}∪RightSibling(Path(L)) \Path(Parent(L)). Our SUE scheme is almost the same as that of Lee et
al. [12] since a ciphertext with a label L consists of CDE ciphertexts where each CDE ciphertext is associated
with a label in TimeLabels(L). Our SUE scheme that uses the above CDE scheme is described as follows:

SUE.Init(1λ ): This algorithm outputs GDS by running CDE.Init(1λ ).

SUE.Setup(GDS,Tmax): This algorithm outputs MK and PP by running CDE.Setup(GDS, l) where Tmax =
2l+1−1.

SUE.GenKey(T,MK,PP): This algorithm outputs SKT by running CDE.GenKey(ψ(T ),MK,PP).
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SUE.RandKey(SKT ,δ ,PP): This algorithm outputs SKT by running CDE.RandKey(SKT ,δ ,PP).

SUE.Encrypt(T, t,PP): This algorithm takes as input a time T , a random exponent t ∈ Zp, and the public
parameters PP. It proceeds as follows:

1. It first sets a label L ∈ {0,1}d by computing ψ(T ). It sets an exponent vector ~s = (s1, . . . ,sd)
by selecting random exponents s1, . . . ,sd ∈ Zp, and obtains CH(0) = (C0,C1,{Ci,1,Ci,2}d

i=1) by
running CDE.Encrypt(L, t,~s,PP).

2. For 1≤ j ≤ d, it sets L( j) = L|d− j‖1 and proceeds the following steps:

(a) If L( j) = L|d− j+1, then it sets CH( j) as an empty one since it is redundant or not needed.
(b) Otherwise, it sets a new exponent vector ~s′ = (s1, . . . ,sd− j,s′d− j+1) where s1, . . .sd− j are

copied from~s and s′d− j+1 is randomly selected in Zp since L( j) and L have the same prefix

string. It obtains CH( j)=(C′0,C
′
1,{C′i,1,C′i,2}

d− j+1
i=1 ) by running CDE.Encrypt(L( j), t,~s′,PP).

It also prunes redundant elements C′0,{C′i,1,C′i,2}
d− j
i=1 from CH( j), which are already con-

tained in CH(0).

3. It removes all empty CH( j) and sets CHT =
(
CH(0),CH(1), . . . ,CH(d′)

)
for some d′ ≤ d that

consists of non-empty CH( j).

4. It outputs a ciphertext header that implicitly includes T as CHT and a session key as EK = Λt .
Note that CH( j) are ordered according to pre-order traversal.

SUE.UpdateCT(CHT ,T +1,PP): This algorithm takes as input a ciphertext header CHT =(CH(0), . . . ,CH(d′))
for a time T , a next time T +1, and the public parameters PP. Let L( j) be the label of CH( j). It pro-
ceeds as follows:

1. If the length d of L(0) is less than dmax, then it first obtains CHL(0)‖0 and CHL(0)‖1 by running
CDE.DelegateCT(CH(0),c,PP) for all c ∈ {0,1} since CHL(0)‖0 is the ciphertext header for the
next time T + 1 by pre-order traversal. It also prunes redundant elements in CHL(0)‖1. It out-
puts an updated ciphertext header as CHT+1 =

(
CH ′(0) = CHL(0)‖0,CH ′(1) = CHL(0)‖1,CH ′(2) =

CH(1), . . . ,CH ′(d
′+1) =CH(d′)

)
.

2. Otherwise, it copies common elements in CH(0) to CH(1) and simply removes CH(0) since CH(1)

is the ciphertext header for the next time T + 1 by pre-order traversal. It outputs an updated
ciphertext header as CHT+1 =

(
CH ′(0) =CH(1), . . . ,CH ′(d

′−1) =CH(d′)
)
.

SUE.RandCT(CHT , t ′,PP): This algorithm takes as input a ciphertext header CHT = (CH(0), . . . ,CH(d′))
for a time T , a new random exponent t ′ ∈ Zp, and the public parameters PP. Let L( j) be the label of
CH( j) and d( j) be the length of the label L( j). It proceeds as follows:

1. It first sets a vector ~s′ = (s′1, . . . ,s
′
d(0)) by selecting random exponents s′1, . . . ,s

′
d(0) ∈ Zp, and

obtains CH ′(0) by running CDE.RandCT(CH(0), t ′,~s′,PP).

2. For 1≤ j≤ d′, it sets a new vector~s′′ = (s′1, . . . ,s
′
d( j)−1,s

′′
d( j)) where s′1, . . .s

′
d( j)−1 are copied from

~s′ and s′′d( j) is randomly chosen in Zp, and obtains CH ′( j) by running CDE.RandCT(CH( j), t ′,~s′′,PP).

3. It outputs a re-randomized ciphertext header as CH ′T =
(
CH ′(0), . . . ,CH ′(d

′)
)

and a partial session
key as EK′ = Λt ′ that will be multiplied with the session key EK of CHT to produce a re-
randomized session key.
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SUE.Decrypt(CHT ,SKT ′ ,PP): This algorithm takes as input a ciphertext header CHT , a private key SKT ′ ,
and the public parameters PP. If T ≤ T ′, then it finds CH( j) from CHT such that L( j) is a prefix of
L′ = ψ(T ′) and outputs EK by running CDE.Decrypt(CH( j),SKT ′ ,PP). Otherwise, it outputs ⊥.

3.3 Correctness

Let SKL′ be a private key with a label L′ and CHL be a ciphertext header with a label L. If L is a prefix of L′,
then the ciphertext delegation algorithm can be used to derive a ciphertext header CHL′ . The correctness of
CDE is satisfied by the following equation

e(C′0,K0) · e(C′1,K1) ·
n

∏
i=1

(
e(C′i,1,Ki,1) · e(C′i,2,Ki,2)

)
= e(gt ,gβ wr) · e(wt

n

∏
i=1

vsi ,g−r) ·
n

∏
i=1

(
e(gsi ,vr(uL|ih)ri) · e((uL|ih)si ,g−ri)

)
= e(gt ,gβ ) · e(gt ,wr) · e(wt ,g−r) · e(

n

∏
i=1

vsi ,g−r) ·
n

∏
i=1

e(gsi ,vr) = e(g,g)β t .

The correctness of SUE can be obtained from the property of the pre-order traversal and the correctness
of CDE. Let SKT ′ be a private key with a time T ′ and CHT be a ciphertext header with a time T . If T ≤ T ′,
then there exists a CDE ciphertext CHCDE,L in the SUE ciphertext such that L is a prefix of L′ where L′ is a
label for the time T ′ since TimeLabels(L)∩Path(L′) 6= /0 from the property of the pre-order traversal where
L is associated with T and L′ is associated with T ′. Therefore, a correct session key can be derived from the
correctness of CDE by using the decryption algorithm of CDE since L is a prefix of L′.

3.4 Security Analysis

To prove the security of our SUE scheme, we use the partitioning method that was widely used to prove
other schemes. In SUE, a challenge ciphertext for the time T ∗ is associated with labels in TimeLabels(L∗)
where L∗ is associated with T ∗. In the security proof that uses the partitioning method, these labels should
be programmed in short public parameters. To programming these labels in short public parameters, we use
a q-type assumption. A q-type assumption was previously used for this purpose in [14,21,27]. The detailed
security proof is described as follows:

Theorem 3.1. The above SUE scheme is selectively secure under chosen plaintext attacks if the q-sRW1
assumption holds. That is, for any PPT adversary A, we have that AdvSUE

A (λ )≤ 1
2 ·Advq-sRW1

B (λ ).

Proof. Suppose there exists an adversary A that attacks the above SUE scheme with a non-negligible
advantage. A simulator B that solves the q-sRW1 assumption using A is given: a challenge tuple D =

((p,G,GT ,e),g,ga,gb,gc,
{

gd j ,gcd j ,gad j ,gb/d2
j ,ga/d j

}
∀1≤ j≤q,

{
gabd j/d2

j′ ,gacd j/d j′ ,gbcd j/d2
j′
}
∀1≤ j, j′≤q, j′ 6= j) and

Z where Z = Z0 = e(g,g)abc or Z = Z1 = e(g,g) f . Then B that interacts with A is described as follows:

Init: A initially submits a challenge time T ∗. B first obtains a challenge label string L∗ that is associated
with T ∗ by computing L∗ = ψ(T ∗). Recall that TimeLabels(L∗) is the set of label strings that consists of L∗

and the right sibling labels of path nodes of L∗ that are not in the parent’s path. That is, TimeLabels(L∗) =
{L∗}∪RightSibling(Path(L∗))\Path(Parent(L∗)). We define TL(L∗, j) be a function that returns the jth
label string in TimeLabels(L∗) where l∗ is the maximum number of label strings in TimeLabels(L∗).
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Setup: B first chooses random exponents w′,v′,u′,h′ ∈Zp. It implicitly sets β = ab and publishes the public
parameters PP as

g, w = gw′ga, v = gv′
l∗

∏
j′=1

ga/d j′ , u = gu′
l∗

∏
j′=1

gb/d2
j′ , h = gh′

l∗

∏
j′=1

(gb/d2
j′ )−TL(L∗, j′), Λ = e(ga,gb).

Query 1: A adaptively request a private key for a time T such that T < T ∗. B first obtains a label L∈ {0,1}n

by computing ψ(T ). Next, it selects random exponents r′,r′1, . . . ,r
′
n ∈ Zp and creates a private key by

implicitly setting r =−b+ r′, {ri = ∑
l∗
k=1 adk/(L|i−TL(L∗,k))+ r′i}n

i=1 as

K0 = (gb)−w′wr′ , K1 = gbg−r′ ,{
Ki,1 = (gb)v′vr′

l∗

∏
k=1

(
gadk
)(u′L|i+h′)/(L|i−TL(L∗,k))

·
l∗

∏
j′=1

l∗

∏
k=1,k 6= j′

(
gabdk/d2

j′
)(L|i−TL(L∗, j′))/(L|i−TL(L∗,k))(uL|ih

)r′i ,

Ki,2 =
l∗

∏
k=1

(
gadk
)−1/(L|i−TL(L∗,k))g−r′i

}n
i=1.

Note that if T < T ∗, then it can create a private key since L|i−TL(L∗,k) 6= 0 for all 1≤ k≤ l∗ from the fact
that Path(L)∩TimeLabels(L∗) = /0 where L = ψ(T ).
Challenge: To create the challenge ciphertext for the challenge time T ∗, B proceeds as follows:

1. It first sets a label string L∗ ∈{0,1}d by computing ψ(T ∗). It chooses random exponents s1, . . . ,sd−1,s′d ∈
Zp. Let k be an index such that L∗ = TL(L∗,k). It implicitly sets s = c,sd = −cdk + s′d and creates
ciphertext components CH(0) as

C0 = gc, C1 = (gc)w′
d−1

∏
i=1

vsi ·
(
gcdk
)−v′

l∗

∏
j′=1, j′ 6=k

(
gacdk/d j′

)−1 · vs′d ,
{

Ci,1 = gsi , Ci,2 = (uL∗|ih)si
}d−1

i=1 ,

Cd,1 =
(
gcdk
)−1gs′d , Cd,2 =

(
gcdk
)−(u′L∗+h′)

l∗

∏
j′=1, j 6=k

(
gbcdk/d2

j′
)−(L∗−TL(L∗, j′)) ·

(
uL∗h

)s′d .

2. For 1≤ j≤ d, it first sets L( j) = L∗|d− j‖1 and proceeds as follows: Let d( j) be the length of L( j) and k
be an index such that L( j) = TL(L∗,k). If L( j) = L∗|d− j+1, it sets CH( j) as an empty one. Otherwise,
it selects s′d( j) ∈ Zp and creates ciphertext components CH( j) as

C1 = (gc)w′
d( j)−1

∏
i=1

vsi ·
(
gcdk
)−v′

l∗

∏
j′=1, j′ 6=k

(
gacdk/d j′

)−1 · vs′
d( j) ,

Cd( j),1 =
(
gcdk
)−1gs′

d( j) , Cd( j),2 =
(
gcdk
)−(u′L( j)+h′)

l∗

∏
j′=1, j 6=k

(
gbcdk/d2

j′
)−(L( j)−TL(L∗, j′)) ·

(
uL( j)

h
)s′

d( j) .

3. It removes all empty CH( j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH( j).
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4. It sets the challenger ciphertext header as CHT ∗ = CHT and the session key EK = Z. It gives CHT ∗

and EK to A.

Note that it can create the challenge ciphertext for T ∗ since L( j) ∈ TimeLabels(L∗) for all label strings L( j)

in the challenge ciphertext.
Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. B also outputs µ ′.

To finish the proof, we should show that the simulation is correct. The private key is correctly distributed
as

K0 = gβ wr = gab(gw′ga)−b+r′ = (gb)−w′wr′ ,

K1 = g−r = gb−r′ = gbg−r′ ,

Ki,1 = vr(uL|ih)ri =
(
gv′

l∗

∏
j′=1

ga/d j′
)−b+r′(gu′L|i+h′

l∗

∏
j′=1

gb(L|i−TL(L∗, j′))/d2
j′
)

∑
l∗
k=1 adk/(L|i−TL(L∗,k))+r′i

= (gb)v′vr′ ·
l∗

∏
k=1

(
gadk
)(u′L|i+h′)/(L|i−TL(L∗,k))

·
l∗

∏
j′=1

l∗

∏
k=1,k 6= j′

(
gabdk/d2

j′
)(L|i−TL(L∗, j′))/(L|i−TL(L∗,k)) ·

(
uL|ih

)r′i ,

Ki,2 = g−ri = g−∑
l∗
k=1 adk/(L|i−TL(L∗,k))−r′i =

l∗

∏
k=1

(
gadk
)−1/(L|i−TL(L∗,k))g−r′i .

Note that the term ∏
l∗
j′=1 gab/d j′ of Ki,1 that is not given in the assumption is cancelled. The challenge

ciphertext component CH( j) is also correctly distributed as

C1 = wt
d( j)

∏
i=1

vsi =
(
gw′ga)c

d( j)−1

∏
i=1

vsi
(
gv′

l∗

∏
j′=1

ga/d j′
)−cdk+s′

d( j)

= (gc)w′
d( j)−1

∏
i=1

vsi ·
(
gcdk
)−v′

l∗

∏
j′=1, j′ 6=k

(
gacdk/d j′

)−1 · vs′
d( j) ,

Cd( j),1 = gs
d( j) = g−cdk+s′

d( j) =
(
gcdk
)−1gs′

d( j) ,

Cd( j),2 =
(
uL( j)

h
)s

d( j) =
(
gu′L( j)+h′

l∗

∏
j′=1

gb(L( j)−TL(L∗, j′))/d2
j
)−cdk+s′

d( j)

=
(
gcdk
)−(u′L( j)+h′)

l∗

∏
j′=1, j′ 6=k

(
gbcdk/d2

j′
)−(L( j)−TL(L∗, j′)) ·

(
uL( j)

h
)s′

d( j) .

Note that the term gac of C1 is cancelled and the term gbcdk/d2
k of Cd( j),2 is not needed since L( j) = TL(L∗,k).

This completes our proof.

3.5 Discussions

Efficiency Analysis. In our SUE scheme, the public parameters consist of 6 group elements, a private key
consists of at most 2 logTmax +2 group elements, and a ciphertext header consists of at most 5 logTmax +2

14



group elements where Tmax is the maximum number of times. The decryption algorithm of SUE consists of
at most 3 logTmax exponentiations and 2logTmax +2 pairing operations.

Full Model Security. The security of our SUE scheme is proven in the selective model where an adversary
should initially submit a challenge time before he receives public parameters. In the full security model,
the adversary first receives public parameters and he submits the challenge time in the challenge step. If
the maximum number of time Tmax is a polynomial value, then a selectively secure SUE scheme can be
converted to a fully secure one with reduction loss Tmax.

Standard Assumption. Our SUE scheme is secure under the q-sRW1 assumption where q is dependent on
the depth of a binary tree. This q-type assumption is a stronger one compared with the well-known standard
assumption. Thus a SUE scheme that is secure under the the standard assumption is desired. If we increase
the number of public parameters in our SUE scheme, then we can obtain a SUE scheme that is secure under
the DBDH assumption. This SUE scheme is described in Appendix B. Note that this SUE scheme has
O(logTmax) number of group elements in public parameters, whereas the SUE scheme of Lee et al. [12] in
prime-order groups has O(Tmax) number of group elements in public parameters.

4 Self-Updatable Encryption for Time Intervals

In this section, we introduce the concept of time-interval SUE (TI-SUE) such that a ciphertext is associated
with a time-interval and propose an efficient TI-SUE scheme by extending our SUE scheme. Note that the
idea of TI-SUE was introduced by Lee et al. [12], but we give the formal definition and the security analysis
of a TI-SUE scheme.

4.1 Definitions

Time-interval SUE (TI-SUE) is an interesting extension of SUE such that the time of a ciphertext can be
specified by a time-interval. That is, the ciphertext of TI-SUE is associated with times TL and TR and a
private key with a time T such that TL ≤ T ≤ TR can be used to decrypt this ciphertext. The formal syntax
of TI-SUE is given as follows:

Definition 4.1 (Time-Interval Self-Updatable Encryption, TI-SUE). A time-interval self-updatable encryp-
tion (TI-SUE) scheme consists of seven PPT algorithms Init, Setup, GenKey, Encrypt, UpdateCT, RandCT,
and Decrypt, which are defined as follows:

Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it outputs a group de-
scription string GDS.

Setup(GDS,Tmax). The setup algorithm takes as input a group description string GDS and the maximum
time Tmax, and it outputs a master key MK and public parameters PP.

GenKey(T,MK,PP). The key generation algorithm takes as input a time T , the master key MK, and the
public parameters PP, and it outputs a private key SKT .

RandKey(SKT ,δ ,PP). The key randomization algorithm takes as input a private key SKT , an exponent δ ,
and the public parameters PP, and it outputs a re-randomized private key SK′T .

Encrypt(TL,TR,PP). The encryption algorithm takes as input a left time TL, a right time TR, and the public
parameters PP, and it outputs a ciphertext header CHTL,TR and a session key EK.
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UpdateCT(CHTL,TR ,T
′

L,T
′

R,PP). The ciphertext update algorithm takes as input a ciphertext header CHTL,TR ,
a new left time TL, a new right time TR, and the public parameters PP, and it outputs an updated
ciphertext header CHT ′L,T

′
R
.

RandCT(CHTL,TR ,PP). The ciphertext randomization algorithm takes as input a ciphertext header CHT for
a time T and the public parameters PP, and it outputs an re-randomized ciphertext header CH ′T and
a partial session key EK′.

Decrypt(CHTL,TR ,SKT ,PP). The decryption algorithm takes as input a ciphertext header CHTL,TR , a private
key SKT , and the public parameters PP, and it outputs a session key EK or the distinguished symbol
⊥.

The correctness of TI-SUE is defined as follows: For all MK,PP generated by Setup, any SKT ′ generated
by GenKey, and any CHT and EK generated by Encrypt or UpdateCT, it is required that:

• If TL ≤ T ≤ TR, then Decrypt(CHTL,TR ,SKT ,PP) = EK.

• If (T < TL)∨ (TR < T ), then Decrypt(CHTL,TR ,SKT ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

The security of TI-SUE can be defined by following the security of SUE except that the challenge
ciphertext is specified by a time interval. In this case, an adversary is allowed to request a polynomial
number of private keys for times that are not in the challenge time interval. The formal definition of the
selective security is given as follows:

Definition 4.2 (Selective Security). The selective security of TI-SUE is defined in terms of the indistinguisha-
bility under chosen plaintext attacks (IND-CPA). The security game is defined as the following experiment
between a challenger C and a PPT adversary A:

1. Init: A initially submits challenge times T ∗L ,T
∗

R .

2. Setup: C generates a master key MK and public parameters PP by running Init and Setup, and it
gives PP to A.

3. Query 1: A may adaptively request a polynomial number of private keys for times T1, . . . ,Tq′ , and C
gives the corresponding private keys SKT1 , . . . ,SKTq′ to A by running GenKey(Ti,MK,PP) with the
following restriction: For any time Ti of private key queries, it is required that Ti < T ∗L or T ∗R < Ti.

4. Challenge: C chooses a random bit µ ∈ {0,1} and computes a ciphertext header CH∗ and a session
key EK∗ by running Encrypt(T ∗L ,T ∗R ,PP). If µ = 0, then it gives CH∗ and EK∗ to A. Otherwise, it
gives CH∗ and a random session key to A.

5. Query 2: A may continue to request private keys for additional times Tq′+1, . . . ,Tq subject to the same
restriction as before, and C gives the corresponding private keys to A.

6. Guess: Finally A outputs a bit µ ′.

The advantage of A is defined as AdvT I-SUE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all
the randomness of the game. A TI-SUE scheme is selectively secure under chosen plaintext attacks if for all
PPT adversaries A, the advantage of A in the above game is negligible in the security parameter λ .
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4.2 Construction

Before describing our TI-SUE scheme, we define a future SUE (F-SUE) scheme and a past SUE (P-SUE)
scheme. F-SUE is the same as SUE that is defined in Section 2.2 such that the time T of a ciphertext is
updated to a future time T +1. P-SUE is similar to F-SUE except that the time T of a ciphertext is updated
to a past time T −1. A P-SUE scheme can be also constructed from a CDE scheme similarly to the F-SUE
scheme if a time for a tree node is assigned in a decreasing order from the maximum time Tmax by following
the pre-order traversal. The security model of P-SUE is also similarly defined and the security proof of
P-SUE is easily obtained since the proof is almost the same as that of F-SUE except that the order of times
is reversed.

The design idea of a TI-SUE scheme from SUE schemes is to combine an F-SUE scheme and a P-
SUE scheme by sharing the master key to prevent collusion attacks. That is, if the ciphertext of F-SUE is
associated with a left time TL and the ciphertext of P-SUE is associated with a right time TR, then a private
key with T that satisfies TL ≤ T ≤ TR only can be used to decrypt the ciphertext of F-SUE and that of P-SUE.
This idea was presented by Lee et al. [12] without an actual scheme and the security proof.

Our TI-SUE scheme that uses F-SUE and P-SUE schemes is described as follows:

TI-SUE.Init(1λ ): This algorithm outputs GDS by running SUE.Init(1λ ).

TI-SUE.Setup(GDS,Tmax): This algorithm first obtains MKF-SUE ,PPF-SUE and MKP-SUE ,PPP-SUE by run-
ning F-SUE.Setup(GDS,Tmax) and P-SUE.Setup(GDS,Tmax) respectively. It selects a random expo-
nent β ∈ Zp and outputs a master key MK = β and public parameters PP =

(
PPF-SUE ,PPP-SUE ,Ω =

e(g,g)β
)
.

TI-SUE.GenKey(T,MK,PP): Let MK = β . It first selects a random exponent β ′ ∈Zp and obtains SKF-SUE,T

and SKP-SUE,T by running F-SUE.GenKey(T,β ′,PPF-SUE) and P-SUE.GenKey(T,MK−β ′,PPP-SUE)
respectively. It outputs a private key as SKT =

(
SKF-SUE,T ,SKP-SUE,T

)
.

TI-SUE.RandKey(SKT ,δ ,PP): Let SKT = (SKF-SUE,T ,SKP-SUE,T ). It selects a random exponent δ ′ ∈
Zp and obtains SK′F-SUE,T and SK′P-SUE,T by running F-SUE.RandKey(SKF-SUE,T ,δ

′,PPF-SUE) and
P-SUE.RandKey(SKP-SUE,T ,δ −δ ′,PPP-SUE) respectively. It outputs a re-randomized private key as
SK′T =

(
SK′F-SUE,T ,SK′P-SUE,T

)
.

TI-SUE.Encrypt(TL,TR, t,PP): It first obtains CHF-SUE,TL ,EKF-SUE and CHP-SUE,TR ,EKP-SUE by running
F-SUE.Encrypt(TL, t,PPF-SUE) and P-SUE.Encrypt(TR, t,PPP-SUE) respectively. It outputs a cipher-
text header as CHTL,TR =

(
CHF-SUE,TL ,CHP-SUE,TR

)
an a session key as EK = EKF-SUE ·EKP-SUE .

TI-SUE.UpdateCT(CHTL,TR ,T
′

L,T
′

R,PP): Let CHTL,TR = (CHF-SUE,TL ,CHP-SUE,TR). If TL < T ′L, then it ob-
tains CHF-SUE,T ′L by iteratively running F-SUE.UpdateCT(CHF-SUE,TL ,TL + 1,PPF-SUE) to the time
T ′L; otherwise (TL = T ′L), it sets CHF-SUE,T ′L =CHF-SUE,TL . If T ′R < TR, then it obtains CHP-SUE,T ′R by iter-
atively running P-SUE.UpdateCT(CHP-SUE,TR ,TR−1,PPP-SUE) to the time T ′R; otherwise (T ′R =TR), it
sets CHP-SUE,T ′R =CHP,TR . It outputs an updated ciphertext header as CHT ′L,T

′
R
=
(
CHF-SUE,T ′L ,CHP-SUE,T ′R

)
.

TI-SUE.RandCT(CHTL,TR , t
′,PP): Let CHTL,TR =(CHF-SUE,TL ,CHP-SUE,TR). It obtains CH ′F-SUE,TL

,EK′F-SUE
and CH ′P-SUE,TR

,EK′P-SUE by running F-SUE.RandCT(CHF-SUE,TL , t
′,PPF-SUE) and P-SUE.RandCT

(CHP-SUE,TR , t
′,PPP-SUE) respectively. It outputs a re-randomized ciphertext header as CH ′TL,TR

=(
CH ′F-SUE,TL

,CH ′P-SUE,TR

)
and a partial session key as EK′ = EK′F-SUE ·EK′P-SUE .
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TI-SUE.Decrypt(CHTL,TR ,SKT ,PP): Let CHTL,TR =(CHF-SUE,TL ,CHP-SUE,TR) and SKT =(SKF-SUE,T ,SKP-SUE,T ).
If TL≤T ≤TR, then it obtains EKF-SUE and EKP-SUE by running F-SUE.Decrypt(CHF-SUE,TL ,SKF-SUE,T ,
PPF-SUE) and P-SUE.Decrypt(CHP-SUE,TR ,SKP-SUE,T ,PPP-SUE) respectively and outputs EK =EKF-SUE ·
EKP-SUE . Otherwise, it outputs ⊥.

4.3 Correctness

The correctness of TI-SUE is obtained from the correctness of F-SUE and P-SUE. Let SKT = (SKF−SUE,T ,
SKP−SUE,T ) be a private key with a time T and CHTL,TR = (CHF−SUE,TL ,CHP−SUE,TR) be a ciphertext header
with a time interval [TL,TR]. Note that SKF−SUE,T and SKP−SUE have β ′ and β −β ′ as a shared key respec-
tively by using a simple addictive secret sharing scheme where β is the master key. If TL ≤ T ≤ TR, then one
partial session key e(g,g)β ′t is correctly derived from the correctness of F-SUE and another partial session
key e(g,g)(β−β ′)t is also derived from the correctness of P-SUE. The final session key e(g,g)β t is obtained
by multiplying two partial session keys.

4.4 Security Analysis

To prove the security of our TI-SUE scheme, we can use the partitioning method as the same as the proof
of our SUE scheme to show that private keys and the challenge ciphertext header are correctly simulated
by using the q-sRW1 assumption. To simplify this security proof, we construct a meta-simulator that uses
the simulators of F-SUE and P-SUE schemes in Theorem 3.1 as sub-simulators instead of constructing a
simulator directly from the q-sRW1 assumption. This meta-simulator greatly simplifies the description of the
security proof since private keys and the challenge ciphertext header can be generated by the sub-simulators.
The detailed security proof is given as follows:

Theorem 4.3. The above TI-SUE scheme is selectively secure under chosen plaintext attacks if the q-sRW1
assumption holds. That is, for any PPT adversary A, we have that AdvT I-SUE

A (λ )≤ 1
2 ·Advq-sRW1

B (λ ).

Proof. Suppose there exists an adversary A that attacks the above TI-SUE scheme with a non-negligible
advantage. A meta-simulator B that solves the q-sRW1 assumption using A is given: a challenge tuple D =

((p,G,GT ,e),g,ga,gb,gc,
{

gd j ,gcd j ,gad j ,gb/d2
j ,ga/d j

}
∀1≤ j≤q,

{
gabd j/d2

j′ ,gacd j/d j′ ,gbcd j/d2
j′
}
∀1≤ j, j′≤q, j′ 6= j) and

Z where Z = Z0 = e(g,g)abc or Z = Z1 = e(g,g) f . Let BF-SUE be a simulator of F-SUE and BP-SUE be a
simulator of P-SUE. Then B that interacts with A and internally runs two simulators BF-SUE and BP-SUE is
described as follows:

Init: A initially submits challenge times T ∗L ,T
∗

R . B first runs BF-SUE and BP-SUE by giving the challenge
tuple D and Z.
Setup: B submits T ∗L to BF-SUE and receives PPF-SUE , and it submits T ∗R to BP-SUE and receives PPP-SUE . It
implicitly sets β = ab and publishes the public parameters PP =

(
PPF-SUE ,PPP-SUE ,Ω = e(ga,gb)

)
.

Query 1: A adaptively request a private key for a time T such that T < T ∗L or T ∗R < T . B proceeds as follows:

• Case T < T ∗L : It first requests a private key for the time T to BF-SUE and obtains SK′F-SUE,T . Next, it se-
lects a random exponent β ′ ∈Zp and obtains SKF-SUE,T by running F-SUE.RandKey(SK′F-SUE,T ,−β ′,
PPF-SUE). It also obtains SKP-SUE,T by running P-SUE.GenKey(T,β ′,PPP-SUE). It sets a private key
SKT =

(
SKF-SUE,T ,SKP-SUE,T

)
.

• Case T > T ∗R : It first requests a private key for the time T to BP-SUE and obtains SK′P-SUE,T . Next, it se-
lects a random exponent β ′ ∈Zp and obtains SKP-SUE,T by running P-SUE.RandKey(SK′P-SUE,T ,−β ′,
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PPP-SUE). It also obtains SKF-SUE,T by running F-SUE.GenKey(T,β ′,PPF-SUE). It sets a private key
SKT =

(
SKF-SUE,T ,SKP-SUE,T

)
.

Challenge: To create the challenge ciphertext for the challenge times T ∗L ,T
∗

R , B proceeds as follows: It
first obtains CHF-SUE,T ∗L from BF-SUE and obtains CHP-SUE,T ∗R from BP-SUE . It sets the challenge ciphertext
header CHT ∗L ,T

∗
R
=
(
CHF-SUE,T ∗L ,CHP-SUE,T ∗R

)
and the session key EK = Z.

Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. B also outputs µ ′.

To finish the proof, we should show that the simulation is correct. The public parameters is correct
since PPF-SUE and PPP-SUE share the same generator g that is given in the assumption, BF-SUE internally sets
β = ab, and BP-SUE internally sets β = ab. Now we show that private keys are correctly generated. In case
of T < T ∗L , an F-SUE private key is generated with a master key ab−β ′ is used by the help of BF-SUE and a
P-SUE private key is generated with a master key β ′. In case of T > T ∗R , an F-SUE private key is generated
with a master key β ′ and a P-SUE private key is generated with a master key ab−β ′ by the help of BP-SUE .
Finally, we show that the challenge ciphertext header is correctly generated. The F-SUE challenge ciphertext
header and the P-SUE challenge ciphertext header are correctly generated since the same element gc of the
assumption is used in two simulators. If Z = Z0 = e(g,g)abc, then EK is correctly distributed. Otherwise,
EK is a random element in GT . We omit the analysis of the probability. This completes our proof.

5 Revocable-Storage Attribute-Based Encryption

In this section, we propose an efficient RS-ABE scheme with short public parameters that supports the large
universe of attributes, and prove its security under a q-type assumption.

5.1 Access Structures

In this subsection, we present the definition of access structures. Note that the access structures for attribute-
based encryption can be realized by linear secret-sharing schemes (LSSS) [11]. We omit the definition of
LSSS.

Definition 5.1 (Access Structure). Let U be the attribute universe. An access structure on U is a collection
A of non-empty sets of attributes, i.e. A⊆ 2U \{}. The sets in A are called the authorized sets and the sets
not in A are called the unauthorized sets. Additionally, an access structure is called monotone if ∀B,C ∈A :
if B ∈ A and B⊆C, then C ∈ A.

5.2 Definitions

Revocable-storage attribute-based encryption (RS-ABE) is a new extension of ABE, introduced by Sahai et
al. [22], that enhances the security of ciphertexts that are stored in cloud storage by providing user revocation
and ciphertext updating functionalities. In RS-ABE, a ciphertext associated with an access structure A and
a time T is stored in cloud storage. A user has a private key with a set of attributes S and he obtains an
additional update key associated with an update time T and a revoked user set R from a center. If S ∈ A
and the user is not revoked in R at the time T , then he can decrypt the ciphertext in cloud storage by using
his private key and update key. Additionally, the administrator of cloud storage can update the time T of a
ciphertext to a new time T +1 by using the public parameters to prevent a revoked users from accessing the
past ciphertext. The formal syntax of RS-ABE is defined as follows:

19



Definition 5.2 (Revocable-Storage Attribute-Based Encryption). A revocable-storage (ciphertext-policy)
attribute-based encryption (RS-ABE) scheme for the universe of attributes U consists of seven PPT al-
gorithms Setup, GenKey, UpdateKey, Encrypt, UpdateCT, RandCT, and Decrypt, which are defined as
follows:

Setup(1λ ,Tmax,Nmax). The setup algorithm takes as input a security parameter 1λ , the maximum time Tmax,
and the maximum number of users Nmax, and it outputs a master key MK and public parameters PP.

GenKey(S,u,MK,PP). The key generation algorithm takes as input a set of attributes S ⊆ U , a user index
u ∈N , the master key MK, and the public parameters PP, and it outputs a private key SKS,u.

UpdateKey(T,R,MK,PP). The key update algorithm takes as input a time T ≤ Tmax, a set of revoked users
R⊆N , the master key MK, and the public parameters PP, and it outputs an update key UKT,R.

DeriveKey(SKS,u,UKT,R,PP). The decryption key derivation algorithm takes as input a private key SKS,u,
an update key UKT,R, and the public parameters PP, and it outputs a decryption key DKS,T or the
distinguished symbol ⊥.

Encrypt(A,T,M,PP). The encryption algorithm takes as input an access structure A, a time T ≤ Tmax, a
message M, and the public parameters PP, and it outputs a ciphertext CTA,T .

UpdateCT(CTA,T ,T + 1,PP). The ciphertext update algorithm takes as input a ciphertext CTA,T , a new
time T +1 such that T +1≤ Tmax, and the public parameters PP, and it outputs an updated ciphertext
CTA,T+1.

RandCT(CTA,T ,PP). The ciphertext randomization algorithm takes as input a ciphertext CTA,T and the
public parameters PP, and it outputs a re-randomized ciphertext CT ′A,T .

Decrypt(CTA,T ,DKS,T ′ ,PP). The decryption algorithm takes as input a ciphertext CTA,T , a decryption key
DKS,T , and the public parameters PP, and it outputs a message M or the distinguished symbol ⊥.

The correctness of RS-ABE is defined as follows: For all PP,MK generated by Setup, all S and u, any SKS,u

generated by GenKey, all A, T , and M, any CTA,T generated by Encrypt or UpdateCT, all T ′ and R, any
UKT ′,R generated by UpdateKey, it is required that:

• If u /∈ R, then DeriveKey(SKS,u,UKT ′,R,PP) = DKS,T ′ .

• If u ∈ R, then DeriveKey(SKS,u,UKT ′,R,PP) =⊥ with all but negligible probability.

• If (S ∈ A)∧ (T ≤ T ′), then Decrypt(CTA,T ,DKS,T ′ ,PP) = M.

• If (S /∈ A)∨ (T ′ < T ), then Decrypt(CTA,T ,DKS,T ′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

The security model of RS-ABE was defined by Sahai et al. [22]. We extend their security model to
consider the decryption key exposure attacks, introduced by Seo and Emura [24], and define the selective
revocation list model. In the security game of this model, an adversary initially submits a challenge access
structure A∗, a challenge time T ∗, a set of revoked users R∗ at the time T ∗. After that, he can adaptively
request a private, an update, and decryption key that satisfy additional conditions. In the challenge step, he
submits challenge messages M∗0 ,M

∗
1 and receives a challenge ciphertext CT ∗ for A∗, T ∗, and M∗µ where µ

is a random coin. The adversary may request additional key queries and finally he outputs a guess. If the
guess is correct, then the adversary wins the game. The formal security model is described as follows:
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Definition 5.3 (Selective Revocation List Security). The selective revocation list security of RS-ABE is
defined in terms of the indistinguishability under chosen plaintext attacks (IND-CPA). The security game is
defined as the following experiment between a challenger C and a PPT adversary A:

1. Init: A first submits a challenge access structure A∗, a challenge time T ∗, and the set of revoked users
R∗ at the time T ∗.

2. Setup: C generates a master key MK and public parameters PP by running Setup(1λ ,Tmax,Nmax),
and it gives PP to A.

3. Query 1: A may adaptively request a polynomial number of private keys, update keys, and decryption
keys. C proceeds as follows:

• If this is a private key query for a set of attributes S and a user index u, then it gives the corre-
sponding private key SKS,u to A by running GenKey(S,u,MK,PP). Note that A is allowed to
query only one private key for each user u.

• If this is an update key query for a time T and a set of revoked users R, then it gives the corre-
sponding update key UKT,R to A by running UpdateKey(T,R,MK,PP). Note that A is allowed
to query only one update key for each time T .

• If this is a decryption key query for a set of attributes S and a time T , then it gives the corre-
sponding decryption key DKS,T to A.

We require restrictions on the queries of A as follows:

(a) If an update key for T and R was queried, then R ⊆ R j for all update key queries on Tj and R j

such that T < Tj.

(b) If a private key for S and u such that S ∈ A∗ was queried, then an update key for Tj and R j such
that u ∈ R j and Tj ≤ T ∗ should be queried to revoke this user index u.

(c) A decryption key for S and T such that S ∈ A∗ and T ≥ T ∗ was not queried.

4. Challenge: A submits challenge messages M∗0 ,M
∗
1 ∈M of equal length. C chooses a random bit

µ ∈ {0,1} and gives a challenge ciphertext CT ∗ to A by running Encrypt(A∗,T ∗,M∗µ ,PP).

5. Query 2: A may continue to request private keys, update keys, and decryption keys subject to the
same restrictions as before, and C gives corresponding keys to A.

6. Guess: Finally A outputs a bit µ ′.

The advantage ofA is defined as AdvRS-ABE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. An RS-ABE scheme is secure in the selective revocation list model under chosen
plaintext attacks if for all PPT adversaries A, the advantage of A in the above game is negligible in the
security parameter λ .

5.3 Subset Cover Framework

The subset cover framework was introduced by Naor, Naor, and Lotspiech [17] as a general framework to
construct a broadcast encryption scheme. The complete subset (CS) scheme is one instance of the subset
cover framework, and we define this CS scheme as the same as that of Lee et al. [12] by excluding the key
assigning part. The detailed description of the CS scheme is given as follows:
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CS.Setup(Nmax): This algorithm takes as input the maximum number of users Nmax. Let Nmax = 2d for
simplicity. It first sets a full binary tree BT of depth d. Each user is assigned to a different leaf node
in BT . The collection S of CS is {Si : vi ∈BT }. Recall that Si is the set of all the leaves in the subtree
Ti. It outputs the full binary tree BT .

CS.Assign(BT ,u): This algorithm takes as input the tree BT and a user u ∈ N . Let vu be the leaf node of
BT that is assigned to the user u. Let (v j0 ,v j1 , . . . ,v jd ) be the path from the root node v j0 = v0 to the
leaf node v jn = vu. It sets PVu = {S j0 , . . . ,S jd}, and outputs the private set PVu.

CS.Cover(BT ,R): This algorithm takes as input the tree BT and a revoked set R of users. It first computes
the Steiner tree ST (R). Let Ti1 , . . .Tim be all the subtrees of BT that hang off ST (R), that is all subtrees
whose roots vi1 , . . .vim are not in ST (R) but adjacent to nodes of outdegree 1 in ST (R). It outputs a
covering set CVR = {Si1 , . . . ,Sim}.

CS.Match(CVR,PVu): This algorithm takes input as a covering set CVR = {Si1 , . . . ,Sim} and a private set
PVu = {S j0 , . . . ,S jd}. It finds a subset Sk such that Sk ∈CVR and Sk ∈ PVu. If there is such a subset, it
outputs (Sk,Sk). Otherwise, it outputs ⊥.

Lemma 5.4 ( [17]). Let Nmax be the number of leaf nodes in a full binary tree and r be the size of a revoked
set. In the CS scheme, the size of a private set is O(logNmax) and the size of a covering set is at most
r log(Nmax/r).

5.4 Construction

To construct an RS-ABE scheme with short public parameters, we combine the CP-ABE scheme of Rouse-
lakis and Waters [21], our SUE scheme with short public parameters, and the CS scheme by following the
design principle of Lee et al. [12]. To simplify the design and proof of our RS-ABE scheme, we additionally
define private key randomization and ciphertext randomization algorithms for the CP-ABE scheme.

The key-encapsulation mechanism (KEM) version of the CP-ABE scheme of Rouselakis and Waters [21]
is described as follows:

CP-ABE.Setup(GDS): This algorithm takes as input a group description string GDS. It chooses random
elements wA,vA,uA,hA ∈ G, and a random exponent γ ∈ Zp. It outputs the master key MK = γ and
the public parameters as PP =

(
(p,G,GT ,e),g,wA,vA,uA,hA,Λ = e(g,g)γ

)
.

CP-ABE.GenKey(S,MK,PP): This algorithm takes as input a set of attributes S = {A1,A2, . . . ,Ak}, the
master key MK, and the public parameters PP. It chooses random exponents r,r1, . . . ,rk ∈Zp and out-
puts a private key that implicitly includes S as SKS =

(
K0 = gγwr

A,K1 = g−r,{Ki,2 = vr
A(u

Ai
A hA)

ri ,Ki,3 =
g−ri}1≤i≤k

)
.

CP-ABE.RandKey(SKS,δ ,PP): This algorithm takes as input a private key SKS = (K0,K1,{Ki,2,Ki,3})
for a set of attributes S = {A1,A2, . . . ,Ak}, an exponent δ ∈ Zp, and the public parameters PP. It
chooses random exponents r′,r′1, . . . ,r

′
k ∈ Zp and outputs a re-randomized private key as SKS =

(
K′0 =

K0 ·gδ wr′
A ,K

′
1 = K1 ·g−r′ ,{K′i,2 = Ki,2 · vr′

A(u
Ai
A hA)

r′i ,K′i,3 = Ki,3 ·g−r′i}1≤i≤k
)
.

CP-ABE.Encrypt(A, t,PP): This algorithm takes as input an LSSS access structure A= (M,ρ) where M is
an l×n matrix and ρ is a map from each row M j of M to an attribute ρ( j), a random exponent t ∈ Zp,
and the public parameters PP. It first sets a random vector ~v = (t,v2, . . . ,vn) by selecting random
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exponents v2, . . . ,vn ∈ Zp. It selects random exponents s1, . . . ,sl ∈ Zp and outputs a ciphertext header
that implicitly includes A as CHA =

(
C0 = gt ,{C j,1 = wM j·~v

A vs j
A ,C j,2 = gs j ,C j,3 = (uρ( j)

A hA)
s j}1≤ j≤l

)
and a session key EK = Λt .

CP-ABE.RandCT(CHA, t ′,PP): This algorithm takes as input a ciphertext header CHA for an LSSS access
structure A= (M,ρ), a new random exponent t ′ ∈Zp, and the public parameters PP. It first sets a new
vector~v′ = (t ′,v′2, . . . ,v

′
n) by selecting random exponents v′2, . . . ,v

′
n ∈ Zp. It selects random exponents

s′1, . . . ,s
′
l ∈ Zp and outputs a ciphertext header as CH ′A =

(
C′0 =C0 ·gt ′ ,{C′j,1 =C j,1 ·w

M j·~v′
A v

s′j
A ,C

′
j,2 =

C j,2 · gs′j ,C′j,3 = C j,3 · (uρ( j)
A hA)

s′j}1≤ j≤l
)

and a partial session key EK′ = Λt ′ that will be multiplied
with the session of CHA.

CP-ABE.Decrypt(CHA,SKS,PP): This algorithm takes as input a ciphertext header CHA for an LSSS ac-
cess structure A= (M,ρ), a private key SKS for a set of attributes S, and the public parameters PP. If
S ∈A, then it computes constants ω j ∈Zp such that ∑ρ( j)∈S ω jM j = (1,0, . . . ,0) and outputs a session
key as EK = e(C0,K0)/∏ρ( j)∈S

(
e(C j,1,K1) · e(C j,2,K j,2) · e(C j,3,K j,3)

)ω j . Otherwise, it outputs ⊥.

LetM be GT . Our RS-ABE scheme that uses the above CP-ABE scheme, our SUE scheme, and the CS
scheme is described as follows:

RS-ABE.Setup(1λ ,Tmax,Nmax): It first generates bilinear groups G,GT of prime order p. Let g be the
generator of G. It sets GDS = ((p,G,GT ,e),g). It obtains MKABE ,PPABE and MKSUE ,PPSUE by run-
ning CP-ABE.Setup(GDS) and SUE.Setup(GDS,Tmax) respectively. It also obtains BT by running
CS.Setup(Nmax) and assigns a random exponent γi ∈ Zp to each node vi in BT . It selects a random
exponent α ∈ Zp, and then it outputs the master secret key MK = (MKABE ,MKSUE ,α,BT ) and the
public parameters as PP =

(
PPABE ,PPSUE ,g = g1,Ω = e(g,g)α

)
.

RS-ABE.GenKey(S,u,MK,PP): Let MK = (MKABE ,MKSUE ,α,BT ). It first obtains a private set PVu =
{S′j0 , . . . ,S

′
jd} by running CS.Assign(BT ,u) and retrieves {γ j0 , . . . ,γ jd} from BT where S′jk is asso-

ciated with a node v jk and γ jk is assigned to the node v jk . For 0 ≤ k ≤ d, it sets MK′ABE = (γ jk ,Y )
and obtains SKABE,k by running CP-ABE.GenKey(S,MK′ABE ,PPABE). It outputs a private key as
SKS,u =

(
PVu,SKABE,0, . . . ,SKABE,d

)
.

RS-ABE.UpdateKey(T,R,MK,PP): It first obtains a covering set CVR = {S′i1 , . . . ,S
′
im} by running CS.Cover

(BT ,R) and retrieves {γi1 , . . . ,γim} from BT where S′ik is associated with a node vik and γik is as-
signed to the node vik . For 1 ≤ k ≤ m, it sets MK′SUE = (α − γik ,Y ) and obtains SKSUE,k by run-
ning SUE.GenKey(T,MK′SUE ,PPSUE). It outputs an update key that implicitly includes T and R as
UKT,R =

(
CVR,SKSUE,1, . . . ,SKSUE,m

)
.

RS-ABE.DeriveKey(SKS,u,UKT ′,R,PP): Let SKS,u =(PVu,SKABE,0, . . . ,SKABE,d) and UKT ′,R =(CVR,SKSUE,1,
. . . ,SKSUE,m). If u /∈ R, then it obtains (Si,S j) by running CS.Match(CVR,PVu). Otherwise, it
outputs ⊥. Next, it selects a random exponent δ ∈ Zp and obtains SKABE and SKSUE by running
CP-ABE.RandKey(δ ,SKABE, j,PPABE) and SUE.RandKey(−δ ,SKSUE,i,PPSUE) respectively. It out-
puts a decryption key as DKS,T ′ =

(
SKABE ,SKSUE

)
.

RS-ABE.Encrypt(A,T,M,PP): It selects a random exponent t ∈ Zp and obtains CHABE and CHSUE by
running CP-ABE.Encrypt(A, t,PPABE) and SUE.Encrypt(T, t,PPSUE) respectively. Note that it ig-
nores two partial session keys that are returned by CP-ABE.Encrypt and SUE.Encrypt. It outputs a
ciphertext that implicitly includes T as CTA,T =

(
CHABE ,CHSUE ,C = Ωt ·M

)
.
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RS-ABE.UpdateCT(CTA,T ,T +1,PP): Let CTA,T =(CHABE ,CHSUE ,C). It first obtains CH ′SUE by running
SUE.UpdateCT(CHSUE ,T +1,PPSUE). It outputs an updated ciphertext that implicitly includes T +1
as CTA,T+1 =

(
CHABE ,CH ′SUE ,C

)
.

RS-ABE.RandCT(CTA,T ,PP): Let CTA,T = (CHABE ,CHSUE ,C). It selects a random exponent t ′ ∈ Zp and
obtains CH ′ABE and CH ′SUE by running CP-ABE.RandCT(CHABE , t ′,PPABE) and SUE.RandCT(CHSUE , t ′,
PPSUE), respectively. It outputs a re-randomized ciphertext as CT ′A,T =

(
CH ′ABE ,CH ′SUE ,C

′ =C ·Ωs′
)
.

RS-ABE.Decrypt(CTA,T ,DKS,T ′ ,PP): Let CTA,T = (CHABE ,CHSUE ,C) and DKS,T ′ = (SKABE ,SKSUE). If
S∈A and T ≤T ′, then it obtains EKABE and EKSUE by running CP-ABE.Decrypt(CHABE ,SKABE ,PPABE)
and SUE.Decrypt(CHSUE ,SKSUE ,PPSUE) respectively and outputs a message M by computing C ·(
EKABE ·EKSUE

)−1. Otherwise, it outputs ⊥.

5.5 Correctness

The correctness of RS-ABE can be obtained from the correctness of CP-ABE, SUE, and CS schemes. Let
SKS,u be a private key with a set of attributes S and an index u and UKT ′,R be an update key with an update
time T ′ and a set of revoked users R. If u /∈ R, then the decryption key derivation algorithm can correctly
derive a decryption key DKS,T ′ =(SKABE,S,SKSUE,T ′) by the correctness of the CS scheme. Note that SKABE,S

has γi + δ as a master key and SKSUE,T ′ has α − γi− δ as a master key. Let CTA,T be a ciphertext with an
access structure A and a time T and DKS,T ′ be a decryption key with a set of attributes S and a time T ′. If
S ∈ A and T ≤ T ′, then one partial session key is derived from the correctness of the CP-ABE scheme and
another partial session key also is derived from the correctness of the SUE scheme. Finally the session key
is obtained by multiplying two partial session keys.

5.6 Security Analysis

To prove the security of our RS-ABE scheme, we cannot reduce the security of CP-ABE or SUE to that of
RS-ABE since our RS-ABE scheme uses a simple secret sharing scheme to share the master key to prevent
collusion attacks instead of using CP-ABE and SUE schemes as black-boxes. However, we can simplify
the description of the security proof by constructing a meta-simulator that runs the simulators of CP-ABE
and SUE as sub-simulators. To construct a meta-simulator, we slightly modify the original simulator of
the CP-ABE scheme to meet additional conditions for the meta-simulation. The detailed description of the
security proof is given as follows:

Theorem 5.5 ( [21]). The above CP-ABE scheme is selectively secure under chosen plaintext attacks if the
q-RW1 assumption holds.

The original simulator of the above CP-ABE scheme in [21] implicitly sets γ = aq+1 + γ ′ by selecting
a random exponent γ ′ ∈ Zp and sets wA = ga where a and q are set in the q-RW1 assumption. To use this
simulator for the security proof of RS-ABE, we slightly modify this simulator to implicitly sets γ = aq+1 and
sets wA = gagw′ by selecting a random exponent w′ ∈ Zp. The simulation of private keys and the challenge
ciphertext also should be slightly modified, but this modification is easy. Note that this modified simulator
sets g of PP as that in the assumption, implicitly sets γ = aq+1, and sets gt of the challenge ciphertext header
as gc of the assumption.

Theorem 5.6. The above RS-ABE scheme is secure in the selective revocation list model under chosen plain-
text attacks if the q-RW1 assumption holds. That is, for any PPT adversaryA, we have that AdvRS-ABE

A (λ )≤
Advq-RW1

B (λ ).
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Proof. Suppose there exists an adversary A that attacks the above RS-ABE scheme with a non-negligible
advantage. A meta-simulator B that solves the q-RW1 assumption using A is given: a challenge tuple D =(
(p,G,GT ,e),g,gc,

{
gai

,gd j ,gcd j ,gaid j ,gai/d2
j
}
∀1≤i, j≤q,

{
gai/d j

}
∀1≤i≤2q,i 6=q+1,∀1≤ j≤q,

{
gaid j/d2

j′
}
∀1≤i≤2q,∀1≤ j, j′≤q, j′ 6= j,{

gaicd j/d j′ ,gaicd j/d2
j′
}
∀1≤i, j, j′≤q, j′ 6= j

)
and Z where Z = Z0 = e(g,g)aq+1c or Z = Z1 = e(g,g) f . Note that a

challenge tuple Dq-sRW1 for the q-sRW1 assumption can be easily derived from the challenge tuple D of the
q-RW1 assumption by setting b = aq. Let BABE be a modified simulator in the security proof of Theorem
5.5 and BSUE be a simulator in the security proof of Theorem 3.1. Then B that interacts with A is described
as follows:

Init: A initially submits a challenge access structure A∗, a challenge time T ∗, and a set of revoked users
R∗ at the time T ∗. B first runs BABE by giving D and Z, and it also runs BSUE by giving Dq-sRW1 and Z. It
obtains BT by running CS.Setup and assigns a random exponent γi ∈ Zp to each node vi in BT . For each
user ui ∈ R∗, it randomly assigns the user ui to a leaf node vui ∈ BT . Let RV ∗ be the set of leaf nodes that
are randomly assigned for R∗. Recall that Path(v) is the set of path nodes from the root node to the leaf
node v. That is, Path(v) = {v j0 , . . . ,v jd} where v j0 is the root node and v jd is the leaf node such that v jd = v.
Let RevTree(RV ∗) be the minimal subtree that connects the root node to all leaf nodes in RV ∗. That is,
RevTree(RV ∗) =

⋃
vu∈RV ∗ Path(vu).

Setup: B submits A∗ to BABE and receives PPABE , and it submits T ∗ to BSUE and receives PPSUE . It
randomizes Λ of PPABE and Λ of PPSUE by selecting random exponents γ ′,β ′ ∈ Zp. It implicitly sets
α = aq+1 and gives the public parameters PP =

(
PPABE ,PPSUE ,Ω = e(ga,gaq

)
)

to A.
Query 1: A adaptively requests a polynomial number of private key, update key, and decryption key queries.
If this is a private key query for a set of attributes S and a user index u, then B proceeds as follows:

• Case u ∈ R∗: In this case, it can simply creates ABE private keys for path nodes if it uses γi from BT
for the master key of ABE.

1. It first retrieves the leaf node vu ∈ RV ∗ that is assigned to the user u. Next, it obtains Path(vu) =
{v j0 , . . . ,v jd} where v jd = vu and retrieves exponents {γ j0 , . . . ,γ jd} from BT that are associated
with Path(vu).

2. For all v jk ∈ Path(vu), it obtains SKABE,k by running CP-ABE.GenKey(S,γ jk ,PPABE)

3. It creates the private key SKS,u =
(
PVu,SKABE,0, . . . ,SKABE,d

)
.

• Case u 6∈ R∗: In this case, it can use BABE to generate ABE private keys since A can only request S
such that S 6∈ A∗.

1. It first queries an ABE private key for S to BABE and receives SK′S.

2. Let vu be a leaf node in BT that is assigned to the user index u such that vu 6∈ RV ∗. It obtains
Path(vu) = {v j0 , . . . ,v jd} where v jd = vu and retrieves exponents {γ j0 , . . . ,γ jd} from BT that are
associated with Path(vu).

3. For all v jk ∈RevTree(RV ∗)∩Path(vu), it obtains SKABE,k by running CP-ABE.GenKey(S,γ jk ,PPABE).

4. For all v jk ∈Path(vu)\(RevTree(RV ∗)∩Path(vu)), it obtains SKABE,k by running CP-ABE.RandKey
(SK′S,−γ jk ,PPABE).

5. It creates the private key SKS,u =
(
PVu,SKABE,0, . . . ,SKABE,d

)
.

If this is an update key query for a time T and a revoked set R, then B proceeds as follows:
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• Case T < T ∗: In this case, it can use BSUE to generate SUE private keys since A can only request T
such that T < T ∗.

1. It first queries an SUE private key for T to BSUE and receives SK′SUE .

2. It obtains CVR by running CS.Cover(BT ,R). Let Cover(R) = {vi1 , . . . ,vim} be the set of nodes
that are associated with CVR.

3. For all vik ∈ RevTree(RV ∗)∩Cover(R), it obtains SKSUE,k by running SUE.RandKey(SK′SUE ,
−γik ,PPSUE).

4. For all vik ∈Cover(R)\(RevTree(RV ∗)∩Cover(R)), it obtains SKSUE,k by running SUE.GenKey
(T,γik ,PPSUE).

5. It creates the update key UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,m).

• Case T ≥ T ∗: In this case, it can simply create SUE private keys if it uses γi from BT for the master
key of SUE. Note that if T ≥ T ∗, then RevTree(RV ∗)∩Cover(R) = /0 since R∗⊆R from the definition
of the security model.

1. It first obtains CVR by running CS.Cover(BT ,R). Let Cover(R) = {vi1 , . . . ,vim} be the set of
nodes that are associated with CVR.

2. For all vik ∈ Cover(R), it obtains SKSUE,k by running SUE.GenKey(T,γik ,PPSUE).

3. It creates the update key UKT,R = (CVR,SKSUE,1, . . . ,SKSUE,m).

If this is a decryption key query for a set of attributes S and a time T , then B proceeds as follows:

• Case S /∈ A∗: In this case, it can use BABE to generate an ABE private key since S /∈ A∗.

1. It first queries an ABE private key for S to BABE and receives SK′ABE .

2. It selects a random exponent δ ∈Zp and obtains SKABE and SKSUE by running CP-ABE.RandKey
(SK′S,−δ ,PPABE) and SUE.GenKey(T,δ ,PPSUE) respectively.

3. It creates the decryption key DKS,T =
(
SKABE ,SKSUE

)
.

• Case S ∈ A∗: In this case, we have T < T ∗ from the restriction of the security model. It uses BSUE to
generate an SUE private key since T < T ∗.

1. It first queries an SUE private key for T to BSUE and receives SK′SUE .

2. It selects a random exponent δ ∈Zp and obtains SKABE and SKSUE by running CP-ABE.GenKey
(S,δ ,PPABE) and SUE.RandKey(SK′SUE ,−δ ,PPSUE) respectively.

3. It creates the decryption key DKS,T =
(
SKABE ,SKSUE

)
.

Challenge: A submits two challenge messages M∗0 ,M
∗
1 . B queries an ABE challenge ciphertext header to

BABE and receives CH∗ABE . B also queries an SUE challenge ciphertext header to BSUE and receives CH∗SUE .
Finally, it flips a random coin µ ∈ {0,1} and creates the challenger ciphertext CT ∗ = (CH∗ABE ,CH∗SUE ,C

∗ =
Z ·M∗µ) and gives it to A.
Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. If µ = µ ′, then B outputs 0. Otherwise, it outputs 1.

To finish the proof, we should show that the simulation is correct. The public parameters is correct since
PPABE and PPSUE share the same generator g that is given in the assumption, BABE internally sets γ = aq+1,
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and BSUE internally sets β = aq+1. Now we show that private keys are correctly generated. In case of u∈ R∗,
an ABE private key with a node v jk ∈RevTree(RV ∗) is correctly generated with a master key γ jk is used. In
case of u 6∈ R∗, an ABE private key with a node v jk ∈ RevTree(RV ∗) is generated with a master key γ jk and
an ABE private key with a node v jk 6∈ RevTree(RV ∗) is generated with a master key aq+1− γ jk by the help
of BABE . Note that the master key assignment for each node is consistent in the simulation of private keys.
Next, we show that update keys are correctly generated. In case of T < T ∗, an SUE private key with a node
vik ∈ RevTree(RV ∗) is generated with a master key aq+1− γik by the help of BSUE and an SUE private key
with a node vik 6∈ RevTree(RV ∗) is generated with a master key γik . In case of T ≥ T ∗, an SUE private key
with a node vik 6∈ RevTree(RV ∗) is generated with a master key γik since RevTree(RV ∗)∩Cover(R) = /0.
Note that the master key assignment for each node in the simulation of update keys is consistent with that
of private keys. We also show that decryption keys are correctly generated. In case of S /∈ A∗, an ABE
private key is generated with a master key aq+1−δ by the help of BABE and an SUE private key is generated
with a master key δ . In case of (S ∈ A∗)∧ (T < T ∗), an ABE private key is generated with a master key
δ and an SUE private key is generated with a master key aq+1− δ by the help of BSUE . Finally, we show
that the challenge ciphertext is correctly generated. The ABE challenge ciphertext header and the SUE
challenge ciphertext header are correctly generated since the same element gc of the assumption is used in
two simulators. If Z = Z0 = e(g,g)aq+1c, then C∗ is correctly distributed. Otherwise, C∗ is independent of µ

since Z1 is a random element in GT . We omit the analysis of the probability. This completes our proof.

5.7 Discussions

Efficiency Analysis. In our RS-ABE scheme, the public parameters consist of O(1) group elements, a
private key consists of O(logNmax∗|S|) group elements, an update key consists of O(r log(Nmax/r)∗ logTmax)
group elements, a decryption key consists of O(|S|+ logTmax) group elements, and a ciphertext consists of
O(l + logTmax) group elements where Nmax is the maximum number users, S is the set of attributes, Tmax is
the maximum number of times, r is the number of revoked users, and l is the row size of an access structure.
Compared with the efficient RS-ABE scheme of Lee et al. [12] such that the public parameters consist of
O(|U|+ logTmax) group elements where U is the universe of attributes, our RS-ABE scheme is very efficient
since the public parameters consist of just O(1) group elements.

Supporting a Time Interval. Our RS-ABE scheme does not support a time interval since it just uses the
SUE scheme of Section 3. To construct an RS-ABE scheme that supports a time interval, we can combine
the CP-ABE scheme, the TI-SUE scheme of Section 4, and the CS scheme. The security of this RS-ABE
scheme can be proven under the q-RW1 assumption by using the similar meta-simulation technique of
Theorem 5.6. We omit the detailed proof.

RS-ABE with Key-Policy. By combining our SUE scheme with the key-policy ABE scheme of Rouselakis
and Waters [21], we can obtain an RS-ABE scheme with key-policy where an access structure is specified
in a private key and a set of attributes is associated with a ciphertext. Our RS-ABE scheme with key-policy
is described in Appendix C. This RS-ABE scheme also has short parameters and supports a large universe
of attributes.

6 Conclusion

In this paper, we proposed the first SUE scheme with short public parameters in prime-order bilinear groups
and proved its security under a q-type assumption. We also presented two extensions of our SUE scheme:
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a TI-SUE scheme with short public parameters that supports time intervals, and a large universe RS-ABE
scheme with short public parameters.

There are many interesting problems that are left. The first one is to devise an SUE scheme with short
public parameters under standard assumptions. We expect that a new proof technique is needed since our
SUE scheme uses the power of a q-type assumption. One possible approach is to use the dual system
encryption method of Waters [26]. The second one is to construct a large universe RS-ABE scheme with
short public parameters that is fully secure. The RS-ABE scheme of Lee et al. [12] is fully secure, but the
size of public parameters is not short and only a small universe of attributes is supported. The third one is to
devise an RS-ABE scheme that uses the subset difference (SD) scheme for revocation instead of using the
CS scheme. If the SD scheme can be used, then the size of update keys that should be broadcasted at each
time period can be reduced. Recently, Lee et al. [13] proposed an RIBE scheme that uses the SD scheme,
but they claimed that their technique cannot be directly applicable to construct an RS-ABE scheme.
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A Definition of Ciphertext Delegatable Encryption

Ciphertext delegatable encryption (CDE) is a new type of PKE such that a ciphertext with a label L can be
delegated to a new ciphertext with a label L′ if L is a prefix of L′. The concept of CDE was introduced by
Lee et al. [12] to construct a SUE scheme. The formal syntax of CDE is described as follows:

Definition A.1 (Ciphertext Delegatable Encryption). A ciphertext delegatable encryption (CDE) scheme for
the set L of labels consists of seven PPT algorithms Init, Setup, GenKey, Encrypt, DelegateCT, RandCT,
and Decrypt, which are defined as follows:

Init(1λ ). The initialization algorithm takes as input a security parameter 1λ , and it outputs a group de-
scription string GDS.

Setup(GDS, l). The setup algorithm takes as input a group description string GDS and the maximum length
l of the label strings, and it outputs a master key MK and public parameters PP.

GenKey(L,MK,PP). The key generation algorithm takes as input a label string L ∈ {0,1}n with n≤ l, the
master key MK, and the public parameters PP, and it outputs a private key SKL.

Encrypt(L,PP). The encryption algorithm takes as input a label string L ∈ {0,1}d with d ≤ l and the
public parameters PP, and it outputs a ciphertext header CHL and a session key EK.

DelegateCT(CHL,c,PP). The ciphertext delegation algorithm takes as input a ciphertext header CHL for a
label string L∈ {0,1}d with d < l, a bit value c∈ {0,1}, and the public parameters PP, and it outputs
a delegated ciphertext header CHL′ for the label string L′ = L‖c.
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RandCT(CHL,PP). The ciphertext randomization algorithm takes as input a ciphertext header CHL for
a label string L ∈ {0,1}d with d < l and the public parameters PP, and it outputs a re-randomized
ciphertext header CH ′L and a partial session key EK′.

Decrypt(CHL,SKL′ ,PP). The decryption algorithm takes as input a ciphertext header CHL, a private key
SKL′ , and the public parameters PP, and it outputs a session key EK or the distinguished symbol ⊥.

The correctness of CDE is defined as follows: For all MK,PP generated by Setup, any SKL′ generated by
GenKey, any CHL and EK generated by Encrypt or DelegateCT, it is required that:

• If L is a prefix of L′, then Decrypt(CHL,SKL′ ,PP) = EK.

• If L is not a prefix of L′, then Decrypt(CHL,SKL′ ,PP) =⊥ with all but negligible probability.

Additionally, it requires that the ciphertext distribution of RandCT is statistically equal to that of Encrypt.

The security model of CDE was introduced by Lee et al. [12] and we follow the selective security model
version of their security definition. The security is defined as follows:

Definition A.2 (Selective Security). The selective security of CDE is defined in terms of the indistinguisha-
bility under chosen plaintext attacks (IND-CPA). The security game is defined as the following experiment
between a challenger C and a probabilistic polynomial-time (PPT) adversary A:

1. Init: A initially submits a challenge label string L∗.

2. Setup: C generates a master key MK and public parameters PP by running Init and Setup, and it
gives PP to A.

3. Query 1: A may adaptively request a polynomial number of private keys for label strings L1, . . . ,Lq′ ,
and C gives the corresponding private keys SKL1 , . . . ,SKLq′ toA by running GenKey(Li,MK,PP) with
the following restriction: For any label string Li of private key queries, it is required that L∗ is not a
prefix of Li.

4. Challenge: C chooses a random bit b ∈ {0,1} and computes a ciphertext header CH∗ and a session
key EK∗ by running Encrypt(L∗,PP). If b = 0, then it gives CH∗ and EK∗ to A. Otherwise, it gives
CH∗ and a random session key to A.

5. Query 2: A may continue to request private keys for additional label strings Lq′+1, . . . ,Lq subject to
the same restriction as before, and C gives the corresponding private keys to A.

6. Guess: Finally A outputs a bit b′.

The advantage of A is defined as AdvCDE
A (λ ) =

∣∣Pr[µ = µ ′]− 1
2

∣∣ where the probability is taken over all the
randomness of the game. A CDE scheme is selectively secure under chosen plaintext attacks if for all PPT
adversaries A, the advantage of A in the above game is negligible in the security parameter λ .

B SUE under Standard Assumptions

In this section, we propose an SUE scheme with shorter public parameters and prove its selective security
under the standard assumption.
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B.1 Construction

To devise an SUE scheme under the standard assumption, we modify the SUE scheme in Section 3 by
slightly increasing the number of group elements in public parameters. In the security proof of Section 3,
we can program multiple challenge labels to short public parameters by the help of the q-type assumption,
but we cannot use this programming technique in the standard assumption. However, the number of group
elements in public parameters is just proportional to the depth of a binary tree since the challenge labels is
just proportional to the depth of the tree. Note that this SUE scheme has shorter public parameters compared
with the SUE scheme of Lee et al. [12] in prime-order bilinear groups.

Our CDE scheme is described as follows:

CDE.Init(1λ ): This algorithm takes as input a security parameter 1λ . It generates bilinear groups G,GT

of prime order p. Let g be the generator of G. It outputs a group description string as GDS =(
(p,G,GT ,e), g

)
.

CDE.Setup(GDS, l): This algorithm takes as input the string GDS and the maximum length l of label
strings. It chooses random elements w,v,u,{hi,0,hi,1}l

i=1 ∈ G and a random exponent β ∈ Zp. We
define Fi,b(L) = uLhi,b where i ∈ [l] and b ∈ {0,1}. It outputs the master key MK = β and the public
parameters as

PP =
(
(p,G,GT ,e), g, w, v, u, {hi,0,hi,1}l

i=1, Λ = e(g,g)β

)
.

CDE.GenKey(L,MK,PP): This algorithm takes as input a label string L ∈ {0,1}n such that n ≤ l, the
master key MK, and the public parameters PP. It selects random exponents r,r1, . . . ,rn ∈ Zp and
outputs a private key that implicitly includes L as

SKL =
(

K0 = gβ wr, K1 = g−r,
{

Ki,1 = vrFi,L[i](L|i)ri , Ki,2 = g−ri
}n

i=1

)
.

CDE.Encrypt(L, t,~s,PP): This algorithm takes as input a label string L ∈ {0,1}d such that d ≤ l, a random
exponent t ∈ Zp, a vector ~s = (s1, . . . ,sd) ∈ Zd

p of random exponents, and the public parameters PP.
It outputs a ciphertext header that implicitly includes L as

CHL =
(

C0 = gt , C1 = wt
d

∏
i=1

vsi ,
{

Ci,1 = gsi , Ci,2 = Fi,L[i](L|i)si
}d

i=1

)
.

and a session key as EK = Λt .

CDE.DelegateCT(CHL,c,PP): This algorithm takes as input a ciphertext header CHL =(C0,C1,{Ci,1,Ci,2})
for a label string L ∈ {0,1}d such that d < l, a bit value c ∈ {0,1}, and the public parameters PP. It
selects a random exponent sd+1 ∈ Zp and outputs a delegated ciphertext header for a new label string
L′ = L‖c as

CHL′ =
(

C′0 =C0, C′1 =C1 · vsd+1 ,
{

C′i,1 =Ci,1, C′i,2 =Ci,2
}d

i=1, C′d+1,1 = gsd+1 , C′d+1,2 = Fd+1,c(L′)sd+1
)
.
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CDE.RandCT(CHL, t ′,~s′,PP): This algorithm takes as input a ciphertext header CHL =(C0,C1,{Ci,1,Ci,2})
for a label string L∈ {0,1}d such that d ≤ l, a random exponent t ′ ∈Zp, a vector~s′ = (s′1, . . . ,s

′
d)∈Zd

p
of random exponents, and the public parameters PP. It outputs a re-randomized ciphertext header as

CH ′L =
(

C′0 =C0 ·gt ′ , C′1 =C1 ·wt ′
d

∏
i=1

vs′i ,
{

C′i,1 =Ci,1 ·gs′i , C′i,2 =Ci,2 ·Fi,L[i](L|i)s′i
}d

i=1

)
.

and a partial session key as EK′ = Λt ′ that will be multiplied with the session key EK of CHL.

CDE.Decrypt(CHL,SKL′ ,PP): This algorithm takes as input a ciphertext header CHL for a label string L ∈
{0,1}d , a private key SKL′ = (K0,K1,{Ki,1,Ki,2}n

i=1) for a label string L′ ∈ {0,1}n such that d ≤ n≤ l,
and the public parameters PP. If L is a prefix of L′, then it derives CH ′L′ = (C′0,C

′
1,{C′i,1,C′i,2}n

i=1) by
iteratively running DelegateCT and outputs a session key as

EK = e(C′0,K0) · e(C′1,K1) ·
n

∏
i=1

(
e(C′i,1,Ki,1) · e(C′i,2,Ki,2)

)
Otherwise, it outputs ⊥.

The description of our SUE scheme is almost the same as that of Section 3. We omit the description of
the SUE scheme.

B.2 Security Analysis

To prove the security of above SUE scheme, we use the partitioning method. In the preparation of public
parameters, a simulator can program only one challenge label to one element. The detailed description of
the security proof is given as follows:

Theorem B.1. The above SUE scheme is selectively secure under chosen plaintext attacks if the DBDH
assumption holds. That is, for any PPT adversary A, we have that AdvSUE

A (λ )≤ 1
2 ·AdvDBDH

B (λ ).

Proof. Suppose there exists an adversary A that attacks the above SUE scheme with a non-negligible
advantage. A simulator B that solves the DBDH assumption using A is given: a challenge tuple D =
((p,G,GT ,e),g,ga,gb,gc) and Z where Z = Z0 = e(g,g)abc or Z = Z1 = e(g,g)d . Then B that interacts with
A is described as follows:

Init: A initially submits a challenge time T ∗. B first obtains a challenge label L∗ that is associated with the
challenge time T ∗ by computing L∗ = ψ(T ∗). Recall that TimeLabels(L) = {L}∪RightSibling(Path(L))\
Path(Parent(L)). We define TL(L∗, i, j) be a function that returns a label string L in TimeLabels(L∗) such
that the length of L is i and L[i] = j. Note that TL(L∗, i, j) return 0 if there is no label string for i and j.
Setup: B first chooses random exponents w′,v′,u′,{h′i, j}∀1≤i≤l,∀ j∈{0,1} ∈ Zp. It implicitly sets β = ab and
publishes the public parameters PP as

g, w = gagw′ , v = gagv′ , u = gagu′ ,
{

hi, j = (ga)−TL(L∗,i, j)gh′i, j
}
∀1≤i≤l,∀ j∈{0,1}, Λ = e(ga,gb).

Query 1: A adaptively request a private key for a time T such that T < T ∗. B first obtains a label string
L ∈ {0,1}n by computing ψ(T ). Next, it selects random exponent r′,r′1, . . . ,r

′
n ∈ Zp and creates a private
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key by implicitly setting r =−b+ r′, {ri = b/(L|i−TL(L∗, i,L[i]))+ r′i}n
i=1 as

K0 = (gb)−w′wr′ , K1 = gbg−r′ ,{
Ki,1 = (gb)−v′vr′(gb)

(u′L|i+h′i,L[i])/(L|i−TL(L∗,i,L[i]))Fi,L[i](L|i)r′i ,

Ki,2 = (gb)−1/(L|i−TL(L∗,i,L[i]))g−r′i
}n

i=1.

Note that if T < T ∗, then it can create a private key since Path(L)∩TimeLabels(L∗) = /0 where L = ψ(T ).
Challenge: To create the challenge ciphertext for the challenge time T ∗, B proceeds as follows:

1. It first sets a label L∗ ∈ {0,1}d by computing ψ(T ∗). It chooses random exponents s1, . . . ,sd−1,s′d ∈
Zp. It implicitly sets t = c, sd =−c+ s′d and creates ciphertext components CH(0) as

C0 = gc, C1 = (gc)w′
d−1

∏
i=1

vsi(gc)−v′vs′d ,
{

Ci,1 = gsi , Ci,2 = Fi,L∗[i](L
∗|i)si

}d−1
i=1 ,

Cd,1 = (gc)−1gs′d , Cd,2 = (gc)
−(u′L∗|i+h′i,L∗ [i])Fd,L∗[d](L

∗|i)s′d .

2. For 1 ≤ j ≤ d, it first sets L( j) = L∗|d− j‖1 and proceeds as follows: Let d( j) be the length of L( j). If
L( j) = L|d− j+1, it sets CH( j) as an empty one. Otherwise, it selects s′d( j) ∈ Zp and creates ciphertext
components CH( j) as

C1 = (gc)w′
d( j)−1

∏
i=1

vsi(gc)−v′vs′
d( j) ,

Cd( j),1 = (gc)−1gs′
d( j) , Cd( j),2 = (gc)

−(u′L( j)+h′
d( j),L[d( j)]

)
Fd( j),L( j)(L( j))

s′
d( j) .

3. It removes all empty CH( j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH( j).

4. It sets the challenger ciphertext header as CHT ∗ = CHT and the session key EK = Z. It gives CHT ∗

and EK to A.

Note that it can create the challenge ciphertext for T ∗ since for all labels L( j) in the challenge ciphertext,
L( j) ∈ TimeLabels(L∗).
Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. B also outputs µ ′.

To finish the proof, we should show that the simulation is correct. The private key is correctly distributed
as

K0 = gβ wr = gab(gagw′)−b+r′ = (gb)−w′wr′ ,

K1 = g−r = gb−r′ = gbg−r′ ,

Ki,1 = vrFi,L[i](L|i)ri = (gagv′)−b+r′((ga)L|i−TL(L∗,i,L[i])gu′L|i+h′i,L[i]
)b/(L|i−TL(L∗,i,L[i]))+r′i

= (gb)−v′vr′(gb)
(u′L|i+h′i,L[i])/(L|i−TL(L∗,i,L[i]))Fi,L[i](L|i)r′i ,

Ki,2 = g−ri = g−b/(L|i−TL(L∗,i,L[i]))−r′i = (gb)−1/(L|i−TL(L∗,i,L[i]))g−r′i .
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Note that the term gab of Ki,1 that is not given in the assumption is cancelled since L|i−TL(L∗, i,L[i]) 6= 0.
The challenge ciphertext component CH( j) is also correctly distributed as

C1 = wt
d( j)

∏
i=1

vsi = (gagw′)c
d( j)−1

∏
i=1

vsi · (gagv′)
−c+s′

d( j) = (gc)w′
d( j)−1

∏
i=1

vsi · (gc)−v′vs′
d( j) ,

Cd( j),1 = gs
d( j) = g−c+s′

d( j) = (gc)−1gs′
d( j) ,

Cd( j),2 = Fd( j),L∗[d( j)](L
( j))s

d( j) =
(
(ga)L( j)−TL(L∗,d( j),L[d( j)])g

u′L( j)+h′
d( j),L[d( j)]

)−c+s′
d( j)

= (gc)
−(u′L( j)+h′

d( j),L[d( j)]
)
Fd( j),L( j)(L( j))

s′
d( j) .

Note that the term gac of C1 is cancelled and the term gac of Cd( j),2 is not needed since L( j)=TL(L∗,d( j),L[d( j)]).
This completes our proof.

C RS-ABE with Key-Policy

In this section, we propose an efficient RS-ABE scheme with key-policy and prove its security under a q-
type assumption. The definition and the security model of RS-ABE with key-policy can be easily obtained
from that of RS-ABE with ciphertext-policy in Section 5.2.

C.1 Construction

The KEM version of the KP-ABE scheme of Rouselakis and Waters [21] is described as follows:

KP-ABE.Setup(GDS): This algorithm takes as input a group description string GDS. It chooses random
elements wA,vA,uA,hA ∈ G, and a random exponent γ ∈ Zp. It outputs the master key MK = γ and
the public parameters as PP =

(
(p,G,GT ,e),g,wA,uA,hA,Λ = e(g,g)γ

)
.

KP-ABE.GenKey(A,MK,PP): This algorithm takes as input an LSSS access structure A= (M,ρ) where
M is an l×n matrix and ρ is a map from each row M j of M to an attribute ρ( j), the master key MK,
and the public parameters PP. It first sets a random vector ~v = (γ,v2, . . . ,vn) by selecting random
exponents v2, . . . ,vn ∈ Zp. It chooses random exponents r1, . . . ,rl ∈ Zp and outputs a private key that
implicitly includes A as SKA =

(
{K j,0 = gM j·~vwr j

A ,K j,1 = (uρ( j)
A hA)

−r j ,K j,2 = gr j}1≤ j≤l
)
.

KP-ABE.RandKey(SKS,δ ,PP): This algorithm takes as input a private key SKA = ({K j,0,K j,1,K j,2}) for
an LSSS access structure A = (M,ρ), an exponent δ ∈ Zp, and the public parameters PP. It first
sets a random vector ~v′ = (δ ,v′2, . . . ,v

′
n) by selecting random exponents v′2, . . . ,v

′
n ∈ Zp. It chooses

random exponents r′1, . . . ,r
′
l ∈ Zp and outputs a re-randomized private key as SKA =

(
{K′j,0 = K j,0 ·

gM j·~v′w
r′j
A ,K

′
j,1 = K j,1 · (uρ( j)

A hA)
−r′j ,K′j,2 = K j,2 ·gr′j}1≤ j≤l

)
.

KP-ABE.Encrypt(S, t,PP): This algorithm takes as input a set of attributes S = {A1,A2, . . . ,Ak}, a random
exponent t ∈Zp, and the public parameters PP. It selects random exponents s1, . . . ,sk ∈Zp and outputs
a ciphertext header that implicitly includes S as CHS =

(
C0 = gt ,{Ci,1 = gsi ,Ci,2 =(uAi

A hA)
siw−t

A }1≤i≤k
)

and a session key EK = Λt .
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KP-ABE.RandCT(CHA, t ′,PP): This algorithm takes as input a ciphertext header CHS = (C0,{Ci,1,Ci,2})
for a set of attributes S = {A1,A2, . . . ,Ak}, a new random exponent t ′ ∈ Zp, and the public parameters
PP. It selects random exponents s′1, . . . ,s

′
k ∈ Zp and outputs a ciphertext header as CH ′S =

(
C′0 =

C0 ·gt ′ ,{C′i,1 =Ci,1 ·gs′i ,C′i,2 =Ci,2 · (uAi
A hA)

s′iw−t ′
A }1≤i≤k

)
and a partial session key EK′ = Λt ′ that will

be multiplied with the session of CHS.

KP-ABE.Decrypt(CHA,SKS,PP): This algorithm takes as input a ciphertext header CHS for a set of at-
tributes S, a private key SKA for an LSSS access structure A = (M,ρ), and the public parameters
PP. If S ∈A, then it computes constants ω j ∈ Zp such that ∑ρ( j)∈S ω jM j = (1,0, . . . ,0) and outputs a
session key as EK = ∏ρ( j)∈S

(
e(C0,K j,0) · e(C j,1,K j,1) · e(C j,2,K j,2)

)ω j . Otherwise, it outputs ⊥.

The RS-ABE scheme with key-policy is almost the same as the scheme in Section 5.4 except that the
CP-ABE scheme is replaced by the KP-ABE scheme. We omit the description of our RS-ABE scheme with
key-policy.

C.2 Complexity Assumptions

To prove the security of our RS-ABE scheme with key-policy, we use the q-RW2 assumption that was intro-
duced by Rouselakis and Waters [21] to prove the security of their KP-ABE scheme. From this assumption,
we introduce a simplified version of the q-RW2 assumption to prove the security of our SUE scheme in
Section 3.

Assumption C.1 (q-RW21, [21]). Let (p,G,GT ,e) be a description of the bilinear group of prime order p.
Let g be generators of subgroups G. The q-RW2 assumption is that if the challenge tuple

D =
(
(p,G,GT ,e),g,ga,gb,gc,g(ac)2

,
{

gd j ,gacd j ,gac/d j ,ga2cd j ,gb/d2
j ,gb2/d2

j
}
∀1≤ j≤q,{

gacd j/d j′ ,gbd j/d2
j′ ,gabcd j/d2

j′ ,g(ac)2d j/d j′
}
∀1≤ j, j′≤q, j′ 6= j

)
and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g) f with more than a
negligible advantage. The advantage of A is defined as Advq-RW2

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,{d j}1≤ j≤q, f ∈ Zp.

Lemma C.2 ( [21]). The q-RW2 assumption is secure in the generic group model.

Assumption C.3 (q-simplified RW2, q-sRW2). Let (p,G,GT ,e) be a description of the bilinear group of
prime order p. Let g be generators of subgroups G. The q-sRW2 assumption is that if the challenge tuple

D =
(
(p,G,GT ,e),g,ga,gb,gc,

{
gd j ,gacd j ,gb/d2

j ,gac/d j
}
∀1≤ j≤q,{

gabcd j/d2
j′ ,gacd j/d j′ ,gbd j/d2

j′
}
∀1≤ j, j′≤q, j′ 6= j

)
and Z,

are given, no PPT algorithmA can distinguish Z = Z0 = e(g,g)abc from Z = Z1 = e(g,g) f with more than a
negligible advantage. The advantage ofA is defined as Advq-sRW2

A (λ ) =
∣∣Pr[A(D,Z0) = 0]−Pr[A(D,Z1) =

0]
∣∣ where the probability is taken over random choices of a,b,c,{d j}1≤ j≤q, f ∈ Zp.

Lemma C.4. The q-sRW2 assumption is secure in the generic group model if the q-RW2 assumption is
secure in the generic group model.

The proof of this Lemma is easily obtained since all elements of the q-sRW2 assumption are contained
in the elements of the q-RW2 assumption.

1In [21], there is a mistake in the description of the assumption. We correct it by changing gabcd j/d j′ to gabcd j/d2
j′ .
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C.3 Security Analysis

To simplify the proof of our RS-ABE scheme with key-policy, we first prove the security of our SUE scheme
under the q-sRW2 assumption. Note that we already proved the security of our SUE scheme under the q-
sRW1 assumption.

Theorem C.5. The SUE scheme in Section 3.2 is selectively secure under chosen plaintext attacks if the
q-sRW2 assumption holds. That is, for any PPT adversary A, we have that AdvSUE

A (λ )≤ 1
2 ·Advq-sRW2

B (λ ).

Proof. The proof of this theorem is similar to that of Theorem 3.1 except that {gac/d j′} are embedded in v
whereas {ga/d j′} are embedded in v of Theorem 3.1. Because of this change, the randomness for a private
key and the randomness for the challenge ciphertext header are slightly changed.

Suppose there exists an adversary A that attacks the above SUE scheme with a non-negligible ad-
vantage. A simulator B that solves the q-sRW2 assumption using A is given: a challenge tuple D =

((p,G,GT ,e),g,ga,gb,gc,
{

gd j ,gacd j ,gb/d2
j ,gac/d j

}
∀1≤ j≤q,

{
gabcd j/d2

j′ ,gacd j/d j′ ,gbd j/d2
j′
}
∀1≤ j, j′≤q, j′ 6= j) and Z

where Z = Z0 = e(g,g)abc or Z = Z1 = e(g,g) f . Then B that interacts with A is described as follows:

Init: It is the same as that of Theorem 3.1.
Setup: B first chooses random exponents w′,v′,u′,h′ ∈Zp. It implicitly sets β = ab and publishes the public
parameters PP as

g, w = gw′ga, v = gv′
l∗

∏
j′=1

gac/d j′ , u = gu′
l∗

∏
j′=1

gb/d2
j′ , h = gh′

l∗

∏
j′=1

(gb/d2
j′ )−TL(L∗, j′), Λ = e(ga,gb).

Query 1: A adaptively request a private key for a time T such that T < T ∗. B first obtains a label L∈ {0,1}n

by computing ψ(T ). Next, it selects random exponents r′,r′1, . . . ,r
′
n ∈ Zp and creates a private key by

implicitly setting r =−b+ r′, {ri = ∑
l∗
k=1 acdk/(L|i−TL(L∗,k))+ r′i}n

i=1 as

K0 = (gb)−w′wr′ , K1 = gbg−r′ ,{
Ki,1 = (gb)v′vr′

l∗

∏
k=1

(
gacdk

)(u′L|i+h′)/(L|i−TL(L∗,k))

·
l∗

∏
j′=1

l∗

∏
k=1,k 6= j′

(
gabcdk/d2

j′
)(L|i−TL(L∗, j′))/(L|i−TL(L∗,k))(uL|ih

)r′i ,

Ki,2 =
l∗

∏
k=1

(
gacdk

)−1/(L|i−TL(L∗,k))g−r′i
}n

i=1.

Challenge: To create the challenge ciphertext for the challenge time T ∗, B proceeds as follows:

1. It first sets a label string L∗ ∈{0,1}d by computing ψ(T ∗). It chooses random exponents s1, . . . ,sd−1,s′d ∈
Zp. Let k be an index such that L∗ = TL(L∗,k). It implicitly sets s = c,sd = −dk + s′d and creates
ciphertext components CH(0) as

C0 = gc, C1 = (gc)w′
d−1

∏
i=1

vsi ·
(
gdk
)−v′

l∗

∏
j′=1, j′ 6=k

(
gacdk/d j′

)−1 · vs′d ,
{

Ci,1 = gsi , Ci,2 = (uL∗|ih)si
}d−1

i=1 ,

Cd,1 =
(
gdk
)−1gs′d , Cd,2 =

(
gdk
)−(u′L∗+h′)

l∗

∏
j′=1, j 6=k

(
gbdk/d2

j′
)−(L∗−TL(L∗, j′)) ·

(
uL∗h

)s′d .
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2. For 1≤ j≤ d, it first sets L( j) = L∗|d− j‖1 and proceeds as follows: Let d( j) be the length of L( j) and k
be an index such that L( j) = TL(L∗,k). If L( j) = L∗|d− j+1, it sets CH( j) as an empty one. Otherwise,
it selects s′d( j) ∈ Zp and creates ciphertext components CH( j) as

C1 = (gc)w′
d( j)−1

∏
i=1

vsi ·
(
gdk
)−v′

l∗

∏
j′=1, j′ 6=k

(
gacdk/d j′

)−1 · vs′
d( j) ,

Cd( j),1 =
(
gdk
)−1gs′

d( j) , Cd( j),2 =
(
gdk
)−(u′L( j)+h′)

l∗

∏
j′=1, j 6=k

(
gbdk/d2

j′
)−(L( j)−TL(L∗, j′)) ·

(
uL( j)

h
)s′

d( j) .

3. It removes all empty CH( j) and sets CHT =
(
CH(0), . . . ,CH(d′)

)
for some d′ that consists of non-empty

CH( j).

4. It sets the challenger ciphertext header as CHT ∗ = CHT and the session key EK = Z. It gives CHT ∗

and EK to A.

Query 2: Same as Query 1.
Guess: A outputs a guess µ ′. B also outputs µ ′.

We show that the simulation is correct. The private key is correctly distributed as

Ki,1 = vr(uL|ih)ri =
(
gv′

l∗

∏
j′=1

gac/d j′
)−b+r′(gu′L|i+h′

l∗

∏
j′=1

gb(L|i−TL(L∗, j′))/d2
j′
)

∑
l∗
k=1 acdk/(L|i−TL(L∗,k))+r′i

= (gb)v′vr′ ·
l∗

∏
k=1

(
gacdk

)(u′L|i+h′)/(L|i−TL(L∗,k))

·
l∗

∏
j′=1

l∗

∏
k=1,k 6= j′

(
gabcdk/d2

j′
)(L|i−TL(L∗, j′))/(L|i−TL(L∗,k)) ·

(
uL|ih

)r′i ,

Ki,2 = g−ri = g−∑
l∗
k=1 acdk/(L|i−TL(L∗,k))−r′i =

l∗

∏
k=1

(
gacdk

)−1/(L|i−TL(L∗,k))g−r′i .

Note that the term ∏
l∗
j′=1 gabc/d j′ of Ki,1 that is not given in the assumption is cancelled. The challenge

ciphertext component CH( j) is also correctly distributed as

C1 = wt
d( j)

∏
i=1

vsi =
(
gw′ga)c

d( j)−1

∏
i=1

vsi
(
gv′

l∗

∏
j′=1

gac/d j′
)−dk+s′

d( j)

= (gc)w′
d( j)−1

∏
i=1

vsi ·
(
gdk
)−v′

l∗

∏
j′=1, j′ 6=k

(
gacdk/d j′

)−1 · vs′
d( j) ,

Cd( j),1 = gs
d( j) = g−dk+s′

d( j) =
(
gdk
)−1gs′

d( j) ,

Cd( j),2 =
(
uL( j)

h
)s

d( j) =
(
gu′L( j)+h′

l∗

∏
j′=1

gb(L( j)−TL(L∗, j′))/d2
j
)−dk+s′

d( j)

=
(
gdk
)−(u′L( j)+h′)

l∗

∏
j′=1, j′ 6=k

(
gbdk/d2

j′
)−(L( j)−TL(L∗, j′)) ·

(
uL( j)

h
)s′

d( j) .
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Note that the term gac of C1 is cancelled and the term gbdk/d2
k of Cd( j),2 is not needed since L( j) = TL(L∗,k).

This completes our proof.

Theorem C.6 ( [21]). The above KP-ABE scheme is selectively secure under chosen plaintext attacks if the
q-RW2 assumption holds.

Note that the simulators of Theorem C.5 and Theorem C.6 satisfy three conditions for meta-simulation:
1) it sets g of PP as that in the assumption; 2) it implicitly sets the master key as ab where a,b are variables
in the assumption; 3) it sets gt of the challenge ciphertext header as gc of the assumption.

Theorem C.7. The above RS-ABE scheme is secure in the selective revocation list model under cho-
sen plaintext attacks if the q-RW2 assumption holds. That is, for any PPT adversary A, we have that
AdvRS-ABE

A (λ )≤ Advq-RW2
B (λ ).

The proof of this theorem is almost the same as that of Theorem 5.6 since the simulator of Theorem 3.1
for the security proof of SUE and the simulator of Theorem C.6 for the security proof of KP-ABE satisfy
the tree conditions for meta-simulation. We omit the proof of this theorem.
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