
High Parallel Complexity Graphs and Memory-Hard Functions

Joël Alwen?, Vladimir Serbinenko?

IST Austria1, Google Zürich2

jalwen@ist.ac.at, phcoder@gmail.com

Abstract. We develop new theoretical tools for proving lower-bounds on the (amortized) complexity of functions
in a parallel setting. We demonstrate their use by constructing the first provably secure Memory-hard functions
(MHF); a class of functions recently gaining acceptance in practice as an effective means to counter brute-force
attacks on security relevant functions.

Pebbling games over graphs have proven to be a powerful abstraction for a wide variety of computational models.
A dominant application of such games is proving complexity lower-bounds using “pebbling reductions”. These
bound the complexity of a given function fG in some computational model M of interest in terms of the pebbling
complexity of a related graph G, where the pebbling complexity is defined via a pebbling game G. In particular,
finding a function with high complexity in M is reduced to (the hopefully simpler task of) finding graphs with
high pebbling complexity in G. We introduce a very simple and natural pebbling game Gp for abstracting parallel
computation models. As an important conceptual contribution we also define a natural measure of pebbling com-
plexity called cumulative complexity (CC) and show how it overcomes a crucial shortcoming in the parallel setting
exhibited by more traditional complexity measures used in past reductions. Next (analogous to the results of Tarjan
et. al. [PTC76,LT82] for sequential pebbling games) we demonstrates, via a novel and non-tibial proof, an explicit
construction of a constant in-degree family of graphs whose CC in Gp approaches maximality to within a polylog-
arithmic factor for any graph of equal size.

To demonstrate the use of these theoretical tools we give an example in the field of cryptography, by constructing
the first provably secure Memory-hard function (MHF). Introduced by Percival [Per09], an MHF can be computed
efficiently on a sequential machine but further requires the same amount of memory (or much greater time) amor-
tized per evaluation on a parallel machine. Thus, while a say an ASIC or FPGA may be faster than a CPU, the
increased cost of working memory negates this advantage. In particular MHFs crucially underly the ASIC/FPGA-
resistant proofs-of-work of the crypto-currency Litecoin[Cha11], the brute-force resistant key-derivation function
scrypt [Per09] and can be used to increase the cost to an adversary of recovering passwords from a compromised
login server. To place these applications on more sound theoretic footing we first provide a new formal definition
(in the Random Oracle Model) and an accompanying notion of amortized memory hardness to capture the intuitive
property of an MHF (thereby remedying an important issue with the original definition of [Per09]). Next we define
a mapping from a graph G to a related function fG. Finally we prove a pebbling reduction bounding the amortized
memory hardness per evaluation of fG in terms of the CC of G in the game Gp. Together with the construction
above, this gives rise to the first provably secure example of an MHF.

? The work was done primary while both authors were at ETH Zürich. This work of the first author was also partly funded by the
European Research Council under an ERC Starting Grant (259668-PSPC).

1 Introduction

Since its inception by Hewitt and Paterson [HP70] and Cook [Coo73] the standard (black) pebbling game
and its derivatives have proven to be extremely useful abstractions in computer science. For example the
black pebbling game underlies the proof of Hopcraft, Paul and Valiant [HPV77] showing that a multitape
TM with deterministic time t(n) can be simulated on a (standard) TM in deterministic space t(n)/log(t(n)).
In the context of code optimization, the game was used by Sethi [Set75] to show that determining if a given
program can be executed using k registers is NP-complete.

On the highest level, the standard pebbling game over a directed acyclic graph (DAG) can be thought
of as a game in which pebbles are placed on and removed from the nodes of a given DAG G in a sequence
of steps according to the following simple rules. A node may contain at most one pebble at a time and the
ultimate goal is to having placed a pebble, at least once, on each node from a set of target nodes (for example
all sink nodes of G1).

1. A pebble can be placed on a node only if all of it’s parents already contain a pebble at the end of the
previous step. In particular a pebble may always be placed on nodes with in-degree 0.

2. A pebble can be removed from G at any time.

A given execution of the game (called a pebbling of G) is assigned a cost and so the complexity of G is the
minimal cost of any legal and complete pebbling of G. A common cost measure is the S-cost where S is the
maximum number of simultaneous pebbles on G during any step of the pebbling. Alternatively the ST-cost
is the product of the maximum number of simultaneously used pebbles and the number of steps needed to
complete the pebbling. More generally, one can consider the trade-off between the values S and T say by
describing the minimal value of T as a function of S.

With this in mind, the pebbling paradigm can now be described in terms of three steps.

1. Initially a “real world” computational modelM is fixed2 and the associated cost of a given computation
inM is defined.3

2. Next an idealized computational model is formalized by specifying the rules governing a pebbling game
over DAGs and an associated cost is fixed. In particular this gives rise to a precise notion of the com-
plexity of a DAG.

3. Finally, for a function fG, related to some DAG G,4 a reduction is given showing that fG can computed
at no less cost inM then (some function of) the complexity of G.

The power of this approach is that, analysing the computational complexity of such functions in M is
reduced to the (presumably significantly easier) task of analysing the pebbling complexity of DAGs.

Memory-Hardness. A memory-hard function (ensemble) (MHF) is a ensemble F = {fn : n ∈ N} of fam-
ilies of hard to compute functions fn = {gn,i} equipped with a hardness parameter n. The precise notion
of computational hardness is motivated by exploiting the real-world asymmetry between the large (mone-
tary) cost of working memory for circuits and the (comparatively) low cost for general purpose computers.
More formally this asymmetry can be viewed as the difference between measuring turing machine efficiency
in terms of runtime (assuming polynomially bounded memory usage) while VLSI efficiency is commonly

1 A sink node is a node with no outgoing edges.
2 Say oracle-machines, TM, register-machines, pairs of ITMs or interactive RAMs for example.
3 Say the number oracle calls, amount of work tape used, computational steps performed by the ITM, the communication com-

plexity between the pair of ITMs, or the amount of storage accessed by the RAM.
4 Commonly G describes the dependencies between inputs, intermediate values and the outputs involved in computing fG.

2

measured in terms of AT-complexity [Tho79]; i.e. the product of runtime and area of the circuit. The con-
cept was first introduced by Percival [Per09] with the application of password hashing in mind. In order to
mitigate the cost of an attacker breaking into a login server and stealing the credential files, Percival suggests
instead of storing a user’s password p, an MHF can be used by a login server to store (n, i, z) where i is a
fresh random index and z := gn,i(p). That way, when an adversary learns (n, i, z), the cost of brute-forcing
gn,i to recover p from z could be scaled according to n as chosen by the login server.5

Starting from the observation that, in practice, while login servers are usually implemented using general
purpose computers, the most effective computational environments used to mount brute-force attacks (FP-
GAs, ASICs [Fou98] and GPUs [Gos12]) are highly parallel circuits, Percival proposes the following notion
of hardness for an MHF. A ensemble F is an MHF if for any n ∈ N and any parallel algorithm6 computing
gn,i (on any input and random i) using memory M and work (time) W it holds that M ∗W ∈ Ω(n2) and
moreover gn,i can always be computed with workW ∈ O(n) even by a sequential algorithm. The (somewhat
implicit) reasoning for this is that repetitively evaluating functions in the ensemble, even with a massively
parallel circuit (but in a bounded amount time) still requires a large amount of (expensive) memory making
circuit based brute-force attacks less economical. More formally while the runtime of a TM evaluating gn,i
is O(n) the AT-complexity of a circuit-based brute-force attack scales in O(n2) per password attempt.

The candidate function proposed in [Per09] has since seen a some success in practice. For example
it has been used as a core building block to construct Proofs-of-Effort (PoE); that is an interactive proof
systems where a prover can only convince a verifier to accept if the prover has exerted a certain amount of
computational effort during the protocol execution. Indeed such a construction (where the effort takes the
form of repeatedly evaluating the underlying MHF) underlies both of the crypto-currencies Litecoin [Cha11]
and Dogecoin [Pal13] and the more general P2P secure public ledger [BDLHA13]. 7.

Unfortunately it turns out that formalization of memory hardness used in [Per09] is inadequate for both
password storage and PoE. In particular the notion does not, in general, scale well with repeated evaluations
of gn,i on distinct inputs (which is precisely the task of the adversary in a brute-force attack and the PoE con-
structions). Intuitively the shortcoming can be understood via the following example. Suppose computing
gn,i initially (but briefly) requires O(n) memory followed by a phase requiring O(n) sequential work but
very little memory. The result is that fn is memory-hard according to the formalization of [Per09]. However
in a parallel environment once the memory intensive phase of a first evaluation has been completed a second
evaluation of gn,i (on new input) can begin using the now available space long before the first computation
is actually complete. Using such a pipelining approach we see that the amortized hardness gn,i may actu-
ally be much less then the hardness of a single copy of gn,i. Never the less the motivation (of forcing large
amortized AT-complexity relative to sequential runtime) remains of interest.

1.1 Our Contribution

An important property of (most variants of) the standard pebbling game is that they require that at most one
pebble be touched per step. Intuitively this restricts the applications of such games to sequential computa-
tional models. However motivated the ever increasing prevalence of parallelism in modern computational
systems (e.g. GPUs, custom circuits, multi-core CPUs, cloud computers, etc.) the goals of this work are two
fold. First, we provide simple and intuitive but powerful tools for applying the pebbling paradigm to parallel

5 Here it is assumed that the most efficient way of inverting gn,i for relatively low entropy passwords is to simply brute-force the
function until a preimage is found; an assumption which seems to hold in practice.

6 That is an algorithm able to perform multiple computational steps in parallel.
7 In fact, essentially the same transformation but for a different type of moderately hard function also underlies the PoE in the

crypto-currency Bitcoin [Nak09] as well as the provably secure PoE constructions of [DGN03,DNW05])

3

settings, especially when concerned with repeated or composed computation. Second, we demonstrate these
tools by realizing a new ensemble of provably secure (and formally robust) MHF functions.

We begin by modifying the rules of the standard pebbling game to obtain a very natural parallelised
generalization. In particular we allow the rules to be applied batch-wise removing the restriction on the
number of pebbles touched per step. Next we we introduce a new more fine-grained cost measure called the
cumulative complexity (CC) of a graph. Put simply the CC of a given execution in the (parallel) pebbling
game for graph G is the sum of the number of pebbles lying on G when summed across all steps in the
execution.

To motivate the new definition in the parallel setting we show that, in contrast to both S-complexity and
ST-complexity, the CC of a graph consisting of several disconnected components is equal to the sum of the
CC of each of it’s components. In particular, as we show later, this makes CC a much more useful tool for
analysing the cost of evaluating several hard functions in parallel. This takes on special importance when
considering the amortized cost of repeated function evaluation in parallel models. In contrast for any m ≥ 1
we give a DAG Gm of size Θ(m2) for which the parallel ST-complexity of Θ(m) copies of G is essentially
the same as the parallel ST-complexity of a single copy of G

Next we provide some upper and lower bounds for the CC of specific classes of DAGs. A trivial algo-
rithm shows that no DAG of size n can have parallel CC (nor ST-complexity) greater then n2. Moreover if
no restrictions are place on the in-degree of nodes then a trivial construction essentially matches this bound.
However many interesting past applications of the pebbling paradigm required graphs to have low (usually
constant) in-degree.8 Therefore, henceforth we restrict ourselves to constant in-degree graphs.

To further motivate our new construction we look at some known constructions with extreme time/memory
requirements in the sequential setting. We start with a family of DAGs consisting of stacks of superconcen-
trators which, in the sequential setting, exhibit an extreme trade-off between S and T [LT82]. That is even if
just a few less than n pebbles are used the required (sequential) time grows exponentially. However a sim-
ple observation about the limits of the CC of a depth d graph combined with the linear-superconcentrator
construction of [Pip77] show that in the parallel setting these stacks can have CC as low as O(n log2(n)).
In a similar spirit we look at bit-reversal graphs which are known to enjoy optimally high sequential ST-
complexity ofO(n2) [LT82]. We demonstrate a parallel pebbling algorithm with a CC ofO(n1.5) for a class
of graphs that include bit-reversal.

In light of these results, for any size n ∈ N we construct a DAG of in-degree 2 and show (via a novel and
somewhat involved analysis) that its CC is Ω̃(n2). In particular for any constant ε > 0 the CC grows faster
than Ω(n2−ε). The construction consists of O(log(n)) layers of depth-robust graphs [EGS75,MMV13]
which are graphs that still contain a long path even after some constant fraction of nodes is removed. Edges
are then added to connect all layers into a single path spanning the entire graph. Finally, the nodes of neigh-
bouring layers are connected using a new bit-mixing structure which, intuitively, ensures that if a set of
nodes are close in one layer then their bit-mixed neighbours are widely dispersed across the next layer. The
proof proceeds in three steps. The first (requiring most of the work) constructs a graph family with loga-
rithmic in-degree and only for a subset of all sizes but with high CC. The second and third steps remove
these relaxations. At its core, the proof (of step 1) eventually boils down to a case distinction reflecting an
intuitive choice available to any pebbling of the graph. On the one hand, few pebbles could be used but
(hopefully) resulting in many steps. Alternatively, much fewer steps may be needed but at the cost of using
more pebbles. Of course an complete pebbling may alternate between or even mix these strategies at differ-

8 For example when analysing bounded fan-in circuits, register allocation for programs with instruction sets having a limited
number of arguments, or turing machines with a bounded number of tapes.

4

ent times and/or different parts of the graph so formalizing this intuition requires defining some finely tuned
properties of a pebbling and careful analysis.

An Application to Memory-Hard Functions As an application of these tools we use the pebbling paradigm
to define and construct a new MHF. In particular we put forth the first (formal) notion of a memory hard
functions which enjoy parametrized amortized hardness in a parallel setting. For this we use the parallel
random oracle model (pROM) in which algorithms can make batches of oracle queries in a single step. To
motivate the new notion we show how it can be used to estimate the dollar cost of brute-forcing such a
function either by building a custom circuit (e.g. an FPGA or ASIC) or by renting computational resources
for the task. We provide a construction in the pROM of an MHF which can be computed sequentially with
both work and memory at most n. In contrast, even when attempting to leverage parallelism and repeated
evaluations of the MHF, the AT-complexity of a brute-forcing circuit still grows in Ω̃(n2) per evaluation.9

Due to our graph construction above having constant in-degree, we need assume only an ideal compression
function rather than an arbitrary input-length RO. An added practical benefit of our construction (compared
to that of [Per09]) is that the memory access pattern when sequentially evaluating the MHF (as done by say
the login server) is independent of the input to gn,i which greatly reduces (if not eliminates) the potential for
mounting successful cache-timing attacks [BM06].

The security proof makes use of the pebbling paradigm with the tools described above. Using the notion
of hash graphs [DNW05,DKW11] we show how to obtain a family of functions fG from (single source and
sink) DAGs G in the pROM. The main technical contribution of this section is a theorem lower-bounding
the amortized hardness fG in the pROM using the CC of G in the parallel pebbling game. The reduction is
given in terms of exact security and elucidates the effect of choices such as RO output length, the hardness
parameter of the MHF and the success probability of an algorithm at computing the function. In contrast to
past results on (sequential) amortized hardness [DGN03,DNW05,FLW13] it also makes precise the effect
of finding collisions in the RO as the number of copies being computed grows.

Incidentally another consequence of this theorem and the algorithm for pebbling bit-reversal graphs is to
give rise to a new parallel brute-force attack against the MHF of [FLW13] for one of the suggested practical
parameter settings. In particular the new attack reduces the AT-complexity of special purpose brute-forcing
hardware to O(n3/2) compared to the cost of O(n2) in when brute-forcing on a sequential machine.

1.2 Related Work

The black pebbling game has a rich history and a full exposition of its application is beyond the scope
of this work. Some notable examples though are its use in modelling register allocation [Set75], turing
machine resources [Coo73,HPV77] and flowcharts [HP70,Pip80]. Moreover it has been used to explore
space/time trade-offs for many important algorithmic tasks such as matrix multiplication [Tom78], the
FFT [SS78,Tom78], integer multiplication [SS79a] and solving linear recursions [Cha73,SS79b]. More re-
cently in the field of cryptography (a two colour variant of) the game has been used to prove lower-bounds
on the number of cache misses [DNW05] or space required [DFKP13,ABFG13,FLW13] to compute cer-
tain functions by a sequential random access machine in the ROM. Finally an application of similar flavour
demonstrated in [DKW11] shows how to ensure a function can be computed no more than once on memory-
restricted secure hardware.

Another line of work uses novel pebbling games to study various classic parallel complexity classes.
One important example is the two-player game of Dymond and Tompa [DT85] whose round complexity

9 Technically these bounds are obtained for a fixed RO input size, success probability and a reasonable upper-bound on the number
of RO calls performed by the circuit.

5

models runtime of an alternating turing machine or, equivalently [Ruz79], circuit depth. A variation of
that game [VT89] was also used to characterize two parallel complexity classes; notably AC1. Raz and
KcKenzie [RM99] used a different two-player pebbling game to separate the monotone NC hierarchy.
Quite recently, in [Cha13] it was shown that for any DAG with a single sink the minimal runtimes of [DT85]
and [RM99] (as well as the S-complexity of a variant of the black pebble game used to study reversible
computation [Ben89]) are all equivalent.

For the (sequential) black pebbling game several hard-to-pebble graphs have been explored. In [LT82]
it was shown that bit-reversal graphs of size n have an ST-cost of Ω(n2) which is optimal for graphs of
equal size. Further they show that a graph consisting of a stack of superconcentrators not only has similar
ST-cost but also exhibits an extreme space/time trade-off. That is if s pebbles are used then the time required
grows exponentially in n− s. In [PTC76] a family of graphs is given that have S-cost Θ(n/ log(n)) which
is optimal for any graph of equal size [HPV77].

We use the depth-robust graphs construction of [MMV13] which is based on that of [EGS75]. While in
the past they have been used to lower-bound circuit complexity and turing machine time [EGS75,Val77,Sch83],
more recently they have been used in a positive context in the constructions of [MMV13,DFKP13].

Memory-hard functions were first introduced in by Percival in [Per09]. Although they have been well
received in the security community they have received far less attention in the cryptographic community,
with the notable exception of [FLW13] which focuses on the sequential case and provides security proofs
using the pebbling paradigm based on ST-complexity in the black pebbling game.

Proofs-of-work have found a wide range of application such as countering spam email [DN93], web-
site metering [FM98], countering denial-of-service attacks [JB99,Ada02] and many more [JJ99]. Especially
round efficient variants have recently enjoyed an explosion of interest in the security community due to their
use in maintaining a secure fully decentralized public transaction log. In this form they are being used to
maintain various electronic cash systems [Nak09,Cha11], a distributed micro-blogging network [Mig13], a
private messaging system [Nam11], and secure domain name system [BDLHA13] for example.

Another body of work, motivated by combating DoS attacks, focuses on proofs-of-sequential-work,
known as client puzzles. These are 2-party protocols which aim to capture the intuition that the prover must
perform a certain number of sequential computations (even given parallel computational resources) in order
to convince the verifier. Most constructions [RSW96,Kv10,TBFN07,JM11] rely on assumptions about the
parallel hardness of non-standard structured problems with the exception of [MMV11,MMV13] which are
information theoretically secure in the random oracle model. Another common trait of these works is that
they only exhibit a linear gap in the runtime of the (honest) prover and verifier except for that of [MMV13]
which enjoys a polylogarithmic gap.

1.3 Overview

In Section 2 we fix our notation. In Section 3 we introduce the parallel pebbling game and the cumulative
complexity measure. In Section 4 we show some lower-bounds and upper-bounds on the CC of various types
of graphs including for the new family of high CC graphs. Turning to the main application, in Section 5
we introduce the pROM and a notion of amortized memory hardness for functions over strings. Finally
in Section 6 we give the reduction lower-bounding the hardness of our memory-hard functions in terms of
the CC of their underlying DAG. The appendix contains missing technical lemmata.

6

2 Tools and Notation

We denote by N the set of non-negative integers and for some condition C we write NC to denote the subset
of N satisfying C. For example N≤3 = {0, 1, 2, 3}. For integers a ≥ b we write [a] := {1, . . . , a} and
[a, b] := {a, a+ 1, . . . , b}. For a set H we writeH←H to denote sampling a fixed uniform random valueH
from H.

The source nodes of a directed acyclic graph (DAG) are the nodes with in-degree 0. Similarly the sink
nodes with out-degree 0. The size of a DAG is the number of nodes and its depth is the length of its longest
path. We call a DAG simple if it has a single source and sink and in-degree 2. If for i ∈ [2], Gi = (Vi, Ei)
are a pair of node disjunct DAGs then write G1 + G2 := (V1 ∪ V2, E1 ∪ E2) to denote the DAG obtained
by combining the two into a single graph. In particular graphs can be self-composed. For DAG G = (V,E)
and m ∈ N we write G×m to denote the DAG obtained by viewing m independent copies of G as a single
graph. In other words G×m has m∗ |V | nodes partitioned into m subsets eache with the same edge structure
as G.

We use the following lemma bounding the success probability of a predictor getting short correlated
hints. A proof can be found in [DKW11] for example.

Lemma 1. Let B = b1, . . . , bu be a sequence of random bits. Let P be a randomized procedure which gets
a hint h ∈ H, and can adaptively query any of the bits of B by submitting an index i and receiving bi. At
the end of the execution P outputs a subset S ⊆ {1, . . . , u} of |S| = k indices which were not previously
queried, along with guesses for all of the bits {bi|i ∈ S}. Then the probability (over the choice of B and
randomness of P) that there exits some h ∈ H for which P(h) outputs all correct guesses is at most |H|

2k
.

3 Parallel Graph Pebbling

We formalize an intuitive computational model of parallel graph pebbling and motivate a new complexity
notion for graphs in this model.

Put simply we define a variant of the black pebbling game where pebbles can be placed according to the
usual rules but in batches of moves performed in parallel rather than one at a time sequentially.

Definition 1 (Pebbling a Graph). Let G = (V,E) be a DAG and T, S ⊆ V be node sets. Then a (legal)
pebbling of G (with starting configuration S and target T) is a sequence P = (P0, . . . , Pt) of subsets of V
such that:

1. P0 ⊆ S.
2. Pebbles are added only when their predecessors already have a pebble at the end of the previous step.

∀i ∈ [t] ∀(x, y) ∈ E ∀y ∈ Pi \ Pi−1 x ∈ Pi−1.

3. At some point every target node is pebbled (though not necessarily simultaneously).

∀x ∈ T ∃z ≤ t x ∈ Pz.

We call a pebbling of G complete if S = ∅ and T is the set of sink nodes of G.

In particular pebbles can be placed on a source node or removed from any node at any time.
We can now ready to define a our complexity notions for DAGs.

7

Definition 2 (Cumulative Pebbling Complexity). Let G be a DAG, P = (P0, . . . , Pt) be an arbitrary
pebbling of G and Π be the set of all complete pebblings of G. Then the (cumulative) cost of P and then
cumulative complexity (CC) of G are defined respectively to be:

p-cost(P) :=

t∑
i=0

|Pi| cc(G) := min {p-cost(P) : P ∈ Π} .

Moreover the space complexity (SC) and space/time complexity (STC) are defined as follows:

s-cost(P) := max{Pi : i ∈ {0, . . . , t}} sc(G) := min {s-cost(P) : P ∈ Π}

st-cost(P) := k ∗max{Pi : i ∈ {0, . . . , t}} stc(G) := min {st-cost(P) : P ∈ Π}

Amortized Graph Complexity. Unlike the standard pebbling complexity notions of SC and STC, for the
parallel pebbling game, CC is also an amortized complexity notion. In fact it scales additively in the CC of
the individual disconnected components of the graph. We prove this property of CC formally in the following
lemma.

Lemma 2. For i ∈ [2] let Gi = (Vi, Ei) be a pair of node disjunct DAGs and let G = G1 + G2. Then
cc(G) = cc(G1) + cc(G2).

In particular for any DAG G and m ∈ N it holds that cc(G×m) = m ∗ cc(G).

Proof. By concatenating optimal pebbling of the two sub-graphs (and removing any pebbles immediately
from fully pebbled components) we obtain a pebblingPopt ofGwhich has a cost of p-cost(Popt) = cc(G1)+
cc(G2) which implies that cc(G) ≤ cc(G1) + cc(G2).

Moreover any pebbling P ofG can be split into a pair of pebbling P1 and P2 for the sub-graphs such that
p-cost(P) = p-cost(P1) + p-cost(P2). For example to create P1 all nodes from G2 are removed from the
component sets of P and any resulting component sets are completely removed. It is easy to verify that the
result is a complete pebbling for P1 according to Definition 1. Thus we also have cc(G) ≥ cc(G1)+cc(G2).

ut

Trivially no version of Lemma 2 holds for SC. Indeed, by sequentially pebbling the individual com-
ponents of a graph we see that the resulting SC of the graph is no more then the largest SC of any single
component. Next, we also give a DAG for which the STC of pebbling a single copy is essentially the same
as pebbling many copies.

Lemma 3. Let m be a positive integer. There exists a DAG G with Θ(m2) nodes and integer n = Θ(m)
such that stc(G×n) = O(stc(G)).

The proof consists mainly of a straightforward adaptation of an argument given in [Sav97] concerning
pyramid graphs. Graph G is constructed out of two components, the first is a pyramid graph which is shown
to require m pebbles but using only

√
m steps while the second, a path of length m requires only 1 pebble

butm steps. Thus while pebbling the chain of the first copy ofG up to
√
m other copies ofG can be pebbled

in parallel while only 2m pebbles are required in total. Moreover, with this pipelining approach the total time
required only doubled compared to that needed for a single copy of G. The details follow.

8

Proof. Let m̄ = m(m+ 1)/2. The m̄-node pyramid graph P (m̄) = (Vm̄, Em̄) has m layers of nodes where
the layer i ∈ [m] contains i nodes. We identify a node with a pair of integers (a, b) where a ∈ [m] denotes
its layer and b ∈ [a] denotes its position in that layer. Thus Vm̄ := {(a, b) : a ∈ [m], b ∈ [a]}. Moreover
node has at most two outgoing edges connecting it to the node in the next smallest layer at the same position
(if it exists) and the previous position (if it exists). In symbols Em̄ := {((a, b), (c, d) : a ∈ {2, . . . ,m}, b ∈
[a], c = a − 1, d ∈ {b − 1, b} \ {0, c + 1}}. Let G be the graph consisting of P (m̄) extended with m̄-
node chain C(m̄) (i.e. a path of length m̄) beginning at its peak, namely at node (1, 1). In particular G has
2m̄ = O(m2) nodes.

We first show that stc(G) = O(m3). Since G contains (several) paths of length m̄ + m any complete
pebbling of G must have at least as many steps by the pigeonhole principle. Moreover in the standard (i.e.
non-parallel) black pebbling game for graph P (m̄) any complete pebbling must have a step Pi with at least
m pebbles (see Lemma 10.2.1 of [Sav97] for a proof). The same argument caries over to our setting. In
particular consider a step where (1, 1) has a pebble on it. Then in that step trivially any path from nodes in
layer m to (1, 1) has a pebble on it. Thus there must be a first step Pi in the pebbling when this holds for all
such paths. Moreover it must be that Pi contains (at least one) pebble on a node (m′, j) for some j ∈ [m′]
which is not in Pi−1 as otherwise Pi−1 would also have pebbles on all such paths. Let π a the newly covered
path from (m, j) to (1, 1) not already covered in Pi−1. Moreover for a ∈ [m] let πa be the path from (m, j)
to (1, 1) which merges with π as early as possible for any path connecting (m, j) and (1, 1). (In particular
πj = π.) Then by assumption each πa contains a pebble in Pi but the only pebble on π is on node (m, j).
However all πa are pairwise node disjunct except for the nodes they share with π. Thus there must be at
least m − 1 further pebbles in Pi to cover each of these paths implying that |Pi| ≥ m. Finally by pebbling
each layer in parallel one step at a time followed by the nodes of C(m̄) in sequence we obtain a complete
pebbling of G with the largest set being |P1| = m and so stc(G) = m2 +mm̄ = O(m3).

LetG′ consist ofm independent copies ofG. It remains to show that stc(G′) = O(stc(G)) which we do
by giving a simple algorithm for pebbling G′. We pebble the first copy of G layer by layer in parallel as just
described. After each m steps we begin to simultaneously pebble a new copy of G in the same way. Thus
at no point is more than one copy of P (m̄) being pebbled and no more than m copies of G being pebbled
which means that no step requires more than 2m pebbles. Moreover after m2 steps we start pebbling the
final copy of G and so G′ is fully pebbled in m2 +m+ m̄ steps. Thus stc(G′) ≤ 2(m3 +m2 +mm̄) which
means stc(G′) = O(m3) as desired. ut

We observe, informally, that CC also behaves relatively well for sequentially composed graphs. That is
if G1 has a single sink and G2 has a single source and G is the graph obtained by connecting the sink of
G1 to the source of G2 then cc(G) ≤ cc(G1) + 2 ∗ cc(G2). The result is obtained as follows. To pebble G
first pebble G1 optimally until a pebble is placed on it’s sink. Then, without removing that pebble, use an
optimal strategy to pebble G2. The cost of the CC of second phase can be at most twice cc(G2) implying
the upper-bound.

4 The Complexity of Graphs

We show some lower and upper-bounds for the CC of some interesting families of DAGs. By pebbling the
nodes of a graph one at a time in lexicographic order without ever removing a pebble it is clear that any
DAG with n nodes has CC at most n(n + 1)/2 = O(n2). In the first part of this section we show that
several potential candidates for achieving this bound actually fall well short of it. In the second part we give
a construction which has CC of Ω̃(n2−δ). As mentioned in the introduction we are especially interested in
graphs with constant (or at least bounded) in-degree.

9

4.1 Upper-bounds on Cumulative Complexity of Graphs

It is easy to see that any DAG of size n and depth d has CC at most dn. In particular by pebbling all nodes
possible during each iteration (and never removing a pebble) after any d′ ≤ d number of iterations all nodes
with distance at most d′ from any source will have been pebbled. Moreover during any iteration at most n
pebbles can ever be on G.

Lemma 4. Let G be a DAG of size n and depth d. Then cc(G) ≤ dn.

Superconentrators. One might hope that graphs which exhibit extreme trade-offs between the number of
pebbles used and the time required in the sequential setting also exhibit high CC in the parallel setting.
Unfortunately this is not, in general, the case.

A superconcentrator is a certain type of densely connected DAG.10 In [LT82] it was shown that for any
size n and number of pebbles S ≤ n there exists a DAG Hn of size n consisting of a certain stack of
O(log(n)) sequentially connected superconcentrators such that Hn can be sequentially pebbled in time T
only if:

T = SΩ
(n
S

)Ω(n/S)
.

In particular if S = o(n log logn/ log n) then time T becomes superpolynomial. However, in terms of
achieving high parallel CC, intuitively the problem with Hn is that it is not deep enough. The construction
of [LT82] uses Pippenger’s construction of superconcentrators [Pip77] which, for any size m ∈ N results in
depth only O(log(m)). Thus Hn has depth only log2(n). But then Lemma 4 implies that it can has parallel
CC at most O(n log2(n)) which is well bellow our trivial upper-bound of O(n2).

Bit-Reversal Graphs. Another interesting family of graphs are bit-reversal graphs. It was shown in [LT82]
that (in the sequential setting) any pebbling using S pebbles requires time T such that ST = O(n2). Again
one might hope that such graphs could have high parallel CC. Instead we now describe an algorithm which
can (in particular) pebble the bit-reversal graph of size n using cumulative cost of at most O(n1.5).

Let n ∈ N be even. A sandwich graph is a chain of n nodes (numbered 1 through n) with arbitrary
aditional edges connecting nodes from the first half of the chain with nodes of the second half of the chain
such that no node has in-degree greater than 2. As a special case we get the permutation graphs and bit-
reversal graphs of [LT82].

Lemma 5. Any sandwich graph G of size n has cc(G) = O(n1.5).

Proof. To avoid clutter we assume that
√
n is an integer. The following ideas can easily be generalized. To

pebble a sandwich graph execute the following rules for each iteration i ∈ N.

1. If i mod
√
n = 0 then place a pebble on node 1.

2. For each pebble on a node v ∈ [n] place a pebble on node v + 1.
3. Remove any pebble on nodes {(n/2)+1, . . . , n} except the one on the highest valued node (if it exists).
4. Let m be the highest valued node with a pebble on it. Remove any pebble on nodes v ∈ [n/2] except if

(i− v) mod
√
n = 0 or if there is an edge (v,m+ j) for some 0 < j <

√
n and m+ j > n/2.

10 The exact definition is not important here so we have omitted it.

10

We argue that the resulting pebbling is legal and complete, taking time n. The only violation of the
pebbling rules can occur due to the second rule. It can inductively seen this never happens and moreover
that at the end of iteration i there is a pebble on node i. The first n/2 steps are clearly legal and at the end
there is a pebble on node n/2 and 1. Thus, in step i = (n/2)+1 a pebble is placed on node i legally. Suppose
no violation has occurred up to iteration i and that a pebble is on node i − 1. Then this is the only pebble
on the second half of the chain since they were removed in iteration i − 1 due to the fourth rule. Suppose
there is no edge of the form (v, i) for some v ∈ [n/2]. Then applying the second rule in iteration i is legal
and results in a pebble on i so we are done. Suppose such an edge does exist. Since each

√
n iterations a

fresh pebble begins walking along the chain until it reaches node n/2 one of those pebbles has been on v
within the last

√
n iterations. Thus the fourth rule prevents it from being removed during the previous

√
n

iterations and so at the end of iteration i− 1 there is still a pebble on v making the placement of a pebble on
i legal.

It remains to show that the end of no iteration are there more than 2
√
n+ 1 pebbles on G. The third rule

implies that at most one pebble can ever be on the second half of G. At most
√
n nodes will remain due to

the first clause of the fourth rule. Moreover since the nodes of G have in-degree at most 2 there can be at
most

√
n edges from the first half of G ending in nodes of the second half between m and m+

√
n. Thus at

most as many will be spared removal due to the second clause of the fourth rule.
Taken together shows that the cost of the resulting pebbling can be at most n∗(2

√
n+1) = O(n1.5). ut

We remark that a consequence of Lemma 5 is that the conjecture of [FLW13], lower-bounding the ST-
cost of their memory-bound function does not hold given parallelism. In that work the authors restrict them-
selves to a sequential setting, but given the suggested application of their MHF as a “password scrambler”
for storing passwords and the highly parallel environments used to brute-force these, the parallel version of
the conjecture is still of interest. In more detail the authors construct a graph function from stack of λ ∈ N≥1

bit-reversal graphs. They suggest as practical the values of λ ∈ {1, 2, 3, 4}. However for λ = 1 their con-
struction is a sandwich graph and so Lemma 5 shows that it can be brute-forced with say an ASIC having
significantly lower AT-complexity then could be hoped for given their results for the sequential computa-
tional settings.

4.2 Lower-bounds on Cumulative Complexity of Graphs

A brief warm up for a naı̈ve attempt at building a graph with high CC can be found in Appendix A. The
remainder of this section is focused on proving the following theorem.

Theorem 1. For any n ∈ N large enough there is a simple (efficiently and explictely constructable) DAG
Gn such that:

cc(Gn) ∈ Ω
(

n2

(log10 n)(log log n)2

)
.

On the highest level the proof can be broken down into the following steps.

1. Prove a relaxation of the theorem. The graphs may have in-degree up to log3 n. Moreover they need
exist only for a (not too) sparse sub-sequence of possible sizes n ∈ N.

2. Remove the relaxation on the in-degree and number of sinks.
3. Fill in graphs for the missing sizes to obtain a sequence covering every (large enough) size n ∈ N.

11

Proving the Relaxed Case. Our goal in this part of the proof to show the following relaxation of Theorem 1.
The first difference is that instead of constant in-degree it requires only that the in-degree be polylogarithmic
in the size. Later in step (2), we show how to reduce the in-degree δ of any DAG such that the effective result
is a DAG whose CC is a δ−3 multiple of the original. The second difference is that we don’t need a graph for
every possible size. Finally we need the edge count to stay low because when reducing in-degree to constant
many edges will be replaced by intermediary nodes and we want to ensure that the sizes of the resulting
graph sequence are not to sparse so that we can finally build a sequence containing a graph of every size.

Lemma 6 (Poly-logarithmic In-degree). There exists an infinite sequence of (efficiently and explictely
constructable) DAGs (H1, H2, . . .) with sizes n1, n2, . . ., in-degrees δ1, δ2, . . . and a single source and sink
such that for all i ∈ N:

1. ni ≤ (2 + log i)2i

2. δi ≤ 3 log3(ni) + 1

3. cc(Hi) ∈ Ω
(

n2
i

log(ni)(log logni)2

)
To prove the lemma we give a construction of a graph Gω,φ,i with three parameters. Then we show how

they affect the in-degree and complexity of the graph which we summarized in the following lemma. It
represents the technical core of the proof of the theorem.

Lemma 7. Fix any φ ∈ N, 0 < ω ≤ 4−φ/6.

– LetCω,φ be a constant such that some set {D4φ−jω,2i : j ∈ Nφ} of depth-robust graphs exists ∀i ≥ Cω,φ.
– Let Cφ be a constant such that ∀i ≥ Cφ we have log(i)/i ≥ 2−φ/3.

If both constants exist then ∀i ≥ max{Cω,φ, Cφ, 11} the DAG Gω,φ,i from Construction 2 has a single
source and sink, size ni and:

1. ni = (φ+ 1)(2i).
2. indeg(Gω,φ,i) ≤ 3i3 + 1.
3. cc(Gω,φ,i) ≥ ω2

144 i
3(2i)2−2−φ .

Before we get into the construction and its proof we first show that Lemma 7 does indeed suffices
for Lemma 6. For this we use the following lemma which is a trivial reformulation of the Lemma 4.4
from [MMV13].

Lemma 8 ([MMV13], Lemma 4.4). There exists a constant C such that for any i ≥ C there exists an
(efficient and explicitely constructable) graph D2i of size 2i which is ω-depth robust for all ω ∈ (0, 1/6).

Proof (Proof of Lemma 6). We define ω and φ as functions of i and show that the resulting sequence of
graphs exists, is efficiently and explictely constructable and has that it the three properties of Lemma 6.

Set φi := dlog ie and ωi := 4−φi/6. We first argue that there exists an universal constant i0 ≥ 11
such that ∀i ≥ i0 it holds both Cωi,φi and Cφi exist and that i ≥ max{Cwi,pi , Cφi}. In particular the graph
Gωi,φi,i from Lemma 7 exists. Recall that I := 2i. We use the construction from the proof of Lemma 8
(found in [MMV13]). Thus, there is a (small) universal constant C such that for all i ≥ C the exists an
efficient explicit construction of a graph – call it DI – such that indeg(Di

2) < i3 and moreover, DI is
ω-depth robust for all ω ∈ (0, 1/6).11 In other words, for large enough i we can always set Cωi,φi = C.
11 We remark that improving the bound on the in-degree ofDI to say i3−γ results in multiplying cc(Gn) by log3γ(n) in Theorem 1.

For example the in-degree of [MMV13] can actually be bounded by Õ(i2) rather then i3 as we have used here. Using that tighter
bound would increase cc(Gn) by a multiplicative factor of almost log3(n). However for ease of exposition we have left out this
more fine-grained analysis.

12

We also observe that the inequality log(i)/i ≥ 2−dlog ie/3 is satisfied by say any i ≥ 2. Thus we can set
i0 = maxC, 11 to conclude that for all i ≥ i0 the graph Gωi,φi,i of Lemma 7 exists.

Now for each i ∈ N we define Hi := Gωi0+i,φi0+i,i0+i. Clearly, since the depth-robust graphs we use
are efficiently and explictely constructable so is Hi.

It remains to show that Hi has the three properties required by Lemma 6. Fix any i ∈ N. To avoid
clutter, we write j = i0 + i and omit the subscripts for φ and ω. The first property follows directly from the
definition of φi. For the second property we see that:

δi = indeg(Gω,φ,j) ≤ 3j3 + 1 = 3 log3(2j) + 1 ≤ 3 log3((dlog je+ 1)2j)) + 1 = 3 log3(ni) + 1.

Let n := (φ+ 1)2j be the size of Hj . For the third property we have:

cc(Hi) = cc(Gω,φ,j) =
ω2

144
j3(2j)2−2−φ ≥ ω2j3(2j)2

144(2j)2−dlog je ≥
ω2j322j

288

=
(4−dlog je)2j32j2

10368
≥ 2j2

10368j
≥ (dlog je+ 1)22j2

10368(dlog je+ 1)2j

≥ n2

10368j(2 + log j)2
≥ n2

10368 log(n)(2 + log log n)2

∈ Ω
(

n2

log n(log log n)2

)
ut

We now turn to proving the main technical lemma. We begin with the construction ofGω,φ,i. Let I := 2i

and ω ∈ (0, 1). A graphD of size I is said to be ω-depth robust if after removing any node subset of size less
than ωI their remains some path of length at least (1− 2ω)I . In the following we denote by Dω,I a ω-depth
robust graph of size I with indeg(Dω,I) = i3 (for example the ones constructed explicitely in [MMV13]).

We also need the bit-mixing function bi,φ(x, s). Its role is to produce an outputs consisting of a con-
catenation of the lower order bits of x and s such that for all pairs of inputs sharing the high order bits of
x the images are as widely dispersed as possible. However its definition is somewhat technical and requires
several constants which we will repeatedly use through out the proof. For an implicit but fixed i and φ we
define the following three constants:

α :=
⌊
(1− 2−φ)i

⌋
β :=

⌊
(1− 2−φ)i+ 3 log i

⌋
R := 2β−α

Notice that for any i such that (log i)/i ≤ 2−φ/3 it holds that β ≤ i. By assumption we have restricted
ourselves to the setting i ≥ Cφ so we can conclude that β ≤ i.

For implicit but fixed i and φ we define the bit-mixing function b(x, s) : N<2i × N<R → N<2i to be
bi,φ(x, s) = (2i−αx + 2i−βs) mod 2i. In particular, for any distinct inputs (x1, s1) 6= (x2, s2) where x1

and x2 share the i− α most significant bits we have |b(x1, s1)− b(x2, s2)| ≥ 2i−β .

Construction 2 For φ, i ∈ N, I := 2i and 0 < ω ≤ 4−φ/6 we construct Gω,φ,i as follows:

1. We begin with φ+1 layers where layer j ∈ N≤φ is a copy ofD4φ−jω,I . In particularGω,φ,i has (φ+1)I
nodes which we identify with the set V = N<(φ+1)I such that the nodes of D4φ−jω,I are numbered in
topological order. When convenient we also use the notation 〈a, b〉 to denote the node Ia+ b.

2. We augment Gω,φ,i with any missing edges on the path {(j, j + 1) : j ∈ [(φ+ 1)I]}.
3. We connect the nodes from one layer to their bit-mixed analogues in the next layer. More precisely we

add the edges {(〈l − 1, b(j, s)〉, 〈l, j〉) : l ∈ [φ+ 1], j ∈ N<I , s ∈ N<R}.
4. At the first layer we added the edges {(v, u) : u ∈ N<I , v ∈ {u− 2−min{u− 2, i3}, . . . , u− 2}}.

13

Intuition. Before we dive into the details we first take a moment to provide some intution for the rest of this
proof. To show that the construction has the properties we need we first fix some legal pebbling of Gω,φ,i.
Intuitively the idea show that making progress at layer j requires one of two strategies. At the moment one
starts to pebble layer j either many pebbles lie on layer j − 1 or few do.

Many Initial Pebbles: For this case, a large pebbling cost is incurred because many of the initial pebbles
(or decedents thereof) must be kept on the graph until most of layer j has been completed. To show we
define a particular notion of dependence between pebbles. Intuitively these capture a sequence of pebbles
lying on layer j− 1 which tie some initial pebble to a pebble on the origin of a particular despairer edge
leading to a node v in layer j. We call such a dependency chain a track for node v and dispersal edge e
and we say it is complete (at time t) if a pebble is placed at origin of e for the first time at time t. First we
show that many tracks are actually pebble disjoint. Next we fix any pebbling step Pt just before some
node v in layer j is pebbled. We observe that only tracks for node v can become complete at time t. That
is all tracks for nodes further along in layer j are not complete yet. But there are at least as many pebbles
still on layer j − 1 at time t as there are pebble disjunct incomplete tracks. A careful formalization of
these concepts allows us to lower-bound just how many such tracks remain at any time t. Thus summing
over the time steps it takes to pebble layer j we obtain a lower-bound incurred pebbling cost.

Few Initial Pebbles: Intuitively, for this case we obtain a large pebbling cost because most of layer j − 1
must be repebbled to make progress on layer j. In particular, the depth-robustness of layer j− 1 ensures
in that, having only a few initial pebbles on layer j−1, there is a long path somewhere in that layer with
no initial pebbles on it. Yet because of the dispersal edges originating from it going to layer j, it must
be fully pebbled by the time layer j is complete. In other words such a pebbling of layer j contains an
(almost) complete pebbling of the previous layer. We use this property to prove the statement inductively
on the number of layers in the graph.

One caveat with the above reasoning is that a pebbling of layer j may actually switch between the two
types of strategies, sometimes using few pebbles layer j − 1 and sometimes using many. Therefor in the
proof we first divide up layer j into groups of nodes located contiguously on a path. On the one hand, the
groups must be pebbled in sequence as they lie on a single path and so we can sum their individual pebbling
costs to obtain a lower-bound on the pebbling cost of the entire layer. On the other hand, they are short
enough that any pebbling must really use one of the two strategies while pebbling the entire group. Thus by
the above reasoning each one of these groups will require a large pebbling cost in it’s own right.

We are now ready to formally show that the construction satisfies the conditions of Lemma 7.

Proof. Each layer of Gω,φ,i is acyclic and edges between layers only go from lower layer to a higher one
so the DAG is acyclic. Since Gω,φ,i includes a chain spanning all nodes it has a single source and sink.
Moreover the DAG consists of (φ + 1) copies of depth-robust graphs, each with I nodes which implies
property 1.

Properties 2 is also straightforward. Nodes at any layer j ∈ [φ] have at most R + 1 ≤ 2i3 + 1 more
incoming edges (added in steps 2 and 3 of Construction 2) then they inherited from D4φ−jω,I , which has
in-degree i3, giving a total of 3i3 + 1. Nodes at layer 0 have at most i3 + 1 more incoming edges (added in
steps 2 and 4) then they inherited from D4φω,I giving a total of 2i3 + 1. So for i > 0 property 2 holds.

This leaves the proof of property 3 which we do by induction on φ. We actually prove a stronger state-
ment which lends itself well to an inductive proof and implies property 3 as a special case. We denote the
nodes at layer j ∈ [φ+ 1] as Vj := {〈j, v〉 ∈ V : v ∈ N<I}.

14

Claim. For any Gω,φ,i assume some set of less than ωI nodes U ⊆ Vφ (and incident edges) are removed
from Vφ. Then pebbling the remainder of Vφ using any starting configuration having no pebbles on Vφ has a
CC of at least ω2

144 i
3(I)2−2−φ .

The special case when no pebbles are removed and the starting configuration is empty implies the lemma.

Case φ = 0: Fix any 0 < ω ≤ 1/6. Recall that Gω,0,i consists of a single layer. The ω-depth-robustness of
DI implies that after removing less than ωI nodes there remains a path Ψ = (v1, . . . , vz) of length (at
least) z ≥ (1 − 2ω)I at this layer. Given that the starting configuration is empty the nodes along this
path must receive their first pebble at strictly increasing time intervals. To bound cc(Gω,0,i) we sum the
pebbles of the graph at the time steps just before each node Ψ received it’s first pebble. That is we bound
cc(Gω,0,i) by Σ, the sum of the in-degrees of the nodes in Ψ (since placing a pebble on a node requires
having a pebble on all it’s parents at the end of the previous step).
Assume for a moment no parents of nodes in Ψ where removed. Then each node vj would have in-degree
at least min{vj−1, i3}. Moreover, the smallest possible value of Σ would be obtained when vi3+1 = i3

in which case Σ = i3 ∗ (I(1 − 2ω)) − i6/2. But no node can be a parent of more than i3 of the nodes
on the path, so even after removal Σ can decrease by at most i3(ωI). So we can write:

cc(Gω,0,i) ≥ i3 ∗ (I(1− 2ω))− i6/2− i3Iω = i3I
(
1− 3ω − i3/2I

)
≥ ω2

4
i3I.

where the last inequality holds for any ω ≤ 1/6 and i ≥ 11.
Case φ > 0: Fix any 0 < ω ≤ 4−φ/6. As in the base case, we focus on the long remaining path Ψ in layer

φ. We split Ψ into subgroups such that the cost of pebbling the path is at least the sum of the costs of
pebbling each group. Next we show that many of these groups must have a considerable length and,
for those that are long enough, they must be relatively expensive to pebble as they either require almost
completely re-pebbling layer φ− 1 or they require maintaining a large number of pebbles on that layer.
The ω-depth-robustness of Dω,I implies that after removing less than ωI nodes there remains a path Ψ
of length z = (1− 2ω)I at this layer. To make optimal use of the bit-mixing sub-structure we select all
nodes in a group to share their i−αmost significant bits.12 Furthermore, for simplicity we only consider
large enough groups as only these contribute significantly to the final pebbling cost.
More precisely for a ∈ N<i−α we define group Γa := {(φ, v) ∈ p :

⌊
v

2α

⌋
= a} while a heavy group Γa

is one where |Γa| ≥ (1− 3ω)2α. We show that there are a large number of such groups.

Claim. There are at least 2i−α/3 heavy groups.

Proof. Suppose this is not the case. A heavy group has size at most 2α and the rest have size less than
(1− 3ω)2α. Thus Ψ has length z which is at most:

z < (2i−α/3)2α + (2i−α − 2i−α/3)(1− 3ω)2α

= 2i/3 + (2/3)2i(1− 2ω − ω)

= 2i/3 + (2/3)2i(1− 2ω)− (2/3)2iω

= (2/3)2i(1− 2ω) + (1/3)2i(1− 2ω)

= z

which is a contradiction. ut
12 Intuitively this ensures that all incoming edges from the previous layer have pairwise widely disperesed origins.

15

Suppose the node set U ⊂ Vφ has been removed from Gω,φ,i = (V,E) and fix an optimal complete
pebbling P = (P0, . . . , Pt) with target T = Vφ \ U and starting configuration S such that S ∩ Vj = ∅.
Since our long path Ψ ⊆ T but it is not contained in S it must be fully pebbled by P . We divide the
execution of P into time periods. For each group Γa the corresponding period Πa consists of all steps
after Γa has received its first pebble but before Γa+1 has received its first pebble. More precisely for
a ∈ N<i−α the period Πa the set of intervals:

Πa := {j ∈ N≤t : ∃j0 ≤ j, Pj0 ∩ Γa 6= ∅ ∧ ∀j1 ≤ j,∀b > a, Pj1 ∩ Γb = ∅}.

and by convention we define Π−1 := S. Period Πa is said to start at psa := min{Πa} and end at
pea := max{Πa}. To estimate the cost incurred during each period we define its associated cost set
CPa := {〈j, s〉 : j ∈ Πa, s ∈ Pj} which corresponds to the set of pebbles on the graph during interval
Πa. Thus the group cost of pebbling Γa is |CPa|. More generally, since the periods are pairwise disjunct
but jointly cover all time intervals we can write:

CC(Gω,φ,i) = p-cost(P) =
t∑

j=1

|Pj | =
∑

a∈N<2i−α

|CPa|.

Now if we can show that for any heavy group Γa we can bound |CPa| ≥ (ω
2

24)2α+β then we are done
because then we can write:

CC(Gω,φ,i) ≥ (2i−α/3)(ω2/24)2α+β =
ω2

72
2i+β

=
ω2

72
2i+b(1−2−φ)i+3 log(i)c

≥ ω2

144
i32i+i(1−2−φ)

=
ω2

144
i3(2i)2−2−φ .

To show this bound on |CPa| we will show that pebbling a heavy period requires either re-pebbling
almost all the lower layers or else requires keeping many pebbles on the them. In either case the resulting
cost will be large.
For a given node, we define the notion of an m-track which is a sequence of pebbles placed dur-
ing Πa that were needed to eventually place a pebble on x by traversing the mth bit-mixed parent
〈φ− 1, b(x,m)〉. Moreover the m-generator of x is the node closest to node 〈φ− 1, b(x,m)〉 which
has a pebble on it at the beginning of any m-track of x.

Definition 3 (Track and Generator). For m ∈ N<R an m-track of node x = 〈φ, v〉 ∈ Γa is a function
r : {−1, . . . , nx − 1} → V \ U with length nx such that:
1. Interval psa + nx is the first time x is pebbled. That is psa + nx = min{l : x ∈ Pl}.
2. Either r(j) = 0 or a pebble is on node r(j) at time psa+ j. That is ∀j we have r(j) ∈ Ppsa+j ∪{0}.
3. The track ends on the source of the mth bit-mixed edge. Formally r(nx − 1) = 〈φ− 1, b(v,m)〉.
4. The remainder of the track follows the path 0, 1, 2, . . . through the graph. Formally ∀j < nx − 2

either r(j + 1) = r(j) or r(j + 1) = r(j) + 1.
A maximal m-track of node x has maximal r(−1) which is called the m-generator gx,m of x. That is if
T is the set of tracks for x the generator gx,m of x is:

gx,m := r(−1) for a maximal track r ∈ argmax
r∈T

{r(−1)}.

16

The m-generator of a node is well defined. In particular we prove the following claim.

Claim. For any group Γa, node x ∈ Γa and m ∈ N<R there is (at least one) m-track r.

Proof. As x = 〈φ, v〉 ∈ Γa ⊆ T is a target it was pebbled by P ; in particular for the first time during
period Πa at time psa+nx as dictated by property 1. We define r(nx−1) = 〈φ− 1, b(v,m)〉 satisfying
property 3. For all other values we set r(j−1) = r(j) if either there is a pebble on r(j) at time psa+j−1
or ρ(j) = 0. Otherwise we set r(j − 1) = r(j)− 1. Clearly property 4 holds.
To see property 2 suppose that it didn’t hold. Then for some j we have r(j) /∈ Ppsa+j ∪ {0}. Fix the
largest such j. Since property 1 holds j < nx − 1. Moreover, by definition r(j) = r(j + 1) − 1 and
there was a pebble on r(j + 1) at time psa + j + 1 but not at time psa + j. But since the pebbling P is
legal and a pebble was placed on node r(j + 1) at time psa + j + 1 there must have been a pebble its
predecessor r(j + 1)− 1 at in the previous interval psa + j which is a contradiction to our definition of
j. ut

Recall that the proof is complete if we can show the following claim.

Claim. For any heavy group with group cost CPa it holds that |CPa| ≥ ω2

24 2α+β .

We need a step where not too many pebbles are on the graph. Since Γa is heavy it has at least (1−3ω)2α

nodes arranged along a path and so they must be pebbled one after another. Therefor the period lasts
for at least |Πa| ≥ (1 − 3ω)2α ≥ (ω/3)2α where the second inequality follows from the fact that
ω < 4−φ/3 < 1/6 < 3/10. Fix a psa ≤ q < psa + (ω/3)2α for which |Pq| < (ω/3)2i. If none exists
we are done since we can write:

|CPa| =
∑

j∈[(ω/3)2α]

∣∣Ppsa+j−1

∣∣ ≥ (ω/3)2α ∗ (ω/3)2i ≥ (ω/3)22α+β ≥ ω2

24
2α+β.

We make a case distinction on the size of k ∈ [|Γa| ∗R]; the number of distinct generators for all nodes
in Γa and all m ∈ N<R.
Case k < 2βω/3: For this case we show that almost the entire sub-graph G4φ−1ω,φ−1,i needs to be re-

pebbled. For this we want to use our inductive assumption by showing that P contains a complete
pebbling for all but (4ω)I nodes of Vφ−1. More specifically, after all nodes U are removed there
remains a complete pebbling P (contained in P) of target nodes T from starting configuration S
where:

F := (Pq+1 ∪ . . . ∪ Ppea) ∩ Vφ−1

U := (Vφ−1 \ F) ∪ (Pq ∩ Vφ−1)

T := F \ U
S := Pq \ (Vφ ∪ Vφ−1)

P := (S, Pq+1 \ (U ∪ Vφ), . . . , Ppea \ (U ∪ Vφ))

It is easy to verify that all of T is pebbled by P and S contains only nodes pebbled at time Pq.
Moreover after removing nodes and edges the constraints on when a pebble can be placed legally
can only become easier to satisfy.13 Therefor P is in fact a legal and thus complete pebbling of T
with starting configuration S.

13 For example in the case of Pq+1 \U the only question of legality could be about pebbles placed somewhere in Vφ+1. But either
their parents are in a lower layer (in which case they were pebbled Pq \U) or they are in U and so were removed from the graph.
Thus all remaining parents had a pebble at time q and so the placement at time q+1 was legal. Continuing this argument for the
remaining iterations shows that P is legal.

17

Still, to use induction to prove this case we need more; namely that U is not too large. Trivially T
contains only nodes from layer φ − 1 while S contains no nodes from that layer. So it remains to
show that

∣∣U ∣∣ < (4ω)I . For this we first lower-bound the size of F . As k is small we know that
some generator is shared by many nodes Φg ⊆ Vφ in the group. Intuitively this means that much of
Vφ−1 was repebbled in order to reach all of Φg starting from generator g. More formally we show
that for all v ∈ Φg (but one) a large chunk of nodes immediatly preceding v’s bit-mixed predecessors
in Vφ−1 are in F . Since bit-mixing achieves a guaranteed minimum separation between the origins
of any edges incoming to Φg this means that F must be relatively large.
Claim. Let m ∈ N<R, vx = 〈φ, x〉 ∈ Γa and g be its m-generator. We call the pair of nodes
vx, m distant if there exists an m̄ ∈ N<R and vy = 〈φ, y〉 ∈ Γa with m̄-generator g such that
b(y, m̄) < b(x,m). For any distant pair of nodes vx, m it holds that:

fx,m := {φ− 1} × {b(x,m)− 2i−β + 1, . . . , b(x,m)} ⊆ F.

Proof. Let py,m̄ := 〈φ− 1, b(y, m̄)〉 and px,m := 〈φ− 1, b(vx,m)〉. The image Im(r) of an m-
maximal track r of vx is an interval in [g, px,m] ⊂ N and moreover py,m̄ ∈ [g, px,m]. As vx and
vy are in the same group they share their i − α most significant bits. Therefor by definition of the
bit-mixing function px,m − py,m̄ ≥ 2i−β and so [px,m − 2i−β + 1, px,m] ∈ Im(r) where the 1 is
added since F might not contain all of Ppsa but g ∈ Ppsa . ut
For any distinct pair of distant nodes (x,m) 6= (y, m̄) we have that fx,m ∩ fy,m̄ = ∅. For any
generator g there is a unique non-distant pair (x,m) having g as a generator. Moreover during the
first (q−psa) steps of the period at most (q−psa) nodes of the group can be pebbled. Thus at step q
we are left at with at least (|Γa| − (q − psa)) nodes to pebble, each of which has R maximal tracks.
At most k of these are not distant and so we can write:

|F | ≥ ((|Γa| − q + psa)R− k)2i−β

≥ (((1− 3ω)2α − (ω/3)2α)2β−α − (ω/3)2β)2i−β

=

(
1− 11ω

3

)
2i

Recall that by assumption |Pq| < (ω/3)2i. The we can write

∣∣U ∣∣ < 2i −
(

1− 11ω

3

)
2i + (ω/3)2i = (4ω)2i.

Since each set in P is a subset of the corresponding subset of P it follows by induction on sub-graph
G4w,φ−1,i that

|CPa| ≥ p-cost(P) ≥ (4ω)2

288
i3(2i)2−2−φ+1 ≥ w2

18
22(3/2 log i+i(1−2−φ)) ≥ ω2

18
2α+β.

Case k ≥ 2βω/3: In this case we have many generators. Intuitively we’d like to conclude that for much
of the period many pebbles must lie on the graph. To do this we show that no pair of maximal tracks
for distinct generators ever interesect. That is they never share a pebble. Moreover, by definition,
as long as long as the last node of a track hasn’t recieved a pebble that track must still contain
at least one pebble. Finally we observe the, as all nodes in the group lie on the path Ψ , not too
many tracks leading to bit-mixed predecessors of Ψ can be completed during any given step of the

18

pebbling. Together these facts imply that during much of the begining of the pebbling there are many
unfinished tracks, each with it’s own pebble on the graph. The details follow.
To formalize this intuition we first take care of the corner case when k ≤ 3. That would mean that
2β ≤ 9/ω. Since the pebbles of (heavy) group Γa must be pebbled in sequence (as they lie on a
chain) we have that:

|CPa| ≥ |Γa| ≥ (1− 3ω)2α ≥ ω(1− 3ω)

9
2α+β ≥ ω2

18
2α+β

where the last inequality holds for any ω ≤ 1/6.
Suppose now that k > 4. Let v0 ≤ v1 ≤ . . . ≤ vk−1 be a set of (not necessarily distinct) nodes in
Γa and {mi ∈ N<R : i ∈ N<k} such that for all i 6= j ∈ N<k the mi-generator of vi is distinct
from the mj-generator of vj . All nodes vi lie on the same path and equality can hold for at most R
consecutive nodes. Recall that nvj is such that psa+nvj is the first step in which vj receives a pebble.
Then nvj ≥ nvj−1 where equality holds only if vj = vj−1. So nvj ≥ j/R. Recall that unless a track
has reached node 0 (which can happen to tracks only with generator 0) there is, by Definition 3,
always a pebble on the track. We claim that no such pebble can be shared between tracks originating
from distinct generators.

Claim. For any pair of nodes x, y ∈ Γa and integers m, m̄ ∈ N<R let rx be a maximal m-track of x
and ry be a maximal m̄-track of y. If gx,m < gy,m̄ then there exists no time j where rx(j) = ry(j).

Proof. Suppose the claim is false and that for some j we have rx(j) = ry(j). Then we can construct
an m-track r for x contradicting the maximality of rx. Essentially r follows rx down to time j and
then follows ry until time−1. Formally set r(z) := rx(z) for any j ≤ z < nx and r(z) := ry(x) for
any −1 ≤ z < j. Clearly r is a track for x since rx was a track for x and property 2 held for ry as
well. But it also holds that rx(−1) = gx < gy = r(−1) which is a contradiction to the maximality
of rx. ut
In summary each vj adds at least nvj to the total cost of pebbling the group except maybe for the
one whose generator is 0. This implies that:

|CPa| ≥
∑

j∈[k−1]

nvj ≥
(k − 1)k

2R
≥ 3k2

8R
≥ ω2

24
2α+β

where the third inequality follows since k > 4.
ut

Constant In-degree We show how to reduce the in-degree of a graph at the cost of some of its CC.

Lemma 9 (Reducing In-degree). Let H be an (efficiently and explictely constructable) DAG of size n ∈ N
with one source and sink and in-degree δ. Then there exists a simple (efficiently and explictely constructable)
DAG J of size at least n and at most δn such that cc(H) ≤ (δ − 1) ∗ cc(J).

Proof. To build J from H we replace each node v of H with in-degree δv by a path of δv nodes each
receiving one of v’s incoming edges. Clearly if H is efficiently and explictely constructable then so is J . To
bound cc(J) we convert any pebbling P of J into one for H and bound its cost in terms p-cost(P).

For node v we write δv := indeg(v). Fix a topological ordering O of H = (V,E), let s ∈ V be the
(unique) source node of H and for v ∈ V let p(v,1) < p(v,2) < . . . < p(v,δv) be the parents of v sorted

19

according to O. Also by convention p(s,0) := ⊥. We identify each node of J = (V ,E) with a pair of
values V ⊆ V × (V ∪ {⊥}). Initially V = {(s,⊥)} and E = ∅. For each v ∈ V \ {s} add the nodes
{(v, p(v,1)), . . . , (v, p(v,δv))} to V and edges {((v, ui), (v, ui+1)) : i ∈ [δv]} to E. For each edge (v, w) ∈ E
add the edge ((v, p(v,δv)), (w, v)) to E.

Since each v ∈ V is replaced by at at least one and at most δv nodes in V the size of J is between n and
δn. Let P = (P0, . . . , Pt) be an optimal pebbling of J . We convert it into a pebbling S = (S0, . . . , St) of
H . For each Pi build Si according to the following pair of rules.

1. For all (v, p(v,δv)) ∈ Pi add v to Si.
2. For all (v, p(v,j)) ∈ Pi with v 6= s and j < δv add {p(v,1), . . . , p(v,j)} to Si.

We show that if P is complete for J then S must be complete for H . As P is complete, the sink (x, δx) of
J is pebbled in P and so, by rule 1, x, the sink of H , must be pebbled in S. We verify that S is also legal,
i.e. that it doesn’t violate the rules of the pebbling game. Suppose it does. Let i ∈ [t] be the first violation of
the pebbling rules and v ∈ Si be a pebble violating the rules. Clearly v 6= s.

Suppose the pebble was added to Si by applying rule 1. Then (v, p(v,δv)) ∈ Pi and, since v 6∈ Si−1 it
must be that (v, p(v,δv)) 6∈ Pi−1. As P is legal, the parents of (v, p(v,δv)) must be in Pi−1. On the one hand,
that means that (p(v,δv), δp(v,δv)

) ∈ Pi−1 and so p(v,δv) ∈ Si−1 by rule 1. On the other hand, if δv > 1 then
(v, p(v,δv−1)) ∈ Pi−1 and so all remaining parents of v are pebbled in Si−1 by rule 2. Thus v ∈ Si is a legal
move.

Suppose instead that the pebbled was added to Si by applying rule 2 to a pebble (w, p(w,j)) ∈ Pi.
In particular for some 1 ≤ l ≤ j we have v = p(w,l). Since v 6∈ Si−1 it must be that l = j and so
(p(w,j), δp(w,j)

) = (v, δv) ∈ Pi−1. But then by rule 1 v ∈ Si−1 which is a contradiction.
It remains only to observe that for each Pi there are at most δ − 1 pebbles in Si. So we get that:

cc(H) ≤ p-cost(S) ≤ (δ − 1) ∗ p-cost(P) = (δ − 1) ∗ cc(J).

ut

A Graph for Every Size The last step in the proof of Theorem 1 is to fill in the sequence of graphs so that
we have a graph for every possible size.

Recall that a simple DAG is one with a single source and sink and in-degree 2.

Lemma 10. Let n0 < n1 < n2 < . . . be an infinite sequence of increasing positive numbers such that for
some constant a ∈ R and all i ∈ N it holds that ni+1/ni ≤ a. Let χ : N → N be a monotone increasing
function such that there exists an infinite sequence of simple (efficiently and explictely constructable) DAGs
(J1, J2, . . .) where Ji has size at most ni and cc(Ji) = Ω(χ(ni)). Then there exists an infinite sequence of
simple (efficiently and explictely constructable) DAGs (G1, G2, . . .) such that Gj has size j and cc(Gj) =
Ω(χ(j/a)).

Proof. In a nutshell the proof idea is to fill in the gap between Ji and Ji+1 by extending Ji with increasingly
long paths attached to its sink node. As the difference in CC between Ji and and Ji+1 is bounded and χ is
monotone increasing we can show that we can find a constant to show that the asymptotic behavior cc(Gj)
remains essentially unchanged compared to cc(Ji).

Let ψ : N≥n0 → N be the function such that ψ(j) := max{i : ni ≤ j}. For j ∈ N<n0 define Gj to be
a path of length j which implies that it is a simple (efficiently and explictely constructable) DAG and has
both size and CC j. For j ∈ N≥n0 define DAG Gj to consist of Jψ(j) with a path of length j − n appended

20

to its sink, where n ≤ nψ(j) is the size of Jψ(j). Then Gj is simple (efficiently and explictely constructable)
if Jψ(j) was and it has size n+ (j − n) = j.

By assumption ∃i0 ∈ N and constant c ∈ R such that ∀i ≥ i0 cc(Ji) ≥ c ∗ χ(ni). So if we set j0 = ni0
then we see that:

∀j > j0 cc(Gj) = cc(Jψ(j)) + (j − ni) ≥ c ∗ χ(nψ(j)) ≥ c ∗ χ(j/a).

ut

Proof of Theorem 1 Now that we have all the pieces we can prove Theorem 1.

Proof. Let (H1, H2, . . .) be the sequence of (efficiently and explictely constructable) DAGs from Lemma 6
and for each i > 0 let Hi have size ni ≤ (2 + log i)2i and in-degree δi ≤ 3 log3(ni) + 1. Then Lemma 9
implies the existence of a sequence of simple (efficiently and explictely constructable) DAGs (J1, J2, . . .)
where hi ∈ [ni, niδi] ⊆ N is the size of Ji and its CC is:

cc(Ji) ≥ (δi − 1)−1 ∗ cc(Hi) ∈ (δi − 1)−1∗ Ω
(

n2
i

log(ni)(log logni)2

)
⊆ Ω

(
(niδi)

2

δ3
i log(ni)(log logni)2

)
⊆ Ω

(
(niδi)

2

log10(ni)(log log ni)2

)
⊆ Ω

(
h2
i

log10(hi)(log log hi)2

)
.

Now we want to fill in the DAGs for missing sizes using Lemma 10. Clearly cc(Hi) grows at least as fast
as a monotonically increasing function in its size. Thus it remains only to show that the ratio of the sizes of
consecutive graphs in the sequence is bounded by a constant.

Observe that for all i ∈ N≥1 it holds that ni ≤ 22i. So we set si := 22i(3(2i)3 + 1) in which case
hi ≤ niδi ≤ si and s1 < s2 < Next we fix an arbitrary i ∈ N≥1 and write:

si+1

si
≤ 22(i+1)(3(2(i+ 1))3 + 1)

22i(3(2i)3 + 1)
= 4 ∗ 24(i+ 1)3 + 1

24i3 + 1
< 4 ∗

(
i+ 1

i

)3

≤ 32.

So by Lemma 10 there exists a sequence of simple (efficiently and explictely constructable) DAGs (G1, G2, . . .)
such that Gj has size j and:

cc(Gj) ∈ Ω
(

(j/32)2

log10(j/32)(log log(j/32))2

)
⊆ Ω

(
j2

log10(j)(log log j)2

)
.

ut

5 Memory Harndess in the Parallel Random Oracle Model

We formally describe the Parallel Random Oracle Model (pROM) together with a notion of computational
hardness lower-bounding the expected amortized cumulative memory usage required to compute a given
function in the pROM. We motivate the definition by showing how it can be used to provide meaningful
bounds on the cost building a circuit to repeatedly evaluate the function.

21

5.1 The Parallel Random Oracle Model

The primary computational entity in the pROM is a probabilistic algorithm14 T which has access to (arbi-
trarily many) parallel copies of a (stateless) oracle O. The algorithm is iteratively applied to a state which it
updates after processing the current iteration’s batch of oracle queries. We assume O is sampled uniformly
from an oracle set O and that T may depend on O but not O.

At the beginning of each iteration T receives input (x, σi) where σ1 = ∅ and σi has bit-length |σi|
which we assume to be strictly greater than 0 for all but the first and last states.15 Then T issues a batch
qi of queries to O containing |qi| individual queries. Next it receives the responses and finally it outputs
a new state σi+1.16 At the end of any iteration T can append values to a special output register and it can
end the computation by outputting a special terminate symbol ⊥ on that register. When this happens the
contents y of the output register (excluding ⊥) is considered the output of the computation. To denote the
process of sampling an output we write y←TO(x). We say that T computes fO on input x with probability
ε if Pr[y←TO(x) : y = fO(x)] ≥ ε taken over the coins of T and the choice of a uniform random oracle
O←O. Algorithm T is said to “run in time t ∈ N and make at most q queries” if it appends ⊥ to its output
register in iteration t+ 1 and

∑
i |qi| ≤ q.

A family of oracle functions (with domain D) is a set f = {fO : D → R}O∈O; that is a set of
(deterministic) functions with domain D indexed by oracles from O. For m ∈ N, the m-composition of f is
the family of oracle functions f×m = {f×mO : x ∈ Dm 7→ (fO(x1), . . . , fO(xn)) ∈ Rm}. We call an input
to a composed function valid if its m components of x are pairwise distinct.

Definition 4 (Amortized Cost). The cost of running algorithm T on input x is the expected cumulative sum
of its memory usage.

costO(T, x) := E
T,O

[∑
i

|σi|

]
where the expectation is over the coins of T and choice of a uniform random O←O.

Moreover for any q ∈ N and ε ≥ 0 the complexity of an oracle function f is the lowest cost for which
some input can be evaluated correctly with at least probability ε. More precisely:

compq,ε(f) := min
x,T
{costO(T, x)}

where the minimum is taken over all (valid) inputs x and all algorithms T making at most q queries and
computing fO(x) with probability at least ε.

Finally for m ∈ N the amortized complexity of an oracle function f is:

a-compm,q,ε(f) := min
m̄∈[m]

{
compq,ε(f

×m̄)

m̄

}
.

Equipped with this notion of amortized hardness we can now define our (somewhat informal) notion of
an MHF.
14 The exact computational model (say turing machines or RAMs) is not important.
15 That is we assume, without loss of generality, that all intermediary states contain information. This is because the results of any

computation done before an empty intermediary state have no effect on the computation done afterwards and so could have been
skipped at no cost to the algorithm’s ability of computing an output.

16 In contrast to [DKW11], we do not assume that state σi contains information about future random coins used by T . For example
in the turing machine setting, σi+1 does not include the contents of the random tape. Rather the random tape is sampled once
and fixed at the beginning of the execution.

22

Definition 5 (Memory-Hard Function). Let H be a family of oracles (all with the same fixed input size
and output size). A memory-hard function (MHF) in the pROM with is a collection f = {fn : n ∈ N} with
hardness parameter n of funciton families fn = {gn,H : H ∈ H} such that:

NON-TRIVIALITY: There exists a sequential algorithm T (i.e. one making batches of oracle queries of size
only 1) such that ∀n,H and inputs x the output of TH(n, x) is gn,H(x) and T runs in time at most n
using memory at most n.

MEMORY-HARDNESS: For a reasonable upper-bounds on the number q of queries made and the number
m of copies evaluated and lower-bound on the success probability ε relative to the random oracle output
size it holds that a-compm,q,ε(f) = Ω̃(n2).

The precise definition of “reasonable” above is given in Corollary 1 bellow.

To motivate these definitions we briefly describe how they can be used to lower-bound the effective
(dollar) cost of repeteadly computing an MHF using a custom circuit such as an ASIC or FPGA.17

Custom Circuits and AT-Complexity: Traditionally, in VLSI design, the effective cost of a circuit is calcu-
lated as the product of the area (i.e. number of gates) and the time taken by the circuit.18 This effective cost
is called the AT-complexity of a circuit [Tho79]. Denote by ATa the smallest AT-complexity of any circuit
computing a copies of f (with probability at least ε while making at most q queries). We argue that, for large
enough m, the value a-compm,q,ε(f) represents an powerful tool for bounding the ATa any realistic number
of copies of f . In particular it provides a good lower-bound on the amortized AT-complixity per evaluation
of any circuit repeatedly computing f .

On the one hand ATa ≥ compa,q,ε(f) since at least as many memory components must be on the chip
as are needed per iteration on expectation. On the other hand, for any integers m ≥ b > 0 it follows imme-
diatly from the definition of CC that compb,q,ε(F) ≥ b∗a-compm,q,ε(f). In other words, by lower-bounding
a-compm,q,ε(f) we immediately obtain a lower-bound on ATa for any a ≤ m.

6 From Graphs to Hard Functions in the pROM

We show how to derive a family of oracle functions in the pROM from a given DAG. Then we give a
reduction lower-bounding the amortized cost of computing the a random function from the family by the
cumulative complexity of the graph.

The following definition is essentially taken from [DKW11].

Definition 6 (Labeling). Let G = (V,E) be a DAG, L be an arbitrary label set, H = {H : V × L∗ → L}
be the set of all such functions.19 For function H ∈ H label ` ∈ L the (H, `)-labeling of G is a mapping
lab : V → L defined recursively by:

∀v ∈ V lab(v) =

{
H(v, `) : indeg(v) = 0

H(v, lab(v1), . . . , lab(vz)) : indeg(v) > 0

17 We remark that in either case other costs may, of course, also be involved in the final tally. However we merely aim to lower-
bound the costs, not fully characterize them.

18 More generally if the circuit only computes the correct value with probability ε then the effective cost is also multiplied by ε.
19 Technically this is an infinite set making a uniform selection of an oracle ill-defined. However it suffices to consider the finite

subset of oracle which take up to the in-degree of G number of labels as input. However for the sake of exposition we will
slightly abuse notation and terminology.

23

where {v1, . . . , vz} are the parents of v arranged in some lexicographic order.
The graph functions (of G and H) are the members of the family of oracle function f = fGH , indexed

by H, mapping L to Lz where z is the number of sink nodes in G. For input ` ∈ L the value of fH ∈ f is
fH(`) = (lab(v1), . . . , lab(vz)) where the vi are the sinks of G arranged in lexicographic order and lab is
the (H, `)-labeling of G.

6.1 The Cost of Collisions

Let f = fGH be some oracle graph. When computing it on m > 1 distinct inputs x = (x1, . . . , xm) –
i.e. when computing f×m on a valid input – it may happen that we encounter collisions for H which could
drastically reduce the cost of computing some of the instances. On the other hand when computing fG

×m
H (x)

collisions can not help since each node of v ∈ G×m is distinct and so the first component of the inputs toH
defining any labels required to compute fG

×m
H is unique. In the following lemma we bound how much can

be saved using collisions by relating the cost of computing f×m making optimal use of collisions to the cost
of computing f independently some (smaller) number of times.

Lemma 11. Let G = (V,E) be a DAG with n = |V |, L be a label set of size w = log(|L|), and H be the
associated oracle set. Then for any m ∈ N with β := max{0, 1 − mn2−(w+1)} and for any q ∈ N and
ε ≥ 0 it holds that:

compq,ε(f
×m
H) ≥ compq,ε(f

(G(×βm))
H).

Proof. We assume that an algorithm computing f×m can detect and make use of collisions for free. In
particular when such a collision occur say between inputs x1 and x2 to f we assume that T can compute
f(x2) for free.

We say that a pair of labelings ofG collide if there exists a node v ∈ V with the same label. Let lab1 and
lab2 be a pair of labelings of G with the same oracle but distinct inputs `1 and `2. The the probability that
they collide is p2 = 1− (1− 2−w)n ≤ n2−w where the inequality holds for any n and w in N>0. Thus the
expected number of collisions in m labelings for distinct inputs is pm = 1

2 ∗m(m− 1)p2 ≤ m2n2−(w+1).
In other words on expectation only m− pm ≥ β ∗m copies of f need to be computed. ut

Intuitively for a large enough range of the RO, collisions should be too rare to provide significant short
cuts in any realistic computation (even under the generous assumptions we make about the algorithm in the
proof). Indeed, suppose we want to ensure that at most a β = 1− 2−80 fraction of the expected cost can be
saved by leveraging collisions. Then if the RO range size is w = 160 the above lemma shows that for any
graph size n and up to m ≤ 281

n evaluations of f must be done before more then a β fraction of the expected
cost can be saved.

6.2 The Reduction

We can now state the main technical lemma which is at the heart of the reduction. It bounds the cost of
computing a graph function once in terms of the CC of the underlying graph. Before we prove it, using ideas
adapted from [DKW11,DNW05], we give some intuition explaining why the bound should hold. Then we
state the reduction bounding the amortized cost of a graph function and use the lemma to prove it. We also
state a corollary of the reduction which simplifies the bound under some realistic constraints on the size of
the RO, the probability of succeeding and the amount of work done. Finally we spend the remainder of this
section proving the technical lemma.

24

Lemma 12 (One-Off Cost). For G, L with w := |L|, H and f = fGH as in Definition 6. Then for any
q ∈ N>0 and ε ≥ q2−w it holds that:

compq,ε(f) ≥ εcc(G)(w − log q)

εε+ 1

where ε := − log(ε− q2−w).

Intuition. Before moving on we first provide a bit of intuition behind the terms in the lemma. Let ct :=
ε(cc(G)(w − log q) − tε). We claim that an execution running in time t must have cost greater than both t
and ct. Supposing we believe this. Since ct is monotonically decreasing in t, the lowest bound is obtained
for an execution running in time t0 such that t0 = ct0 . Solving for t0 we get exactly the bound from the
lemma.

We provide some intuition for the claim. Since by assumption at least one bit is stored per iteration, the
fact that the cost must be at least the run time is clear. The intuition why the cost must be at least ct goes as
follows. Initially one might hope for a lower-bound of ct = cc(G)w. To see why ct must decrease in log q
consider, for example, an algorithm which makes every possible query to O in one batch during the first
iteration. It can immediately compute f for any input. The lower-bound must reflect this (and more refined
approaches that explorer large parts of the oracles domain).

Next, the tε term is needed because an algorithm may try and save on some ε bits preferring instead to
guess them when they are needed. For an extreme example, suppose the optimal algorithm T of computing
f requires t iterations such that the result Q of an initial oracle call is to be stored and reused as input to an
oracle call during all subsequent t− 1 iterations. Consider an algorithm T ′ that computes f according to T
except that it doesn’t store the last ε bits of Q and instead uses a fixed (hard-coded) guess for those bits each
time it needs Q. With probability 2−ε (over the choice of H) the guess will be correct and T ′ will compute
f correctly having saved tε bits in cost compared to T . The above lemma shows the limits of how much can
be saved with this approach in terms of the success probability ε and any choice of q and w.

Finally the multiplicative ε term is needed to account for algorithms which fail cheaply. Continuing with
the above example, suppose after initially obtaining oracle response Q algorithm T ′ would continue the
computation as we described only if its hard-coded guess for the last ε bits of Q are correct and otherwise
it would immediately terminate at no further cost. Then with probability (almost) ε it would compute f
correctly having saved tε compared to the cost of T and with probability (1 − ε) it would fail, but with no
further cost, essentially matching our lower-bound for the same time t and query count q of algorithm T and
any choice of success probability ε.

Amortized Cost. Before we prove the Lemma 12 state the main result of this section which reduces the
amortized complexity of a graph function to the CC of the associated graph.

Theorem 3 (Amortized Cost). Let G be a DAG with n := |V |, L be a label set of size w := log(|L|),
H = {H : V × L∗ → L} be the set of all such functions and f = fGH be the associated graph functions.
Then for any q ∈ N>0, m ∈ N and ε > q2−w it holds that:

a-compm,q,ε(f) ≥ βεcc(G)(w − log q)

εε+ 1

where ε := − log(ε− q2−w) and β := max{0, 1−mn2−(w+1)}.

25

Proof. For m̄ ∈ [m] let βm̄ := max{0, 1−mn2−(w+1)}. The theorem follows from the following calcula-
tion.

a-compm,q,ε(f) = min
m̄∈[m]

{
compq,ε(f

×m̄)

m̄

}
≥ min

m̄∈[m]

compq,ε

(
f

(G(×βm̄m̄))
H

)
m̄


≥ min

m̄∈[m]

{
εcc(G×βm̄m̄)(w − log q)

m̄(εε+ 1)

}
= min

m̄∈[m]

{
βm̄εcc(G)(w − log q)

εε+ 1

}
= βmεcc(G)(w−log q)

εε+1

where the second, third and fourth (in)equalities follow from Lemma 11, Lemma 12 and Lemma 2 respec-
tively and the last equality holds since βm is monotonically decreasing in m.

Before we prove Lemma 12 we first formulate a corollary of the theorem which shows that for realistic
settings of the variables the intuition that the cost should be at least εwcc(G) is essentially correct. In
particular we only consider algorithms which can make up to the birthday bound number of RO calls.

Corollary 1. Let G, n, w, m, q > 0, ε and f be as in Theorem 3 with the added constraint that the RO
range size w is large enough that w > 13 and:

– Not too many copies of f are computed. In particular mn ≤ 2w−2.
– Not too many oracle queries are made. In particular q ≤ 2w/2.
– The probability of computing f is reasonably large. In particular ε ≥ 2−w/2.

Then it holds that:

a-compm,q,ε ≥
εwcc(G)

4
.

Proof. To prove the claim we must show that β(w−log q)
εε+1 ≥ w

4 . Notice that we can bound β by:

β ≥ 1−mn2−(w+1) ≥ 1− 1/8 = 7/8.

Moreover since by assumption q ≤ 2w/2 it must be that w−log q
w ≥ 1/2. Thus it suffices to prove that

(εε + 1)−1 ≥ 4/7 which, after substituting in the definition of ε and moving terms around, is equivalent to
the inequality ε−2

−3
4ε ≥ q2−w. Suppose that ε ≤ 4

3w then we can write ε−2
−3
4ε ≥ ε−2−w ≥ q2−w. Suppose

instead that ε > 4
3w . Since w > 8 the interval I = (4

3w , 1/10] is not empty. Suppose then that ε ∈ I and
define the function g(ε) := ε − 2

−3
4ε . A straight-forward but tedious calculation (in following Lemma 13)

shows that g is monotonically increasing for interval I and takes on values greater than g(1/10) for any
ε > 1/10. Thus for ε > 4

3w we get that g(ε) ≥ g(4
3w) ≥ q2−w.

We prove the remaining technical lemma to complete the proof of Corollary 1.

Lemma 13. The function g(ε) := ε − 2
−3
4ε is monotonically increasing on (0, 1/10] ⊆ R and its minimum

in the inveral [1/10, 1] ⊆ R is at 1/10.

26

Proof. Let x = ε−1, function f(x) := x−1 − 2
−3x

4 and intervals I := [9,∞) ⊆ R and J := [1, 9]. Then if
we can show that f is decreasing on I and greater than f(10) on J then we are done.

The derivative is f ′(x) := −x−2 + 2
−3x

4
3
4 ln 2. We show that f ′ is negative on I . This is equivalent

to showing that 4
3 ln 2 ≥ x22

−3x
4 on I . Because x2 grows more slowly then 2

−3x
4 on I the right side of the

inequality is decreasing on I . So by verifying that the inequality holds already for x = 9 we can conclude
that it holds for all of I as desired.

Let function h(x1, x2) := (x1)−1 − 2
−3x2

4 then for any a > b it holds that h(a, b) ≤ f(c) for all
c ∈ [a, b]. To show the claim for interval J we fix 20 intervals [li, li+1] ⊂ R such their union con-
tains J ⊂ ∪i[li, li+1] and for all of them h(li+1, li) ≥ f(10). Let l0 = 0 and for i ∈ [20] let li =⌊
(2−3li−1/4 + (1/10))−1 ∗ 100

⌋
/100. In particular we have the following values:

l0 = 1.00 l1 = 1.43 l2 = 1.73 l3 = 1.97 l4 = 2.17 l5 = 2.36 l6 = 2.54
l7 = 2.72 l8 = 2.91 l9 = 3.12 l10 = 3.36 l11 = 3.64 l12 = 3.98 l13 = 4.41
l14 = 4.97 l15 = 5.69 l16 = 6.58 l17 = 7.53 l18 = 8.33 l19 = 8.83 l20 = 9.07

and so J is contained in the union of the intervals. Moreover for any i ∈ N<20 we can write:

h(li+1, li) = (li+1)−1 − 2
−3li

4 ≥ 2
−3li

4 + (1/10)− 2
−3li

4 = 1/10 > f(10)

ut

By combining Corollary 1 and Theorem 1 we obtain our construction of a candidate MHF in the pROM.

Corollary 2. Let G = Gn : n ∈ N be the graph from Theorem 1, H be a family of oracles and fn = fGnH
be the associated graph functions. Then f = {fn : n ∈ N} is an MHF in the pROM.

In particular the non-triviality constraint of Definition 5 is satisfied by the algorithm T which simply
computes each label in topological order storing all previously computed labels in it’s current state. At most
n labels will be stored (as Gn has n nodes), will never make more then a single oracle query per iteration
and will finish in time exactly n.

Proof of Lemma 12. The remainder of this section is devoted to proving Lemma 12. For any t ∈ N define
ct := ε(cc(G)(w− log q)− tε) which is monotonically decreasing in t. We claim that an execution running
in time t must have cost greater than both t and ct. If this is the case then the lowest bound for an execution
making at most q queries is obtained for runtime t0 such that t0 = ct0 . Solving for t0 we get exactly the
bound in the lemma.

Since, by assumption, at least one bit is stored per iteration, trivially, any execution running for t itera-
tions has cost at least t. So it remains to prove that the cost must also be larger than ct. For this we adapting
ideas from [DKW11,DNW05] to the CC setting. First we fix a method for converting an arbitrary execution
in the pROM into a pebbling of G. That will allow us to prove that (with high probability) if the execution
correctly computed fH(x) then the resulting pebbling is both legal and complete. Moreover we show that
(again with high probability) the CC of the pebbling can be upper-bounded using the cost of the execution.
In particular with high probability the cost of execution can be lower-bound in terms of the CC of the graph
as described by the definition of ct.

27

Ex-Post-Facto Pebbling. Let G be a DAG,H be a random oracle, ` ∈ L and let lab be the (H, `) labeling of
G. For convenience let pre-lab(v) denote (v, lab(v1), . . . , lab(vz)) where the vi are the parents of v arranged
in lexicographic order. For arbitrary algorithm T we derive the ex-post-facto pebbling of G from (batch of)
oracle calls (q1, . . . ,qt) made during the execution of TH(`).

An oracle callH(q) is called correct if it begins with some v ∈ V such that q = pre-lab(v). In this case
we call the parents of v the input-nodes of q and v the output-node of q. An oracle call is also correct if it has
the form (v, `, out) where out is some special symbol, v is a sink node and ` = lab(v). Next we define the
steps (P0, . . . , Pt) of the ex-post-facto pebbling. We set P0 = ∅ and define all other sets by going through
the calls in the order they were made by T and applying the following rules to each batch qi.

1. For each query q if it is correct for some v ∈ V then pebble v; that is add v to the set Pi.20

2. A node v ∈ V is called necessary if there exists a qj with j > i containing a correct oracle call with v
as an input-node but there is no qk with i < k < j containing a correct oracle call for v. Remove all v
from Pi which are not necessary.21

We prove the following pair of claims about the ex-post-facto pebbling. The first states that it is legal
with high probability while the second states that if T computed f(x) correctly then with high probability
the ex-post-facto pebbling is a complete pebbling forG and has at most a certain pebbling complexity which
depends on cost[H](T, x). Intuitively these two properties imply the lemma since any algorithm computing
f gives rise to a legal and complete pebbling ofG with a limited cost. Yet, by assumption, any such pebbling
must have at least a certain CC. Thus the algorithm must compute the function with a cost of at least a certain
size.

Fix an arbitrary algorithm T , its coins, input x and oracle H←H and let P = (P1, . . . , Pt) be the
ex-post-facto pebbling associated with TH(x).

Claim. Pebbling P is legal with probability at least 1− q
2w over the choice ofH and the coins of T .

Proof. We prove the claim by contradiction. In particular assume that with probability greater than q
2w (over

the choice of O and the coins of T) a pebble is placed on a node v (with positive in-degree) although its
parents don’t all have pebbles on them in the previous step. In other words a correct call for v is made by T
with some w as input-node although no previous correct call was made to w as output-node. By assumption
this must happen with greater than q

2w . In this case we reach a contradiction by building a predictor which
can predict at least one output value ofHwith impossibly high probability as follows. The predictor depends
on input x and can queryH at points of its choosing before outputting its prediction. Let r be an upper-bound
on the number of random bits used by T (x). The predictor also has access to a sequence of r uniform random
bits it can use to simulate the random coins of T .

Hint: The predictor receives as a hint the index i ∈ [q] of the (first) oracle call to v causing the illegal
pebble placement in P .22

Execution: It runs T (x) forwarding all oracle calls to H until the ith query. By assumption this query is
correct so it contains the labels of the parents of v at least one of which (say label `w for node w)
was not previously queried to H. The predictor can easily recompute the value of pre-lab(w) with out
queryingH(pre-lab(w) so it outputs `w as its guess for the bits ofH at position pre-lab(w).

20 Placing a pebble on v will imply that T records its label in memory. Optimistically the reduction assumes no other values need
to be stored.

21 Intuitively a necessary node is one whose label will be needed in a future query but which will not be recomputed until then.
Thus the labels of unnecessary nodes need not be stored.

22 That is the value of the hint depends both on the choice H and the random bits made available to the predictor.

28

By assumption about the probability that the ex-post-facto pebbling is legal this predictor will succeed with
probability greater then q

2w but this contradicts Lemma 1. ut

Claim. For i ∈ [t] let ci = |σi| be the bit-length of the state σi output by T at the end of iteration i. Then
for any λ ≥ 0 it holds:

Pr

[
∀i ∈ [t] : |Pi| ≤

ci + λ

w − log(q)

]
> 1− 2−λ

over the choice ofH and coins of T .

Proof. Recall that, intuitively, if v ∈ Pi if it is necessary in iteration i. That is if, during some future iteration,
T uses lab(v) as part of a (correct) query to the oracle without actually getting lab(v) from H again in the
meantime. Therefor somehow T must able to reproduce the labels of all necessary nodes of iteration i during
the later iterations using no more then the information it stored in σi. We formalize this intuition by giving
the following predictor which predicts the label of all nodes in Pi leading to a contradiction of Lemma 1.

We name the oracle calls which cause a node v ∈ Pi to be deemed necessary critical calls. There are
at most r ≤ |Pi| critical calls. As before, the predictor depends on input x and has access to H and a long
enough sequence of random bits used to simulate the coins of T .

Hint: The predictor receives as a hint the indices J = {j1, . . . , jr} ∈ [q]r of the critical calls made by T
and the state σi output by T at the end of iteration i.

Execution: It runs T on input (x, σi) recording the labels of all input-nodes of the critical calls. To answer
any oracle call Q with output-node v the predictor does the following.

– Determines if the call is correct. A call is correct if and only if it is a critical call or for each parent
wi of v a correct call for wi has already been made and Q matches the results of those calls. In
particular it is easy to see that in this case Q = pre-lab(v) and no new calls need be made by the
predictor to check this.

– If the call is correct and lab(v) has already been recorded then output it. Otherwise query H to
answer the call.

When T terminates the predictor checks the transcript to determine the set Pi. It is easy to verify that
their labels were never queried to H. Thus for all v ∈ Pi the predictor computes pre-lab(v) (using H
and the recorded labels) and outputs lab(v) as its prediction ofH(pre-lab(v)).

Now assume, for the sake of contradiction, that ∃λ ≥ 0 such that with probability at least 2−λ for some
i ∈ [t] it holds that |Pi| > ci+λ

w−log(q) and letW be the event that the predictor succeeds. Then by construction

Pr[W] ≥ 2−λ. On the other hand from Lemma 1 it follows that Pr[W] ≤ qr∗2ci
2|Pi|w

≤ 2|Pi|(log(q)−w)+ci . In

particular 2−λ ≤ 2|Pi|(log(q)−w)+ci which is a contradiction to the assumption. ut

We can now complete the proof of Lemma 12. Fix an input x and algorithm T making at most q oracle
queries and let P be random variable describing the ex-post-facto pebblings for T (x). We assume that
whenever T appends a label ` for a sink v ∈ V to its output register the query (v, `, out) is added to the list
of oracle queries made by T . While this has no effect on the cost of running T , it ensures that any correctly
labeled sink node will receive a pebble in the ex-post-facto pebbling.

Now define W to be the event that T computes f(x) correctly and assume that Pr[W] ≥ ε. Define C
to be the event that P is legal and p-cost(P) ≤ tε+

∑
ci

w−log q where t is the number of steps in P . Then the
above two claims imply that Pr[C] > 1 − q ∗ 2−w − 2−ε = 1 − ε. Therefor the probability that both W
and C occur simultaneously (in which case P is a complete pebbling of G) is positive. Thus it must be

29

that cc(G) ≤ tε+
∑
ci

w−log q and so for any execution where T computes f(x) correctly in time t its cumulative
memory usage is

∑
ci ≥ cc(G)(w − log q)− tε.

Assuming, pessimistically, that whenever T fails to compute f(x) it does so without incurring any
cost we can conclude that for any x we have that any execution running in time t must have cost at least
ε(cc(G)(w − log q)− tε) = ct which concludes the proof.

7 Acknowledgments

The first author would like to thank Krzysztof Pietrzak, Daniel Wichs, Stephan Krenn and Ueli Maurer for
their patience and many valuable discussions.

References

ABFG13. Giuseppe Ateniese, Ilario Bonacina, Antonio Faonio, and Nicola Galesi. Proofs of space: When space is of the essence.
Cryptology ePrint Archive, Report 2013/805, 2013. http://eprint.iacr.org/.

Ada02. Adam Back. Hashcash - A Denial of Service Counter-Measure, 2002.
BDLHA13. Vitalik Buterin, Anthony Di Lorio, Charles Hoskinson, and Mihai Alisie. Ethereum: A Distributed Cryptographic

Leger, 2013.
Ben89. Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Comput., 18(4):766–776, 1989.
BM06. Joseph Bonneau and Ilya Mironov. Cache-collision timing attacks against aes. In Cryptographic Hardware and

Embedded Systems - CHES 2006, 8th International Workshop, volume 4249 of Lecture Notes in Computer Science,
pages 201–215. Springer, 2006.

Cha73. Ashok K. Chandra. Efficient compilation of linear recursive programs. In SWAT (FOCS), pages 16–25. IEEE Com-
puter Society, 1973.

Cha11. Charles Lee. Litecoin, 2011.
Cha13. Siu Man Chan. Just a pebble game. In IEEE Conference on Computational Complexity, pages 133–143. IEEE, 2013.
Coo73. Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the Fifth Annual ACM Symposium on

Theory of Computing, STOC ’73, pages 29–33, New York, NY, USA, 1973. ACM.
DFKP13. Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof Pietrzak. Proofs of space. Cryptology

ePrint Archive, Report 2013/796, 2013. http://eprint.iacr.org/.
DGN03. Cynthia Dwork, Andrew Goldberg, and Moni Naor. On memory-bound functions for fighting spam. In Advances

in Cryptology - CRYPTO 2003, 23rd Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 2003, Proceedings, volume 2729 of Lecture Notes in Computer Science, pages 426–444. Springer,
2003.

DKW11. Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time computable self-erasing functions. In Yuval Ishai,
editor, TCC, volume 6597 of Lecture Notes in Computer Science, pages 125–143. Springer, 2011.

DN93. Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail. In Proceedings of the 12th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’92, pages 139–147, London, UK, UK,
1993. Springer-Verlag.

DNW05. Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Advances in Cryptology - CRYPTO
2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Pro-
ceedings, volume 3621 of Lecture Notes in Computer Science, pages 37–54. Springer, 2005.

DT85. Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by synchronous parallel machines. J.
Comput. Syst. Sci., 30(2):149–161, 1985.

EGS75. Paul Erdoes, Ronald L. Graham, and Endre Szemeredi. On sparse graphs with dense long paths. Technical report,
Stanford, CA, USA, 1975.

FLW13. Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-consuming password scrambler. Cryptology
ePrint Archive, Report 2013/525, 2013. http://eprint.iacr.org/.

FM98. Matthew K. Franklin and Dahlia Malkhi. Auditable metering with lightweight security. Journal of Computer Security,
6(4):237–256, 1998.

Fou98. Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, Wiretap Politics and Chip Design.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1998.

Gos12. Jeremi Gosney. Password Cracking HPC. Presented at Passwordˆ12 in Oslo, Norway, 2012.

30

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

HP70. Carl E. Hewitt and Michael S. Paterson. Record of the project mac conference on concurrent systems and parallel
computation. chapter Comparative Schematology, pages 119–127. ACM, New York, NY, USA, 1970.

HPV77. John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM, 24(2):332–337, April 1977.
JB99. Ari Juels and John G. Brainard. Client puzzles: A cryptographic countermeasure against connection depletion attacks.

In Proceedings of the Network and Distributed System Security Symposium, NDSS 1999, San Diego, California, USA.
The Internet Society, 1999.

JJ99. Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. In Proceedings of the IFIP TC6/TC11
Joint Working Conference on Secure Information Networks: Communications and Multimedia Security, CMS ’99,
pages 258–272, Deventer, The Netherlands, The Netherlands, 1999. Kluwer, B.V.

JM11. Yves Igor Jerschow and Martin Mauve. Non-parallelizable and non-interactive client puzzles from modular square
roots. In ARES, pages 135–142. IEEE, 2011.

Kv10. Ghassan O. Karame and Srdjan Čapkun. Low-cost client puzzles based on modular exponentiation. In Proceedings of
the 15th European Conference on Research in Computer Security, ESORICS’10, pages 679–697, Berlin, Heidelberg,
2010. Springer-Verlag.

LT82. Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on time-space trade-offs in a pebble game. J.
ACM, 29(4):1087–1130, October 1982.

Mig13. Miguel Freitas. Twister: Peer-to-Peer Microblogging, 2013.
MMV11. Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Time-lock puzzles in the random oracle model. In Phillip

Rogaway, editor, CRYPTO, volume 6841 of Lecture Notes in Computer Science, pages 39–50. Springer, 2011.
MMV13. Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Publicly verifiable proofs of sequential work. In Proceedings

of the 4th Conference on Innovations in Theoretical Computer Science, ITCS ’13, pages 373–388, New York, NY,
USA, 2013. ACM.

Nak09. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2009.
Nam11. Namecoin: A Secure Distributed Key/Value Storage System, 2011.
Pal13. Jackson Palmer. Dogecoin, 2013.
Per09. C. Percival. Stronger key derivation via sequential memory-hard functions. In BSDCan 2009, 2009.
Pip77. Nicholas Pippenger. Superconcentrators. SIAM J. Comput., 6(2):298–304, 1977.
Pip80. Nicholas Pippenger. Comparative schematology and pebbling with auxiliary pushdowns (preliminary version). In

Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC ’80, pages 351–356, New York,
NY, USA, 1980. ACM.

PTC76. Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on graphs. In Proceedings of
the Eighth Annual ACM Symposium on Theory of Computing, STOC ’76, pages 149–160, New York, NY, USA, 1976.
ACM.

RM99. Ran Raz and Pierre McKenzie. Separation of the monotone nc hierarchy. Combinatorica, 19(3):403–435, 1999.
RSW96. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release crypto. Technical report, Cambridge,

MA, USA, 1996.
Ruz79. Walter L. Ruzzo. Tree-size bounded alternation(extended abstract). In Proceedings of the Eleventh Annual ACM

Symposium on Theory of Computing, STOC ’79, pages 352–359, New York, NY, USA, 1979. ACM.
Sav97. John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1st edition, 1997.
Sch83. Georg Schnitger. On depth-reduction and grates. In FOCS, pages 323–328. IEEE Computer Society, 1983.
Set75. Ravi Sethi. Complete register allocation problems. SIAM J. Comput., 4(3):226–248, 1975.
SS78. John E. Savage and Sowmitri Swamy. Space-time trade-offs on the fft algorithm. IEEE Transactions on Information

Theory, 24(5):563–568, 1978.
SS79a. John E. Savage and Sowmitri Swamy. Space-time tradeoffs for oblivious interger multiplications. In Hermann A.

Maurer, editor, ICALP, volume 71 of Lecture Notes in Computer Science, pages 498–504. Springer, 1979.
SS79b. Sowmitri Swamy and John E. Savage. Space-time tradeoffs for linear recursion. In Alfred V. Aho, Stephen N. Zilles,

and Barry K. Rosen, editors, POPL, pages 135–142. ACM Press, 1979.
TBFN07. Suratose Tritilanunt, Colin A. Boyd, Ernest Foo, and Juan M. Gonzalez Nieto. Toward non-parallelizable client

puzzles. Cryptology and Network Security (LNCS), 4856:247–264, 2007.
Tho79. C. D. Thompson. Area-time complexity for vlsi. In Proceedings of the Eleventh Annual ACM Symposium on Theory

of Computing, STOC ’79, pages 81–88, New York, NY, USA, 1979. ACM.
Tom78. Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties of their circuits. In

Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 196–204, New York,
NY, USA, 1978. ACM.

Val77. Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Jozef Gruska, editor, MFCS, volume 53 of
Lecture Notes in Computer Science, pages 162–176. Springer, 1977.

31

VT89. H. Venkateswaran and Martin Tompa. A new pebble game that characterizes parallel complexity classes. SIAM J.
Comput., 18(3):533–549, 1989.

A Umbrealla Graphs.

We give a brief warm up for a naı̈ve attempt at building a graph with high CC.
Lemma 4 shows that if a graph is to have any hope of having CCO(n2) then it must have depthO(n). An

umbrella graph (defined in a moment) is a naı̈ve attempt at achievingO(n2) by augmenting a chain of length
n with an edge structure that forces a large and evenly distributed number of the nodes to simultaneously
contain a pebble in order to pebble the output node.

Lemma 14. For any n ∈ N and positive divisor s let A = {i ∈ [n] : i mod s = 0}. The umbrella graph
Us,n = ([n], {(i, i+ 1) : i ∈ [n− 1]} ∪ {(j, n) : j ∈ A}) has cc(Us,n) = Θ(n log(n/s)).

Proof. Fix any optimal complete pebbling P = (P1, . . . , Pt) of Us,n. (In particular Pt = {n}.) We show
that p-cost(P) = Ω(n log(n/s)). The proof relies on the simple observation that if no pebble lies on the
immediate a ∈ [n] predecessors of a node in a chain then no pebble can be placed on the node can within
the next a intervals. For intervals i ∈ {t− s, . . . , t− 1} we have |Pi| ≥ n/s as otherwise A can not be fully
pebbled by interval t − 1. More generally for j ∈ [n/s] and i ∈ {t − js, . . . t − 1 − (j − 1)s} we have
|Pi| ≥ n/(js) for the same reason. So we can write:∑

i∈[t]

|Pi| ≥
∑

j∈[n/s]

s ∗
(
n

js

)
= n

∑
j∈[n/s]

1

j
≥ n ln

(n
s

+ 1
)
.

We can pebble Us,n to essentially meet this lower-bound. For the first n/2 iterations we move a single
pebble out to node n/2, hence forth leaving a pebble on this node. For the next n/4 steps we move a pebble
from 1 to n/4 and from n/2 to (3n)/4 again leaving them their for all subsequent iterations. We continue
this recursively for n/s loops at which point all nodes in A (and only those) contain a pebble and we can
finally pebble node n. A similar calculation as the one above shows that this approach indeed matches the
lower-bound. ut

We observe that an alternative construction where each node in a path of length n has incoming edges
from all of it’s predecessors in the path trivially results in optimal CC of O(n2). However as stated before
we find this construction uninteresting as most applications of the pebbling paradigm consider only DAGs
with constant in-degree.

32

	High Parallel Complexity Graphs and Memory-Hard Functions
	Joël Alwen, Vladimir Serbinenko

