Logical Reasoning to Detect Weaknesses
About SHA-1 and MD4/5

Florian Legendre* Gilles DequenT Michaél Krajeckii

Abstract

In recent years, studies about the SATisfiability Problem (short for SAT) were more
and more numerous because of its conceptual simplicity and ability to express a large
set of various problems. Within a practical framework, works highlighting SAT impli-
cations in real world problems had grown significantly. In this way, a new field called
logical cryptanalysis appears in the 2000s and consists in an algebraic cryptanalysis in
a binary context thanks to SAT solving. This paper deals with this concept applied to
cryptographic hash functions. We first present the logical cryptanalysis principle, and
provide details about our encoding approach. In a second part, we put the stress on the
contribution of SAT to analyze the generated problem thanks to the discover of logical
inferences and so simplifications in order to reduce the computational complexity of
the SAT solving. This is mainly realized thanks to the use as a preprocessor of learning
and pruning techniques from the community. Third, thanks to a probabilistic reasoning
applied on the formulas, we present a weakness based on the use of round constants
to detect probabilistic relations as implications or equivalences between certain vari-
ables. Finally, we present a practical framework to exploit these weaknesses through
the inversions of reduced-step versions of MD4, MD5, SHA-0 and SHA-1 and open
some prospects.
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Introduction

The SATisfiability Problem is a well-known decision NP-Complete problem [1], central in
mathematical logic and computing theory. Over the last years, under its conceptual sim-
plicity and ability to express a large set of various problems, the focus on SAT solving has
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significantly grown. To date, it remains a core problem in artificial intelligence, logic and
computational complexity theory. For nearly 15 years, improvements dedicated on the
one hand, to the original backtrack-search DLL procedure [2], and on the other hand to
logical simplification techniques [3] have increasingly diversified and a new generation of
SAT solvers succeeded in solving huge problems from industrial areas' [4]. Within a prac-
tical framework, SAT applications are as diverse as planning [5], model checking [6], VLSI
design and also cryptography [7]. In addition, one challenge of the continuous technologi-
cal development is to provide a robust security to computer systems. This generally relies
on the use of cryptographic primitives, for which their guarantee are strongly correlated to
their ability to preserve a secret (i.e. plaintext or cipher key). Within this framework, it is
essential to study all the techniques that are interested in the security of a primitive with a
view to finding weaknesses in it that will facilitate the retrieval of any secret information.
Several types of cryptanalysis approaches exist (linear [8], differential [9], Meet-in-the-
middle attack [10], side channel attack [11], etc...) and each one is efficient following
the tackled cryptographic function. In this paper, we focused on a specific algebraic crypt-
analysis called logical cryptanalysis which takes advantage of the remarkable progresses
of the SAT community. This was first described in the early 2000s in [12] where the idea
was to find out the cipher key of the Data Encryption Standard (DES) by encoding the orig-
inal stream cipher as a SAT problem to instancing the propositional variables corresponding
of input/output plaintexts. From this, more and more works emerged in the logical crypt-
analysis field allowing to create difficult SAT formulas for benchmarking [13, 14, 15] or to
analyze the resistance of cryptographic functions against the power of SAT solvers.

In this last point of view it can be dissociated the use of the SAT formalism to accel-
erate some specific computation in certain attacks to the ones which are totally devoted to
a SAT-based attack. In the first approach, [16] present an interesting result about crypto-
graphic hash functions. The authors presented a new application of logical cryptanalysis
assuming that the runtime of a cryptanalytic attack should be improved by using a logic
formalism to express complex operations. Practically, they modeled a whole differential
path for the best known hash functions (MD[4/5] and SHA-[0/1]) into a boolean circuit and
obtained conclusive results by using some of the best SAT engines. In this research field,
it exists also some interesting works about symmetric and asymmetric primitives as for
instance in [17, 18, 19, 20]. With regard to the works about measuring the security of cryp-
tographic hash functions thanks to logical cryptanalysis, most of the studies are practical
preimage attacks lead about MD4, MD35, SHA-1 and SHA-3 candidates [21]. Generally, the
angle of attack which is privileged is a two-steps process following a boolean modeling
and then a dedicated SAT solving. The modeling phase is to express, in extenso and inde-
pendently from the solving phase, the algorithmic process associated to a cipher primitive,
a hash function or more generally a dedicated attack, to a set of boolean equations (a SAT
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Jformula). It then results a SAT formula describing the whole process where the sequentiality
disappeared and for which it exists at least one assignment of its variables in such a way
as to make it evaluate to TRUE. To made this type of SAT formulas, some tools exist® as
for instance Grain of Salt > or cryptologver [21]. An other method is to handcraft the SAT
formulas thanks to program exclusively dedicated to the tackled primitive as we processed
in this paper. Once a SAT formula is generated, the solving phase is to instantiate a hash
and then finding a solution thanks to a SAT solver. Within a practical framework, reduced
versions of the primitives are tackled to give a bound that measures the resistance to preim-
age attacks. At last, should be noted that within complexity theory context the co-NP side
of the SAT problem which consists in proving the non-existence of any solution is practi-
cally absent unless to modeled corrupted cryptographic processus. Logical cryptanalysis
is very hopeful however in its current state it still has some limits. Indeed, the used SAT
solvers are made to answer to generic (and industrial) problems and so are not especially
designed to treat cryptographic problems which yet contain very particular structures. This
means, it paradoxically brings a new interesting factor to measure the security of a crypto-
graphic primitive without consider the problem it is dealing with. Furthermore, although
difficult to implement, these preimage attacks don’t generally take into account of any other
cryptanalytic cognition. In our knowledge, the only exception is in [22], where the authors
tackled the second preimage of a 39 steps (about 48) reduced version of MD4 by adding
some information from the Dobbertin’s attack [23].

1 Contribution of this paper

In this paper, we are first interested in a logical cryptanalysis of hash functions by two
modes. First is using SAT formalism to provide an original understanding of hash functions
and the second is tackling the inverting problem lead to (second) preimages. In this way,
drawing on the primitives describing these functions, we show how to encode basic func-
tional properties such as modular additions, {xor, and, or} operations and some non-linear
functions. Our encoding is handcrafted, i.e. in practice we implemented our own generator
and each operation has its own encoding. Contrary to the use of generic and automatic tools,
mainly based on Tseitin [24] transformations, this approach seems to be the most adapted
because we don’t have superfluous variables or clauses. This point appears to be intuitive,
since the more the modeling is close to the real problem, the more it is easier to solve it. A
review about this point is conducted in section 7.2.

Second, we use our formulas to enrich our encoding. In this sense, a first work was
made by using the SAT formalism as a logical reasoning tool. In fact, before thinking reso-
lution, the SAT representation of a problem can be used to compress and enrich the problem
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thanks to inferences rules. In this paper we explain all of these rules and show how we
preprocessed our formulas to reduce the size of the problem and learn new information like
assigned variables, implications and equivalencies relations. In this way, our formulas were
used to provide our perspective on how SAT can helps cryptanalysis. SAT literature pro-
vides various preprocessing techniques that are not implemented in SAT solvers due to their
time consumption. However, it exists some static tools that are applied before solving an
instance but they don’t include all the simplifications techniques we presented here. Finally
note that, even if a static preprocessing consumes a substantial runtime, it generally allows
to then ameliorate the solving of an instance, particularly if the modeled problem is very
structured.

An interesting point is that formulas resulting from the modeling phase can be easily
solved as a solution assignment corresponds to a hashing process. Within this framework, a
lot of assignments can be found in an effortless way. Nevertheless, searching an assignment
for a particular solution is very difficult.

In addition to this classical logical reasoning, we are also lead some studies about prob-
abilistic logical reasoning. In this way, we propose an experimental protocol to compute
probabilities about each variables composing the formulas in order to obtain a general as-
signing of the variables in correct hashing processes. An analysis of these probabilities was
then realized to discover specific relations between certain variables. To describe them, we
introduced the terms of quasi-implication, quasi-equivalences and quasi-assigned variable
and give a concrete sample of them. Both of factual and probabilistic relations are pertinent
information to add in our formulas because this enriches the modeling. We believe this
could be an important aspect to take into account to solve the formula in a more efficient
way. In this paper, we explain non-randomness of certain variables and so quasi-relations
by a weakness about the use of round constant.

Finally, to put our diverse contributions into practice we tackled the searching of preim-
ages about reduced versions of MD4, MDS5, SHA-0 and SHA-1 and analyzed our results to
conclude.

Plan of this paper

The paper is organized as follows. We first recall in section 2 some basic aspects about
cryptographic hash functions, and give a detailed description of MD5 and SHA-[0/1]. Based
on these information, we then propose a modeling of these primitives into a SAT formalism
and yield some specifications about the way to encode.

We present two methodologies to gather information about the structures that are in our
formulas. A first approach consists in a logical reasoning presented in section 4 to allow
the detection of some specific simplifications. A second approach based on probabilities is
highlighted in section 5. In this part, the stress is put on weaknesses due to the use of round



constant. These two sections evoke how to use the SAT expertise to, on the one hand, reduce
the size of the generated formulas and on the other hand, learn new structural information
about the analyzed hash function. Afterwards, a practical experiment is given in section 7.2
where the detected weaknesses are used through a concrete preimage attack. Finally, the
paper concludes with some topics for future research.

2  Preliminaries

2.1 About cryptographic hash functions

A cryptographic hash function can be defined as a deterministic algorithm that maps an
any-length bit string (also named message) to a fixed-length bit string, usually named di-
gest or hash. Among the uses of such a function it can be noticed the integrity check of
files or communications or digital signature. It can also contribute to ensure authentication
protocols with Message Authentication Codes (MACs) which are a mean that two users
with a shared secret key can authenticate between each other.

Our studies are mainly focused on the popular MD[4/5] and SHA-[0/ 1]4 hash functions
that are built following the Merkle-Damgard construction [25, 26]. This construction con-
sists in an iteration of a compression function ¥ applied on each fixed-size blocs m; from
the input message m and which take as parameter an internal state H;. The last computed
internal state is the result of the cryptographic hash function.

Figure 1: Merkle-Damgard construction

To ensure hash functions are secured, they required to be theoretically and computa-
tionally collision and (second) preimage resistant. A collision is when one can find two
messages m and m’ such as H(m) = H(m’). This attack is the easiest way to weaken (nay
break) a hash function and supply many tremendous results [27, 28, 29, 30, 31, 32]. Unlike,
with regard to preimage attack, the following summary may be given. Given a hash func-
tion H and a digest /4, a preimage attack consists in finding a message m such as H(m) = h.
Even if it is the hardest way to tackle a cryptographic hash function, this is mostly the path
chosen by SAT-based attack.

“In this paper, we use the notation MD[4/5] and SHA-[0/1] to respectively talked about both MD4 and MD5
and respectively of SHA-0 and SHA-1.



2.2 Notations

The studied hash functions in this paper are mainly MD5 and SHA-1. Because they are based
on the Merkle-Damgard construction, they have some particularities in common that are
defined in the same manner. These functions uses internal 32-bit words that are described
with the following notations. Let be the process at the step i. We denote each word as:

e (); is the internal state obtained at the end of a step. It is the concatenation of four 32
bits-words in {A, B,C, D} (resp. 5 in {A, B,C, D, E}) within the MD[4/5] (resp. SHA-
[0/1]) process.

e f; is a non-linear function. It can be named {F, G, H, I}

e §; is a sum resulting of a four operands addition. This represents the main opera-
tion of a round.Within the propositional context, an addition of four operands could
generate two levels of carry. fC; is the first level. sC; is the second level of carry.

o C; is the first (and unique) level carry resulting of a two operands addition
e (Cst; is a round constant
o M, is the k™ 32-bit word from the input message, k € {0, ..15}

e Finally, for any 32-bit word X, X[ j] denotes the ;™ bit, with j € {0,...31}

2.3 Precisions about MD5

MDS5 was designed in 1991 by Ron Rivest as an evolution of MD4, strengthening its security
by adding some improvements. A description of the algorithm is given in the REC1321°.
This function is broken by collision attacks and the best of them has a complexity about
220% [33]. Its preimage is also weakened by a theoretical attack with a complexity about
21234 [34]. The operating principle of this function is based on the well-known Merkle-
Damgard model and consists in the repetition of 64 steps fairly distributed in four rounds,
where one of them can be seen in the figure 2 and defined with three sub-steps as follows:

a) Qi< Qia+f(Qi-1,0i-2,0i3)+ M+ Cst;
b) 0, Q< s,

¢) Qi Qi+Qi

> http://www.ietf.org/rfc/rfc1321.txt




where :
e je{l,.,64},ke{0,1,.,15},
e 0 3,0 ,,0_1,0Qp are the initial values (I.V.).
e < R, the circular shifting to the left(rotating) by n bits position, depending on i.
o The non-linear function f; is defined by:

fi=FX.Y.Z)=(XAY)V (X AZ),ic[l,16]
fi=GX,Y,2)=FZX,Y)ic[17,32]
fi=HX.Y.Z) =X Y& Z, ic[33,48]
fi=IXY,2)=Y® (X V Z),ic[49, 64]

RGN T WA

Figure 2: One MDS5 step

2.4 Precisions about SHA-1

SHA-1 was designed in 1995 by the NSA as an improved version of SHA-O in order to
prevent some weaknesses. A description of the algorithm is given in the REC4634%. The
best attacks against a full SHA-1 are theoretical and presented in [35] where a complete
collision attack with a complexity about 2°! and a near-collision attack with a complexity
about 2°7° are described. Its preimage is still considered not weakened. The operating
principle is the same as the MD[4/5] family and consists in a hashing process where five
states of 32-bit words are initialized and then modified at each of the 80 steps. One step
of the SHA-1 process is detailed in the figure 3. Each of them can be defined with the
following sub-steps:

a) Qi « (0i-1 K5)
b) Qi+ Qi+ f(Qi2.(0i-3 < 30),0;4)
¢) Qi< Qis+W[i]+Cst

6https ://tools.ietf.org/html/rfc4634



where :

e ic{0,1,...,79 }, the current step.

0-1,0-2,0-3,0-4, 05 represent the initialization vector (I.V.).

C'st; is defined among four predefined constants.

<« r, the circular shifting to the left(rotating) by r bits position.

The non-linear function f; is defined by:

f=FX.YZ)=(XAY)V (X AZ),ic[0,19]
fi=GX.Y.2) =X Y ®Z,ic[20,39]

f=HXY.Z) =XAY)V(XAZ) V(Y AZ),ic[40,59]
£=1X.Y,Z) = G(X,Y,Z), i € [60, 79]

WIi] is the i word of 32 bits, built from the input message as follows:
ifi<16
W[i] is the i 32-bit word from the message.

if 16 <i<79
Wil « (W[i-3] & W[i-8] & W[i—-14] ® W[i—-16]) < 1

SHA-0 differs from SHA-1 by the shifting of W[i]. Note that contrary to SHA-1, SHA-O is
broken by a collision attack [36].

In the following of this paper, 1 round for a MD[4/5] (resp. SHA-[0/1]) function corre-
sponds to 16 (resp. 20) steps.
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Figure 3: One SHA-1 step



2.5 Notations about SAT solving

Since our approach is based on the logical cryptanalysis principles, this work is closely
related to SAT solving techniques. The last progresses about solving techniques have led
SAT to be a great and competitive approach to tackle a wide range of industrial and academic
problems as diverse as planning [5], model checking [6], VLSI design and also cryptogra-
phy [7, 12] etc... Among this varied panel, logical cryptanalysis is a very recent use of SAT
formalism.

More precisely, given a boolean expression ¥, SAT is the decision problem of determin-

ing if F has at least one assignment of truth value (also named an interpretation) {TRUE,
FALSE} to its variable so that it is TRUE. In this paper, ¥ is considered as a CNE-formula
(Conjunctive Normal Form) which can be defined as a set of clauses (interpreted as a con-
junction) where a clause is a set (interpreted as a disjunction) of literals.
More precisely, let V ={ vy, ..., v, } be a set of n boolean variables. A signed boolean
variable is named a literal. We denote, v; and v; the positive and negative literals referring
to the variable v; respectively. The literal v; (resp. v;) is TRUE (also said satisfied) if the
corresponding variable v; is assigned to TRUE (resp. FALSE). Literals are commonly as-
sociated with logical AND and OR operators respectively denoted A and V. As mentioned
above, a clause is a disjunction of literals, that is for instance v{ V v; V v3 V v4. Hence, a
clause is satisfied if at least one of its literals is satisfied. As a SAT formula ¥ is considered
under CNF, it is satisfied if all its clauses are satisfied. Finally, if its exists an assignment
of V on {TRUE, FALSE} such as to make the formula ¥ TRUE, F is said SAT and UNSAT
otherwise.

In order to solve the SAT problem, two classes of techniques are commonly used by the
community.

o [ncomplete SAT solving methods are those that cannot guarantee an answer in a finite
runtime. The relaxation of this guarantee leads these methods to practically behave
as polynomial algorithms. Hence, depending on their success rate, they are able to
answer more quickly than complete and enumerative techniques. In practice, such
methods are dedicated to satisfiable formulas and are unfortunately not as good as
complete methods to prove the unsatisfiability [37]. Moreover, they are intended to
specific classes of problems such as randomly generated ones. Among the incomplete
approaches to SAT solving, one of the most efficient is based on GSAT and WALKSAT
algorithms which can be briefly describe as noisy and greedy searches into the search-
space. The reader should refer to [38, 39, 40] for more details.

o Complete approaches guarantee an answer in a finite but exponential runtime. These
methods are mainly based on the DPLL [2] algorithm which consists in a systematic
enumeration of truth assignments generally thanks to a binary search-tree. A new
generation of SAT solvers based on Conflict Driven Clause Learning CDCL [41, 42]



appears in the mid-90 and are particularly very effective in practical applications.
The main improvement is based on a conflict analysis allowing to add a new clause
to provoke backjumpings instead of classical backtrackings. We choose to use this
type of solving approach within the context of this paper.

The figure 4 shows a comparison between these methods of resolution.

Figure 4: Comparison between a resolution thanks to a DPLL algorithm (on the left) and a CDCL
procedure (on the right). In the first case, the DPLL procedure is a recursive enumerative feature with
backtracking while the CDCL binary-search tree allows backjumping thanks to its clause learning.

The use of SAT formalism to express a cryptographic problem is a choice presenting
some interesting advantages. For instance, a noteworthy point of logical cryptanalysis is
the modeling leads to lost the notion of inherent sequentiality of the algorithm during the
solving process. This phenomenon is due to the fact that the problem is rewritten under a
set of clauses, which doesn’t have any order. We propose to illustrate this crucial point with
an instance of a 4-bits addition with holes. We denote by x; the variable x € {c,a,b, s} at
the index i.

Index | 3 2 1 0
car cf 1 - ..l..0.
op a| - 1 - -

op b| - - 1 - +
sum s | 1 1 - 1 =

Figure 5: Holed addition of two binary operands

In a decimal framework, by looking at the figure 5 it is quite easy to see a > 100y,
b > 10¢y), either a or b is odd and s € {((1)1101)(2),((1)1111)2)}. However, it is no so easy
to export something from the row of the carries because ¢ depends of a, b and c. Working
in a binary field leads to have a very detailed notion of carries while it’s not the case from
a larger scale. Moreover, as the reasoning is logical it is possible to discover the value of
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some other bits. Firstly, from cg and sg, one can deduce ¢; = 0 and from c3, a, and s3, one
can infer ¢, = b, = 1. This is described in the figure 6.
Accordingly, only four solutions stay possible:

(a,b) € {(0110,0111)¢),(1110,1111)2),(0111,0110)2), (1111, 1110) 2}

SAT instance
of an addition

fixing =0

some bits C3=a,=b,=55=5,=5,=1
logical

deduction

propagation

a;=1,5,=0

Figure 6: Deductions from logical inferences in the holed addition in figure 5

3 How to model a cryptographic function as a SAT problem

Logical cryptanalysis usually refers to a two-steps process where the first one consists in
modeling a cryptographic function under a SAT formalism, and so the associated algorith-
mic process in boolean equations. This modeling can be done by two different ways.

A first way of seeing things, is to dedicate a part of the modeling to an automatic tool.
This method is for instance used in [21] to encode SHA-3. In a first time, the authors trans-
lated the SHA-3 algorithm description into an SDL code and in a second time they used their
SDL code in their own automatic tool called cryptologver to generate a CNF. cryptologver is
a program relying on Tseitin [24] transformations to create CNF formulas from an SDL code
in a easy way an so provide some non-negligible advantages. Indeed, the tool is generic and
can be reused to any other cryptographic function. Consequently, both these advantages al-
low to have a simple method to analyze the robustness of a cryptosystem within a logical
cryptanalysis framework. However, the price to pay for that is the modeling can be not
optimized, contain redundant information and be unfortunately described in a non efficient
version. For instance, the resulting CNF formula can be constituted of superfluous variables
and clauses that are too deeply integrated to the model to then been spotted and removed by
a preprocessing. In our point of view, this could result in a problem that is more difficult to
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solve than it really is. To relieve this, an other method involves modeling a cryptographic
function by cutting it following its atomic operations, model these different pieces in a log-
ical formalism and then put them together to reconstruct the encryption algorithm. In other
words, this means to separately describe the different operations of such an algorithm as a
SAT problem and then make all pieces of the puzzle fit together. In our works, we chose this
way to represent the cryptographic hash functions we studied. Even if few works exists on
this subject, we suppose that a good modeling can be crucial to decrease the runtime of the
solving phase for structural SAT instances.

Regarding the cipher primitives of SHA-[0/1] and MD[4/5], hashing processes are an as-
semblage of several steps, each one composed of basic operations as for instance modular
additions, circular shiftings (or rotating) to the left and some booleans operations. In the
next parts, we distinctly give an encoding of each of the components that occur in both of
these hash functions. A detailed description of the method is given and the choices we have
to take are justified.

3.1 The modular addition of » operands

The modular addition of n operands is invoked in many cryptosystems and particularly in
SHA-1 and MDS5. It consists in a classical addition of n fixed-length of m-bits operands.
This addition is defined in a Galois field GF(2™). To describe it, we first focus on the
easiest case, a modular addition of two 1-bit operands.

3.1.1 The modular addition of 2 operands

To implement this basic operation, we choose to directly express into SAT clauses the logical
rules associated to the classical arithmetical addition. In this sense, and considering a simple
adder circuit, this can be seen as two operations of implications: (operands) = (sum) and
(operands) = (carries). A modeling of this simple adder is presented on figure 7, where
s; corresponds of the sum of a; and b;. The black arrow represents the likely generation
of a carry noted c;;;. This carry must be considered as an other operand at the rank i + 1.
Consequently, to define a generic representation for a modular addition of two operands
we necessarily need to consider a modular addition of three operands: a;, b; and c¢;, with ¢;
coming from the rank i — 1 (except at the rank i = 0).

Based on this model, the associated boolean truth table is set up. It represents all the
possible outputs which are generated considering each possible combinations in input. In
other words, it describes the inference rules that define the classical reasoning of an addition
of two operands. In white cases of the figure 8, the operands are input variables and in light
gray are the output variables.

12



| Cir1 Cj

Figure 7: Model of a modular addition of two 1-bit operands

Ci|a|bi|Cual|si
ojlofjojo0]oO
olof1]0]1
ojl1|l0]0]|1
o[1]1f1]0
1loflof0|1
1(0|1|1]0
1({1]|]0f1]0
1(1(1(1(1

Figure 8: Truth table of an addition of two 1-bit operands

From this truth table, we conclude in a generation of SAT equations, where each line
corresponds to two clauses (one clause to each output variable). For instance, let ¢;, a;, b;,
¢i+1, §; be five boolean variables, the second line of the table in figure 8 can be read as ¢; =0,
a; =0, b; =1 implies c;;1 = 0 and s; = 1. This can be formulated as follows:

(cinaiAb; = cir1) N(ciNai Ab; = ;)
And then, under a CNF:

(ciVaiVhi VT AciVai VbV s)

3.1.2 Modeling the modular addition of » operands

To implement an n operands addition, the method is the same as the one considered for a
two operands addition. The only difference resides in the fact that it outputs more levels
of carries. The consequence is, as for a two operands addition, carries in output must be
considered as inputs in the next corresponding rows. Therefore, a four operands addition
(as the ones in MDS5) becomes a six operands addition (See figure 9).

By generalizing this principle, an n operands addition, with 28 —k+1 < n < 28—,
generates k vectors of carries.

13



| cazi:z caz; caz; cai;
cal, f;| cal; cal;;

a; 8.

bi bi-1

Ci Cia

d; di

Si Si1

Figure 9: Model of an addition of four operands

3.2 The non-linear functions

Several non-linear functions are anchored at each steps of a cryptographic hash function,
taking several variables as parameter to give one output. They are very often described in a
boolean format and are another mean to give rise to chaos and strengthen to the cipher. By
definition, these functions are encoded into a logical formalism and so it is sufficient to just
translate them under a CNF format.

3.3 The circular shifting (rotating)

A circular shifting doesn’t require any concrete description to be implemented as a SAT
problem, i.e. it doesn’t need any clauses or variables to be expressed. Generally, a circular
shifting is used after an other operation. For instance, for MD5 and SHA-1 it is done after a
four (respectively five) operands addition. Our idea is to model this circular shifting within
this next operation thanks to a good encoding of the variables.

Let be R the result of the previous operation and <« s a circular shifting about s bits
position. Within an algorithmic framework, first R is computed, then R is shifted to obtain
R and finally R is used in an other operation. Thanks to a SAT formalism this can be
represented in only one operation by concatenating the shifting of R and the next operation
were it is used as an operand. An illustration of this example is on the figure 10 where a
word R is shifted by 2-bits position to the left and then a two operands addition between
R and a 32-bits word A is computed. In practice this is modeled in only one bloc.

Finally, note that a circular shifting s applied on a m-bit word to the right is equivalent
to a circular shifting to the left of m — s bit positions.

14



R R31R30R29] ... | .. [R3|R2[R1] The previous sum result
i
i

Variable encoding

/ RN
!
... |RTR31R3

R29R28R27| ...
IA31/A30(A29| ... Al

SR 0

AO

The new two operands addition

. |A2

Figure 10: Model of a directly shifted addition

3.4 Application to MD[4/5] and SHA-[0/1]

To finally model in practice a cryptographic hash function all of these bricks are cemented
during the generating process of clauses thanks to a correct variable encoding. Following
the previously described method, we implemented a program that is able to provide CNF
formulas for the whole MD4, MD5, SHA-0O and SHA-1 primitives by considering a fixed-
length input of 512 bits (one block). This generator is configurable to assign a digest or an
input message (or just some bits) and to provide reduced-step formulas. It’s also possible
to hash a message and obtain its digest. In the table 1 some specifications of the complete
representations of these functions are given. A comparison between our CNF and the ones
of the literature could be interesting but generally such information are missing.

Function | Clauses | Variables | Literals
MD4 144 885 6 690 824 378
MD5 224 643 12 749 1236 634

SHA-0 | 491 791 12779 3283930
SHA-1 491 791 12779 3283930

Table 1: Statistics about the number of clauses, variables and literals required to represent under a
SAT problem the cryptographic hash functions MD4, MDS5, SHA-0 and SHA-1 using our methodol-

ogy.

It is interesting to remark that both SHA-O and SHA-1 have exactly the same statistics.
This is explain by the fact that the only change between SHA-O and SHA-1 is an add of a
circular shift to the left during the diversification of the input message. Or, within a SAT
context, a circular does not need any variable or clauses to be expressed.
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4 Logical reasoning

The SAT community is able to evaluate the complexity of a random SAT formula by regard-
ing the number of variable (n) and the number of clauses (m). However, giving a precise
notion of complexity for a non-random SAT formula is impossible. In a general case, the
complexity of this type of formulas is just bounded by regarding three parameters: n, m
and the number of literals ([). Within this context, an upper bound is evaluated to 2*", with
a < 1, depending on n and m [38]. Consequently, to hope decrease this complexity, a
good approach is to reduce the values of these two parameters. In this part we show how
an appropriate logical reasoning applied on our CNF allows to reduce the complexity. In
addition, we show some interesting relations of equivalences between certain variables of
the hashing process that could be used in an other cryptanalytic approach.

An important aspect of a our SAT modeling is that the representation is made at the scale
of the bit. The different operations are thus considered into their atomic existence by taking
into account all the possible cases. In this way, the modeling phase was done exhaustively
and it seems intuitive to smooth the generated SAT formulas thanks to a preprocessing. To
statically reduce the statistics of a SAT formula, the SAT community provides some pre-
processing tool as for instance SATELITE [43] or HYPBINRES [44]. The used techniques
in such tools are very interesting to compact a formula to its littlest expression by imple-
menting efficient logical techniques. However, in our point of view a preprocessing can
also help to add new clauses in order to enrich the solving phase by, for instance, adding
pertinent binaries clauses. In this way, a preprocessing could be able to reduce and enrich a
SAT formula by new information. It’s why we developed our own preprocessing in order to
decrease the practical complexity of the formula by combining classical simplifications and
new techniques to create logical bridges to help a subsequent SAT solving. In this part we
present all of these logical simplifications and give as result a set of equivalences detected
from an application on our cryptographic SAT formulas.

4.1 Classical simplifications

SAT can be seen as a tool allowing to express any problem with boolean equations. The
solving of such a problem is achieved with a dedicated SAT engine (also named solver) that
deals with reasoning techniques from Artificial Intelligence (A.I). Within a solving frame-
work, problems are treated by adding pertinent clauses and removing redundant information
(clauses, variables, literals) thanks to fast logical simplifications.

Consider the formula ¥ having the four following clauses, and look at three interesting
logical simplifications:

cit = (bVo) ¢y = (bveVvy) c3 = (eVfVy) cy = (eVfVyg)
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e Observe that ¢ is equal to (c1 V f). In this case, ¢, contains as much information as
¢y and if ¢ is satisfied, necessarily c; is satisfied too. This well-known process is
called a subsumption, and since c| subsume c;, ¢, is withdrawn.

e Now focus on c3 and c4 and note these clauses differ only in the signedness of the
variable g. This scheme is known as resolution. From this, a new clause named
resolvent is generated and is composed of all the variables of the two previous clauses
except the one that differs in signedness. In our example, the clause cs = (fV g)is
added and in that case, cs subsumes both c3 and c4 and could be helpful within the
solving.

The structure of the modeled problem makes that these two simplifications occur a very
large number of times to reduce significantly the statistics of the CNF formula. For instance,
192 clauses and 1 344 literals are inventoried for an exhaustive modeling of a 1-bit four
operands addition. Here, the model counts only 128 smaller clauses and 832 literals. The
gain is about 36% on the number of clauses and 32% on the number of literals, and is
approximately the same about an extension to a four 32-bits operands addition.

4.2 Static Look-Ahead and more

4.2.1 Principles

We also imported a classic local treatment in SAT solving named Look-Ahead [45] which
consists in foreseeing the effects of choosing a branching variable to evaluate one of its
values. In other words this corresponds to answer the question: what happened is a variable
v, and only v, is set to true (or false). From this evaluation, it can infer an assignment or
some information among equivalences, fixed literals and new binary clauses. Hereafter,
some details.

o Fixed literals:
i) if a = false then a must be set to TRUE
e New binary clauses:

i1) if a = b then the clause (aV b) can be added to ¥ . This will be same if (a A b)) =
false occurs.

iii) ifa = (xiAxoA...Ax,)anda = (yi Ay2A...Ay,) then clauses (x; Vy;), V(1 <
i<n)and (1 < j<m)canbe added to .

o Subsuming Look-Ahead [46]
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By enhancing the principle of look-ahead, one check multiple implications in
order to produce subsuming clause.
Letbe Caclause of the form: x; V xp V ... V Xx; V ... V Xxx.

iv) if x] Axy A...AX; = false then C should be replace by the clause (is subsumed
by) xi{VxaV...Vx;in F.

v) if (x; AXo A...AX;) = false then C is subsumed by x; V...V x;

4.2.2 Detection of equivalences

The existence of a logical equivalence, from a point of view of a valid hashing process,
means that at least two digits (it could be more) are linked by their respective value in ev-
ery model. Practically and informally, this can be seen as a digit that has always the same
(or opposite) value as another one. If such a case occurs, both digits represent the same
information and only one of them should be considered into the process. Such a relation
is denoted with the operator: <. As an example, consider the CNF formula ¥ having the
following clauses, the detection of equivalencies can be computed as :

€1
Cs

4.3

(a Vv b) ¢ = @vy) ez = (bVO) cs = (cVd)
(fVve) c6 = (gVh) ¢ = (avdVe) cg = @vhVe)

If a is set to FALSE then it can directly be deduced that b, ¢, d and e must be set to
FALSE, unless to falsify 7, thanks to the clauses cy, c3, ¢4 and c7 respectively. Hence,
a equals to FALSE implies e equals to FALSE. We denote this implication a = e. The
corresponding CNF expression is e V a. As a remark, this clause also represents the
implication e = a.

In the same way, if a is set to TRUE then f, g, h are set to FALSE and e to TRUE.

Consequently, since e = a and a = e, this means that whatever the solution, a and
e have the same value. This is denoted a & e. Consequently, one can substitute
every e in the formula by a (and vice versa). From this, may result a cascade of new
simplifications. For instance, proceeding that substitution in ¥ leads c¢; and cg to
become obsolete, a V a being tautological and therefore useless.

Application to hash functions: the case of MD5

Several equivalences result from applying dedicated treatments on our SAT formulas. Some
of them are trivial and others are not so. In the following, some examples are mentioned.

A trivial case:
F1[29] & Q1[29]. This equivalence is quite easy to detect because F| = (Q1 A Qg) V
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(01 AQ-1) and Qp and Q_; are L.V. and hence are constant. This means that if Qpl[i]
differs from Q_[i] (i € {0...31}), then F; depends exclusively on Q;. There is a
relation of equivalence which appears once on four on average between F| and Q.

e Non trivial case:

This is the most interesting case. It seldom occurs within a general framework, but
it gives pertinent information to cryptanalysts. We call special case a non-trivial
case which occurs in a specific formula. For instance, if a treatment is applied on
a CNF formula describing a preimage attack on MDS5, then the equivalences that are
exhibited are not related to the entire MD5 process but only to a specific instance.
Thanks to that, by considering a preimage attack on the 29 first steps of MD5 where
the digest is set to 0, it can be deduced: Mg[2] & O»4[2], where Mg is the 9™ ploc of
the input message M.

e Direct Implication:
If two implications of the form @ = b and a = b occur then for all value of a, b
equals to TRUE. Consequently, b must not be set to FALSE unless to falsify #. As an
illustration, sC39[0] must be set to FALSE.

In the table 2, a concrete set of equivalences detected from our MDS and SHA-1 SAT
formulas is given. Note that these equivalences can be used in any other cryptanalytic
approach.

All of these logical deductions simplify and enrich our SAT formulas. In the table 3,
new statistics about the number of clauses and variables are given. It should be noted that
these data also take into account binary clauses. These specific clauses are very interesting
because treating them during the SAT solving is polynomial and make some logical bridges
to accelerate the runtime.

Because we thought this learning is very helpful to help SAT solving, we also focused
on a probabilistic approach to even more grind our cryptographic formulas in order to get
new pertinent data.

S Specific probabilities

In this section, an experimental framework is defined to allow a probabilistic study of a
hashing process on its variables. Through this work, we define some quasi-relations be-
tween variables, i.e. a relation coming from a probabilistic reasoning, and show how to
detect them. Moreover, we explain the mainspring of these particular relations by the use
of round constant.
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Equivalences from MD5
_ 1Co[0] ® Q110], £1[0] & Q1[01,50[25] & Q101 fil1] & Q:[1]

Sol0] & fCol0], f1[2] & Q1121 f1[4] & Q1[4], f1[5] & O1[5], f1[6] & Q1[6]
My[0] & fCol0], f1[8] & 01181, f1[9] & 01[9], f1[10] & 0O4[10], f1[12] & O1[12]
A13] & O01[13], fi[14] & 01[14], f1[16] & O4[16], f1[17] & O1[17]
Al18] & 01[18], f1[20] & 011201, f1[21] & O1[21], f1[22] & 04[22]
fil24] & 01[24], 1l25] & Q11251 f1[26] & O126], /1[28] & Q1[28]
f1[29]1 © 011291, /1[30] © 0411301, Hb[0] & cHb[0],Ha[0] © cHa[0]
cHd[1] & Hd[1],Q¢[1] © Hd[1],cHc[1] © Hc[1],Q¢3[1] © Hc[1]

Qe4[0] & Hb[0], Q61[0] & Ha[0], Hd[0] & Q62[0], Hc[0] & Qs3[0]

Equivalences from SHA-1

sCo[28] & fCpl[28], sCol27] & fCo[27],5Cp[25] & fCo[25],5Co[24] & sCo[17]
sCo[21] & fCp[21], sCp[20] & fCp[20], sCp[19] & fCo[19]
sCo[15] & fCo[15],sCo[12] & fCol[12]

Table 2: Some of Equivalences detected from the MD5 and the SHA-1 processes. The used notation
is the one presented in 2.2. Moreover Hx and cHx are variables about the hash.

5.1 From a SAT formula to get statistics

The SAT formula # is in fact an other way to express a hashing process. Thus, the assign-
ment of variables corresponding to the input message leads the SAT engine to fix all the
unassigned variables of ¥ thanks to a linear and deterministic process named unit propa-
gation. From this, it results a complete assignment A of the variables that corresponds to a
solution of F. Actually, A gives useful information on how a variable is set but also how
two variables are set in pairs (and more). This last remark is interesting because it allows
to appreciate the probabilistic behavior of a variable with respect to another. For instance,
let v and w be two boolean variables. From (A, looking at v and w at the same time lets to
know which of the following subsets of S appears:

{v = false A\w = false} {v = false ANw = true}
{v=true Aw = false} {v=true Aw = true}

respectively denoted (VA W), VA W), W AW), (v Aw).
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MD4
Clauses | Variables | Literals 2-cl
Before pp | 144 885 6 690 824 378 | 2317
Afterpp | 108 081 6 673 531100 | 3154
MD5
Clauses | Variables | Literals 2-cl
Before pp | 224 653 12749 1236634 | 381
After pp | 171235 12721 814 096 | 1305
SHA-1
Clauses | Variables | Literals 2-cl
Before pp | 491 791 12779 3283930 | 259
Afterpp | 375 195 12771 2210708 | 908

Table 3: Comparison between statistics about the number of clauses, variables and literals to rep-
resent the MD4, MD5 and SHA-1 hash functions, before and after having applied an effective and
dedicated preprocessing. The column called 2-cl is the number of clauses with only 2 literals.

From these statements, our idea was to establish a protocol to compute statistics from a
SAT formula . This protocol is defined following five steps:

1) Create a random input message
ii) Assign this message and infers from ¥ . It generates A.
iii) From A, for each pairs of variables, memorize the subset which appears in S
iv) goto i) (This loop should be iterated n times)
v) Group and overlay all the subsets and divide by n.
From this, we obtain a statistical database of the probability to be 1 for each couple of
variables (v,w), denoted p(v A w).
5.2 Preliminary remarks
The probability of a variable v to be 1 in a general framework is determined by:
p(v) =p(vAv)
The conditional probability of a variable v given w is determined by:

p(vAw)
p(w)

p(viw) =
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5.3 Generic probabilities about MD5

Applied on our SAT formulas the previous defined protocol allows to obtain a statistical
database, where the probabilistic average of each variable to be assigned to 0 or 1 can be
observed. However, this observation is difficult to conceive because of the high number of
variables in the SAT formulas. In this part, we present a practical case on the cryptographic
MD5 hash function to represent, and then use, this statistical database in a cryptanalytic
framework. For this, an image was dressed where each pixel is a comparison between the
computed probabilities in practice and the expected ones in theory.

Concretely, we computed for each variable the theoretical probabilities we should have
in a general process. Then, we compared these data with our practical probabilities. For
that, a PGM’ image representing this comparison was drawn, vertically sort by step and
horizontally sort by type of words (see figure 11). The used notation is the one defined
in 2.2. On this image, if a pixel is black, the probability derived from the SAT formula
differs by the theoretical probability by tending to 0, and if a pixel is white, the probability
differs by tending to 1. Consequently, the more the pixel is white or black, the more the
differential between the practical and the theory is high.

5.3.1 First analysis

On the face of it, it appears that the gray is not uniform in the columns representing the
internal states (Q), the non-linear functions (f), the carries of the two operands addition
(tC) and the four operands sum (). An interpretation of this is the bits composing these
words have a practical probability which is around % , as expected in theory. This means,
the given assignments to the variables have a totally random behavior. However, this is not
the case for the columns representing the carries of the four operands addition. Hereafter,
some details and explanations.

5.3.2 About carries

The theoretical probabilities to be 1 for the first carry® turns around 0.58. Focus on step
17, we get for instance p(fC7[5]) = 0.67 and p(fC7[23]) = 0.49. The gap with the ex-
pected ones in theory is approximately 15%. This is important but stays however minor in
comparison with the gaps we got by looking at the second carries.

Figure 12 zooms in the second carries vector from step 17. By taking a close look, prob-
abilities are not uniforms (because there are several gray tones) and some go far away of
their theoretical probabilities by tending to 0 (as for instance the 7 bit) or to 1 (for instance

"Portable GrayMap file format
8Except the five first least significant bit where the probabilities are slightly higher. The details of theoretical
values are provided in the appendices.
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Figure 11: Figure representing a differential vector of probabilities on variables from the MD5 pro-
cess, such as each pixel is about P(v), from step O to 63, sorted by type of 32-bits word on big

endian.
0 7 22 31
Figure 12: Second carries vector from step 17, on big endian
the 22" bit).

To explain these phenomenon, our assumption is the use of round constants at each
step. The idea is that fixing a round constant consists in assigning an operand in the gen-
eral structure of the addition and a consequence of this is the creation of a new structure
totally configured by the round constant. It seems like an unstructured addition. To confirm
this point, we computed theoretical probabilities of the variables which are involved in this
addition by considering one operand fixed in the same way that in MD5. For instance, by
looking at the step 17, an operand was concretely fixed to the value from the MD5’s RF c’,
i.e.0xc040b340. We then computed again probabilities for the carries and observed how they
behaved compared to those before. To analyze that three curves representing the probabili-
ties in theory (in solid line), in practice (in little points) and in theory with a fixed constant

°RFC 1321 - The MD5 Message-Digest Algorithm: http://www.fags.org/rfcs/rfc1321.html
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(in dashes) were drawned on the figure 13. In abscissa, the place of the bit in the 32-bits
word and in ordinate, probabilities go from 0 to 1. Looking at these curves, it can be noted
that the probabilities in practice are very closed to the ones observed when we fixed a round
constant because their respective curves are quasi superposed.

Consequently, this experimentation confirms our assumption consisting to say that us-
ing round constants weakened some words of the hashing process. This implies that internal
words of an MD5 process are not entirely random and can be exploited within a practical
attack. As an illustration, the bit 7, step 17 has a probability of 0.10 instead of 0.31 in theory
and the bit 22 has a probability of 0.41. Finally, we think this phenomenon may help the
discover of differential paths in collision attacks.

Probabilites

0,6 ——————— Theory
0,5 Ay X
04 .
0,3
0,2
0,1

0+~ Bit
12 3 456 78 910112131415161718192021 2223 242526 27 2829 30 3132

Figure 13: Comparison between theoretical probabilities with (Th+Cst) and without (Theory) a fixed
round constant, and computed probabilities in our benchmark (Practice). Here we can observe that
the curves Th+Cst and Practice are grouped. This means, they have the same probabilistic behavior,
which differs from the one we could obtained in theory without any round constant.

5.3.3 Conditional probabilities

Conditional probabilities have also been represented on a PGM image in regarding the
probability of a variable v given the probability of v1, i.e. p(v|vl) (figure 14). Looking
at this, probabilities for the carries are a somewhat strongly pronounced. This could be
intuitive because carries depends on the previous rank but it shows that given a variable,
probabilities of their local neighbors are even more influenced. These information could
be pertinent in the case where an attacker is aware of some bits from the internal process.
Thus, he might deduces how behaves a correlated variable with these known bits. Moreover,
some other interesting probabilities can be computed to help cryptanalysts, notably in the
searching of good differential paths by computing p(v;|v;_1), where i is a step.
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Figure 14: Figure representing a differential vector of probabilities on variables from the MD5 pro-
cess, such as each pixel is about P(v|v—1) to be 1, from the MD5 process, step 0 to 63, sorted by
type of 32-bits word on big endian.

5.4 Gather probabilistic and judicious information from MD5

When such a statistical database is built, specific treatments can be applied to refine the
knowledge associated to the problem. In our works, that’s what we did by searching for
specific relations which have a very high probability to exist. In practice, several factual re-
lations were detected, as for instance fixed variables and equivalences but also probabilistic
relations as quasi-fixed variables, quasi-implications or quasi-equivalences.

5.4.1 Factual relations

We call factual relation a relation connecting two variables that occurs no matter the input
message. In fact, this corresponds to the probabilities which are turned to 1 or 0. In such
cases, fixed variables are identified. Furthermore, it’s also possible to detect implications
and so equivalencies. Indeed, let be v and w two boolean variables:

1) if p(v) = 0 (respl), thenv = 0 (respl)

2) if p(v) = p(v Aw), thenv = w. In others words: if p(w|v) = 1,thenv = w
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Relation

From MD5

Quasi-Equivalences

Q1[21] & Mo[14], Q61(8] & Hal8], Q61[8] & cHa[8]
Ha(8] « Q¢1[8], Ha[8] < cHal[8],cHal8] ¢ Q¢:1[8], Mo[14] & fi[21]
cHa[8] @ Hal[8], fi[21] @ Mo[14], Mo[14] ¢ Q;[21]

Quasi-Implications

Mo[14] = O1[21], 01[21] = My[14],Ha[8] = Q16[8]
Q6181 = Ha[8],cHa[8] = Q41[8], Q64[28] = cHb[30]
061181 = Ha[8],Hal8] = Q¢1[8],cHa[8] = Ha[8]
HD[28] = cHDb[30],cHal8] =» Q¢1(8],Hal8] = cHa[8]

Quasi-Fixed variables

cHal7] ~ 0 where p(cHa[7]) = 0.0040
cHcl7] = 1 where p(cHc[7]) = 0.9923
sCo[20] =~ 0 where p(sCy[20]) = 0.0081
sC1[26] =~ 0 where p(sC[26]) = 0.0044

Relation

From SHA-1

Quasi-Equivalences

sCo[28] & sCo[17],sCo[27] & fCo[28], sCo[24] @ cHc[T],sCol[24] ¢ fCo[28]
sCo[17] @ cHc[T],sCo[17] & fCol[28], fC1[16] & sC1[16],sC1[16] @ fC;[16]

Quasi-Implications

My[8] = sC1[14], M [13] =» sC[14],M[10] =» sC[14]
M>[25] = sC2[27], M3[27] =5 sC3[27]

Quasi-Fixed variables

cHal6] ~ 0 where p(cHa[6]) = 0.0082
cHcl7] = 1 where p(cHc[7]) = 0.9922
fCol28] =~ 1 where p(fCp[28]) = 0.9904
sCo[28] ~ 0 where p(sCy[28]) = 0.0096

Table 4: Some of Quasi-Equivalences and Quasi-implications detected from the MD5 and the SHA-1
processes with a threshold + = 0.99. The used notation is the one presented in 2.2. Moreover Hx
and cHx are variables about the hash.

3) if p(vw) = pwly) = 1, thenv & w
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5.4.2 Probabilistic relations

A probabilistic relation is a relation connecting two variables that exists in most cases.
Obviously, this kind of relation depends of a threshold which determine if the relation has
a good chance to exist or not. When such a relation is used, the threshold corresponds to a
lower bound above which the probability of the relation is. At last, this section also deals
with quasi-relation to mentioned a probabilistic relation.

Formally, let be ¢ a threshold such as 7 < p(v) < 1. We call quasi-fixed variable a variable
such as whatever the instance, the variable has a probability p(v) to be 1 higher than . This
means, the variable v (resp v) is set to 1 (resp 0) in (p(v)*100) % of cases.

We call quasi-implication a relation between two variables such as:

p(w|v) > t and note this relation v =5 w
Finally, we call quasi-equivalence a relation between two variables such as:

p(wlv) > ¢, p(vlw) > t and note this relation v ¢ w

5.4.3 Application to MD5 and SHA-1

In this part, we just focus on the detection of probabilistic relations, because detecting
factual relations is already done by the previous defined logical preprocessing (section 4).

In practice, a specific treatment was applied to extract all the specific probabilities from
that quasi-relations can be concluded. For instance, by defining a threshold ¢ = 0.99, we
found p(Mp[14] | /2[21]) = 0.9969 from the MD5 process. This means f>[21] = My[14]
and this can be added to the formula by the new clause ( f2[21] V My[14]).

We concretely experimented this framework to MDS and SHA-1 by giving a portion
of different relations we detected in the table 4. Note that a lot of relations are in the
first steps and could facilitate the prediction of the probabilistic behavior of the invoked
variables. Furthermore, if many relations between carries are present there are also other
ones involving internal states, the input message or non-linear functions. In our knowledge,
this is the only approach where computed probabilities are concretely put together in order
to emerge new relations that could be exploit in practice.

To put the stress on the interest of our experimentations, are referenced in the table 5 the
number of equivalences, quasi-fixed variables, quasi-equivalences and quasi-implications
found from the SAT formulas representing MD5 and SHA-1, according to a threshold 7. It
can be seen that more the threshold is low, more information are got about special relations
between variables. Note also that the number of quasi-implication does not follow this
growth. This is explain by the fact that quasi-implications are correlated with quasi-fixed
variables. Indeed, if a variable vy is not quasi-fixed and have a very high probability to be 1
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MD5
Threshold | g-Fixed | g-Impli | q-Equi
0.995 2 638 10
0.99 5 2089 29
0.985 9 21995 79
0.98 12 2048 105
SHA-1
Threshold | g-Fixed | g-Impli | q-Equi
0.995 1 75 8
0.99 5 223 44
0.985 8 5244 88
0.98 13 419 169

Table 5: Detection of quasi-fixed variables (q-Fixed), quasi-implications (q-Impli) and quasi-
equivalences (q-Equi) in the MD5 and SHA-1 process according to a threshold

(near from the threshold), it may exists a lot of relations such as v; =5 vy, where v; € V.

Finally, we think detecting probabilistic relations are a good way to enrich again our SAT
formulas by adding information that are nonexistent otherwise. In the next section, different
other ways are mentioned to exploit these quasi-relations within a practical framework.

6 How to use quasi-relations

Practical attacks in logical cryptanalysis offer a perfect framework to exploit weaknesses
targeted on some bits. In the context of our works, all the quasi-relations that were detected
provide a set of information that could be exploited in searching preimages for crypto-
graphic hash functions. In this manner, the practical complexity of a preimage problem can
be reduced during the boolean encoding or directly during the solving phase (see part 2?).

As several quasi-fixed variables were found, the practical complexity of a problem can
be reduced by assigning a value to the corresponding variables before the solving phase. In-
deed, for instance if a variable v has a very high probability to be set to 1, it can be decided
to concretely fix its value to 1. By doing so, all the clauses containing the corresponding
positive literals v are SAT and all the clauses containing the corresponding negative literals
v are reduced. Moreover, the found quasi-equivalences can be used to replace a variable by
an other one. Doing this allows to provoke many simplifications as for instance the ones
presented in this paper in section 4.

Even if these approaches seems to be easily exploitable, it should be remembered that
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quasi-relations are probabilistic and not always verified. Consequently, all of these prob-
abilistic simplifications are beneficial but present a certain risk. Indeed, to do so implies
assigning and determining a part of the solution and consequently cutting a piece of the
search space. Despite this fact, this is a measured bet in the sense that making a choice, as
for instance setting a value to a variable allows to prune a branch of the binary search tree
during the solving phase. Nevertheless, this pruning divides by two the search space while
the solution space is only affected by the probability of the quasi-fixed variable. Indeed,
when a quasi-relation g is used, the search space decreased about a factor (1 - p(g)). Next,
we are interesting in counting how many of quasi-relations could be used in order to help
the solving of a problem.

Let be a detection process of quasi-relations where the threshold ¢ equals to 0.995.
Because this computation is theoretical, we consider the worst case where all the quasi-
relations are found with a probability equals to #, and no more. Thereby, the principle
is as following: if one quasi-relation is used, the search space decreases to 99.5% of its
original size. If two quasi-relations are imported, the space search decrease about a factor
*=0.995%... and so on. In a practical framework, if a cryptanalyst considers that a good
search space can decrease to 50%, he can use n quasi-relations where:

log(3)

- 227 _3g
"= 102(0.995)

This number shows that the use of quasi-relations is rather quickly limited. However,
probabilities are not equitably distributed in a real case. The tool we implemented is able
to detect quasi-relations by extracting them one by one, by privileging the highest proba-
bilities in first while a confidence of nearly 50% is ensured. Within a practical framework,
once the best quasi-relations uprooted, they were injected in the CNF formulas. Then a pre-
processing was applied in order to reduce the size of the SAT formula. The table 6 gives
the new statistics of our CNF according to ¢. The column Conf (for Confidence) shows the
percentage of how the search space has narrowed.

In this manner, adding probabilistic information allows to decrease the sizes of our SAT
formulas and thus their practical complexity while maintaining a good solution space.

7 Practical attacks against cryptographic hash functions

Up to now, this paper deals with how to model a hashing process into a SAT formalism
and how to use the resulting logical formula in order to have a new angle of view of the
problem. From this, we conclude by an improvement of the structural understanding of the
modeled problem and the discover of some weaknesses. In this way, we show that SAT
can be used to get detailed information about the variables, and so the internal bits of the
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MD4
Experimentation | Clauses | Variables | Literals Conf
Without proba. 171 235 12721 ~814 096 100%
With proba. 171 028 12705 ~ 813343 || 52.3%
MD5
Experimentation | Clauses | Variables Literals Conf
Without proba. 171 235 12721 ~814 096 100%
With proba. 171 028 12705 ~ 813343 || 49.3%
SHA-1
Experimentation | Clauses | Variables | Literals Conf
Without proba. | 375195 | 12771 | ~2.21-10° || 100%
With proba. 374541 | 12732 | ~2.18-10° || 52%

Table 6: Reduction of the SAT formulas sizes for MDS and SHA-1 thanks to a probabilistic providing.
The new instances keep at most 50% of their solution space.

process. In this section, the point of view had changed and is focused on practical attacks.
To illustrate a concrete use of our formulas, this part highlights how to tackle the preimage
problem and in what way SAT can help this attack. More precisely, details and results about
preimage attacks are given and some experimentations underline both our contribution and
our methodology.

7.1 About preimage attacks

In order to tackle the preimage, a first work consists in the generation of a SAT formula rep-
resenting the hash function. Then in a second step, the variables corresponding to a digest
are set. From this, it results a new SAT formula. Solving such an instance amounts to say-
ing that the solver find an assignment to each variable allowing to satisfy all the constraints.
This means, the variables corresponding to the input message are also defined, and so an
input message can be reconstructed. In this way, this answers to the preimage problem.
In fact, solving such an instance is the same as inverse the one-way cryptographic hash
function. However, even if this prospect is a treasure coveted by cryptanalysts, it remains
fortunately too difficult to be achieved in practice. It’s why, an intuitive choice to measure
the resistance of cryptographic hash function thanks to logical cryptanalysis is to consider
an incremental approach by studying reduced-step process SAT formulas.

We put into practice this approach. In a first phase, reduced-step formulas with a fixed

digest were generated, from a first nontrivial problem to the whole hashing process. For in-
stance, for the MD5 hash function all the SAT formulas from the step 17 to the step 64 were
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made. Then, in a second phase, these formulas were preprocessed and solved, beginning by
the easiest CNF to the furthest away possible. The last formula to be solved is the practical
limit of the dedicated attack.

Within this context, it is easy to lead some experimentations about how SAT solvers
are efficient to solve our formulas relatively to the diverses parameters of a SAT formula:
the number of step modeled, the repercussions of a prior preprocessing or of an adding of
probabilistic information.

7.2 Improved runtimes thanks to SAT

In this part we present some results that show how SAT can help to accelerate a solving. First
we present runtimes of SAT solving of formulas that corresponds to preimage attacks on
reduced-step process for the MD5 primitive. Second, we show the practical consequences of
an import of probabilistic information into our CNF formulas relatively to the performance
a SAT solving. Both the experimentations have been done using the parallel SAT solver
PLINGELING[47] applied on a two processors Intel Ivy Bridge 8 cores 2,6 GHz'’.

In the tab 7, we repertories runtimes on average about at least 100 solving of each
formula relative to the different modeling and its logical simplification. Here, we can easily
see that all the runtimes obtained on a SAT formula that have been preprocessed is better, that
it is not. This means that purify a SAT formula is efficient to improve a solving. In addition,
we also compared the runtimes obtained on our SAT formulas (on which) a preprocessing
was applied and SAT formulas with a probabilistic information. One more time, we see that
the runtimes decrease thanks to the probabilistic import.

This experimentation shows that an upstream work on the modeling phase can really be
helpful in order to improve practical attacks.

7.3 Best practical attacks

The previous presented works show experimentations about practical attacks on reduced
step formulas. In order to get the best practical attack, we tested how many steps we can
inverse thank to SAT solving. Thereafter in the table 8 a comparison between, in our knowl-
edge, the best practical attacks against the full preimage of hash functions we tackled. These
ones are mainly based on logical cryptanalysis because this domain is perfectly adapted to
this approach.

From a technical point of view, our best results were obtained thanks to a parallel com-
plete SAT solver called PLINGELING applied on a a two processors Intel Ivy Bridge 8 cores
2,6 GHz. We choose to use this SAT solver for diverse reasons as for instance the fact it
exploits parallelism that could help to improve our results on a multi-cores machine. More-
over, in practice many solvers were tested to determine which is the most appropriate to

19Thanks to the ROMEO HPC Center in Champagne-Ardenne, https://romeo.univ-reims.fr
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SAT SOLVER PLINGELING
FORMULA | SIMPLIFIED? | PROBAS ADDED? TIME (S)
md5-25-steps no no 3.8
md5-25-steps yes no 2.3
md5-25-steps yes yes 1.8
md5-26-steps no no 8.3
md5-26-steps yes no 54
md5-26-steps yes yes 4.0
md5-27-steps no no 8.8
md5-27-steps yes no 5.2
md5-27-steps yes yes 4.1

Table 7: Runtimes on average about at least 100 solving of each formula relative to the modeled
primitive, its logical simplification and a probabilistic import in the CNF.

Best practical attacks | In this paper
MD4 39 steps in [22] [48] 39 steps
MD5 26 steps in [22] 28 steps
SHA-0 23 steps in [49] [50] 23 steps
SHA-1 23 steps in [49] [50] 23 steps

Table 8: Best practical attacks on step-reduced MD[4/5] and SHA-[0/1] preimages

tackle our instances but in reality the best of them are quiet equivalent on these specific
cryptographic problems. Chosing one or another doesn’t impact the quality of the results.

Hereafter, some results input/output values, in big endian, where the digests correspond
to the ones obtained after the last addition of the primitive.

2 rounds 7 steps on MD4 (39 steps) 1

Fixed Hash:

0x00000000 0x00000000 0x00000000 0x00000000

Input found:

0x321838cd 0x67867da5 0x67867da5 0x4bd844ff 0x67867da5 0x67867da5 0x67867da5 0x60babe30
0x67867da5 0x67867da5 0x67867da5 0x2e731890 0xb84655eb 0x1094c071 Oxcelcfe36 0x0252233c

"'With a classical approach, MD4’s limit was about 31 steps. But this limit could had been improved by the
import of the Dobbertin’s attack[23]
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1 round 12 steps on MD5 (28 steps)

Fixed Hash:

0x01234567 0x89%abcdef Oxfedcba98 0x76543210

Input found:

0x0bd86cl6 Ox6deal58a 0x3fead904c 0x5930adal 0x£f733709c 0x7e818951 0Oxdc6f48lb 0x21£85c42
0x7a6b2051 0x09762af5 0xbf21286b 0xb70fedbc Oxbée76e8l 0xOba3la2c 0x71512697 Oxbc293laf

1 round 3 steps on SHA-0 (23 steps)

Fixed hash:

0x00000000 0x00000000 0x00000000 0x00000000

Input found:

0x4e073784 0x050bfldc 0xab5d325ch 0xf81d3ce2 0x123bd6fd4 Oxe71lfc07f 0xf07fda73 0x43b05533
0x704efd95 0xc8178c49 0x02c891de 0x1f7630ae 0x4130£392 0x55113db5 Oxacc0022f 0x3b8cl54d

1 round 3 steps on SHA-1 (23 steps)

Fixed hash:

0x00000000 0x00000000 0x00000000 0x00000000

Input found:

0x35691cla Oxead7eb26 Oxcac76ble 0x00000000 0x51e43c45 Oxaa8bcl2a Oxdb8fad7c 0x00000000
0x637c1517 0x80abeaZe 0x9339f44e 0x00000000 0x6367caee 0xbc8920ec 0x1084c8d7 0x45075a9%e

7.4 Preimage attacks: analysis

By looking at the table 1, more steps are inverted in our works for the MD5 hash function
than the previous attacks in the literature. Concerning SHA-[0/1] the presented results are
equivalent to those of [49]. Regarding this last work, it can be remarked that their way to
model hash functions is quiet the same as ours, i.e. their formulas are handcrafted. This is
not the case for the works presented in [22] were the authors make reference of an automatic
tool (generally based on Tseitin transformations) to generate their CNF.

On this last point, a question that could cross our minds is the fact that new SAT solvers
may just be powerful than the one used in previous works. To answers this, we make
the same experimentation by using MINISAT V2.2 as in [22] and we inverted more steps
whether for the MD4 (without an import of the Dobbertin’s attack) and the MD5 hash func-
tion. We explain this by a more smooth modeling of our CNF formulas. For instance, the
SAT formula representing 28 steps of MD4 is composed of 54,508 clauses and 4,522 vari-
ables while the one of [22] contains 202,407 clauses and 3,007 variables. In our point of
view this point underlines the importance of a SAT expertise to precisely measure the resis-
tance of such cryptographic hash functions.
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To be more complete about our preimage attacks, we are also interested in the evolu-
tion of the runtime relative to the number of steps modeled. These observations, except the
last level, were achieved on an average of 25 solving and drawn in the figure 15, with a
logarithmic scale. Our benchmarks have been achieved on a MacBookPro 1.7 GHz thanks
to a sequential SAT-solver called LINGELING [47]. Here the parametrization of these ex-
perimentations was chosen just by considering a working environment without too many
perturbations.

It can be observed that the runtimes keep the same evolution whatever the modeled
hash function, following an exponential growth according to the number of steps modeled.
The MD4 case is special due to the import of the Dobbertin’s attack [23] to improve the
attack (Details are given in [48]). In this manner, these hash functions can be considered
a priori relatively secure against preimage attacks by SAT solvers. However, the solving
method is near from a cleaver brute-force attack in that SAT solvers mixes the best tech-
niques from A./ but are not specified to this kind of problem. By the way, in our owns
experimentations whatever the used SAT solver, the runtimes are quasi the same.

8 Conclusion

The works presented in this paper show a practical application of logical cryptanalysis about
cryptographic hash functions. The first part is dedicated to the modeling of such a primi-
tive into a SAT formalism and presents many simplifications that are possible thanks to the
binary context of SAT. In this way, we underlined the interest of this particular algebraic
cryptanalysis to purify the concrete representation of a problem through an efficient and
adapted preprocessing. Furthermore, this have also allowed to the discover of logical in-
ferences and so simplifications in order to reduce the computational complexity of the SAT
solving. We highlight that these relations could also be exploited in an other cryptanalytic
framework as for instance differential attacks. A second part of this paper is dedicated to
a probabilistic reasoning. From this, a weakness about the use of a round constant at each
step is illustrated thanks to pictures that compares expected and computed probabilities and
by the discover of new probabilistic relations, called quasi-relations. These relations are im-
portant because they put the stress on new information that could be used for both smooth
the modeling of problems and increase the efficiency of SAT solving. Added to that, this
approach seems to be the first one in a logical cryptanalysis framework to utilize a SAT for-
mula in order to find a weakness in a cryptographic primitive. In our point of view, this is
an hopeful sign to have a more interested view on logical cryptanalysis. Finally, a last part
deals with practical attacks about a search of preimage. In this manner, we present some
results about the MD[4/5] and SHA-[0/1] families cryptographic hash functions that are at
least as good as the ones from the literature. This attests a certain interest of these works
and open some prospects.
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Figure 15: Runtimes for solving reduced-step instances representing MD4, MD5, SHA-0 and SHA-1,
depending on the number of steps tackled

Indeed, logical cryptanalysis is a new way to approach a problem and the SAT expertise
could be more exploited. One of the main idea is to specify a SAT solver to tackle cryp-
tographic problems. A good way to solve algebraic systems, especially boolean systems,
is the use of complete SAT solvers. These ones are mainly based on the DPLL [2] and/or
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the cDCL [51] algorithms which consist in a systematic enumeration of truth assignments
thanks to a binary search-tree (see section 2). Each node of this search-tree represents a
current assignment where a policy choice is made to decide the next variable to be assign.
A probabilistic providing can be a good mean to improve the splitting choice policy of a
dedicated SAT solver. In practice, the heuristic branching computes a very precise evalua-
tion to determine the new node of the search tree, but this choice is often difficult. Here, this
evaluation can be helped by the adding of a probabilistic knowledge. Added to this, a better
understanding of the structures that are hidden in the SAT formulas may bring new informa-
tion about the modeled cryptographic primitive, as for instance the presence of clusters or
the definition of satisfaction profiles for each clauses. Finally, it could be interesting to ex-
port the whole methodology to others cryptographic functions where logical cryptanalysis
may be even more effective, as for instance lightweighted cryptography.
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