
A New Way to Prevent UKS Attacks Using
Trusted Computing

Qianying Zhang, Shijun Zhao, and Dengguo Feng

Institute of Software Chinese Academy of Sciences,
ISCAS, Beijing, China.
zqyzsj@gmail.com

Abstract. UKS (unknown key-share) attacks are now common attacks
to Authenticated Key Exchange (AKE) protocols. We summarize two
popular countermeasures against UKS attacks on the implicitly authen-
ticated key exchange protocols. The first one forces the CA to check the
possession of private keys during registration, which is impractical for
the CA. The second one adds identities in the derivation of the session
key, which leads to modify the protocols already used in practice. By
using the key protection capability of hardware security chips, such as
TPM or TCM, we propose a new way to prevent UKS attacks that needs
no check of possession of private keys and no addition of identities during
the derivation of the session key. We modify the CK model to adapt the
protocols using hardware security chips. We then implement a protocol
once used in NSA, called KEA and subject to UKS attacks, using TCM
chips. Our implementation, called tKEA, is secure under our security
model. To show the generality of our way, we also show that our new
way can prevent UKS attacks on the MQV protocol.

Key words: UKS attacks, Authenticated Key Exchange, Trusted Com-
puting, KEA, CK model

1 Introduction

Diffie and Hellman gave the first key exchange protocol in their seminal paper[12].
Key exchange protocols allow two entities to establish a shared secret key via
public communication. In order to provide the authentication of entities’ identi-
ties, authenticated key exchange(AKE) protocols were proposed. AKE not only
allows two entities to compute a shared secret key but also ensures the authen-
ticity of the entities.

To date, a great number of AKE protocols have been proposed and many of
them were subsequently broken, such as KEA [26] and MQV [24, 23]. KEA was
designed by NSA (National Security Agency) in 1994 and kept secret until 1998.
Microsoft researchers K.Lauter and A.Mityagin found that the original KEA
protocol is susceptible to UKS attacks [22]. Then they presented a modified
version of KEA protocol, called KEA+ [22], which is resistant to UKS attacks,
and gave a formal proof. The MQV protocol is another famous and efficient AKE
protocol, which is designed by Law, Menezes, Qu, Solinas and Vanstone. This

2 Qianying Zhang, Shijun Zhao, and Dengguo Feng

protocol was first found a UKS attack by Kaliski [19], then Krawczyk [20] found
that MQV protocol achieved none of its stated security goals, such as resistance
to KCI attacks and the provision of perfect forward secrecy (PFS).

Although KEA and MQV are vulnerable to UKS attacks, they are still widely
standardized and used in practice. The OPACITY protocol [29], which is based
on KEA, has now been registered as an ISO/IEC 24727-6 authentication protocol
[18], and specified in the draft ANSI 504-1 national standard [3]. The MQV
protocol has been widely standardized [4, 15, 17, 27, 28]. The new released
Trusted Platform Module (TPM) version 2.0 [33] adopts MQV as one of its
key exchange primitives. So it’s necessary to analyze the security of KEA and
MQV protocols with the help of security chips, such as smart card, Trusted
Cryptography Module (TCM) [31] and TPM [32], which is also the motivation
of our work.

1.1 Related Work

In order to prove the security of AKE protocols formally, Bellare and Rogaway
in 1993 provided the first formal definition for an AKE model [5], which we refer
to as the BR model. After that, a lot of variants of BR model were presented
and many authenticated key exchange protocols were proposed. Based on BR
model, Canetti and Krwaczyk proposed the CK model in [8], in which the H-
MQV protocol was proved. LaMacchia, Lauter, and Mityagin in [21] defined a
new model called eCK, which is much stronger than BR and CK models. They
also introduced a new AKE protocol called NAXOS and proved its security in
eCK model. However the NAXOS protocol is less efficient in that it requires 4
exponentiations per entity compared to 3 exponentiations for KEA. For more
details, we refer the readers to [11] for a comparison and a discussion of the
variant models for authenticated key exchange.

1.2 UKS attacks

A UKS attack on an AKE protocol is an attack whereby an entity Â ends up
believing he shares a key with entity B̂, and although this is in fact the case, B̂
mistakenly believes the key is instead shared with an entity Ê 6= Â. Since the
adversary Ê doesn’t obtain the shared secret key, he can’t modify or decrypt
the messages between Â and B̂. However, Ê can take advantage of the entities’
false assumptions about the identity with whom they share the key. Let’s see an
attack scenario described in [13]: B̂ is a bank and Â sends him a digital coin,
encrypted with the shared secret key, for deposit into his account. Believing that
the key is shared with Ê, B̂ assumes the coin is from Ê and deposits it into Ê’s
account instead. Several UKS attacks have been proposed in the literature, such
as attacks on STS [6], KEA [22] and MQV [19].

1.3 Contributions

We give our contributions as follows:

Prevent UKS Using TCM 3

1. We summarize UKS attacks and their corresponding solutions on AKE pro-
tocols in the literature, and identify two types of attacks, called public key
substitution UKS attack and public key registration UKS attack respective-
ly. The details of the two attacks are described in section 2. The usual way
to solve these two UKS attacks are: 1) force the CA to check entity’s pos-
session of the private key, 2) add entities’ identities during the derivation of
the session key. We illustrate these solutions by introducing some previous
works on preventing UKS attacks on KEA and MQV.

2. We present a new way to prevent the two types of UKS attacks using the
key protection capability of hardware security chips, such as TPM or TCM.
The main idea is to make use of the security chip to generate the long-term
secret key, then register it to a CA who doesn’t check the possession of the
private key and only makes sure the key comes from a genuine hardware
security chip. The key protection capability of the security chip prevents the
adversary from getting the plaintext of the private key even he corrupts and
controls the security chip. In our security analysis we will show that the key
protection capability is crucial for KEA to avoid UKS attacks. To show the
generality, we demonstrate our proposed way can prevent the UKS attack
on MQV protocol which is adopted by TPM 2.0 version [33].

3. We first modify some adversary abilities in the CK model to adapt the proto-
cols implemented by hardware security chips, and then implement the KEA
protocol (subject to UKS attacks) using TCM chips, and finally formally
prove our implementation in the variant CK model. Our formal analysis
shows that our implementation prevents the UKS attacks.

Readers may say that mandating the use of a TCM or TPM chip is a strong
assumption/requirment to the AKE protocol. But we claim that the TPM or
TCM will be a common security technology in the future by the following ar-
gument. First, more than 2 billion endpoints have been secured with Trusted
Computing technology to date. Second, the mainstream processor manufactures
now support the Trusted Execution Environment technology (TEE for short),
such as Intel’s TXT [16], AMD’s SVM [1] and ARM’s Trustzone [2]. TEE is a
special execution mode of the CPU, which protects the codes running in it from
being accessed by the normal OS, that’s to say, even the adversary comprises
the normal OS of the host he cannot get the information running in TEE. To ex-
change data between the normal OS and the special mode, the Global Platform
consortium releases the GP TEE API specification [14]. Now the new released
TPM specification, TPM 2.0, supports the TEE technology. In conclusion, it’s
not a strong assumption to protect AKE protocols using the trusted computing
technologies.

1.4 Organization

We summarize the two types of UKS attacks and their corresponding solution-
s in section 2. In section 3, we give a detail description of the key protection

4 Qianying Zhang, Shijun Zhao, and Dengguo Feng

capability of hardware security chips, show how it can be used on AKE proto-
cols, and give our implementation, which we call tKEA (the letter t stands for
trusted). Section 4 modifies the CK model to adapt the protocols implemented
by hardware security chips, such as tKEA. Section 5 proves the security of the
tKEA implementation. We also show how the key protection capability prevents
the UKS attack on the MQV protocol described in [20]. We end the paper with
conclusion and our future work in section 6.

2 Two types of UKS attacks and solutions

In this section, we first introduce the Signed Diffie-Hellman and Non-Signed
Diffie-Hellman AKE protocols, and then the two types of UKS attacks and the
usual ways to prevent these attacks.

2.1 Signed and Non-Signed Diffie-Hellman AKE

Signed Diffie-Hellman AKE. The Signed Diffie-Hellman AKE is such a kind
of protocols that first execute a Diffie-Hellman key exchange and then sign all the
communication sent between the entities, such as STS [13], SIG-DH [30], SIGMA
[9]. Let G be a group of primer order and denote by g a generator of G. Assume
that entities have secret/public keys for some digital signature schemes SIG and
that entities know each other’s registered public key. The hat notation, such as
Â, denote an identity of an entity. Denote the signature of a messge M under
the secrete key of an entity Â as SIGÂ(M). We depict such protocols in figure 1.

First, an entity, Â, as an initiator generates an ephemeral secret key x at random
and sends a tuple {gx, SIGÂ(gx, B̂)} to B̂, the responder. The responder B̂

generates an ephemeral secrete key y and replies with a tuple {gy, SIGB̂(gy, Â)}.
Both Â and B̂ then verify each other’s signature, and compute a shared session
key K = gxy, if the verification succeeds.

Â B̂

x
gx,SIG

Â
(gx,B̂)

−−−−−−−−−−−−−−−−−−→
gy,SIG

B̂
(gy,Â)

←−−−−−−−−−−−−−−−−−− y

K = gxy K = gxy

Fig. 1. Signed Diffie-Hellman AKE

Non-Signed Diffie-Hellman AKE. There are some protocols different from
the Signed Diffie-Hellman AKE, such as KEA and MQV. As they have no signa-
tures in their exchange messages, we refer to them as Non-Signed Diffie-Hellman
AKE protocols. Figure 2 gives an illustration of KEA, a typical Non-Signed

Prevent UKS Using TCM 5

Diffie-Hellman AKE protocol, and its variant KEA+. KEA involves two enti-
ties, Â and B̂, with respective secret keys a and b and public keys ga and gb.
KEA assumes that entities know each other’s registered public key. The protocol
first runs a Diffie-Hellman key exchange: Â and B̂ each generate its ephemeral
secret key, x and y respectively, and exchange the ephemeral public keys gx and
gy. Then each entity computes gay and gbx and computes a session key by apply-
ing a hash function H to (gay, gbx). The KEA+ protocol differs from KEA when
computing the session key: it incorporates entities’ identities in the computation
of a session key, i.e., applies the hash function H to a tuple (gay, gbx, Â, B̂).

Â B̂

X = gx
X−−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−−−− Y = gy

K = H(σÂ) K = H(σB̂)

KEA: σÂ = (gay, gbx), σB̂ = (gay, gbx)

KEA+: σÂ = (gay, gbx, Â, B̂), σB̂ = (gay, gbx, Â, B̂)

Fig. 2. Non-Signed Diffie-Hellman AKE: KEA and KEA+

2.2 UKS attacks on Non-Signed Diffie-Hellman AKE

Baek and Kim give a good summarization of UKS attacks on the Signed Diffie-
Hellman AKE protocols [22]. Here we summarize UKS attacks on Non-Signed
Diffie-Hellman AKE protocols. We categorize them into public key substitution
UKS attack and public key registration UKS attack respectively.

Public Key Substitution UKS Attack. This kind of attack happens to
some protocols when the CA doesn’t check the possession of the private key. [22]
points out that the original KEA protocol is insecure under this type of attack.
Consider two entities Â and B̂ preparing to start a session. An adversary M
registers a public key ga of Â as his own public key. Then M intercepts the
session between Â and B̂. M forwards the ephemeral public key gx from Â to
B̂ and ephemeral public key gy from B̂ to Â. Since M has the same public key
as Â, both Â and B̂ will compute identical session keys. However, Â complete a
session with B̂ and B̂ complete a session with M.

The usual way to solve this kind of UKS attack is to force the CA check the
possession of the private key. If the CA checks, M can’t register the public key
of Â, then Â and B̂ will compute non-identical session keys. However, as the
proof of knowledge check is rarely done in practice, this way to prevent UKS
attacks is impractical.

Public Key Registration UKS Attack. The typical attack example is a
UKS attack on MQV found by Kaliski [19]. Let us review MQV first. MQV is

6 Qianying Zhang, Shijun Zhao, and Dengguo Feng

another important Non-Signed Diffie-Hellman AKE protocol, and it was stated
to have a lot of security properties, such as resistance to UKS attacks and KCI
attacks. MQV and HMQV are depicted in figure 3. Entities Â and B̂ have their
private/public key pairs (a, ga) and (b, gb) respectively. The ephemeral public
keys in their exchange messages are gx and gy. The computation of the session
key by Â (and similarly by B̂) is a hash to (Y Be)x+da. The only difference
between MQV and HMQV is the computation of d and e. The former only uses
the ephemeral public key, while the later adds the identity information and uses
a hash function in the computation. However, the slight modification is crucial
in the security analysis.

We describe the public key registration UKS attack on MQV in figure 4.
An adversary M intercepts the ephemeral public key X = gx sent from Â
to B̂. Based on X, M computes a private/public key pair (c, gc), and sends an
ephemeral public key Z to B̂. After receiving Z, B̂ generates a random ephemeral
key Y = gy and sends it to M. M transmits Y to Â. We denote the session
between Â and B̂ by s, and the session between B̂ and M by s′. We can see
that the key pair (c, gc) and the ephemeral key Z are computed so cleverly that
s and s′ have the identical shared secret key.

From the attack described above, we can see that check proof of knowledge
of private key can not thwart this attack as the adversary holds the private key
c. The usual way to prevent this kind of attack is to include the identities in
the derivation of the session key. Krawczyk and Menezes respectively present
HMQV and a variant of MQV [25] which both resist this UKS attack. HMQV
adds the identity and use a hash function when computing d and e, while [25]
includes identities in the derivation of the session key. From their solutions we
can see that the inclusion of identities in the derivation of the session key is an
effective way to thwart the public key registration UKS attack.

Â B̂

X = gx
X−−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−−−− Y = gy

σÂ = (Y Be)x+da σB̂ = (XAd)y+eb

K = H1(σÂ) K = H1(σB̂)

MQV: d = 2l + (Xmod2l), e = 2l + (Y mod2l), l = |q|/2
HMQV: d = H2(X, B̂), e = H2(Y, Â)

Fig. 3. Non-Signed Diffie-Hellman AKE: MQV and HMQV

3 Trusted Computing Key Protection Capability

Trusted Cryptography Module (TCM) is a hardware security chip similar to
Trusted Platform Module (TPM), a small tamper-resistant cryptographic chip

Prevent UKS Using TCM 7

Â M B̂

X = gx
X=gx−−−−→ u ∈R Zq

Z = XAdg−u

h = H1(Z)

c = u/h

C = gc
Z=XAdg−u

−−−−−−−−→
Y =gy←−−−− Y = gy

K = K =

H2((Y Be)x+da) H2((ZCh)y+eb)

Fig. 4. A UKS attack on MQV

embedded in a computer platform (e.g. on a PC motherboard). TCM provides
a set of cryptographic functionalities, such as public-key decryption/encryption
(SM2-1), hash (SM3), random number generating, and key exchange (SM2-2)
and so on. TCM stores secret data, such as private keys and security crucial
user data, in a shielded location where data is protected against interference
and prying, and we call it the key protection capability.

To operate the secret data in the shielded location, TCM provides a set
of commands for users. Take the SM2-2 key exchange for example, TCM pro-
vides the TCM CreateKeyExchange and TCM GetKeyExchange to create a pri-
vate/public key pair and generate a session key respectively:

• TCM CreateKeyExchange: TCM creates a private/public SM2 key pair, which
we denote by (a, ga), in the TCM’s shielded location, and returns the public
part of the SM2 key pair.
• TCM GetKeyExchange: Input a public key of SM2, e.g, gb, and return a session

key gab.

We identify two security properties from the key protection capability, which
will be used in the security analysis of tKEA. First, a user who has the control
of an SM2-2 key pair generated by TCM cannot get the plaintext of the private
key, and the only way he can use the SM2-2 key is through TCM APIs. Second, a
user cannot have TCM chips generate a specified key pair, such as (a, ga), as the
key generation is controlled by TCM and users have no control of the generation
of keys. From the second security property we can see that M can not register
a specified key.

Implementation of tKEA. Here we show how to implement KEA pro-
tocol using trusted computing technology. Our implementation has two phases,
registration phase and key exchange phase.

The registration phase involves a security TCM chip T , a host H, and a
CA C. T and its host H compose a whole entity. Before the registration phase,
T generates an Attestation Identity Key (AIK) pair (skT , pkT) (AIK is used
to identify a platform in trusted computing, here we use it to certify the long-
term key of an entity) and then registers the public key, pkT , to a CA (this

8 Qianying Zhang, Shijun Zhao, and Dengguo Feng

CA issues certificates to platforms, and is not C in the registration phase, which
issues certificates for long-term keys) through protocols such as Privacy-CA [10],
which is out of the scope of this paper. If stronger anonymity is required, please
refer to DAA [7] solutions. After getting the AIK certificate, the registration
proceeds as follows:

1. H calls TCM CreateKeyExchange API of T , T generates an SM2-2 key pair
(a, ga) which is the long-term key of this entity.

2. H then calls TCM CerifyKey command, which has T make a statement
about (a, ga) using the AIK: “this key is protected by TCM, and its plaintext
will not be revealed”, and return the statement to H. The statement is
actually a signature of the SM2-2 key by AIK. The AIK has a feature that it
only signs keys generated within the TCM. This feature assures C that the
SM2-2 key is a real TCM-generated key.

3. H transmits the statement to C. C verifies the statement, and makes sure
that the public key ga is generated by a real TCM chip. If the verification
succeeds, C issues a certificate on ga and sends it to H.

The key exchange phase is shown in figure 5, and actually is the procedure
of running the KEA protocol between two entities, e.g., Â and B̂. Â consists of
a TCM T1 and its host H1, while B̂ consists of a TCM T2 and its host H2. Â’s
long-term public key is A = ga, and B̂’s long-term public key is B = gb.

T1(a, ga) H1 H2 T2(b, gb)

X = gx
X−→
Y←− Y = gy

Y
1

←−− X
1

−−→

Z1 = Y a Z1−−→ Z2←−− Z2 = Xb

K = H(Z1, B
x) K = H(Ay, Z2)

Fig. 5. tKEA: Implementation of KEA using TCM

4 Security Model for tKEA

In this section we introduce a variant of CK model on which the security analysis
of tKEA is based. For further details of CK model, please consult [8]. We modify
the CK model by 1) revising the corruption query, and 2) adding an establish
query. The modified corruption query models the key protection capability of
TCM, and the establish query allows an adversary to register public keys of
adversary-controlled entities at any time in the experiment, that is to say, the
adversary is allowed to mount UKS attacks.

1 X and Y are transmitted to T through TCM GetKeyExchange.

Prevent UKS Using TCM 9

4.1 Sessions

tKEA runs in a network of interconnected entities where each entity can be
activated to run an instance of the protocol called a session. Within a session
an entity can be activated to initiate the session or to respond to an incoming
message. As a result of these activations, the entity creates and maintains a
session state, generates outgoing messages, and eventually completes the session
by outputting a session key and erasing the session state. There are two roles in a
session, the entity that sends the first message in a session is called the initiator
and the other the responder. We denote the initiator by I and the responder
by R. We identify an AKE session by a 5-tuple (role, Â, B̂,X, Y) where role
denotes the role, X is the outgoing DH value and Y is the incoming DH value
to the session. The session (R, B̂, Â, Y,X) (if it exists) is said to be matching
to session (I, Â, B̂,X, Y).

4.2 Attack Model

The AKE experiment involves multiple honest entities and an adversaryM con-
nected via an unauthenticated network. The adversaryM is modeled as a prob-
abilistic Turing machine and controls all communications. M can intercept and
modify messages sent over the network.M also schedules all session activations
and session-message delivery. In addition, in order to model potential disclosure
of secret information, the attacker is allowed to access secret information via the
following queries:

• session-state(s) - M queries directly at session s while still incomplete and
learns the session state for s (which may include, for example, the secret
exponent of an ephemeral DH value but not the long-term secret key).
• session-key(s) - M obtains the session key for a session s, provided that the

session holds a key.
• corruption(entity) - As for the information not stored in the TCM’s shielded

location, such as the session states and session keys, M learns all of them.
As for the long-term keys stored in the TCM’s shielded location, M has the
ability to use it, such as computing CDH(A,X) (A stands for the long-term
key, X stands for an element in G whose exponent is unknown) but cannot
get the plaintext of the private key.
• establish(entity) - This query allows M to register a public key generated

by a controlled TCM, and M is able to use the cryptographic functionality
provided by the key. M can fully control entity by taking advantage of the
controlled key. IfM registers a public key not generated in TCM, the CA will
deny this registration after checking the AIK signature of the public key.

The adversary can make above queries to gain local information. We say that a
completed session is “clean” if this session as well as its matching session (if it
exists) is not subject to any of session-state, session-key, corruption queries.

Eventually M should select a clean completed session, which is called a test
session, and make query Test(s) and is given a challenge value C.

10 Qianying Zhang, Shijun Zhao, and Dengguo Feng

• Test(s) - Pick b
R←− 0, 1. If b = 1, obtain C ←− sesssion-key(s); otherwise

provide C with a value r randomly chosen from the probability distribution
of keys generated by tKEA.

M now can continue to make session-state, session-key, corruption, establish
queries but is not allowed to expose the test nor any of the entities involved in
the test session. At the end of its run, M outputs a bit b′. We will refer to an
adversary with the above capabilities as a KE-adversary.

Definition 1. An AKE protocol Π is called SK-secure if the following properties
hold for any KE-adversary M defined above

1. when two uncorrupted entities complete matching sessions, they output the
same key, and

2. the probability that M guesses the bit b (i.e., outputs b′ = b) from the Test
query correctly is no more that 1/2 plus a negligible fraction.

The advantage of a KE-adversary participating in the above AKE experiment
against a protocol Π is defined as

AdvAKEΠ (M) = Pr[M wins] - 1
2 .

5 Security of tKEA and MQV

In this section, we first formally prove the tKEA protocol, and then show that the
protection capability provided by TCM can prevent the UKS attack on MQV.

5.1 Security proof of tKEA

We show that the tKEA with a hash function modeled as a random oracle
satisfies AKE security against a KE-adversary defined in section 4 under the
GDH assumption in a group G and with the help of the key protection capability
of TCM chips. The GDH assumption in G is that the CDH problem in G cannot
be solved in polynomial time with non-negligible success probability even when
a DDH oracle for G is available.

LetM be any KE-adversary against tKEA. We start by observing that since
the session key of the test session is computed as K = H(σ) for some 2-tuple σ,
the adversary M has only two ways to distinguish K from a random value:

1. Forging attack. At some point M queries H on the same 2-tuple σ.
2. Key-replication attack. M succeeds in forcing the establishment of another

session that has the same session key as the test session.

We will show that if either of the attacks succeeds with non-negligible probability
then there exists an efficient attacker against the GDH problem or breaking the
TCM protection capabilities.

Prevent UKS Using TCM 11

Security analysis of the key-replication attack. The security proofs of
KEA+ [22] and NAXOS [21] show that the key-replication attack is impossible
if random oracles produce no collisions. Let’s take KEA+ for example. If M
finds some session with the same 4-tuple as the test session, then this session
must be executed by the same two entities, Â and B̂. Let the ephemeral public
keys of this session be X ′ and Y ′. Since the session has the same signature as
the test session, CDH(A, Y ′) must be equal to CDH(A, Y) and CDH(B,X ′)
equal to CDH(B,X). This implies that X = X ′ and Y = Y ′, and thus these
two sessions must be identical.

However, the key-replication attack can happen to KEA. Lauter and Mitya-
gin describe this attack in [22]. We here review this attack. An adversary M
registers a public key ga of some honest entity Â as M’s own public key. Then
M intercepts a key-exchange session between Â and B̂ and at the same time
starts a session between M and B̂. Now M forwards ephemeral public key gx

from Â to B̂ and ephemeral public key gy from B̂ to Â. Since M has the same
public key as Â, both Â and B̂ will complete identical session keys, however they
participate in two different sessions. B̂ participates in a session withM while Â
participates in a session with B̂. ThenM can announces one of the two sessions
as a test session and reveals the session key of the other session. To resist UKS
attacks, KEA+ adds the identities of the participating entities to the tuples, see
figure 2. This slight modification prevents adversaries from activating a session
with the same tuple as the test session, thereby preventing M from performing
a key-replication attack. We show below that the key protection capability that
TCM provides can also prevent UKS attacks.

In the tKEA, we demonstrate that if an adversary M mounts a key-
replication attack, he can break the key protection capability of TCM chip-
s. We denote the test session by s and denote the corresponding 2-tuple by
(CDH(A, Y), CDH(B,X)). Correspondingly, we denote another session by s′

which has the same session key with s and the corresponding 2-tuple by
(CDH(A′, Y ′), CDH(B′, X ′)) on whichM queries H to get the session key of s.
A′ and B′ are public keys M registers to the CA through the establish(entity),
and M can do the computation of CDH(A′orB′, T) for any T whose exponent
is unknown. Since s and s′ has the same session key, CDH(A′, Y ′) must be e-
qual to Z1 = CDH(A, Y) and CDH(B′, X ′) equal to Z2 = CDH(B,X). Since

CDH(A′, Y ′) = Z1, we can get Y ′ = Z
1
a′
1 and A′ = Z

1
y′

1 . The only two ways for
M to get a pair (A′, Y ′) satisfying equation CDH(A′, Y ′) = Z1 are:

1. Register a controlled key A′ to the CA, and compute the ephemeral public

key Y ′ = Z
1
a′
1 where a′ denotes the private key of A′.

2. Generate an ephemeral key pair (y′, Y ′ = gy
′
), and register A′ = Z

1
y′

1 to the
CA.

We can see that the first way requires M to get the plaintext of the public key
A′, and the second way requires M to register a specified key. However, we can
see that both of the two ways violate the key protection capability described in
section 3.

12 Qianying Zhang, Shijun Zhao, and Dengguo Feng

Security analysis of the forging attack. We are left to show impossibility
of a forging attack. Let M be an AKE adversary against tKEA. Consider the
following GDH adversary S:
S takes input a pair (X0, Y0) ∈ G2. S is also given access to a DDH oracle

DDH. S creates an AKE experiment which includes a number of honest entities
and an adversaryM. We assume that the experiment involves at most n entities
and that each entity participates in at most k AKE sessions. S randomly selects
one of the honest entity (say, this is a entity Â) and sets the public key of Â to be
X0. All the other entities compute their keys normally. S picks a number ik at
random from {1, ..., k} and initializes the counter at i = 1 (i counts sessions that
Â participates in). S runs an AKE experiment with adversary M and handles
queries made by M as follows:

1. When M queries a hash function H on a string v, return the value of
Hsim(v). The procedure Hsim(·) which simulates a random oracle H is de-
scribed later on.

2. WhenM starts a session (B̂, Ĉ, role) between entities B̂ and Ĉ both different
from a selected entity Â, S follows the protocol for tKEA. Denote B̂’s secret
key as b, B̂’s public key as B = gb and Ĉ’s public key as C. If role = initiator,
B̂ picks a random exponent x, returns X = gx, waits for the reply Y and
computes a session key K = Hsim(Y b, Cx). If role = responder, B̂ waits for
Ĉ’s initiating message X, picks a random exponent y, replies with Y = gy

and computes a session key K = Hsim(Cy, Xb).
3. When M starts a session (Â, Ĉ, role) (here Â is the special entity whose

public key is a GDH challenge X0), S cannot follow the protocol since it
doesn’t know a secret for Â’s public key. Denote Ĉ’s public key as C. If Â
is an initiator, it picks a random exponent x, sends X = gx to Ĉ and waits
for the reply Y . Now it sets a session key to be Hspec(1, Y, C

x), see the

description of the procedure Hspec below. If Â is the responder, it waits for
an initiating message X, picks a random exponent y, replies with gy and
computes a session key K = Hspec(2, X,C

y).

4. When M starts a session (B̂, Â, role) for some entity B, where the second
entity is the selected entity Â, S first checks if i = ik. If “no”, S increments
the counter i and behaves according to the rule for Query 2. If the check
succeeds, S declares (B̂, Â, role) to be a “special session”. In a special session,
B̂ outputs a message Y0 (which is the second part of the GDH challenge)
and doesn’t compute a session key.

5. When M makes a session key-reveal or ephemeral secret key-reveal query
against some session (different from the special session), S returns to M a
session key or an ephemeral secret key for this session (which was computed
previously in Queries 2, 3 or 4). If M tries to reveal a session key or an
ephemeral secret key of the special session, S declares failure and stops the
experiment.

6. When M makes a corruption on some entity Ĉ (different from Â and B̂),
S returns the secret key of Ĉ as well as ephemeral secret keys of all current

Prevent UKS Using TCM 13

AKE sessions executed by Ĉ and gives M full control over Ĉ. If M tries to
corrupt Â or B̂ (after a special session is selected), S declares failure.

WhenM stops, S goes over all random oracle queries made byM and checks
(using a DDH oracle DDH) if any of them includes the value of CDH(X0, Y0). If
“yes”, return CDH(X0, Y0) to the GDH challenger. If “no”, S declares failure.

Function Hsim(Z1, Z2). This function implements a random oracle on valid
signatures of the tKEA. The function proceeds as follows:

• If the value of the function on that input has been previously defined, return
it.

• If not defined, go over all the previous calls to Hspec(·) and for each previous
call of the form Hspec(i, Y, Z) = v check if

Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
• If not found, pick a random w, define Hsim(Z1, Z2) = w and return w.

Function Hspec(i, Y, Z). Informally, Hspec implements a random oracle on sig-
natures which are not known to S. Specifically, the input corresponds to a sig-
nature (Z1, Z2), where Zi = CDH(X0, Y) (here X0 is a part of the GDH chal-
lenge) and Z3−i = Z. This signature is not known to S since S cannot compute
CDH(X0, Y). The function proceeds as follows:

• If the value of the function on that input has been previously defined, return
it.

• If not defined, go over all the previous calls to Hsim(·) and for each previous
call of the form Hsim(Z1, Z2) = v check if

Z = Z3−i and DDH(X0, Y, Zi) = 1.

If all these conditions hold, return v.
• If the check failed for all the calls, pick a random w, define Hspec(i, Y, Z) to

be w and return w.

Analysis of S. The the running time of S is the time needed to run an AKE
experiment andM plus the time needed to handle H-queries. Each call to Hsim

or Hspec requires S to pass over all the previously made queries. Thus, time
needed to handle H-queries is proportional to a squared number of queries. Since
the number of H-queries is upper-bounded by the running time of M, we can
bound the running time of S by O(t2), where t is the running time of M.

We are now going to show that if M doesn’t corrupt Â and doesn’t reveal a
session key or an ephemeral secret key for the special session, then the simulation
of an AKE experiment is perfect. That is, the view ofM in the experiment run
by S is identically distributed to the view of M in an authentic experiment. To
be precise, the view of M consists of public keys of all the entities, secret keys
of the corrupted entities, ephemeral public keys of all the sessions, ephemeral
secret keys and session keys of the corrupted sessions and of the random oracle’s
responses.

14 Qianying Zhang, Shijun Zhao, and Dengguo Feng

We start by observing that secret/public key pairs of all honest entities ex-
cept Â are distributed correctly. A public key of Â is also distributed correctly,
however S doesn’t know the secret key for it. By assumption,M doesn’t corrupt
Â and thusM wouldn’t notice that. Similarly, ephemeral secret/public values of
all sessions except the test session are distributed as in the original protocol. The
ephemeral public key Y0 in the test session is also distributed correctly, although
S doesn’t know a secret for it. Again, we assume thatM doesnt corrupt the test
session and so S wouldn’t have to reveal it.

The adversary can obtain the random oracle’s responses either by querying
H directly or by revealing session keys from honest entities. Without loss of
generality, we can assume that the adversary queries a random oracle only on
tuples of the form (Z1, Z2), where Z1, Z2 ∈ G. To ensure that the simulation is
perfect, we need to verify that i) the oracle responses are selected at random and
ii) if the same argument is queried several times, the same value is returned.

Recall that S handles two types of queries differently. Queries of the first type
are fully specified 2-tuples and such queries are made both byM and by honest
entities. They are handled by the function Hsim. Queries of the second type are
made only by Â and such queries have one of the components unspecified. That
is, a value Zi (for some i = 1, 2) is unknown and it is specified by Y ∈ G such
that Zi = CDH(X0, Y). These queries are handled by Hspec. Note that distinct
Hspec arguments correspond to distinct queries to H.

In our construction of Hsim and Hspec, a new random value of H is chosen
every time the argument wasn’t found in the record of previous queries. Thus,
condition i) is satisfied and we only need to show that by querying the same
argument several times, M always receives the same answers. If the same query
is made for the second time either to Hsim or to Hspec, the same answer is
returned. The only conflicts can arise if a query previously handled by Hsim is
queried again to Hspec or vice versa. That is, Hsim was called on a tuple (Z1, Z2)
and Hspec - on (i, Y, Z) where Zi = CDH(X0, Y) and Z3−i = Z. Note that one
can check whether these queries correspond to identical signatures by checking
that Z3−i = Z and that DDH(X0, Y, Zi) = 1.Whichever of the functions was
called first, on the second call (to the other function) S will go over all previous
calls to the first function and do such a check. If a match is found, the previously
defined value is returned. This guarantees that condition ii) is also satisfied.

We showed that, provided M doesn’t corrupt Â or the special session, the
simulation of the AKE experiment is perfect. Since the entity Â and the special
session are chosen at random, a test session selected by M matches the special
session with probability 1/nk (recall that n is the number of entities in the
experiment and k is the maximal number of sessions any entity can participate
in). In this case, the simulation is perfect since M doesn’t corrupt the test
session. We know that a successful adversary must reveal the signature of the
test session. Whenever M wins in the AKE experiment and the test session
was guessed correctly, S reveals the signature of the test session which contains
CDH(X0, Y0), and therefore wins in the GDH experiment. To summarize the

Prevent UKS Using TCM 15

lengthy proof, for any AKE adversary M running in time t we constructed a
GDH solver S which runs in time O(t2) such that

AdvGDH(S) ≥ 1
nkAdvAKEtKEA(M)

As for the wPFS and KCI security property of tKEA, they can be proved
directly following the proof above. So the tKEA implementation achieves the
same security protocol of KEA+, i.e., the protection capabilities provided by
TCM indeed can improve the AKE protocols.

5.2 Securing MQV

The MQV protocol has been adopted by TPM 2.0 version, which might be widely
used in practice (the Microsoft Surface Pro has been equipped by TPM 2.0). We
show that our way of using the key protection capability to prevent UKS attacks
on KEA can prevent the UKS attack [19] on the MQV protocol. Figure 4 shows
this attack. To attack MQV, the adversary M registers a public key C = gc to
the CA. AsM knows the private key of C, the CA cannot deny the registration
of C even it requires proof of knowledge of the private key. However, if the CA
requires that the key must come from a security chip, such as TPM or TCM,
this UKS attack can be prevented. That’s because if the key is generated in a
security chip,M can not specify a key to be registered. That’s to say,M cannot
register C = gc to the CA.

6 Conclusion and Future Work

This paper summarizes two types of UKS attacks to Non-Signed Diffie-Hellman
AKE protocols and the usual corresponding solutions to the two attacks. One of
the solutions requires the CA to check the possession of the private key, which
is unpractical, and the other solution modifies the original protocol. Motivated
by the key protection capability of security chips, we present our solution of
preventing UKS attacks on AKE protocol.

We introduce the key protection capability of hardware security chips and
give a variant of CK model which covers UKS attacks. Through the security
proof of tKEA in our variant model, we show that our new way to prevent UKS
attacks is effective. We also show the generality of our new way by preventing
the UKS attack on MQV protocol.

In section 5, we show that our new way can prevent the UKS attack on
MQV but without a formal proof. In the future, we are going to give MQV a
formal proof in our security model. We will also check whether the key protection
capability can provide other advantages to AKE protocols.

References

1. Advanced Micro Devices. AMD64 Virtualization Codenamed “Pacifica” Technol-
ogy, Secure Virtual Machine Architecture Reference Manual. http://www.mimuw.

16 Qianying Zhang, Shijun Zhao, and Dengguo Feng

edu.pl/~vincent/lecture6/sources/amd-pacifica-specification.pdf, May
2005.

2. T. Alves and D. Felton. TrustZone: Integrated hardware and software security -
enabling trusted computing in embedded systems. Information Quarterly, 3(4):18–
24, 2004.

3. ANSI. 504-1: Information technology-generic identity command set, part 1: Card
application command set.

4. ANSI. American National Standard, X9.42-2001.
5. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Ad-

vances in Cryptology-CRYPTO93, pages 232–249. Springer, 1994.
6. S. Blake-Wilson and A. Menezes. Unknown key-share attacks on the station-to-

station (STS) protocol. In Public Key Cryptography, pages 154–170. Springer,
1999.

7. E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Pro-
ceedings of the 11th ACM conference on Computer and communications security,
pages 132–145. ACM, 2004.

8. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Advances in Cryptology-EUROCRYPT 2001, pages
453–474. Springer, 2001.

9. R. Canetti and H. Krawczyk. Security analysis of IKE’s signature-based key-
exchange protocol. In Advances in Cryptology-CRYPTO 2002, pages 143–161.
Springer, 2002.

10. L. Chen and B. Warinschi. Security of the TCG privacy-CA solution. In Embedded
and Ubiquitous Computing (EUC), 2010 IEEE/IFIP 8th International Conference
on, pages 609–616. IEEE, 2010.

11. K.-K. R. Choo, C. Boyd, and Y. Hitchcock. Examining indistinguishability-
based proof models for key establishment protocols. In Advances in Cryptology-
ASIACRYPT 2005, pages 585–604. Springer, 2005.

12. W. Diffie and M. Hellman. New directions in cryptography. Information Theory,
IEEE Transactions on, 22(6):644–654, 1976.

13. W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated
key exchanges. Designs, Codes and Cryptography, 2(2):107–125, 1992.

14. GlobalPlatform. GlobalPlatform Device Technology TEE Client API Specification.
http://www.globalplatform.org/specificationsdevice.asp, 2010.

15. IEEE. 1363-2000: Standard specifications for public key cryptography.
16. Intel Corp. Intel Trusted Execution Technology. http://www.

intel.com/content/dam/www/public/us/en/documents/white-papers/

trusted-execution-technology-security-paper.pdf, 2012.
17. ISO/IEC. 11770-3:2008 information technology - security techniques - key man-

agement - part 3: Mechanisms using asymmetric techniques.
18. ISO/IEC. 24727-6:2010 Identification cards - integrated circuit card programming

interfaces - part 6: Registration authority procedures for the authentication pro-
tocols for interoperability, 2011.

19. B. S. Kaliski Jr. An unknown key-share attack on the MQV key agreement proto-
col. ACM Transactions on Information and System Security (TISSEC), 4(3):275–
288, 2001.

20. H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Advances in Cryptology-CRYPTO 2005, pages 546–566. Springer, 2005.

21. B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key
exchange. In Provable Security, pages 1–16. Springer, 2007.

Prevent UKS Using TCM 17

22. K. Lauter and A. Mityagin. Security analysis of KEA authenticated key exchange
protocol. In Public Key Cryptography-PKC 2006, pages 378–394. Springer, 2006.

23. L. Law, A. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for
authenticated key agreement. Designs, Codes and Cryptography, 28(2):119–134,
2003.

24. A. Menezes, M. Qu, and S. Vanstone. Some new key agreement protocols pro-
viding mutual implicit authentication. In Second Workshop on Selected Areas in
Cryptography (SAC’95), 1995.

25. A. Menezes and B. Ustaoglu. On the importance of public-key validation in
the MQV and HMQV key agreement protocols. In Progress in Cryptology-
INDOCRYPT 2006, pages 133–147. Springer, 2006.

26. National Institute of Standards and Technology. SKIPJACK and KEA Algo-
rithm Specifications Version 2.0. http://csrc.nist.gov/groups/ST/toolkit/

documents/skipjack/skipjack.pdf, May 1998.
27. NIST. Special publication 800-56 (DRAFT): Recommendation on key establish-

ment schemes, Draft 2, January 2003.
28. NIST. SP 800-56 (DRAFT): Special publication 800-56, recommendation for pair-

wise key establishment schemes using discrete logarithm cryptography, July 2005.
29. E. L. Saint, D. Fedronic, and S. Liu. Open Protocol for Access Control I-

dentification and Ticketing with Privacy. http://www.smartcardalliance.org/

resources/pdf/OPACITY_Protocol_3.7.pdf., 2011.
30. V. Shoup. On formal models for secure key exchange. Citeseer, 1999.
31. State Password Administration Committee in China. Functionality and Interface

Specification of Cryptographic Support Platform for Trusted Computing. http:

//www.oscca.gov.cn/UpFile/File64.PDF, December 2007(in Chinese).
32. Trusted Computing Group. TPM Main Specification Level 2 Version 1.2,

Revision 116. http://www.trustedcomputinggroup.org/resources/tpm_main_

specification, March 2011.
33. Trusted Computing Group. Trusted Platform Module Library Specifica-

tion - Part 1 Architecture, Family “2.0” Level 00, Revision 00.99. http:

//www.trustedcomputinggroup.org/developers/trusted_platform_module,
August 2013.

