
Zero-Knowledge Password Policy Checks and
Verifier-Based PAKE

Franziskus Kiefer and Mark Manulis

Department of Computing, University of Surrey, UK
mail@franziskuskiefer.de, mark@manulis.eu

Abstract. We propose the concept of Zero-Knowledge Password Pol-
icy Checks (ZKPPC) to enable remote registration of client passwords
without their actual transmission to the server. The ZKPPC protocol
executed as part of the client registration process allows the client to
prove compliance of the chosen password with the password policy de-
fined by the server. The main benefit of ZKPPC-based password regis-
tration is that it guarantees that passwords can never be processed nor
stored in clear on the server side. At the end of the registration phase
the server only receives and stores some verification information that
can later be used for authentication in suitable Verifier-based Password
Authenticated Key Exchange (VPAKE) protocols.
To this end, we first formalize the requirements of ZKPPC protocols
and propose a general framework for their construction in the standard
model using randomised password hashing and set membership proofs.
We design a suitable encoding scheme for password characters and show
how to express password policies to allow the adoption of set membership
proofs. Finally, we present a concrete ZKPPC-based registration proto-
col that is based on efficient Pedersen commitments and corresponding
proofs, and analyse its performance.
To complete the ZKPPC-based registration and authentication frame-
work we propose a concrete VPAKE protocol, where the server can use
the obtained verification information from the ZKPPC-based registra-
tion phase to subsequently setup secure communication sessions with
the client. Our VPAKE protocol follows the recent framework for the
construction of such protocols and is secure in the standard model.

1 Introduction

Password policies set by organisations aim at enforcing a higher level of security
on used passwords by specifying various requirements that apply during their
selection process and the actual usage. Especially, when passwords are selected
and used by users in a remote way strong password policies can help not only
to protect data behind individual user accounts but also to prevent malicious
activities from compromised accounts that could further harm the organisation
due to liability issues or even lead to a compromise of the entire system or
service. It is known that in the absence of any password policy users tend to

1

choose “weak” passwords that are easily guessable and have higher risk of being
compromised through dictionary attacks [24]. It is worth noting that coming up
with a good password policy is still considered a difficult task since policies must
also remain usable in practice [15].

In this work we focus on widely used password policies that specify the re-
quirements on the selection of passwords such as the minimum password length,
define sets of admissible password characters, and may contain further restric-
tions on the number of characters from each set. These requirements are typically
enforced during the initial password registration process and aim at preventing
users from choosing “weak” passwords. These policies are often extended with
additional restrictions on the usage of passwords by requiring users to change
their passwords within a certain period of time.

In case where users select passwords for remote access to systems or services
on their own, the password policy enforcement mechanism must be able to verify
that selected passwords comply with the existing policy. This compliance check
can be performed either on the client side or on the server side. For instance,
when a commodity web browser is used to register for some web service the policy
can be checked within the browser using scripts embedded into the registration
website, or on the server side upon the initial transmission of the password
(e.g. over a TLS channel). Both approaches, however, have security risks as
discussed in the following. If policy enforcement is performed solely on the client
side, the server must trust the client to obey the policy and execute the check
correctly. This is not a threat if the compliance check is assumed to be in the
interest of an honest user. Nonetheless, malicious users can easily circumvent
such script-based verification and submit passwords that are not compliant with
the policy. Depending on the nature of the service, the corresponding service
provider might want to exclude this threat. In this case the compliance check
must be performed on the server side. In order to perform such a check with
available technologies the client’s password must be transmitted to the server,
possibly over a secure channel. This ultimately requires the client to trust the
server to process and store the received password in a secure way. While many
servers adopt the current state-of-the-art approach for storing passwords in a
hashed form, e.g. using PBKDF2 [16,23] or bcrypt [20], with a random salt
to protect against server compromise or re-use attacks, there have been many
known cases, e.g. [21,17,22,12], where passwords have been stored in clear and
compromised subsequently. Therefore, trusting servers with secure processing
and storage of user passwords is clearly not the best approach.

This imposes the following questions: How can users remotely choose pass-
words and prove their policy compliance to a remote server without actually
transmitting their passwords to the server? The second question, that follows the
first one, is how can users authenticate themselves remotely to the server with
passwords without transmitting their passwords? Interestingly, cryptographic
techniques for password-based authentication without password transmission al-
ready exist in form of Password-Authenticated Key Exchange (PAKE) protocols,
e.g. [2,1,9,19]. PAKE protocols offer mutual authentication and computation of

2

secure session keys based solely on the input password in a way that makes it
hard for an active adversary to recover passwords via offline dictionary attacks.
Traditional PAKE protocols assume that the password is input in clear on both
sides. To alleviate the threat that stored passwords are revealed immediately in
case of a server compromise, the so-called Verifier-based PAKE (VPAKE) proto-
cols [3,14,5] define the server’s input as some verification information. Knowledge
of these verification information still requires an offline dictionary attack to re-
veal the password. VPAKE protocols thus offer better protection than PAKE
since they force the attacker who breaks into the server and is willing to recover
passwords to perform an additional offline dictionary attack. The aforementioned
trust assumption on the server to securely process and store passwords becomes
irrelevant if the password setup only transmits password verification information
to the server, which can later be used in VPAKE protocols. In combination with
password policy enforcement this approach would however require a solution to
the first question; namely the client must be able to prove that the verification
information for VPAKE have been derived from a password that complies with
the server’s password policy.
Zero-Knowledge Password Policy Checks (ZKPPC): Our first contri-
bution is the concept of Zero-Knowledge Password Policy Checks (ZKPPC) in
Section 5. This is a new class of protocols that allows a server to perform pol-
icy checks on passwords in a zero-knowledge manner. The use of ZKPPC al-
lows clients to register policy-conform passwords without disclosing them to the
server. ZKPPC can be used to solve the aforementioned problem of password
setup where only password verification information is supposed to be transmit-
ted to the server. We present a security model for ZKPPC, a general framework
for their construction and a concrete instantiation. As a building block for the
construction of ZKPPC protocols we introduce a new method for processing
passwords and policies in Section 3.
ZKPPC-compliant VPAKE: Our second contribution is a new verifier-based
PAKE protocol in the standard model in Section 6, which instantiates the generic
construction from [5]. This VPAKE protocol is ZKPPC-compliant and allows
us to solve the second aforementioned problem of password authenticated key
exchange using only a password verifier on the server side. In order to build
the new VPAKE protocol we make use of a new randomised password-hashing
scheme, defined in Section 4.

2 Concept Overview and Building Blocks

Our concept entails performing a zero-knowledge password policy check during
the client registration phase, which results in password verification information
being passed on to the server, and subsequent use of this verification informa-
tion on the server side as input to a suitable VPAKE protocol for the purpose
of password-based authentication. A client wishing to register its username and
password at a remote server that maintains a password policy will initially pick a
password and execute the ZKPPC protocol with the server. The ZKPPC protocol

3

ensures that the password chosen by the client complies with server’s password
policy and is linked to the verification information communicated to the server
at the end of the registration phase. This verification information is computed
through a randomised password hashing scheme and includes the randomness
that was used by the client. The actual client’s password is not transmitted to
the server and the only way for the server to reveal the password is to execute an
offline dictionary attack using the obtained verification information. That is, a
malicious server would have to perform about the same amount of computation
to recover passwords as an attacker who breaks into the server. At the same time
an honest server will be able to recognise and reject any attempt of a malicious
client in setting up a non-policy conform password, still without learning the lat-
ter. In order to realise the ZKPPC functionality (incl. the randomised password
hashing scheme) and to construct a suitable VPAKE protocol we make use of
the following building blocks.

Zero Knowledge Proofs A proof of knowledge PoK between prover and veri-
fier proves that a word C is in language L. A word is in language L if a witness
w exists proving so. We use common notation PoK{(α, β) : y = l(α, β)} to
describe a proof of knowledge of (α, β) such that y = l(α, β) for public value y
and public function l. PoK is a zero knowledge proof of knowledge (ZKPoK) if
the verifier learns nothing about (α, β). More formally: An interactive protocol
PoK for a language L between prover P and verifier V is a zero knowledge proof
of knowledge (ZKPoK) if the following holds:

– Completeness: If x ∈ L, V accepts if P holds a witness w proving so.
– Soundness: There exists an efficient knowledge extractor Ext that can extract

a witness w from any malicious prover P ∗(x) with x ∈ L that has non-
negligible probability of making V (x, L) accept.

– Zero-Knowledge: If x ∈ L, there exists an efficient simulator Sim, on input x,
able to generate a view, indistinguishable from a (malicious) verifier’s view.

Note that we have to consider malicious verifiers, i.e. not only honest verifier
ZK, since our ZKPPC protocol should remain secure even if a malicious server
tries to retrieve the password from the interaction with the client.

Commitments Commitments allow us to commit to the password’s characters
without disclosing them, and thus reason on the policy conformity of passwords.
C = (CSetup, Com) is a commitment scheme if it offers the following properties:

– Efficient: pC ← CSetup(λ) and (C, (x, r)) = (C, d) ← Com(pC, x; r) for x ∈ X
and r ∈R S are poly-time algorithms.

– Complete: For all x ∈ X, r ∈ SC and all pC ← CSetup(λ) : Com(pC, d) = (C, d)
for (C, d)← Com(pC, x; r)

– Binding: For all PPT algorithms A there exists a negligible function εbi(·)
such that for all (x, x′, r, r′, C)← A(pC) with pC ← CSetup(λ):

Pr[x 6= x′ ∧ (C, d) = Com(pC, x; r) ∧ (C, d′) = Com(pC, x
′; r′)] ≤ εbi(λ)

4

– Hiding: For all PPT algorithms A there exists a negligible function εhi(·) such
that for all x0, x1 with |x0| = |x1| and pC ← CSetup(λ), b ∈R {0, 1}, (C, d)←
Com(pC, xb; r) and b′ ← A(pC, C, x1, x2):

Pr[b = b′] ≤ 1/2 + εhi(λ)

A commitment scheme is perfectly binding if εbi(·) is zero and perfectly hiding
if εhi(·) is zero. A commitment scheme is said to be homomorphic if there exist
functions Ψ, ψ and Φ such that for all pC ← CSetup(λ), (Ci, di)← Com(pC, xi; ri)
with xi ∈ X and ri ∈ S for i ∈ 0, . . . ,m it holds that Ψmi=0Ci = Com(pC, ψ

m
i=0xi;

Φmi=0ri). Note that we write C ← Com(x; r) to generate a commitment C for x us-
ing randomness r and omit parameters pC and decommitment d for convenience.

Instantiation [18] In this work we use the Pedersen commitment scheme [18],
which is perfectly hiding and suits our needs as it is homomorphic. Let CP =
(CSetup, Com) with (g, h, p, λ) ← CSetup(λ) and C ← Com = (x; r) = gxhr

denote the Pedersen commitment scheme where g and h are generators of a
cyclic group G of prime-order p with bit-length in the security parameter λ and
the discrete logarithm of h with respect to base g is not known.

Set Membership Proofs Set membership proofs are special zero knowledge
proofs, which prove that a committed value is an element of a specific set. Let C =
(CSetup, Com) denote a commitment scheme and C ← Com(x; r) a commitment
on x using randomness r. A proof of set membership for C and x ∈ L is defined
as ZKPoK{(ξ, ρ) : C ← Com(ξ; ρ) ∧ ξ ∈ L}. Note that we write SMP(ξ, ρ, L) as
an abbreviation.

An Efficient Set Membership Proof [7] We use the efficient set membership proof
from Camenisch, Chaabouni and Shelat [7]. The scheme uses Boneh-Boyen (BB)
signatures [6] that are defined as follows: (x, y = gx)← KGen(λ) with x ∈R Zp,
ω = g1/(x+m) ← Sign(m,x) and e(ω, ygm) ?= e(g, g) ← Verify(m,ω, y). Let Ω
denote the set we want to prove membership of. Figure 3 in Appendix B depicts
the set membership proof from [7] between a prover P (the client) and a verifier
V (the server) on common input (C,Ω, par). The client further knows ω and r
such that C ← Com(ω; r). Note that we omit standard checks such as verification
if an element is a generator, but notice that the prover has to verify the signatures
from set {Ξi}. The verifier creates BB signatures Ξi for all elements i in Ω and
sends the public signature key y together with the set of signatures {Ξi} to the
prover. What follows now is a zero-knowledge proof of knowledge of a signature
Ξω, the same ω commited to in C. The prover blinds the signature V ← Ξvω
with v ∈R Zp and sends it together with verification values a = e(V, g)−se(g, g)t
and d = gshm for s, t,m ∈R Zp back to the server. After getting the challenge
c from the server, the prover returns zω = s − ωc, zH = t − vc and zr = t − vc
to the server that can check the values to complete the zero-knowledge proof of
knowledge. The described set membership proof is only secure against honest
verifiers. To transform it into a general zero-knowledge set membership proof

5

one can use common mechanisms from [10] or resort to the random oracle model
and use it in a non-interactive version using the Fiat-Shamir transformation [13].

Encryption A labelled encryption scheme is IND-CCA2 secure if for all PPT
adversaries A there exists a negligible function ε(·) such that :

AdvCCA2
A (λ) =

∣∣∣Pr[ExpCCA2
A (λ) = 1]− 1

2

∣∣∣ ≤ ε(λ)

ExpCCA2
A (λ) : For key-pair (pk, sk) the adversary generates (m0,m1) on input of

pk and access to an encryption oracle. After generating c ← Encpk(`,mb; r) for
random bit b ∈R {0, 1} the adversary gets (pk,m0,m1, c) as input and access to
an encryption and decryption oracle and has to output a bit b′. The experiment
returns b = b′. Note that A must not query the decryption oracle with c.

Cramer-Shoup Encryption [11] We use the labelled Cramer-Shoup (CS) encryp-
tion scheme [11] over cyclic group G of prime-order p with generators g1 and g2
defined as follows: Let C = (`,u, e, v) ← EncCS

pk(`,m; r) with u = (u1, u2) =
(gr1, gr2), e = hrm and v = (cdξ)r with ξ = Hk(`,u, e) denote a labelled
Cramer-Shoup ciphertext for a message m ∈ G. The CS public key is defined as
pk = (p,G, g1, g2, h, c, d,Hk) with c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz1 and hash func-

tion Hk such that sk = (x1, x2, y1, y2, z) denotes the decryption key. Decryption
is defined asm = DecCS

sk(C) = e/uz1 if ux1+y1·ξ′

1 ux2+y2·ξ′

2 = v with ξ′ = Hk(`,u, e).

Smooth Projective Hashing (SPHF) We consider only SPHFs on cyclic
groups here and use the notation � and common matrix and vector operations
on it from [4]: for a ∈ G, r ∈ Zp : a � r = r � a = ar ∈ G. Let Laux denote a
language such that ciphertext C ∈ Laux if there exists a witness w proving so.
A smooth projective hash function for ciphertext language Laux consists of the
following four algorithms:

– KGenH(Laux) generates a hashing key kh ∈R Z1×n
p for language Laux.

– KGenP(kh, Laux) derives the projection key kp = Γ � kh ∈ Gk×1.
– Hash(kh, Laux, C) outputs the hash value h = Θaux(C)� kh ∈ G.
– PHash(kp, Laux, C, w) returns the hash value h = λ � kp ∈ G, with λ =
Ω(w,C) for some Ω : {0, 1}∗ 7→ G1×k.

A SPHF is correct if for all C ∈ L, with w proving so, Hash(kh, Laux, C) =
PHash(kp, Laux, C, w). It is smooth if for all C 6∈ Laux, the hash value h is indis-
tinguishable from a random element in G.

Instantiation [4] A perfectly smooth SPHF for labelled CS encryption C ←
EncCS

pk(`, x; r) from [4] on L(x) is defined as follows:

– KGenH(Lx) generates five random elements kh = (η1, η2, θ, µ, ν) ∈R Z1×5
p .

– KGenP(kh, Lx) on input of language Lx and hashing key kh returns the pro-
jection key kp = (gη1

1 gθ2h
µcν , gη2

1 dν).

6

– Hash(kh, Lx, C) on input of a ciphertext C, language Lx and hashing key kh

returns the hash value h = uη1+ξη2
1 uθ2(e/x)µvν .

– ProjHash(kp, Lx, C, r) on input of projection key kp, language Lx, ciphertext
C and according randomness r returns the hash value h = (kp1kp

ξ
2)r.

3 Modelling Passwords and Policies

In cryptography, passwords are usually modelled as integers, i.e. using a map-
ping from dictionaries to Z+. This allows to use them in computations like any
other secret key. However, such mapping destroys the structure of a password.
To perform operations on the actual password, i.e. the character string, we need
a more careful translation from character strings to integers. In the following we
define passwords, their composition from characters and how they build dictio-
naries. We further formally define password policies as regular expressions over
certain character sets.

3.1 Passwords and Dictionaries

We consider passwords consisting of all 94 printable ASCII characters, which are
either digits, upper case letters, lower case letter or symbols. Note that we do not
consider passwords consisting of other characters. However, it is straightforward
to extend our approach to UTF-8 or any other character set. Let Σ denote the
set of all possible characters. We define the following subsets of Σ:

– d = [0− 9] or ASCII codes [48− 57]
– u = [A− Z] or ASCII codes [65− 90]
– l = [a− z] or ASCII codes [97− 122]
– s = [!"#$%&’()*+,-./ :;<=>?@ [\]ˆ_‘ {|}~]

or ASCII codes [33− 47, 58− 64, 91− 96, 123− 126]

We denote the general dictionary D, which comprises all power sets of Σ, i.e. all
strings formed from printable ASCII characters. The set of possible characters
is defined as Σ = d ∪ u ∪ l ∪ s. A password pw = (c0, . . . , cn−1) ∈ Σn ⊂ D is an
ordered set (string) of n characters chosen from Σ.

Encoding In order to maintain the character structure of passwords when map-
ping them to integers we need a suitable encoding scheme. The standard ASCII
encoding is not directly suitable, neither are common hashing techniques. In-
stead we define a modified ASCII encoding, to encode characters from d, u, l
and s to Z+

95. Let p : Σ 7→ Z+
95 denote a partially defined mapping function

characterised as

p(x) =

⊥ if ASCII(x) < 32
ASCII(x)− 32 if 33 ≤ ASCII(x) ≤ 126
⊥ if 126 < ASCII(x)

7

where ASCII returns the decimal ASCII code of a character. A password pw is
then defined as P =

∑n−1
i=0 95ip(ci) for ci ∈ Σ. We use ∅ as special character

denoting zero. Note that ∅ is not a valid character in passwords, e.g., 95 = ∅! is
not a valid password but 97 = “! is one. As P is in fact conversion from base
95 to base 10 it is an injective function from character strings of size n to Z+

95n
with the common modulo operation as its inverse function, e.g., the encoded
password 797353 corresponds to the password string 2Ax, which is computed as
concatenation of 797353 mod 95 = 18 =̂ 2 at position 0, (797353 mod 952) −
(797353 mod 95) = 3135 = 33 · 951 =̂ A at position 1 and 797353 − (797353
mod 952) = 794200 = 88 · 952 =̂ x at position 2.

3.2 Password Policies

We consider a password policy as a regular expression1 in combination with up-
per and lower bounds for the password length, which on input pw evaluates to
true or false, depending on whether the password is policy conform or not.
We do not need the full power of regular expressions to model password policies.
Instead, we can focus on a specific subset of regular expressions that is specified
in the following. Note that for useful regular expressions we do not work on Σ
but on Σ′ = {d, u, l, s}. In particular, the alphabet consists of identifiers for the
four aforementioned ASCII subsets. A password policy f = (R,m, n) consists of
a regular expression R, a minimum password length m and an upper limit for
passwords n. The upper limit n can be picked such that sufficiently long pass-
words are admitted and will have impact on the efficiency of the corresponding
zero-knowledge proofs for policy compliance. The following examples illustrate
the definition of password policies f using regular expressions:

– “between 5 and 15 characters and at least one symbol and one digit” corre-
sponds to f = (sd, 5, 15)

– “between 8 and 15 characters and at least two symbols and one digit” cor-
responds to f = (ssd, 8, 15)

– “between 10 and 20 characters and at least one digit, one upper case letter,
and one symbol” corresponds to f = (dus, 10, 20)

We denote the set of policy conform passwords by Df , i.e. all passwords pw such
that f(pw) returns true.

4 Randomised Password Hashing

To compute password verifier H from some password pw for later use in a
VPAKE protocol we define randomised password hashing by extending the def-
inition from [5] to allow the pre-hash computation to use a random salt as well.
1 Other definitions for policies are possible and maybe even more appropriate, for
example including search for natural words in the password (e.g. dropbox password-
meter2). However, it seems difficult to realise proofs with such complex constraints
at this stage so that we leave their consideration for future work.

8

https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation

Using an empty pre-hash salt ⊥, our definition for password hashing is equiv-
alent to the one used in [5]. We will see advantages of this definition later in
the construction of a suitable VPAKE protocol. A password hashing scheme Π
consists of five algorithms:
– PSetup(λ) on input of security parameter λ generates password hashing

parameters pP.
– PPHSalt(pP) on input of parameters pP generates a random pre-hash salt
sP ∈R SP from randomness space SP .

– PPreHash(pP,pw, sP) on input of parameters pP, password pw and pre-hash
salt sP deterministically computes the pre-hash value P .

– PHSalt(pP) on input of parameters pP generates a random hashing salt sH ∈R
SH from randomness space SH .

– PHash(pP, P, sH) on input of parameters pP, pre-hash P and salt sH deter-
ministically computes the hash value H.

The use of a pre-hash salt is motivated by the fact that algebraic hash functions
usually allow to precompute certain values. Using these precomputed values and
the salt it is easy for a server to retrieve the password. Using separate salts for
pre-hash and hash functions allows us to prevent the server from precalculat-
ing password hashes. While random oracle-like password hashing is not usually
vulnerable to precalculations, it seems difficult to build precalculation-secure,
pure algebraic password hashing schemes without additional randomness. The
main reason for the authors of [5] not to use randomness in PPreHash seems the
increased round complexity in VPAKE protocols using these password hashes.
However, it is possible to build one-round VPAKE protocols from their frame-
work using randomness in PPreHash, as we will see later.

Note that we write H ← HashP(pw, r) as short form of H ← PHash(pP, P, sH)
with P ← PPreHash(pP,pw, sP), where r = (sP , sH) combines the randomness
used in PHash and PPreHash. We consider (second) pre-image resistance and
entropy preservation from [5] as security properties for password hashing. Due
to space limitations we refer to Appendix A for formal definition of those prop-
erties. While those definitions are password hashing related, we further consider
common one-wayness security of HashP to ensure security against an attacker
that does not know the according salts. Note that one-wayness from [5] is called
pre-image resistance here to separate it from the common one-wayness.
One-wayness: We use the common definition for one-wayness with syntax appro-
priate for the used definition of password hashing. A password hashing protocol
Π is a one-way function if for all PPT algorithms A, there exists a negligible func-
tion ε(·) such that for pw′ ← AHashP(·)(pP): Pr[Finalise(i,pw′) = 1] ≤ ε(λ),
where HashP(pw) returns H ← HashP(pP,pw, r) for sH ← PHSalt(pP), sP ←
PPHSalt(pP) and global parameters pP ← PSetup(λ) on the i-th invocation, and
stores T [i]← pw. Finalise returns 1 if T [i] = pw′, otherwise 0.

4.1 Instantiation based on Pedersen commitments
We introduce a new password hashing scheme based on Pedersen commitments.
The password hashing schemeΠ = (PSetup, PPHSalt, PPreHash, PHSalt, PHash)

9

is a modified Pedersen commitment with a random generator used for the mes-
sage. In particular pP = (p, g, h, λ) ← PSetup(λ), Zp 3R sP ← PPHSalt(pP),
Zp 3R sH ← PPHSalt(pP), P = gsP ·pw ← PPreHash(pP,pw, sP) and H =
PhsH ← PHash(pP, P, sH).

Security One-wayness ofΠ follows immediately from the hiding property of the
Pedersen commitment. Pre-image resistance, second pre-image resistance and
entropy preserving properties from Appendix A follow from the group properties
of the used cyclic group of prime-order p with generators g and h. We use gP
for gsP in the following.
– The second pre-image resistance holds since gP is a generator, i.e. gpw

P hsH

= P ′hsH with adversarial generated P ′ can only be true iff P ′ = gpw
P .

– The pre-hash entropy and hash entropy preservation hold since gP is a gen-
erator such that for every (P, sP) the pre-hash entropy attacker chooses, it
holds that Pr[P = gpw

P] ≤ 2−β+ε(λ), and for every (H, sH) the hash entropy
attacker chooses it holds that Pr[H = gpw

P hsH] ≤ 2−β + ε(λ) for a random
pw ∈R D.

– The pre-image resistance holds since the attacker has to compute 2βPPreHash
and 2βPHash values to produce a pre-hash P = gpw

P with H = PhsH ,
which corresponds to a brute-force attack, i.e. Pr[Finalise(i, P) = 1] ≤
2−β αt

tPHashtPPreHash
+ ε(λ). Note that salts sP and sH are randomly chosen on

every HashP invocation such that the probability for collisions is negligible.

5 Password Registration with ZKPPC

The following concept of Zero-Knowledge Password Policy Checks (ZKPPC)
enables clients to prove the compliance of chosen passwords with password poli-
cies without password disclosure. A ZKPPC protocol will be executed as part
of password registration protocols. We further present a general framework for
ZKPPC and one concrete instantiation based on Pedersen commitments and
corresponding proofs.

5.1 Zero-Knowledge Password Policy Check
A ZKPPC protocol is an interactive protocol between a client A and a server B,
such that the server accepts (A,H) with verifier H ← HashP(pw, r) for password
pw if and only if the client knows (pw, r), and the password pw complies with
the server’s password policy, i.e. f(pw) = true. A PPC protocol can be seen as a
proof of knowledge of pw and r such that H ← HashP(pw, r) and f(pw) = true.
A ZKPPC protocol is thus a special zero-knowledge proof of knowledge. If the
client’s prospective password is not policy conform, i.e. f(pw) = false, the
server rejects the setup process.

Definition 1 (PPC). For password hashing function Π = (PSetup,
PPHSalt, PPreHash, PHSalt, PHash) and password policy f a PPC protocol is an
interactive proof of knowledge between a client (prover) and a server (verifier)

10

PoK{(α, ρ) : f(α) = true ∧H = HashP(α, ρ)}.

PPC is a ZKPPC if PoK is a zero-knowledge proof of knowledge. The security
properties of the proof of knowledge PoK can be translated as follows: For any
honest server B with policy f and honest client A the server accepts the client’s
password pw if and only if f(pw) = true (Completeness). For any honest server
B with policy f and (malicious) client A on input of H with f(pw) = true
and H ← HashP(pw, r), the server outputs 0 with overwhelming probability, i.e.
rejects (A,H) (Soundness). In other words, there exists an efficient extractor
Ext that extracts (pw, r) from any (malicious) client A that can convince an
honest server to accept (A,H). A PPC protocol is a ZKPPC protocol if there
exists a simulator Sim(f) for every H with f(pw) = true and H ← HashP(pw; r)
that can produce a view that is indistinguishable from the view of a possibly
malicious server B, interacting with a client A (Zero-Knowledge).

5.2 General Framework for ZKPPC Protocols

We present a general framework to construct ZKPPC protocols from set member-
ship proofs, commitments and password hashing protocols. The server’s policy
f = (R,m, n) is given as a regular expression R on Σ′, a lower limit m and an
upper limit n, as introduced in Section 3.2. Let Rj denote the j-th element in the
regular expression R, i.e. the ASCII subset defined in Rj . Thus every element
Rj from the regular expression is linked to a specific set Ω that can be tested
in a set membership proof. Let SMP(c, r,Ω) denote a proof of set membership
that character c from password pw is in set Ω using randomness r. To prove
membership of a character ci at position i in password pw we have to build
Ω such that it contains all possible values for encoded ci. We therefore define
a function E′(Ω′, n) that computes a set Ω containing all ck ∈ Ω′ for regular
expression Rj and all ck,l = 95lck for all l ∈ {1, . . . , n − 1}. This leads to four
sets Ωd, Ω, s,Ωu, Ωl for the four ASCII subsets d, s, u, l and a fifth set Ωσ for all
characters, i.e. Ω′ = Σ.

The ZKPPC framework is depicted in Figure 1. Note that figure and descrip-
tion are simplified in favour of readability. We omit exact specification of pass-
word and character encoding, which can be deduced from Section 3, i.e. password
hashing and character commitments are performed on position-specific encoded
characters. Both parties have password hashing parameters pP ← PSetup(λ),
commitment parameters pC ← CSetup(λ), and policy f as common input. The
client starts the protocol by choosing a password pw and computing the pass-
word verifier H ← HashP(pw, rH). Additionally, the client computes a public
value gp = φ(sP) from the pre-hash salt using a one-way function φ, and sends
it together with H and his identifier A to the server. Then, he computes com-
mitments Ci ← Com(ci; ri) for all characters in his password pw. Server and
client now run zero-knowledge set membership proofs SMP(ci, ri, Ωx) for all
characters ci ∈ pw, proving ci ∈ Ωc for all Rj ∈ R using appropriate sets
Ωx for x ∈ Σ′ = {d, s, u, l}. The remaining characters in pw, i.e. characters
that are not necessary to fulfil the regular expression R, are then proven to be

11

C(f, pP, pC) S(f, pP, pC)

pw ∈R D, sP ←R PPHSalt(pP)

sH ←R PHSalt(pP)

H ← HashP(pw; rH) H, gP = φ(sP), id

∀i ∈ {0, . . . , |pw| − 1} = n :

ri ∈R SC

Ci ← Com(pw[i]; ri) {Ci} Proceed if |{Ci}| ≥ m

C = Ψn−1
i=0 Ci ∀ci ∈ pw : SMPi(ci, ri, Ωx) C = Ψn−1

i=0 Ci

rC = Φn−1
i=0 ri ZKPoK{(π, ρsP , ρsH , ρrC) : gp = φ(ρsP) ∧ Accept (id,H) if and only if

H = HashP(π; ρsP , ρsH) ∧ C = Com(π; ρrC)} SMP & ZKPoK successful

Fig. 1: A Framework for Zero-Knowledge Password Policy Checks

from Ωσ by running SMPi(ci, ri, Ωσ). The SMPs thus prove that the password
pw used to generate commitments Ci, is policy conform and chosen from the
dictionary of printable ASCII characters. When all set membership proofs are
successful, the server is convinced that the characters in commitments Ci are
from the requested sets, i.e. that the password in the combined commitment
C = Ψn−1

i=0 Ci = Com(pw, Φn−1
i=0 ri), is policy conform. However, the server still

does not know whether the client actually knows the password in H and if the
password committed to in H is the same as the one used in C. Therefore, server
and client execute a zero-knowledge proof of knowledge that proves to the server
that the client knows pw, used to generate H and C, and the according random-
ness. If this proof and all set membership proofs are validated by the server, the
latter accepts the password verifier H for A.

Definition 1 considers a policy f in general. However, it seems impossible
to prove anything on the general case of f without considering an actual def-
inition of the regular expression R and how the verification f(pw) = true is
implemented. We thus specify the proof statement in our framework for ZKPPC
protocols as

PoK{(π, ρH , {ρi}i∈[0,n−1]) : Ci = Com(πi, ρi) ∧H = HashP(π, ρH)
∧ Ψn−1

i=0 Ci = Com(π, Φn−1
i=0 ρi) ∧ πi ∈ Ωx},

where Ωx is the set specified in R for πi. This is the adaptation of Definition 1
to our construction using set membership proofs and commitments, i.e. f(pw) =
true is interpreted as PoK{(π, {ρi}i∈[0,n−1]) : Ci = Com(πi, ρi) ∧ πi ∈ DJ} for
all i ∈ 0, . . . , n− 1 and sets Ωx from regular expression R.

Theorem 1. If C = (CSetup, Com) is a homomorphic commitment scheme, Π =
(PSetup, PPHSalt, PPreHash, PHSalt, PHash) a one-way password hashing scheme,
φ a one-way function, SMP a zero-knowledge set membership proof and ZKPoK
a zero-knowledge proof of knowledge, then the framework from Figure 1 is a
Zero-Knowledge PPC protocol.

12

Proof. Completeness of the protocol follows by inspection. Let Ext denote a suc-
cessful ZKPPC extractor. To prove soundness we have to show how to build
extractors for zero-knowledge set membership proofs SMPi and zero-knowledge
proof ZKPoK from Ext. An extractor SMPi outputs witness (pwi, ri) for commit-
ment Ci and the ZKPoK extractor outputs (pw, sP , rH , rC) for a password veri-
fier H, φ(sP) and commitment C. Since Ext outputs (pw, sP , rH , {ri}i∈0,...,n−1)
building extractors for all SMPi is straightforward by taking the i-th charac-
ter from pw and ri. To build a successful ZKPoK extractor we just output
(pw, sP , rH , Φn−1

i=0 ri).
To prove the zero-knowledge property we have to build a simulator Sim for the

ZKPPC framework. Let V denote the view of a possibly malicious server after
interaction with an honest user. We construct a simulator Sim that outputs a
view V ′, indistinguishable from V . Using simulators Simi of set membership
proofs SMPi and Sim′ of the final zero-knowledge proof, it is easy to see that the
resulting view V ′ is indistinguishable from V . ut
Remark 1. We use set membership proofs in our construction to verify the pass-
word policy. Depending on the maximal password length and the complexity of
the policy, using range proofs instead of set membership proofs, may be more
efficient. However, note that passwords are usually rather short and policies not
too complex (e.g. at least one symbol and one upper and lower case letter) such
that set membership proofs will be sufficiently efficient in most cases. However,
complexity of the framework is clearly dominated by the complexity of the set
membership proofs SMPi, which mainly depends on the upper bound n on the
password length. See Section 5.4 for further performance discussions with the
instantiation from the following section in mind.

Password Registration using ZKPPC In order to complete the password
registration protocol based on ZKPPC, the randomness r that was used by the
client to compute the password hash needs to be securely transmitted to the
server. This step is not part of the ZKPPC protocol and is performed as a
final step in the password registration process. That is, the complete password
registration protocol based on ZKPPC is executed over a secure channel and
proceeds as follows: On invocation the server sends a password policy f to the
client. After proving policy conformity and knowledge of pw and rH using the
ZKPPC protocol, the client sends the randomness rH = (sP , sH) used in the
hash computation of H to the server. The server accepts the password setup
and stores (A,H, rH) in its database if and only if the ZKPPC protocol for
(A,H) was successful.
Remark 2. The information stored on the server side at the end of a successful
password registration consists of the password hash and the salt. This is essen-
tially what servers store with the current state-of-the-art approach mentioned in
the introduction. A malicious attacker who breaks-in into the server would still
have to perform an offline dictionary attack to recover passwords. The benefit of
our approach over the state-of-the-art is that the password is never transmitted
to the server.

13

5.3 Instantiation

To instantiate the ZKPPC framework, we use the Pedersen commitment scheme
and set membership proof from Section 2. Further, we use the instantiation of
our randomised password hashing protocol from Section 4. Note that parameters
chosen in CSetup(λ) and PSetup(λ) have to be identical, i.e. only one of the setup
algorithms is necessary to generate group elements g and h as well as prime p.
That leaves us to show how to build the zero-knowledge proof of knowledge
ZKPoK and definition of utility functions. Definition of combining functions Ψ
and Φ are straight forward, i.e. Ψ is multiplication such that C =

∏n−1
i=0 Ci and

Φ is addition such that rC =
∑n−1
i=0 ri. Further, the function φ to compute a

public value from the pre-hash salt sP is defined as gP = gsP .
Building zero-knowledge proof ZKPoK{(π, ρsP , ρsH , ρrC) : gp = gρsP ∧H =

HashP(π; ρv1, ρv2) ∧ C = Com(π; ρrC)} is straightforward. Considering that the
used HashP function and commitment scheme Com are essentially Pedersen com-
mitments, the zero-knowledge proof is a standard zero-knowledge argument
given as follows. The prover chooses kπ, ksP , ksH and krC from Zp, computes
t1 = gkπp hksH , t2 = gkπhkrC and t3 = gksP , and sends (t1, t2, t3) to the verifier.
On receiving the challenge c from the verifier, the prover computes a1 = kπ + cπ
mod p, a2 = ksH + csH mod p, a′2 = krC + crC mod p and a3 = ksP + cρsP
mod p, and sends them to the verifier, who checks that ga1

p h
a2 = t1H

c, ga1ha
′
2 =

t2C
c and ga3 = t3g

c
p. Completeness of the zero-knowledge proof follows by

inspection. To show soundness we build an extractor Ext, extracting a wit-
ness (pw, sP , sH , rC) from interactions with a malicious prover, i.e. from two
transcripts {H,C, gP , t1, t2, t3, c, c∗, a1, a

∗
1, a2, a

∗
2, a
′
2, a
′
2
∗
, a3, a

∗
3}. It is easy to see

that this allows to extract (pw, sP , sH , rC) if c − c∗ is invertible in Zp, i.e.
pw = (a1 − a∗1)/(c − c∗), sP = (a3 − a∗3)/(c − c∗), sH = (a2 − a∗2)/(c − c∗) and
rC = (a′2−a′2

∗)/(c−c∗). To prove the honest verifier zero-knowledge property we
construct a simulator Sim, generating a view V ′ that is indistinguishable from a
view V of an honest verifier after interaction with an honest prover. Sim therefore
chooses c, a1, a2, a

′
2, a3 ∈R Zp and computes t1 = ga1ha2H−c, t2 = ga1ha

′
2C−c

and t3 = ga3g−cp . The simulator’s view V ′ = {H,C, gp, t1, t2, t3, c, a1, a2, a
′
2, a3}

is then indistinguishable from V . The same remarks regarding honest verifier
and general zero-knowledge as for the set membership proof apply here. Secu-
rity of the instantiation of Figure 1 follows from Theorem 1 considering that all
building blocks fulfil our requirements there.

5.4 Performance and Discussion

Runtime and communication complexity of the framework and its instantiation
are dominated by the set membership proof, i.e. the computation, exchange
and verification of the signature sets {Ξi}, which grow linearly in the upper
bound n of the password length. The set {Ξj} is of size z(10n + 52n + 32n +
94n) for signature length z in bytes (not considering overhead for the encoding)
if the policy uses all four available sets. Considering a 512-bit elliptic curve
this results in |{Ξj}| = 24064n bytes, e.g., n = 10 leads to 235 kB and n =

14

C(par,pw, pk) S(par, H, sP , sH , pk)

kh ←R KGenH(L(H,sP ,sH)), r ∈R Zp kh
′ ←R KGenH(LH), r′ ∈R Zp

kp ← KGenP(kh, L(H,sP ,sH)), ` = (C, S, kp) kp
′ ← KGenP(kh

′, LH), `′ = (S,C, kp
′)

C ← Encpk(`, gpw; r) kp, C C ′ ← Encpk(`′, H; r)

`′ = (S,C, kp
′) kp

′, C ′, sP , sH ` = (C, S, kp)

H ← Hash(kh, LH , C
′) H ′← Hash(kh

′, L(H,sP ,sH), C)

HP ← PHash(kp, L(H,sP ,sH), C,pw, r) H ′P ← PHash(kp, LH , C
′, H, r)

k = H ·HP k′ = H ′ · H ′P

Fig. 2: VPAKE Framework [5]

20 generates 470 kB. Runtime scales accordingly and thus dominates the total
execution time of the protocol. It would therefore be interesting to use more
efficient set membership proofs, or deploy a different encoding that allows to
use more efficient range proofs. With the used encoding it is not possible to use
range proofs efficiently. This is due to the fact that encoded character sets are
not continuous. For example, the set Ω of digits for n = 2 is given by Ω =
{16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 1410, 1520, 1615, 1710, 1805, 1900, 1995, 2090,
2185, 2280, 2375}. Another possibility to reduce message size and computation
time would be not to verify characters that are not relevant for the policy, i.e.
only perform set membership proofs for the character sets specified in the policy
and allow arbitrary characters for the remaining ones.

Considering that password set up is not performed regularly and usually
involves a longer process of filling sign-up forms that can be used to perform the
policy check in the background, the proposed instantiation is sufficiently efficient
for reasonable limits on the password length.

6 A Suitable VPAKE Protocol for ZKPPC-set Passwords

We now focus on suitable VPAKE protocols that can be used with the pass-
word verification information obtained from our ZKPPC protocol. Benhamouda
and Pointcheval [5] recently proposed two new security models based on the
BPR model that deal with VPAKE protocols and related passwords. We re-
call their related password VPAKE model with adaptations to our definition of
randomised password hashing in Appendix C. This allows us to build VPAKE
protocols without relying on idealised assumptions for the security proof while
preserving round complexity. The only other security model for VPAKE proto-
cols is given in the UC framework [8] and due to Gentry, MacKenzie and Ramzan
[14]. However, idealised models are necessary to reach security in their model.

Therefore, we use the model from [5] and give a new instantiation of the
generic VPAKE construction from [5] in the standard model with common refer-
ence string. We recall the generic VPAKE construction in Figure 2. Both parties

15

have parameters par and public key pk as common input. The client further
knows a password pw, and the server has a password verifier H with according
randomness sP and sH , set up with the password registration protocol from
Section 5.3. To instantiate the framework it is enough to define suitable smooth
projective hash functions, an encryption scheme, and a password hashing scheme.
We use the previously defined password hashing function and labelled Cramer-
Shoup encryptions. That leaves us with the definition of appropriate SPHFs.
We need SPHFs for the following two languages L(H,sP ,sH) = {(`, c) | ∃pw, r :
C = EncCS

pk(`, gpw; r) ∧H = PHash(pP, P, sH) ∧ P ← PPreHash(pP, pw, sP)} and
LH = {(`, c) | ∃r : C = EncCS

pk(`,H; r)}. We use the perfectly smooth SPHF for
labelled Cramer-Shoup encryptions from Section 2 for LH . For L(H,sP ,sH) we
introduce a new SPHF:
– KGenH(L(H,sP ,sH)) choose five random elements kh = (η1, η2, θ, µ, ν) ∈R Z1×5

p .
– KGenP(kh, L(H,sP ,sH)) on input of language L(H,sP ,sH) and hashing key kh

returns the projection key kp = (gη1
1 gθ2h

µcν , gη2
1 dν , gµ1).

– Hash(kh, L(H,sP ,sH), C) on input of a ciphertext C, language L(H,sP ,sH) and
hashing key kh returns the hash value h = uη1+ξη2

1 uθ2[e/(H/hsH)]µvν .
– ProjHash(kp, L(H,sP ,sH), C,pw, r) on input of projection key kp, language
L(H,sP ,sH), ciphertext C, password pw, and randomness r returns the hash
value h = (kp1kp

ξ
2)rkp

pw−sP pw
3 = gη1r

1 gθr2 hµrcνrgη2ξr
1 dνξrg

µ(pw−sP pw)
1 .

Security of the SPHF for L(H,sP ,sH) is straight forward as the only change to the
aforementioned SPHF for LH is kp3. Correctness of the new SPHF follows by
inspection. In the following we show its smoothness. Let pw denote the client’s
password, H ← HashP(pw, r) with r = (sP , sH) the according hash value and
C = (u1, u2, e, v, `) a word not in L(H,sP ,sH), i.e. C ← EncCS

pk(`, gpw′ ; r) with pw′ 6=
pw. It therefore follows that (u1, u

ξ
1, u2, e/(H/hsH), v) 6= (gr1, g

rξ
1 , gr2, g

pw−sP pw
1 hr,

(cdξ)r) with overwhelming probability for all (r, rξ) ∈ Z2
p considering the second

pre-image resistance of HashP. The hash value uη1
1 u

ξη2
1 uθ2[e/(Hh−sH)]µvν is then

uniformly distributed in G since the elements of the projection key are linearly
independent from the hash value for z = pw′ − sPpw 6= 0.

7 Conclusion

In this work we proposed a new protocol class called password policy checker
(PPC), a special proof of knowledge protocol, that allows servers to validate
client passwords against a policy without disclosing the password. Zero-Knowledge
PPC protocols neither leak the password to the server, nor allow a client to reg-
ister a non-policy conform password. We defined a security model, a general
framework for ZKPPC protocols, and a concrete construction based on Ped-
ersen commitments. We made use of a new structure-preserving encoding for
character strings (passwords) and a formal model for password policies. Pass-
word verifiers registered through ZKPPC protocols can be used in verifier-based
PAKE. We proposed a new VPAKE protocol in the standard model that can
work with password verifiers that were set up using our ZKPPC construction.

16

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT’00, volume 1807 of Proceedings of
the 19th international conference on Theory and application of cryptographic tech-
niques, pages 139–155, Berlin, Heidelberg, 2000. Springer-Verlag. 2

2. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols SecureAgainst Dictionary Attacks. In Research in Security and Privacy,
1992. Proceedings., 1992 IEEE Computer Society Symposium on, SP’92, page 72,
Washington, DC, USA, 1992. IEEE Computer Society. 2

3. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In CCS’93, ACM Conference on Computer and Communications Security, pages
244–250. ACM, 1993. 3

4. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New
smooth projective hash functions and one-round authenticated key exchange. Cryp-
tology ePrint Archive, Report 2013/034, 2013. http://eprint.iacr.org/. 6

5. F. Benhamouda and D. Pointcheval. Verifier-Based Password-Authenticated Key
Exchange: New Models and Constructions. IACR Cryptology ePrint Archive,
2013:833, 2013. 3, 8, 9, 15, 18, 19

6. D. Boneh and X. Boyen. Short Signatures Without Random Oracles. In EU-
ROCRYPT’04, volume 3027 of Lecture Notes in Computer Science, pages 56–73.
Springer-Verlag, 2004. 5

7. J. Camenisch, R. Chaabouni, and A. Shelat. Efficient Protocols for Set Membership
and Range Proofs. In ASIACRYPT, volume 5350 of Lecture Notes in Computer
Science, pages 234–252. Springer-Verlag, 2008. 5

8. R. Canetti. Universally Composable Security: A New Paradigm for Cryptographic
Protocols. In Proceedings of the 42nd IEEE symposium on Foundations of Com-
puter Science, FOCS’01, page 136, Washington, DC, USA, 2001. IEEE Computer
Society. 15

9. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Com-
posable Password-Based Key Exchange. In Proceedings of the 24th annual in-
ternational conference on Theory and Applications of Cryptographic Techniques,
EUROCRYPT’05, pages 404–421, Berlin, Heidelberg, 2005. Springer-Verlag. 2

10. R. Cramer, I. Damgård, and P. D. MacKenzie. Efficient Zero-Knowledge Proofs
of Knowledge Without Intractability Assumptions. In PKC’00, volume 1751 of
Lecture Notes in Computer Science, pages 354–373. Springer-Verlag, 2000. 6

11. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In CRYPTO’98, volume 1462 of
Lecture Notes in Computer Science, pages 13–25. Springer-Verlag, 1998. 6

12. Dan Goodin. Hack of Cupid Media dating website exposes 42 mil-
lion plaintext passwords. http://arstechnica.com/security/2013/11/
hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/,
2014. Accessed: 01/04/2014. 2

13. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO’86, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer-Verlag, 1986. 6

14. C. Gentry, P. D. MacKenzie, and Z. Ramzan. A Method for Making Password-
Based Key Exchange Resilient to Server Compromise. In CRYPTO’06, volume
4117 of Lecture Notes in Computer Science, pages 142–159. Springer, 2006. 3, 15

17

http://eprint.iacr.org/
http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/
http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/

15. P. Inglesant and M. A. Sasse. The true cost of unusable password policies: password
use in the wild. In CHI, pages 383–392. ACM, 2010. 2

16. B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (Informational), Sept. 2000. 2

17. Nik Cubrilovic. RockYou Hack: From Bad To Worse. http://techcrunch.com/
2009/12/14/rockyou-hack-security-myspace-facebook-passwords/, 2014. Ac-
cessed: 01/04/2014. 2

18. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
129–140. Springer-Verlag, 1991. 5

19. D. Pointcheval. Password-based authenticated key exchange. In Proceedings of the
15th international conference on Practice and Theory in Public Key Cryptography,
PKC’12, pages 390–397, Berlin, Heidelberg, 2012. Springer-Verlag. 2

20. N. Provos and D. Mazières. A Future-Adaptable Password Scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91, 1999. 2

21. Reuters. Trove of Adobe user data found on Web after breach:
security firm. http://www.reuters.com/article/2013/11/07/
us-adobe-cyberattack-idUSBRE9A61D220131107, 2014. Accessed: 01/04/2014. 2

22. Thomson Reuters. Microsoft India store down after hackers take user data. http:
//ca.reuters.com/article/technologyNews/idCATRE81C0E120120213, 2014. Ac-
cessed: 01/04/2014. 2

23. M. S. Turan, E. Barker, W. Burr, , and L. Chen. Recommendation for password-
based key derivation. NIST Special Publication 800-132, 2010. 2

24. B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek, T. Passaro,
R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor. How Does Your
Password Measure Up? The Effect of Strength Meters on Password Creation. In
Security’12, Proceedings of the 21st USENIX Conference on Security Symposium,
pages 5–5, Berkeley, CA, USA, 2012. USENIX Association. 2

A Password Hashing

We recall security definitions for password hashing from [5] , i.e. (second) pre-
image resistance and entropy preservation in PPreHash and PHash, working with
our extended notion of password hashing.

Second Pre-Image Resistance A password hashing protocol Π is second pre-
image resistant if for all PPT algorithms A there exists a negligible function ε(·)
such that for P ′ ← A(pP, P, sP , sH)

Pr[P ′ 6= P ∧ PHash(pP, P, sH) = PHash(pP, P
′, sH)] ≤ ε(λ),

with pP ← PSetup(λ), sP ← PPHSalt(pP), sH ← PHSalt(pP) and P ← PPreHash
(pP,pw, sP) for any pw ∈ D.

Pre-Image Resistance A password hashing protocol Π is pre-image resistant if
for all PPT algorithms A with running time of at most t, there exists a negligible
function ε(·) such that

Pr[(i, P)← AHashP(·)(pP); Finalise(i, P) = 1] ≤ 2−β αt

tPHashtPPreHash
+ ε(λ),

18

http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-idUSBRE9A61D220131107
http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-idUSBRE9A61D220131107
http://ca.reuters.com/article/technologyNews/idCATRE81C0E120120213
http://ca.reuters.com/article/technologyNews/idCATRE81C0E120120213

for small α, where HashP(pw) returns (H, sP , sH) with H ← PHash(pP, P, sH),
T [i] ← PPreHash(pP,pw, sP), sH ← PHSalt(pP), sP ← PPHSalt(pP) and global
parameters pP ← PSetup(λ) on the i-th invocation. Finalise returns 1 if T [i] =
P , otherwise 0. Let tPHash denote the running time of PHash and tPPreHash the
running time of PPreHash.

Pre-hash entropy preservation For all polynomial time samplable dictionaries D
with min-entropy β, and any PPT algorithm A, there exists a negligible function
ε(λ) such that for (P, sP)← A(pP) with pP ← PSetup(λ) and random password
pw ∈R D:

Pr[sP ∈ SP ∧ P = PPreHash(pP,pw, sP)] ≤ 2−β + ε(λ).

Entropy preservation For all polynomial time samplable dictionaries D with min-
entropy β, and any PPT algorithm A, there exists a negligible function ε(λ) such
that for (H, sP , sH)← A(pP)

Pr[sP ∈ SP ∧ sH ∈ SH ∧H = HashP(pP,pw, r)] ≤ 2−β + ε(λ),

where pP ← PSetup(λ), pw ∈R D and r = (sP , sH).

B Efficient Set Membership Proofs

P (C, r, ω,Ω, par) V (C,Ω, par)

s, t,m ∈R Zp

x ∈R Zp, y = gx

V = Ξv
ω with v ∈R Zp

y, {Ξi} ∀i ∈ Ω : Ξi = g1/(x+i)

a = e(V, g)−se(g, g)t, d = gshm
V, a, d c ∈R Zp

zω = s− ωc, zH = t− vc
c

zr = m− rc
zω, zH , zr d

?= Ccgzωhzr

a
?= e(V, y)ce(V, g)−zωe(g, g)zv

Fig. 3: ZK Set Membership Proof
Client proofs knowledge of element ω ∈ Ω such that C = gωhr

C VPAKE Model

We recall the related password model for verifier-based PAKE protocols pro-
posed by Benhamouda and Pointcheval [5] with modifications to work with our
definition of password hashing. We consider clients C ∈ C, holding password
pwC , and servers S ∈ S, holding values (H, sP , sH) with H ← PHash(pP, P, sH)
and P ← PPreHash(pP,pwS , sP) for random salts sP ← PPHSalt(pP) and sH ←
PHSalt(pP). Passwords pwC and pwS are drawn from dictionary D with min-
entropy β. The adversary has access to the following oracles to interact with
protocol participants:

19

– Execute(C, S) returns the transcript of the protocol execution between two
new instance Ci and Sj . This models passive eavesdropping attacks.

– Send(Pi, P ′j ,m) returns the result of P ′j on input of message m from alleged
sender Pi. Invoking Send with an empty message initiates a session between
Pi and P ′j . This models active attacks.

– Corrupt(S) returns the server’s secret (H, sP , sH). Clients with pwS are
marked as corrupted.

Let b denote a bit chosen prior to every execution of the experiment. Security is
modelled with a Test(Pi) oracle that, on input of participant instance Pi, returns
a session key k chosen as follows:

– If Pi has not computed a session key or Pi is a partnered and corrupted
client instance, return ⊥.

– If Pi is partnered with compatible P ′j and a Test query has been asked for
P ′j previously, then return the same session key as for P ′j .

– Otherwise return the real session key of Pi if b = 1, and a random session
key if b = 0.

Two protocol participants are partnered if they have matching transcripts, i.e.
the recorded transcript of one participant is a subset of the one recorded by the
other party. Two protocol participants P, P ′ are compatible if w.l.o.g. P ∈ C and
P ′ ∈ S, and PHash(pP, PPreHash(pP,pwP , sP), sH) = HP ′ . To define security we
specify a real experiment ExpReal and ideal experiment ExpIdeal. The real world
adversary in ExpReal has access to the aforementioned oracles and interacts with
real participants using passwords chosen according to the dictionary D. The
ideal world adversary in ExpIdeal interacts with the aforementioned oracles that
are modified as follows: Execute and Send oracles operate with an invalid dummy
passwords; Non-trivial Test queries are always answered with a random session
key. Additionally, after the adversary returned his guess for bit b, an Extract
function is queried for all participants Pi that have been target of an active
attack and have been queried in a non-trivial Test query. The Extract function
on input of a transcript t returns salts sP and sH along with a hash value H if
Pi is a client and a password pw if Pi is a server. A PAKE protocol Π is secure
if for all PPT adversaries A there exists a negligible function ε(·) such that

Pr[ExpΠ,Real(λ) = 1] ≤ Pr[ExpΠ,Ideal(λ) = 1] + ε(λ).

20

	Zero-Knowledge Password Policy Checks and Verifier-Based PAKE
	Franziskus Kiefer and Mark Manulis
	Introduction
	Concept Overview and Building Blocks
	Zero Knowledge Proofs
	Commitments
	Set Membership Proofs
	Encryption
	Smooth Projective Hashing (SPHF)

	Modelling Passwords and Policies
	Passwords and Dictionaries
	Encoding

	Password Policies

	Randomised Password Hashing
	Instantiation based on Pedersen commitments
	Security

	Password Registration with ZKPPC
	Zero-Knowledge Password Policy Check
	General Framework for ZKPPC Protocols
	Password Registration using ZKPPC

	Instantiation
	Performance and Discussion

	A Suitable VPAKE Protocol for ZKPPC-set Passwords
	Conclusion
	Password Hashing
	Efficient Set Membership Proofs
	VPAKE Model

