
Zero-Knowledge Password Policy Checks and
Verifier-Based PAKE

Franziskus Kiefer and Mark Manulis

Surrey Centre for Cyber Security
Department of Computing, University of Surrey, UK

mail@franziskuskiefer.de, mark@manulis.eu

Abstract. Zero-Knowledge Password Policy Checks (ZKPPC), intro-
duced in this work, enable blind registration of client passwords at re-
mote servers, i.e., client passwords are never transmitted to the servers.
This eliminates the need for trusting servers to securely process and store
client passwords. A ZKPPC protocol, executed as part of the registration
procedure, allows clients to further prove compliance of chosen passwords
with respect to password policies defined by the servers.
The main benefit of ZKPPC-based password registration is that it guar-
antees that registered passwords never appear in clear on the server
side. At the end of the registration phase the server only receives and
stores some verification information that can later be used for authentica-
tion in a suitable Verifier-based Password Authenticated Key Exchange
(VPAKE) protocol.
We give general and concrete constructions of ZKPPC protocols and
suitable VPAKE protocols for ASCII-based passwords and policies that
are commonly used on the web. To this end we introduce a reversible
mapping of ASCII characters to integers that can be used to preserve
the structure of the password string and a new randomized password
hashing scheme for ASCII-based passwords.
Keywords: Password policies, password registration, authentication,
verification, password hashing, ASCII passwords, verifier-based PAKE

1 Introduction

Password policies set by organizations aim at enforcing a higher level of security
on used passwords by specifying various requirements that apply during their
selection process and the actual usage. Especially, when passwords are selected
and used by users in a remote way strong, password policies can help not only
to protect data behind individual user accounts but also to prevent malicious
activities from compromised accounts that could further harm the organization
due to liability issues or even lead to a compromise of the entire system or
service. It is known that in the absence of any password policy users tend to
choose “weak” passwords that are easily guessable and have higher risk of being
compromised through dictionary attacks [23]. It is worth noting that coming up

with a good password policy is still considered a difficult task since policies must
also remain usable in practice [13].

In this work we focus on widely used password policies that specify the re-
quirements on the selection of passwords such as the minimum password length,
define sets of admissible password characters, and may contain further restric-
tions on the number of characters from each set. These requirements are typically
enforced during the initial password registration process and aim at preventing
users from choosing “weak” passwords. These policies are often extended with
additional restrictions on the usage of passwords by requiring users to change
their passwords within a certain period of time.

When users select passwords for remote access to systems or services on their
own, the password policy enforcement mechanism must be able to verify that
selected passwords comply with the existing policy. This compliance check can
be performed either on the client side or on the server side. For instance, when
a commodity web browser is used to register for some web service the policy
can be checked within the browser using scripts embedded into the registration
website, or on the server side upon the initial transmission of the password (e.g.
over a TLS channel). Both approaches, however, have security risks as discussed
in the following. If policy enforcement is performed solely on the client side, the
server must trust the client to obey the policy and execute the check correctly.
This is not a threat if the compliance check is assumed to be in the interest of
an honest user. Nonetheless, malicious users or users who are lazy to remember
complicated passwords can easily circumvent such script-based verification and
register passwords that are not compliant with the policy. The corresponding
service provider might want to exclude this threat. In this case the compliance
check must be performed on the server side. In order to perform policy check with
available technologies the client’s password must be transmitted to the server,
possibly over a secure channel. This ultimately requires the client to trust the
server to process and store the received password in a secure way. While many
servers adopt the current state-of-the-art approach for storing passwords in a
hashed form, e.g. using PBKDF2 [14,22] or bcrypt [19], with a random salt
to protect against server compromise or re-use attacks, there have been many
known cases, e.g. [20,16,21,10], where passwords have been stored in clear and
compromised subsequently. The ultimate goal, therefore, is to avoid trusting
servers with secure processing and storage of user passwords.

This goal imposes two main challenges: (1) in the registration phase users
must be able to choose passwords and prove their policy compliance to a re-
mote server without actually transmitting their passwords, and (2) after the
registration phase users must be able to authenticate themselves to the server
using their passwords without transmitting them. Interestingly, authentication
protocol addressing the second challenge already exist in form of Password-
Authenticated Key Exchange (PAKE) protocols, e.g. [2,1,7,18]. PAKE protocols
offer authentication and computation of secure session keys in a password-only
setting in a way that makes it hard for an active adversary to recover passwords
via offline dictionary attacks. Traditional PAKE protocols, however, assume that

the password is used in clear on the server sides. To alleviate the threat that
passwords are revealed immediately when server’s database is compromised, the
so-called Verifier-based PAKE (VPAKE) protocols [3,12,5] assume that instead
of plain password servers are using some verification information that is derived
from the password such that if an attacker breaks into the server and compro-
mises its database it must still execute an expensive offline dictionary attack
to recover the plain password. For this reason VPAKE protocols offer a better
protection than PAKE. The aforementioned trust assumption on the server to
securely process and store passwords becomes irrelevant if the password setup
only transmits password verification information to the server, which can later
be used in VPAKE protocols. In combination with password policy enforcement
this approach would however require a solution to the first challenge; namely the
client must be able to prove that the verification information for VPAKE has
been derived from a password that complies with the server’s password policy.

Zero-Knowledge Password Policy Checks (ZKPPC) Our first contribu-
tion, in Section 5, is the concept of Zero-Knowledge Password Policy Checks
(ZKPPC), a new class of protocols that allows servers to perform policy checks
on client passwords without ever receiving them in clear. ZKPPC protocols can
be used for blind registration of policy-conform passwords and thus solve the
aforementioned challenge of password setup where only password verification
information is supposed to be stored at the server and where the server can-
not be trusted to process passwords securely. We present a security model for
ZKPPC, a general ZKPPC framework, and a concrete ZKPPC protocol based
on Pedersen commitments. In the construction of ZKPPC protocols we make use
of the new randomized password hashing scheme, introduced in Section 4 and
the reversible structure-preserving mapping of ASCII-based password strings to
integers, introduced in Section 3.

ZKPPC-compliant VPAKE Our second contribution are one-round VPAKE
protocols, in Section 6, that can be used with verification information obtained
from our blind password registration protocols based on ZKPPC. We design
VPAKE protocols based on the framework from [5]. We propose a general
VPAKE protocol that can be used in combination with our general ZKPPC
framework for ASCII-based passwords and policies and a concrete VPAKE con-
struction that suits particularly well with our ZKPPC-based blind password reg-
istration protocol that is based on Pedersen commitments and our randomized
password hashing scheme.

2 Concept Overview and Building Blocks

Our concept entails performing a zero-knowledge password policy check during
the client registration phase, which results in password verification information
being passed on to the server, and later use of this verification information

on the server side as input to a suitable VPAKE protocol for the purpose of
authentication. A client wishing to register its user id and password at a remote
server that maintains a password policy will initially pick a password and execute
the ZKPPC protocol with the server. The ZKPPC protocol ensures that client’s
password complies with server’s password policy and is linked to the verification
information communicated at the end of the registration phase. This verification
information is computed through a randomised password hashing scheme and
includes (partial) randomness that was used by the client in the ZKPPC protocol.
Plain password is never transmitted to the server and the only way for the server
to reveal it is to execute an expensive offline dictionary attack. That is, an honest-
but-curios server would have to perform about the same amount of computation
to recover plain passwords as an attacker who breaks into that server at any
time. The server will be able to recognise and reject any cheating attempt of the
client to set up a non-policy conform password, still without learning the latter.
In the realization of this concept we apply the following building blocks.

Zero-Knowledge Proofs A proof of knowledge PoK between prover P and
verifier V for a (public) binary relation R = {(C,w)} is denoted PoK{(w) : (C,
w) ∈ R} where w is a secret witness for C. PoK is a zero-knowledge proof of
knowledge ZKPoK if V is convinced that (C,w) ∈ R without learning any infor-
mation about w known by P . More formally, an interactive PoK for R = {(C,w)}
between P and V is a ZKPoK if the following holds:

– Completeness: For any (C,w) ∈ R, honest verifier V (C) accepts in the in-
teraction with an honest prover P (C,w).

– Soundness: If an honest V (C) accepts in the interaction with a malicious
prover P ∗(C) then there exists an efficient knowledge extractor Ext that
extracts a witness w for C from the interaction with P ∗(C).

– Zero-Knowledge: For any (C,w) ∈ R there exists an efficient simulator Sim
such that the views of a malicious verifier V (C) in interactions with Sim(C)
and an honest prover P (C,w) remain indistinguishable.

Commitments A commitment scheme C = (CSetup, Com, Open) contains three
polynomial time algorithms and satisfies the following properties:

– Completeness: For all pC ← CSetup(λ), x ∈ X, r ∈ S: x← Open(pC, C, d) for
all (C, d)← Com(pC, x; r)).

– Binding: For all PPT algorithms A that on input pC ← CSetup(λ) output
(C, d, d′) there exists a negligible function ε(·) such that

Pr[x 6= x′ ∧ x← Open(pC, C, d) ∧ x′ ← Open(pC, C, d
′)] ≤ ε(λ)

– Hiding: For all PPT algorithms A = (A1, A2) where A1 on input pC ←
CSetup(λ) outputs x0 and x1 of the same length and where A2 on input
(C, d)← Com(pC, xb; r) for a random bit b ∈ {0, 1}, r ∈ S outputs bit b′ there
exists a negligible function ε(·) such that |Pr[b = b′]− 1/2| ≤ ε(λ).

A commitment scheme is said to be (additively) homomorphic if for all pC ←
CSetup(λ), (Ci, di) ← Com(pC, xi; ri) with xi ∈ X and ri ∈ S for i ∈ 0, . . . ,m it
holds that

∏m
i=0 Ci = Com(pC,

∑m
i=0 xi; ψmi=0ri) for some function ψ. We will omit

pC and d from the notation and write C ← Com(x; r) to denote the commitment
of x using randomness r.

Pedersen commitments [17] The commitment scheme from [17] is perfectly hid-
ing and additively homomorphic. Its CSetup(λ) algorithm outputs (g, h, p, λ),
where g and h are generators of a cyclic group G of prime order p of length
λ and the discrete logarithm of h with respect to g is unknown. Com(x; r) for
x, r ∈ Z∗p outputs C = gxhr and d = (x, r). Open(C, d) returns x iff C = gxhr.

Set Membership Proofs on Committed Values These zero-knowledge
proofs can be used to prove that a committed value x is an element of a specific
set Ω. Let C ← Com(x; r) be some commitment of x with randomness r. The cor-
responding proof for x ∈ Ω is defined as ZKPoK{(ξ, ρ) : C ← Com(ξ; ρ)∧ ξ ∈ Ω}.
We will use SMP(ξ, ρ,Ω) as a shorter notation for this proof.

Labeled Public Key Encryption A labeled encryption scheme E = (KGen,
Enc, Dec) is IND-CCA2 secure for all PPT algorithms A = (A1, A2) where A1 on
input pk for (pk, sk) ← KGen(λ) and access to the decryption oracle Dec(sk, ·)
outputs two messages m0 and m1 of equal length and a label ` and where A2
on input c ← Enc`(pk,mb; r) for a random bit b ∈R {0, 1} with access to the
decryption oracle outputs bit b′ without querying Dec(sk, (`, c)) there exists a
negligible function ε(·) such that |Pr[b′ = b]− 1

2 | ≤ ε(λ).

Labeled Cramer-Shoup Encryption [9] The labeled CS encryption scheme from
[9] is IND-CCA2 secure. Its key generation algorithm KGen(λ) outputs sk =
(x1, x2, y1, y2, z) and pk = (p, g1, g2, h, c, d,Hk) with c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h =

gz1 , where g1 and g2 are generators of a cyclic group G of prime order p of
length λ and Hk : {0, 1}∗ 7→ Z∗p is a hash function. The encryption algorithm
Enc`(pk,m; r) outputs C = (u1, u2, e, v) where u1 = gr1, u2 = gr2, e = mhr

and v = (cdξ)r with ξ = Hk(`, u1, u2, e). The decryption algorithm Dec`(sk, C)
outputs m = e/uz1 if ux1+y1·ξ′

1 ux2+y2·ξ′
2 = v with ξ′ = Hk(`, u1, u2, e).

Smooth Projective Hashing (SPHF) Let L = {C} denote a language with
L ⊂ X such that C ∈ L if there exists a witness w for C. A SPHF for L ⊂ X,
as defined in [4], consists of the following algorithms:
– HKGen(L) generates a hashing key hk for L.
– PKGen(hk, L, C) derives the projection key hp, possibly depending on C.
– Hash(hk, L, C) outputs the hash value h, for any C ∈ X.
– PHash(hp, L, C,w) outputs the hash value h, for any C ∈ L with witness w.

A SPHF is correct if for all C ∈ L with witness w: Hash(hk, L, C) = PHash(hp,
L, C,w). A SPHF is smooth if for all C 6∈ L, the hash value h is indistinguishable
from a random element in G.

SPHF for Labeled CS Ciphertexts [4] Let Lm = {(`, C)|∃r, C ← Enc`(pk,m; r)},
where pk = (p, g1, g2, h, c, d,Hk). Note that C = (u1, u2, e, v), where u1 = gr1,
u2 = gr2, e = mhr, and v = (cdξ)r with ξ = Hk(`, u1, u2, e). A perfectly smooth
SPHF from [4] for Lm is defined as follows:

– HKGen(Lm) generates a hashing key hk = (η1, η2, θ, µ, ν) ∈R Z1×5
p .

– PKGen(hk, Lm) derives the projection key hp = (hp1, hp2) = (gη1
1 gθ2h

µcν , gη2
1 dν).

– Hash(hk, Lm, C) outputs the hash value h = uη1+ξη2
1 uθ2(e/m)µvν .

– ProjHash(hp, Lm, C, r) outputs the hash value h = (hp1hp2
ξ)r.

3 Modeling Passwords and Policies

In the following we model passwords and their dictionaries. Note that password
strings are typically mapped to integers before they are processed in crypto-
graphic operations. For our purposes such integer mapping must be able to
preserve password structures. In particular, the way a password string is com-
posed from single characters must remain visible from the resulting integer value.
As part of password modeling we describe an appropriate encoding scheme that
maps password strings defined over the alphabet of printable ASCII characters to
integers while preserving their structures. We further model and define password
policies as regular expressions over different ASCII character sets.

3.1 Password Strings and Dictionaries

We consider password strings pw over the ASCII alphabet Σ containing all 94
printable ASCII characters.1 We split Σ = d ∪ u ∪ l ∪ s into four subsets:

– set of digits d = [0− 9] (or ASCII codes [48− 57]),
– set of upper case letters u = [A− Z] (or ASCII codes [65− 90])
– set of lower case letters l = [a− z] (or ASCII codes [97− 122])
– set of symbols s = [!"#$%&’()*+,-./ :;<=>?@ [\]ˆ_‘ {|}~] (or ASCII codes

[33− 47, 58− 64, 91− 96, 123− 126])

By D we denote a general dictionary containing all strings that can be formed
from printable ASCII characters, i.e. all power sets of Σ. A password string
pw = (c0, . . . , cn−1) ∈ Σn ⊂ D of length n is an ordered set of characters ci ∈ Σ.

3.2 Structure-Preserving Mapping of Password Strings to Integers

Mapping of Password Characters to Integers In order to preserve the
character structure of a password string pw upon its mapping to an integer we
first define a character mapping function CHRtoINT : Σ 7→ Z95 for any printable
1 Although we do not consider password strings consisting of other characters, our
approach is easily adaptable to UTF-8 and other character sets.

ASCII character c ∈ Σ that internally uses its decimal ASCII code ASCII(c) to
output an integer in Z95:

CHRtoINT(c) =

⊥ if ASCII(c) < 32
ASCII(c)− 32 if 33 ≤ ASCII(c) ≤ 126
⊥ if 126 < ASCII(c)

Position-Dependent Mapping of Password Characters to Integers A
printable ASCII character c ∈ Σ may appear at any position i ∈ [0, n − 1] in a
password string pw ∈ Σn. For every position i we require a different integer to
which ci ∈ pw can be mapped to. Assuming a reasonable upper bound nmax on
the password length n, i.e. n ≤ nmax, we define four integer sets Ωx, x ∈ Σ′ =
{d, u, l, s}, where d, u, l, s are the identifiers of the four ASCII character subsets
that were used to define Σ as follows:

– Ωd = {95iCHRtoINT(c)} for all digits c ∈ d and i = 0, . . . , nmax − 1.
Note that |Ωd| = 10nmax.

– Ωu = {95iCHRtoINT(c)} for all upper case letters c ∈ u and i = 0, . . . , nmax−1.
Note that |Ωu| = 26nmax.

– Ωl = {95iCHRtoINT(c)} for all lower case letters l ∈ u and i = 0, . . . , nmax−1.
Note that |Ωl| = 26nmax.

– Ωs = {95iCHRtoINT(c)} for all symbols c ∈ s and i = 0, . . . , nmax − 1.
Note that |Ωs| = 32nmax.

Any password character ci ∈ pw, i ∈ [0, nmax − 1] can therefore be mapped to
one of the four sets Ωx, x ∈ Σ′ with the position-dependent character mapping
function CHRtoINTi : Σ 7→ Ωx, defined as

CHRtoINTi(c, i) = 95iCHRtoINT(c)

We write πi ← CHRtoINTi(c, i) for the integer value of the ith character ci ∈ pw.

Mapping of Password Strings to Integers A password mapping function
PWDtoINT : Σn 7→ Z95nmax that maps any password string pw = (c0, . . . , cn−1) ∈
Σn to an integer in a larger set Z95nmax in a way that preserves the ith position
of each character ci is defined as follows:

PWDtoINT(pw) =
n−1∑
i=0

95iCHRtoINT(ci) =
n−1∑
i=0

CHRtoINTi(ci, i) for ci ∈ pw

We will use pw to denote a password string and π ← PWDtoINT(pw) for its
integer value. Note that π =

∑n−1
i=0 πi.

The mapping computed through PWDtoINT is injective and reversible. For
example, π = 797353 is the integer value of password string pw = (2,A, x). The
string can be recovered by concatenation of 797353 mod 95 = 18 =̂ 2 at position
0, (797353 mod 952) − (797353 mod 95) = 3135 = 33 · 951 =̂ A at position 1
and 797353− (797353 mod 952) = 794200 = 88 · 952 =̂ x at position 2.

3.3 Password Policies
A password policy f = (R,nmin, nmax) is modeled using a regular expression R
over Σ′ = {d, u, l, s}, a minimum length nmin and a maximum length nmax that
a password string pw must fulfill.2 We write f(pw) = true to indicate that the
policy is satisfied by the password string pw. For example,
– f = (ds, 6, 10) means that pw must have between 6 and 10 characters with

at least one digit and one symbol.
– f = (uss, 8, 12) means that pw must have between 8 and 12 characters with

at least one upper-case letter and two symbols.
– f = (duls, 8, 16) means that pw must have between 8 and 16 characters with

at least one character of each type.

Remark 1. Note that in practice password policies do not specify nmax. We leave
it for the server administrator to decide whether nmax should be mentioned ex-
plicitly in f or fixed in the system to allow for all reasonable password lengths.

4 Randomized Password Hashing

A password hashing scheme Π that is used to compute password verification
information for later use in VPAKE protocols from [5] is defined as follows:
– PSetup(λ) generates password hashing parameters pP. These parameters con-

tain implicit descriptions of random salt spaces SP and SH .
– PPHSalt(pP) generates a random pre-hash salt sP ∈R SP .
– PPreHash(pP, pw, sP) outputs the pre-hash value P .
– PHSalt(pP) generates a random hash salt sH ∈R SH .
– PHash(pP, P, sP , sH) outputs the hash value H.

In the above syntax the algorithm PPreHash is randomized with a pre-hash
salt sP , which extends the syntax from [5], where PPreHash is deterministic
(and realized in constructions as a random oracle output H(pw)). In contrast
we are interested in algebraic constructions of both PPreHash and PHash to
allow for efficient proofs of knowledge involving pre-hash values P . The ran-
domization of PPreHash further increases the complexity of an offline dictionary
attack that recovers pw from P since it removes the ability of an attacker to
pre-compute pairs (P, pw) and use them directly to recover pw (see also Sec-
tion 5.4). We write H ← HashP(pw, r) to denote H ← PHash(pP, P, sP , sH)
with P ← PPreHash(pP, pw, sP), where r = (sP , sH) combines the randomness
used in PHash and PPreHash. A secure Π must satisfy the following security
properties. Note that password-hiding is a new property that is used in ZKPPC
to ensure that password hashes H do not leak any information about pw. The
remaining four properties are from [5], updated where necessary to account for
the randomized PPreHash:
2 The way password policies are modeled in this work is suitable for policies that put
restrictions on the password length and the nature of password characters. Other
types of policies, e.g. search for natural words in a password (cf. dropbox password-
meter3) are currently not supported by our framework and thus left for future work.

https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation
https://tech.dropbox.com/2012/04/zxcvbn-realistic-password-strength-estimation

– Password hiding: For all PPT algorithms A = (A1, A2) where A1 on input
pP ← PSetup(λ) outputs two equal-length password strings pw0 and pw1
and where A2 on input H ← PHash(pP, P, sP , sH), where sH ← PHSalt(pP),
sP ← PPHSalt(pP), and P ← PPreHash(pP, pwb, sP) for a random bit b ∈R
{0, 1} outputs bit b′ there exists a negligible function ε(·) such that |Pr[b′ =
b]− 1

2 | ≤ ε(λ).
– Pre-image resistance (called tight one-wayness in [5]): For all PPT algorithms
A running in time at most t, there exists a negligible function ε(·) such that

Pr[(i, P)← AHashP(·)(pP); Finalise(i, P) = 1] ≤ αt

2βtPPreHash
+ ε(λ),

for small α and tPPreHash being the running time of PPreHash, where pP ←
PSetup(λ) and each ith invocation of HashP(·) returns (H, sH) with H ←
PHash(pP, P, sP , sH) and stores T [i] ← PPreHash(pP, pw, sP), where sH ←
PHSalt(pP), sP ← PPHSalt(pP), and pw ∈R D. Finalise(i, P) = 1 if T [i] =
P . (Note that HashP(·) does not return sP .)

– Second pre-image resistance: For all PPT algorithms A there exists a negli-
gible function ε(·) such that for P ′ ← A(pP, P, sH)

Pr[P ′ 6= P ∧ PHash(pP, P, sH) = PHash(pP, P
′, sH)] ≤ ε(λ),

with pP ← PSetup(λ), sP ← PPHSalt(pP), sH ← PHSalt(pP) and P ←
PPreHash (pP, pw, sP) for any pw ∈ D.

– Pre-hash entropy preservation: For all polynomial time samplable dictionar-
ies D with min-entropy β, and any PPT algorithm A, there exists a negligible
function ε(λ) such that for (P, sP) ← A(pP) with pP ← PSetup(λ) and ran-
dom password pw ∈R D:

Pr[sP ∈ SP ∧ P = PPreHash(pP, pw, sP)] ≤ 2−β + ε(λ).

– Entropy preservation: For all polynomial time samplable dictionaries D with
min-entropy β, and any PPT algorithm A, there exists a negligible function
ε(λ) such that for (H, sP , sH)← A(pP)

Pr[sP ∈ SP ∧ sH ∈ SH ∧H = HashP(pP, pw, sP , sH)] ≤ 2−β + ε(λ),

where pP ← PSetup(λ) and pw ∈R D.

4.1 Randomized Password Hashing from Pedersen Commitments

We introduce a randomized password hashing scheme Π = (PSetup, PPHSalt,
PPreHash, PHSalt, PHash) for ASCII-based passwords using Pedersen commit-
ments. We assume that π ← PWDtoINT(pw) and construct Π as follows:

– PSetup(λ) generates pP = (p, g, h, λ) where g, h are independent generators
of a cyclic group G of prime order p of length λ.

– PPHSalt(pP) generates a pre-hash salt sP ∈R Z∗p.

– PPreHash(pP, π, sP) outputs the pre-hash value P = gsPπ.
– PHSalt(pP) generates a hash salt sH ∈R Z∗p.
– PHash(pP, P, sP , sH) outputs hash value H = (H1, H2) = (gsP , PhsH).

Observe that H2 = Hπ
1 h

sH , i.e., H1 can be seen as a fresh generator that is
used to compute the Pedersen commitment H2. The security properties of our
password hashing scheme Π follow from the properties of the underlying cyclic
group G and from the security of Pedersen commitments. We argue informally:

– The password hiding property of the scheme, assuming that pw0 and pw1
are mapped to corresponding integers π0 and π1 in Z95n , is perfect and
holds based on the perfect hiding property of the Pedersen commitment
scheme. Note that the adversary receives the corresponding hash value H =
(H1, H2) = (gsP , PhsH), where H2 = gsPπhsH is a Pedersen commitment
on π with respect to two independent bases gsP and h. The ability of A to
distinguish between π0 and π1 can thus be turned into the attack on the
hiding property of the commitment scheme.

– The pre-image resistance holds since sP and sH are randomly chosen on
every invocation of HashP(·) with a negligible probability for a collision and
H2 is a perfectly hiding commitment with bases gsP and h. Therefore, for
any given output (H = (H1, H2), sH) of HashP(·), A must perform 2β expo-
nentiations Hπ∗

1 , one for each candidate π∗, in order to find P = H2h
−sH .

This roughly corresponds to 2β invocations of PPreHash.
– The second pre-image resistance holds since H1 is uniform in G and H2 is a

computationally binding commitment with bases gsP and h. Note that for
any P ′ generated by A, Hπ

1 h
sH = P ′hsH is true only if P ′ = Hπ

1 .
– The pre-hash entropy and hash entropy preservation hold since H1 is a gen-

erator of G such that for every (P, sP) chosen by the pre-hash entropy ad-
versary, Pr[P = Hπ

1] ≤ 2−β +ε(λ), and for every (H, sH) chosen by the hash
entropy adversary, Pr[H2 = Hπ

1 h
sH] ≤ 2−β + ε(λ) for a random pw ∈R D.

5 ZKPPC and Password Registration

We first define the ZKPPC concept enabling a client to prove compliance of
its chosen passwords pw with respect to a server’s password policy f without
disclosing pw. We propose a general framework for building ZKPPC protocols
for ASCII-based passwords and a concrete ZKPPC instantiation. We further
explain how to build registration protocols that use ZKPPC as a building block.

5.1 Zero-Knowledge Password Policy Checks

A Password Policy Check (PPC) is an interactive protocol between a client C
and a server S where server’s password policy f and the public parameters of
a password hashing scheme Π are used as a common input. At the end of the
PPC execution S accepts H ← HashP(pw, r) for any password pw ∈ D of client’s
choice if and only if f(pw) = true. A PPC protocol is a proof of knowledge for

pw and r such that H ← HashP(pw, r) and f(pw) = true. It thus includes the
requirements on completeness and soundness. In addition, a ZKPPC protocol
is a PPC protocol with zero-knowledge property to ensure that no information
about pw is leaked to S. More formally,

Definition 1 (ZKPPC). Let Π = (PSetup, PPHSalt, PPreHash, PHSalt, PHash)
be a password hashing scheme and f be a password policy. A ZKPPC protocol is
a zero-knowledge proof of knowledge protocol between a prover C (client) and a
verifier S (server), defined as

ZKPoK{(pw, r) : f(pw) = true ∧H = HashP(pw, r)}.

5.2 A General ZKPPC Framework for ASCII-based Passwords

We present a general ZKPPC construction for password strings pw composed of
printable ASCII characters using a commitment scheme C = (CSetup, Com, Open),
a password hashing scheme Π = (PSetup, PPHSalt, PPreHash, PHSalt, PHash)
and appropriate set membership proofs SMP. We assume that the common input
of C and S includes pP ← PSetup(λ), pC ← CSetup(λ), and the server’s password
policy f = (R,nmin, nmax) that is communicated to C beforehand.

The ZKPPC protocol proceeds as follows (see also Figure 1 for an overview).
Let Rj be the jth character of R. Rj uniquely identifies one of the four ASCII
subsets of Σ = d ∪ u ∪ l ∪ s and one of the four integer sets Ωx, x ∈ Σ′ =
{d, u, l, s}. Let ΩΣ =

⋃
x∈Σ′ Ωx be a joint integer set of these four sets. The

client picks an ASCII string pw = (c0, . . . , cn−1) such that f(pw) = true, com-
putes integer values πi ← CHRtoINTi(c, i) for all i = 0, . . . , n − 1 and π ←
PWDtoINT(pw) =

∑n−1
i=0 πi, and the password hash H ← HashP(π, (sP , sH)) using

salt sP ← PPHSalt(λ) and sH ← PHSalt(λ). For each position i = 0, . . . , n − 1
the client computes commitment Ci ← Com(πi, ri) and sends its password hashH
with the set of commitments {Ci} to S that by checking |{Ci}| ∈ [nmin, nmax] will
be able to check the password length requirement from f . Since f(pw) = true,
for each Rj in R the client can determine the first character cj ∈ pw that fulfils
Rj and mark it as significant. Let {ci1 , . . . ci|R|} denote the set of significant
characters from pw that is sufficient to fulfill R. For each significant cij ∈ pw,
j = 1, . . . , |R| client C as prover and server S as verifier execute a set member-
ship proof SMP(πij , rij , Ωx), i.e. proving that position-dependent integer value
πij committed to in Cij is in Ωx for one of the four ASCII subsets in Σ identified
by Rj . These SMPs ensure that characters fulfill R. For every other character
ci ∈ pw, i 6= ij , j = 1, . . . , |R| client C as prover and server S as verifier execute
SMP(πi, ri, ΩΣ) proving that position-dependent integer value πi committed to
in Ci is in the joint integer set ΩΣ . This proves that each remaining ci is a
printable ASCII character without disclosing its type and thus ensures that S
doesn’t learn types of (remaining) password characters that are not necessary
for R. Note that in the notation SMP(πi, ri, Ω′) used in Figure 1, set Ω′ is either
one of Ωx, x ∈ Σ′ if πi represents a significant character or ΩΣ for all remaining
characters.

C(f = (R,nmin, nmax), pP, pC) S(f = (R,nmin, nmax), pP, pC)

Choose pw ∈R D with f(pw) = true;
Let n← |pw|;
∀i = 0, . . . , n− 1:

πi ← CHRtoINTi(ci, i) for ci ∈ pw;
ri ∈R SC; Ci ← Com(πi; ri);

π ←
∑
i πi; r ←

∑
i ri; C ←

∏
i Ci;

sP ←R PPHSalt(pP);
sH ←R PHSalt(pP);
H ← HashP(π; (sP , sH));

H, {Ci}, ∀i : SMP(πi, ri, Ω′)
Let n← |{Ci}|.
If n 6∈ [nmin, nmax] then ABORT.
Else C ←

∏
i Ci;

ZKPoK{(π, sP , sH , r) :
H = HashP(π; (sP , sH)) ∧ C = Com(π; r)}

If any SMP or ZKPoK is not success-
ful then ABORT.
Else ACCEPT and store H.

Fig. 1: General ZKPPC Framework for ASCII-based Passwords

If all SMPs are successful then S is convinced that commitments {Ci} contain
some integer values πi representing characters ci that fulfill R and that n ∈
[nmin, nmax]. This doesn’t complete the proof yet since two issues remain: (1)
committed πi are not yet linked to the integer value π that represents pw, and (2)
the client hasn’t proved yet that this π was used to compute the hash value H. In
order to address (1) and (2) our ZKPPC framework first uses the homomorphic
property of the commitment scheme. Both C and S independently compute
C ←

∏n−1
i=0 Ci = Com(

∑n−1
i=0 πi, r) = Com(π, r), where r =

∑n−1
i=0 ri, whereas C

additionally uses the knowledge of all ri to compute r. As a last step of the
ZKPPC protocol client C as prover and server S as verifier execute a ZKPoK
proof that C knows π and random salts (sP , sH) that were used to compute H
and that π is an integer contained in the (combined) commitment C for which
the client knows the (combined) randomness r. If this final ZKPoK is successful
then S accepts the hash value H.
In reference to Definition 1, our ZKPPC framework in Figure 1 tailors the gen-
eral statement f(pw) = true to ASCII-based policies f = (R,nmin, nmax) and
corresponding password hashing schemes Π so that the resulting ZKPPC proof
is of the following form:

ZKPoK{(π, r, {πi}, {ri} for i = 0, . . . , n− 1) :

Ci = Com(πi, ri) ∧
∏
i

Ci = Com(π,
∑
i

ri) ∧ πi ∈ Ω′ ∧H = HashP(π, r)}.

Theorem 1. If C = (CSetup, Com, Open) is an (additively) homomorphic com-
mitment scheme, Π = (PSetup, PPHSalt, PPreHash, PHSalt, PHash) a secure
randomized password hashing scheme, SMP a zero-knowledge set membership
proof and ZKPoK a zero-knowledge proof of knowledge, then the protocol from
Figure 1 is a ZKPPC protocol according to Definition 1.

Proof. Protocol completeness follows by inspection. To prove soundness we as-
sume that the server accepts H from a malicious client that was not computed

as HashP(π, r) for integer π that represents a policy-conform password string pw.
By construction of the protocol the client must have either (1) cheated in one of
the SMP(πi, ri, Ω′) proofs or the final ZKPoK proof which contradicts the sound-
ness properties of those proofs, or (2) was is able to compute H in two different
ways, as HashP(π, r) using π that corresponds to a policy-conform pw ∈ D and as
HashP(π∗, r∗) using π∗ for some pw∗ ∈ D that is not policy-conform, which con-
tradicts to the second pre-image resistance of Π, or (3) was is able to compute
at least one Ci in two different ways, as Com(πi, ri) using πi that corresponds to
a character ci that is significant for the regular expression R and as Com(π∗i , r∗i)
using π∗i that doesn’t fulfill any character Rj from R, which contradicts to the
binding property of C.

To prove the zero-knowledge property we need to build a simulator Sim to
simulate the view of the server. Sim internally uses the simulators for SMP proofs
and the ZKPoK proofs to simulate server’s view, thereby relying on the password
hiding property of Π and the hiding property of C in the simulation of H and
every Ci, respectively. ut

Remark 2. Depending on the maximal password length nmax and complexity of
f = (R,nmin, nmax) using range proofs instead of set membership proofs, may
be more efficient. Although ZKPPC complexity is currently dominated by set
membership proofs, passwords in practice are rather short and policies not too
complex, so that set membership proofs will be sufficiently efficient in most cases.
Further notice that leakage of password length n to the server is not considered
as an attack against the ZKPPC protocol. For policies those regular expression
R implicitly defines nmin the length n can be hidden using the homomorphic
property the commitment scheme C, i.e., by combining commitments Ci for πi
representing (remaining) password characters that are not needed to satisfy R.

5.3 A Concrete ZKPPC Protocol for ASCII-based Passwords

We show feasibility of our approach by giving a concrete ZKPPC protocol con-
struction for ASCII-based passwords in a cyclic group G of prime order p. The
protocol is built from the Pedersen commitment scheme C = (CSetup, Com, Open)
from Section 2 and the randomized password hashing scheme Π = (PSetup,
PPHSalt, PPreHash, PHSalt, PHash) from Section 4.1 that share the same group
G. In particular, public parameters used by C and S in the ZKPPC pro-
tocol are defined as (p, g, h, λ) where g and h are independent generators of
G. For set membership proofs SMP(πi, ri, Ω′) we adopt a three-move honest-
verifier proof ZKPoK{(πi, ri) : Ci = gπihri ∧ (πi = ω0 ∨ · · · ∨ πi = ω|Ω′|)} for
ωj ∈ Ω′, whose length is proportional to |Ω′|. Assuming that for each ωj ∈ Ω′
the corresponding value gωj ∈ G is pre-computed this proof can be realized
as ZKPoK{(πi, ri) : Ci = gπihri ∧ (Ci = gω0hri ∨ · · · ∨ Ci = gω|Ω′|hri)}.4

4 More efficient SMPs, e.g. [6], can possibly be used with a different commitment and
password hashing scheme. In this case care must be taken when it comes to the
instantiation of VPAKE that must be able to handle password hashes generated in
ZKPPC (cf. Section 6).

The final ZKPoK proof is instantiated as a three-move honest-verifier proof
ZKPoK{(π, sP , sH , r) : H1 = gsP ∧ H2 = Hπ

1 h
sH ∧ C = gπhr} that proceeds

in the following classical way. C picks random kπ, ksP , ksH , kr ∈ Zp, computes
t1 = gksP , t2 = Hkπ

1 hksH , and t3 = gkπhkr , and sends (t1, t2, t3) to S that
replies with a random challenge c ∈ Zp. C computes a1 = ksP + csP mod p,
a2 = kπ + cπ mod p, a3 = ksH + csH mod p and a4 = kr + cr mod p, and
sends (a1, a2, a3, a4) to S that accepts the proof if ga1 = t1H

c
1 , H

a2
1 ha3 = t2H

c
2 ,

and ga2ha4 = t3C
c holds.

Remark 3. The honest-verifier ZK property of the adopted three-move SMP and
ZKPoK protocols is sufficient since ZKPPC will be executed as part of the reg-
istration protocol over a server-authenticated secure channel (cf. Section 5.4)
where the server is assumed to be honest-but-curios. If ZKPPC protocol is ex-
ecuted outside of such secure channel then common techniques from [8] can be
applied to obtain ZK property in presence of malicious verifiers. We also observe
that all SMP and ZKPoK protocols can be made non-interactive (in the random
oracle model) using the techniques from [11].

5.4 Blind Registration of Passwords based on ZKPPC

Blind registration of passwords based on our generic ZKPPC construction from
Section 5.2 proceeds in three main stages and requires server-authenticated se-
cure channel (e.g. TLS) between C and S: (1) S sends its password policy f to C;
(2) C picks its user login credentials, containing id (e.g. its email address) which
C wants to use for later logins at S, and initiates the execution of the ZKPPC
protocol. If the ZKPPC protocol is successful then C has a policy-conform pass-
word pw and S receives id and the password hash H = HashP(π, r); (3) C sends
used random salt r to S and S stores a tuple (id,H, r) in its password database.

The use of server-authenticated secure channel guarantees that no active
adversary A can impersonate honest S and obtain (id,H, r) nor can A mount
an attack based on modification of server’s policy f , e.g. by replacing it with a
weaker one. Especially, r needs protection since knowledge of (H, r) enables an
offline attack that recovers pw. Assuming an efficiently samplable dictionary D
with min-entropy β a brute force attack would require at most 2β executions of
HashP(π∗, r), where π∗ ← PWDtoINT(pw∗), pw∗ ∈ D.

The execution of the ZKPPC protocol in the second stage doesn’t require a
secure channel due to the assumed ZK property. However, if secure channel is in
place then we can work with the honest-verifier ZK property, which may lead
to more efficient ZKPPC constructions. Note that S is not assumed to be fully
malicious but rather honest-but-curios since it cannot be trusted to process plain
passwords in a secure way. By modeling S as a malicious party in the ZKPPC
protocol we can offer strong guarantees that no information about pw is leaked
to S in the second stage and so the only way for S to recover pw at the end is
to mount an offline dictionary attack using r from the third stage.

The resulting password registration protocol guarantees that no server S
can do better in recovering client’s pw than any attacker A who compromises S

during or after the registration phase. This is an ideal security requirement for
the registration of passwords that will be used in authentication protocols with
password verifiers on the server side. Note that security of such verifier-based
authentication protocols implies that any A who breaks into S cannot recover
pw better than by mounting an offline dictionary attack. Our approach thus
extends this requirement to password registration protocols.

For our concrete ZKPPC construction from Section 5.3 we can modify the
third stage of the registration protocol such that instead of r = (sP , sH) server
S receives only sH and stores (id,H, sH), where H = (H1, H2), H2 = Hπ

1 h
sH .

This trick helps to significantly increase the complexity of an offline dictionary
attack. Note that pre-image resistance of Π guarantees that an offline password
test based on equality Hπ

1 = H2h
−sH would require 2β exponentiations Hπ∗

1
until π∗ = π is found. Note that if sP is disclosed then the above equality can be
re-written to gπ = (H2h

−sH)1/sP and a pre-computed table T = (π∗, gπ∗) would
immediately reveal π∗ = π. The computation of T requires 2β exponentiations
gπ
∗ but T would need to be computed only once. This also explains why we use

Π with randomized PPreHash.

6 VPAKE Protocols for ZKPPC-registered Passwords

We now focus on suitable VPAKE protocols where the server S using (id,H, r)
stored from the ZKPPC-based registration protocol can authenticate the client
C that uses only its pw. Such protocols can be constructed with a general
VPAKE framework introduced by Benhamouda and Pointcheval [5]. Their frame-
work constructs one-round VPAKE protocols with C and S sending one message
each, independently, using a generic password hashing scheme Π = (PSetup,
PPHSalt, PPreHash, PHSalt, PHash) with deterministic PPreHash, labeled public
key encryption scheme E = (KGen, Enc, Dec), and secure SPHFs (HKGen, PKGen,
Hash, ProjHash) for two languages LH = {(`, C)|∃r : C = Enc`(pk,H; r)} and
Ls,H = {(`, C)|∃P,∃r : C = Enc`(pk,H; r) ∧ H = PHash(pP, P, s)}. Their ap-
proach can directly be used for our generic scheme Π with randomized PPreHash
if we assume that Ls,H is defined using s = (sP , sH). This readily gives us a
generic VPAKE protocol that is suitable for our general ZKPPC construction
for ASCII-based passwords in Figure 1 and those security follows from the anal-
ysis of the framework in [5].

For the concrete VPAKE construction based on our scheme Π from Sec-
tion 4.1 we can use labeled CS encryption scheme for E from Section 2. The
common input of C and S contains the CS public key pk = (p, g1, g2, h, c, d,Hk),
where generators g1 = g and h must be the same as in the ZKPPC protocol
from Section 5.3. Since H = (H1, H2) we need to slightly update the language
LH = {(`, C)|∃r : C = Enc`(pk,H2; r)} by using H2 as an encrypted message.
We can still use the SPHF for CS ciphertexts from Section 4.1 to handle this
LH . Since the pre-hash salt sP is not transmitted in the registration phase, i.e.
S stores (id,H, sH) where H = (H1, H2) with H1 = gsP1 and H2 = Hπ

1 h
sH ,

we replace Ls,H with the following language LsH ,H = {(`, C)|∃π,∃r : C =

C(pk, (id, π)) S(pk, (id,H = (H1, H2), sH))

hk← HKGen(LH); hp← PKGen(hk, LH);
r ∈R Zp; ` = (id,S, hp);
C ← Enc`(pk, gπ1 ; r);

hk′ ← HKGen(LsH ,H); hp′ ← PKGen(hk′, LsH ,H);
r′ ∈R Zp; `′ = (S, id, hp′);
C ′ ← Enc`

′(pk,H2; r′);

hp, C

hp′, C ′, H1, sH

`′ = (S, id, hp′); H2 ← Hπ
1 h

sH ;
K1 ← Hash(hk, LH , C ′);
K2 ← ProjHash(hp′, LsH ,H , C, π, r);
K ← K1 ·K2

` = (id,S, hp);
K1 ← ProjHash(hp, LH , C ′, r′);
K2 ← Hash(hk′, LsH ,H , C);
K ← K1 ·K2

Fig. 2: A VPAKE Protocol for Blindly Registered ASCII-based Passwords

Enc`(pk, gπ1 ; r) ∧ H2 = Hπ
1 h

sH} and construct a suitable SPHF for LsH ,H as
follows:

– HKGen(LsH ,H) generates hk = (η1, η2, θ, µ, ν) ∈R Z1×5
p .

– PKGen(hk, LsH ,H) derives hp = (hp1, hp2, hp3) = (gη1
1 gθ2h

µcν , gη2
1 dν , gµ1H

−µ
1).

– Hash(hk, LsH ,H , C) outputs hash value h = uη1+ξη2
1 uθ2[e/(H2h

−sH)]µvν .
– ProjHash(hp, LsH ,H , C, π, r) outputs hash value

h = (hp1hp2
ξ)rhp3

π = gη1r
1 gθr2 hµrcνrgη2ξr

1 dνξr(gµ1H
−µ
1)π.

Note that projection key hp depends on H1 ∈ G, which can be seen as a
parameter in the definition of LsH ,H , but hp does not depend on C. The re-
sulting VPAKE protocol can thus still proceed in one round. The smooth-
ness of our SPHF construction for LsH ,H can be proven as follows. Let π ←
PWDtoINT(pw), H2 = Hπ

1 h
sH , with H1 = gsP1 for some unknown sP , and (`, C =

(u1, u2, e, v)) 6∈ LsH ,H , i.e. C ← Enc`(pk, gπ∗1 ; r) for some π∗ 6= π. Assuming the
second pre-image resistance of Π it follows that (u1, u

ξ
1, u2, e/(H2h

−sH), v) 6=
(gr1, g

rξ
1 , gr2, g

π−sPπ
1 hr, (cdξ)r) with overwhelming probability for all (r, rξ) ∈

Z2
p. Since (hp1, hp2, hp3) are linearly independent the resulting hash value h =

uη1
1 u

ξη2
1 uθ2[e/(H2h

−sH)]µvν is uniformly distributed in G.
Our concrete VPAKE construction is illustrated in Figure 2. We assume that

C uses π ← PWDtoINT(pw) as its input and has already sent its login name id to
S who picked the corresponding tuple (id,H, sH) from its password database.
Note that C can also act as initiator and send its id as part of its message, in
which case S must act as a responder. Which SPHF algorithms HKGen, PKGen,
Hash, ProjHash are used by C and S is visible from the input language, either
LH or LsH ,H . By inspection one can see that if both C and S follow the protocol
and H used on the server side is a password hash of π used on the client side then
both parties compute the same (secret) group element K = K1 ·K2. Note that C
derives K1 using its own hashing key hk and received server’s CS ciphertext C ′
that encrypts H2, whereas S derives K1 using client’s projection key hp, its own
C ′ and r′. Similarly, S derives K2 using its own hashing key hk′ and received
client’s CS ciphertext C that encrypts gπ1 , whereas C derives K2 using server’s

projection key hp′, its own C and r. Security of this VPAKE protocol follows
from the security of the generic scheme.

7 Conclusion

The proposed ZKPPC framework with additional password registration and
VPAKE protocols presented in this work can be used to securely register pass-
words chosen by clients at remote servers while simultaneously achieving the
following properties: (1) registered passwords are never disclosed to the server
and the only way for the server or any attacker who compromises the server to
recover passwords is by mounting an expensive offline dictionary attack; (2) each
registered password provably satisfies server’s password policy, which is ensured
through the use of homomorphic commitments and appropriate set membership
proofs; (3) servers can authenticate clients those passwords were registered using
the ZKPPC framework by means of efficient VPAKE protocols. We believe that
the concept underlying the ZKPPC framework and its current realization for
ASCII-based passwords and policies can solve problems related to the inappro-
priate handling of user passwords that frequently occurs in the real world.

Future work may include extension of the ZKPPC concept towards Two-
Server PAKE (2PAKE) protocols, e.g. [15], where the client password is secretly
shared amongst two servers from which at most one is assumed to be compro-
misable. Under this security assumption 2PAKE servers fully eliminate threats
from offline dictionary attacks. However, blind registration of policy-conform
passwords for 2PAKE protocols under this security assumption is a challenge.

Acknowledgements This research was supported by the German Science Foun-
dation (DFG) through the project PRIMAKE (MA 4957).

References

1. M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In EUROCRYPT’00, volume 1807, pages 139–155,
Berlin, Heidelberg, 2000. Springer. 2

2. S. M. Bellovin and M. Merritt. Encrypted Key Exchange: Password-Based Pro-
tocols Secure Against Dictionary Attacks. IEEE S&P’92, pages 72–84. IEEE CS,
1992. 2

3. S. M. Bellovin and M. Merritt. Augmented Encrypted Key Exchange: A Password-
Based Protocol Secure against Dictionary Attacks and Password File Compromise.
In ACM CCS’93, pages 244–250. ACM, 1993. 3

4. F. Benhamouda, O. Blazy, C. Chevalier, D. Pointcheval, and D. Vergnaud. New
smooth projective hash functions and one-round authenticated key exchange. Cryp-
tology ePrint Archive, Report 2013/034, 2013. http://eprint.iacr.org/. 5, 6

5. F. Benhamouda and D. Pointcheval. Verifier-Based Password-Authenticated Key
Exchange: New Models and Constructions. IACR Cryptology ePrint Archive,
2013:833, 2013. 3, 8, 9, 15, 19

http://eprint.iacr.org/

6. J. Camenisch, R. Chaabouni, and A. Shelat. Efficient Protocols for Set Membership
and Range Proofs. In ASIACRYPT, volume 5350 of Lecture Notes in Computer
Science, pages 234–252. Springer-Verlag, 2008. 13

7. R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. MacKenzie. Universally Compos-
able Password-Based Key Exchange. In EUROCRYPT’05, pages 404–421, Berlin,
Heidelberg, 2005. Springer. 2

8. R. Cramer, I. Damgård, and P. D. MacKenzie. Efficient Zero-Knowledge Proofs
of Knowledge Without Intractability Assumptions. In PKC’00, volume 1751 of
LNCS, pages 354–373. Springer, 2000. 14

9. R. Cramer and V. Shoup. A Practical Public Key Cryptosystem Provably Secure
Against Adaptive Chosen Ciphertext Attack. In CRYPTO’98, volume 1462 of
LNCS, pages 13–25. Springer, 1998. 5

10. Dan Goodin. Hack of Cupid Media dating website exposes 42 million plain-
text passwords. http://arstechnica.com/security/2013/11/hack-of-cupid-
media-dating-website-exposes-42-million-plaintext-passwords/, 2014. Ac-
cessed: 01/04/2014. 2

11. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO’86, volume 263 of Lecture Notes in Computer
Science, pages 186–194. Springer-Verlag, 1986. 14

12. C. Gentry, P. D. MacKenzie, and Z. Ramzan. A Method for Making Password-
Based Key Exchange Resilient to Server Compromise. In CRYPTO’06, volume
4117 of LNCS, pages 142–159. Springer, 2006. 3

13. P. Inglesant and M. A. Sasse. The true cost of unusable password policies: password
use in the wild. In CHI, pages 383–392. ACM, 2010. 2

14. B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0.
RFC 2898 (Informational), Sept. 2000. 2

15. F. Kiefer and M. Manulis. Distributed Smooth Projective Hashing and Its Appli-
cation to Two-Server Password Authenticated Key Exchange. In ACNS’14, volume
8479 of LNCS, pages 199–216. Springer, 2014. 17

16. Nik Cubrilovic. RockYou Hack: From Bad To Worse. http://techcrunch.com/
2009/12/14/rockyou-hack-security-myspace-facebook-passwords/, 2014. Ac-
cessed: 01/04/2014. 2

17. T. P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret
Sharing. In CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer-Verlag,
1991. 5

18. D. Pointcheval. Password-Based Authenticated Key Exchange. PKC’12, pages
390–397, Berlin, Heidelberg, 2012. Springer-Verlag. 2

19. N. Provos and D. Mazières. A Future-Adaptable Password Scheme. In USENIX
Annual Technical Conference, FREENIX Track, pages 81–91, 1999. 2

20. Reuters. Trove of Adobe user data found on Web after breach: security
firm. http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-
idUSBRE9A61D220131107, 2014. Accessed: 01/04/2014. 2

21. Thomson Reuters. Microsoft India store down after hackers take user data. http:
//ca.reuters.com/article/technologyNews/idCATRE81C0E120120213, 2014. Ac-
cessed: 01/04/2014. 2

22. M. S. Turan, E. Barker, W. Burr, , and L. Chen. Recommendation for password-
based key derivation. NIST Special Publication 800-132, 2010. 2

23. B. Ur, P. G. Kelley, S. Komanduri, J. Lee, M. Maass, M. L. Mazurek, T. Passaro,
R. Shay, T. Vidas, L. Bauer, N. Christin, and L. F. Cranor. How Does Your
Password Measure Up? The Effect of Strength Meters on Password Creation. In
USENIX Security’12, pages 5–5. USENIX Association, 2012. 1

http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/
http://arstechnica.com/security/2013/11/hack-of-cupid-media-dating-website-exposes-42-million-plaintext-passwords/
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-idUSBRE9A61D220131107
http://www.reuters.com/article/2013/11/07/us-adobe-cyberattack-idUSBRE9A61D220131107
http://ca.reuters.com/article/technologyNews/idCATRE81C0E120120213
http://ca.reuters.com/article/technologyNews/idCATRE81C0E120120213

A VPAKE Model

We recall the related password model for verifier-based PAKE protocols pro-
posed by Benhamouda and Pointcheval [5] with modifications to work with our
definition of password hashing. We consider clients C ∈ C, holding password
pwC , and servers S ∈ S, holding values (H, sP , sH) with H ← PHash(pP, P, sH)
and P ← PPreHash(pP, pwS , sP) for random salts sP ← PPHSalt(pP) and sH ←
PHSalt(pP). Passwords pwC and pwS are drawn from dictionary D with min-
entropy β. The adversary has access to the following oracles to interact with
protocol participants:
– Execute(C, S) returns the transcript of the protocol execution between two

new instance Ci and Sj . This models passive eavesdropping attacks.
– Send(Pi, P ′j ,m) returns the result of P ′j on input of message m from alleged

sender Pi. Invoking Send with an empty message initiates a session between
Pi and P ′j . This models active attacks.

– Corrupt(S) returns the server’s secret (H, sP , sH). Clients with pwS are
marked as corrupted.

Let b denote a bit chosen prior to every execution of the experiment. Security is
modelled with a Test(Pi) oracle that, on input of participant instance Pi, returns
a session key k chosen as follows:
– If Pi has not computed a session key or Pi is a partnered and corrupted

client instance, return ⊥.
– If Pi is partnered with compatible P ′j and a Test query has been asked for
P ′j previously, then return the same session key as for P ′j .

– Otherwise return the real session key of Pi if b = 1, and a random session
key if b = 0.

Two protocol participants are partnered if they have matching transcripts, i.e.
the recorded transcript of one participant is a subset of the one recorded by the
other party. Two protocol participants P, P ′ are compatible if w.l.o.g. P ∈ C and
P ′ ∈ S, and PHash(pP, PPreHash(pP, pwP , sP), sH) = HP ′ . To define security we
specify a real experiment ExpReal and ideal experiment ExpIdeal. The real world
adversary in ExpReal has access to the aforementioned oracles and interacts with
real participants using passwords chosen according to the dictionary D. The
ideal world adversary in ExpIdeal interacts with the aforementioned oracles that
are modified as follows: Execute and Send oracles operate with an invalid dummy
passwords; Non-trivial Test queries are always answered with a random session
key. Additionally, after the adversary returned his guess for bit b, an Extract
function is queried for all participants Pi that have been target of an active
attack and have been queried in a non-trivial Test query. The Extract function
on input of a transcript t returns salts sP and sH along with a hash value H if
Pi is a client and a password pw if Pi is a server. A PAKE protocol Π is secure
if for all PPT adversaries A there exists a negligible function ε(·) such that

Pr[ExpΠ,Real(λ) = 1] ≤ Pr[ExpΠ,Ideal(λ) = 1] + ε(λ).

	Zero-Knowledge Password Policy Checks and Verifier-Based PAKE
	Franziskus Kiefer and Mark Manulis
	Introduction
	Zero-Knowledge Password Policy Checks (ZKPPC)
	ZKPPC-compliant VPAKE

	Concept Overview and Building Blocks
	Zero-Knowledge Proofs
	Commitments
	Set Membership Proofs on Committed Values
	Labeled Public Key Encryption
	Smooth Projective Hashing (SPHF)

	Modeling Passwords and Policies
	Password Strings and Dictionaries
	Structure-Preserving Mapping of Password Strings to Integers
	Mapping of Password Characters to Integers
	Position-Dependent Mapping of Password Characters to Integers
	Mapping of Password Strings to Integers

	Password Policies

	Randomized Password Hashing
	Randomized Password Hashing from Pedersen Commitments

	ZKPPC and Password Registration
	Zero-Knowledge Password Policy Checks
	A General ZKPPC Framework for ASCII-based Passwords
	A Concrete ZKPPC Protocol for ASCII-based Passwords
	Blind Registration of Passwords based on ZKPPC

	VPAKE Protocols for ZKPPC-registered Passwords
	Conclusion
	Acknowledgements

	VPAKE Model

