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Abstract

Fuzzy extractors convert a noisy source of entropy into a consistent uniformly-distributed key. In
the process of eliminating noise, they lose some of the entropy of the original source—in the worst case,
as much as the logarithm of the number of correctable error patterns. We call what is left after this
worst-case loss the minimum usable entropy. Unfortunately, this quantity is negative for some sources
that are important in practice. Most known approaches for building fuzzy extractors work in the worst
case and cannot be used when the minimum usable entropy is negative.

We construct the first fuzzy extractors that work for a large class of distributions that have negative
minimum usable entropy. Their security is computational. They correct Hamming errors over a large
alphabet. In order to avoid the worst-case loss, they necessarily restrict distributions for which they
work.

Our first construction requires high individual entropy of a constant fraction of symbols, but permits
symbols to be dependent. Our second construction requires a constant fraction of symbols to have a
constant amount of entropy conditioned on prior symbols. The constructions can be implemented
efficiently based on number-theoretic assumptions or assumptions on cryptographic hash functions.

Keywords Fuzzy extractors, key derivation, error-correcting codes, computational entropy, point
obfuscation.

1 Introduction

Fuzzy Extractors Cryptography relies on long-term secrets for key derivation and authentication.
However, many sources with sufficient randomness to form long-term secrets provide similar but not
identical values at repeated readings (prominent examples include biometrics and other human-generated
data [Dau04, ZH93, BS00, EHMS00, MG09, MRW02], physically unclonable functions [PRTG02, TSv+06,
GCVDD02, SD07], and quantum information [BBR88]). Turning similar readings into identical values is
known as information reconciliation; further converting those values into uniformly random secret strings
is known as privacy amplification [BBR88]. Both of these problems have interactive and non-interactive
versions. In this paper, we are interested in the non-interactive case, which is useful for a single user
trying to produce the same key from multiple readings of a physical source at different times. A fuzzy
extractor is the primitive that accomplishes both information reconciliation and privacy amplification
non-interactively; fuzzy extractors are defined information-theoretically in [DORS08].
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Fuzzy extractors consist of a pair of algorithms: Gen takes a source value w, and produces a key r and
a public helper value p. The second algorithm Rep takes this helper value p and a close w′ to reproduce
the original key r. The security guarantee is that r produced by Gen is close to uniform (information-
theoretically [DORS08] or computationally [FMR13]), even given p, as long as w comes from a high-quality
distribution (traditionally, any distribution with sufficient min-entropy m). The correctness guarantee is
that r will be correctly reproduced by Rep as long as w′ is no farther than t from w in some metric space
(in this paper, we focus on the Hamming metric on length ` strings over some alphabet Z).

Limitations of Known Approaches Constructions of fuzzy extractors are limited by the tension
between security and correctness guarantees: if we allow for higher error tolerance t, then we also need
higher starting entropy m. The reason for this tension is simple: if an adversary who knows p can guess
any w′ within distance t of w, it will be able to easily obtain the true r by running Rep. In fact, if t is high
enough that there are 2m points in a ball of radius t, then there exists a distribution of w of min-entropy
m contained entirely in a single ball. For this distribution, an adversary can run Rep on the center of this
ball and always learn the key r.

More generally, let Bt denote the number of points in a ball of radius t. For any m and t, there
is a distribution of min-entropy m such that the adversary can guess a correct w′ with probability
1/d(2m/Bt)e ≈ Bt2−m: the distribution consists of the uniform distribution over all points in several
non-overlapping balls of radius t (the metric space must be large enough for these balls not to intersect).
We thus call m− logBt the minimum usable entropy, denoted by Husable. The previous paragraph shows
that no fuzzy extractor can handle all distributions of a given min-entropy m if Husable ≤ 0.

Prime candidate sources for authentication have Husable ≤ 0. As an example, the iris is believed to
be the best biometric for high security applications [PPJ03]. Daugman estimates irises contain 249 bits
of entropy [Dau04]. Daugman uses specialized wavelets to derive a 2048 bit string called an iris code. Let
the outcome of this transform (on different irises) define a distribution w. The precise number of errors
that must be tolerated depends on the desired false reject rate (how often the correct key is produced).
For a false reject rate of ≤ 80%, a t of approximately 205 is required. We have the following calculation
for Husable:

Husable = H∞(W )− log |Bt| = 249− log
205∑
i=0

(
2048
i

)
≈ −707.

There is considerable subsequent research [CGR09, GRC09, RUW11] to Daugman but it does not affect
Husable dramatically.

Our Contributions We provide the first constructions of computational fuzzy extractors that can be
used for a large class of distributions with Husable ≤ 0 over Z` for a large alphabet Z. As explained above,
such constructions cannot work without some restriction on the distribution. Our first construction is
secure when symbols in w each have individual super-logarithmic min-entropy, even if they are arbitrarily
correlated. Moreover, a constant fraction of symbols in w may have little entropy, as long as knowledge
of their values does not reduce the entropy of the high-entropy symbols too much (see Definition 4.2).

We improve the entropy requirement in the second construction, which requires only a constant fraction
of the symbols w to have constant min-entropy conditioned on the previous symbols. However, this
improvement comes at a price to error-tolerance: whereas the first construction tolerates a constant
fraction of errors, the second construction tolerates `/ω(log `) errors.
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Our Approach Our constructions are computationally secure. Known techniques for proving security
of information-theoretic fuzzy extractors work for all distributions for a given m, t, and thus cannot be
used with Husable ≤ 0 (because they would prove security for distributions contained within a single ball
of radius of t).

Most known constructions of fuzzy extractors put sufficient information in p to recover the original
w from a nearby w′ during Rep (this procedure is called a secure sketch), and then apply a random-
ness extractor to w to get r. Fuller, Meng, and Reyzin show that replacing secure sketches with a
similar computational component is unlikely to be fruitful [FMR13, Corollary 3.8, Theorem 3.10]. In-
stead, they suggest two alternatives: combine the information-reconciliation and privacy amplification
components (their approach) or produce a new consistent secret with computational entropy instead of
recovering w. We take the second approach.

Any procedure that converts a high-entropy input to a high-entropy output is known as a conductor
[CRVW02]; if it’s error-tolerant, then it’s a fuzzy conductor [KR09]. We show two constructions of
computational fuzzy conductors. These constructions may be converted to computational fuzzy extractors
using information-theoretic [NZ93] or computational [Kra10] extractors (Lemma 3.5).

Both constructions are based on obfuscation of point programs [Can97]. A point program Iw(x)
outputs 1 if x = w and 0 otherwise. Intuitively, an obfuscated version of a program reveals nothing
past its input and output behavior. For a point program, this means hiding all partial information
about the point w. We need a strong version of point obfuscation that remains secure even when several
obfuscations of correlated points are composed. While the standard definition of obfuscation [BGI+01]
does not imply security under composition, we can base our construction on the relaxed notion of virtual
grey-box obfuscation introduced in [BC10]. For this notion, [BC10] construct composable obfuscation of
point programs under particular number-theoretic assumptions. Additionally, such obfuscation can be
made very efficient under a strong assumption on cryptographic hash functions [Can97].

Both of our constructions are inspired by Canetti and Dakdouk’s construction of digital lockers from
point obfuscation [CD08]. Let w = w1 . . . w`, for wj ∈ Z. In the first construction (Construction 4.1), for
each j, Gen flips a coin cj and either obfuscates Iwj or picks a random point rj and obfuscates Irj . This
produces ` obfuscated programs P1, ..., P`. With a close value w′, Rep then runs the obfuscated program
Pj on w′j and checks whether Pj(w′j) = 1. For most locations j, Rep can determine whether wj or a
random value was obfuscated. Thus, most bits of cj are recoverable. To tolerate errors, the set of coins
c1 . . . c` is chosen at random from the codewords of an error correcting code. This construction conducts
entropy from w to c.

Obfuscation of point functions provides no security if a point can be guessed; thus, in order for the first
construction to be secure, sufficiently many coordinates of w have to be unguessable (even to an adversary
who can make equality queries for the values of other coordinates). We relax this requirement in our second
construction (Construction 5.2), called sample-then-obfuscate: it transforms w into a string of blocks and
then applies the first construction. Gen randomly samples several coordinates of w and concatenates them
to form a block. This reduces the entropy requirement on the individual symbols, but lowers the error-
tolerance. This approach is similar to the sample-then-extract paradigm for building locally computable
extractors [Lu02, Vad03]. Unlike in locally computable extractors, we can form multiple blocks sampling
from the same value w and only argue about their individual entropy, because correlations among blocks
are allowed in the first construction. Computational, rather than information-theoretic, analysis seems
crucial for achieving this property.

Connection to General Obfuscation We note that fuzzy extractors for the setting where Husable ≤ 0
can be trivially constructed from a strong form of obfuscation, specifically, virtual black-box obfuscation
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for the class proximity point programs, Iw(x) that tests if x is within Hamming distance t of w. However,
currently we do not know if such obfuscation exists, let alone whether it can be made as efficient as our
constructions. Recent works constructed candidate indistinguishability obfuscators [GGH+13, PST13]
and virtual black-box obfuscators in an idealized model [BR13, BGK+14] for all programs. However,
these notions of obfuscation do not imply virtual-black-box obfuscation for proximity point programs in
the plain model. The work of [BBC+14] suggests an average-case virtual-black-box obfuscator for the
family of evasive functions that test if a low-degree multi-variant arithmetic circuit evaluates to zero.
However, we do not know if these functions include proximity point programs.

Open Problems Both constructions require a large alphabet Z—one whose size is more than polyno-
mial in the security parameter.1 It is possible to tweak the sample-then-obfuscate construction for use
with a small alphabet. However, distributions with Husable ≤ 0 are supported only for large alphabets.
For small alphabets, Husable > 0 and there are good information-theoretic constructions known [DORS08,
Section 5]. Constructing a computational fuzzy extractor when Husable ≤ 0 and a small alphabet is an
open problem.

Using information-theoretic fuzzy extractors with additional privacy properties, Dodis and Smith [DS05,
Section 5] construct program obfuscators for the program Iw(x) that tests if x is within Hamming distance
t of w. The obfuscation is secure as long as w comes from a distribution of sufficient min-entropy; in
particular, the entropy must be high enough so that Husable > 0. Our constructions do not provide obfus-
cators for proximity queries, because they leak more information than whether x is within distance t of w
(for example, they may provide some information about the actual distance or about which coordinates
agree). Constructing an efficient obfuscator for proximity queries when Husable ≤ 0 is an open problem.

In this work we restrict the distribution of the original reading w and allow w′ to be an arbitrary point
within distance t. An alternative approach is to restrict the set of w′ where Gen produces the correct key.
A meaningful restriction of correctable errors is an open problem.

The remainder of this paper is organized as follows: we cover notation and background on obfuscation
and error correcting codes in Section 2, describe computational fuzzy extractors in Section 3, and present
our two constructions in Sections 4 and 5 respectively.

2 Preliminaries

For a random variables Xi over some alphabet Z we denote by X = X1, ..., X` the tuple (X1, . . . , X`).
For a set of indices J , XJ is the restriction of X to the indices in J . The set Jc is the complement
of J . The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) min-
entropy of X given Y is H̃∞(X|Y ) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [DORS08, Section 2.4]. For
a random variable W , let H0(W ) be the logarithm of the size of the support of W , that is H0(W ) =
log |{w|Pr[W = w] > 0}|. The statistical distance between random variables X and Y with the same
domain is ∆(X,Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. For a distinguisher D we write the computational

distance between X and Y as δD(X,Y ) = |E[D(X)]− E[D(Y )]| (we extend it to a class of distinguishers
D by taking the maximum over all distinguishers D ∈ D). We denote by Ds the class of randomized
circuits which output a single bit and have size at most s.

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius
t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x, we denote

1Codes over large alphabets are often used to correct burst errors [Gil60].
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by |Bt| the size of a ball of radius t. We consider the Hamming metric over vectors in Z`, defined via
dis(x, y) = {i|xi 6= yi}. For this metric, |Bt| =

∑t
i=0

(
`
i

)
(|Z| − 1)i. Un denotes the uniformly distributed

random variable on {0, 1}n. Unless otherwise noted logarithms are base 2. Usually, we use capitalized
letters for random variables and corresponding lowercase letters for their samples.

2.1 Coding Theory

We will consider slightly nonstandard error-correct codes over {0, 1}`, which correct up to t bit flips from
0 to 1 but no bit flips from 1 to 0 (this is the Hamming analog of the Z-channel [TABB02]).

Definition 2.1. For a point c ∈ {0, 1}` define Neight(c) as the set of all points where at most t bits ci
are changed from 0 to 1.

Definition 2.2. Let Neight(c) be as in Definition 2.1. Then a set C (over {0, 1}`) is a (Neight, δcode)-code
if there exists an efficient procedure Decode such that Prc∈C [∃c′ ∈ Neight(c) s.t. Decode(c′) 6= c] ≤ δcode.

Notes: Any code that corrects t Hamming errors also corrects t 0 → 1 errors, but more efficient
codes exist for this type of error [TABB02]. Codes with 2Θ(`) codewords and t = Θ(`) over the binary
alphabet exist for Hamming errors and suffice for our purposes (first constructed by Justensen [Jus72]).
These codes also yield a constant error tolerance for 0→ 1 bit flips. The class of errors we support in our
source (t Hamming errors over a large alphabet) and the class of errors for which we need codes (t 0→ 1
errors) are different. See Constructions 4.1 and 5.2 for the translation between the error classes.

2.2 Obfuscation

Our construction uses obfuscation for a family of point functions In = {Iw}w∈{0,1}n defined as follows:

Iw(x) :

{
1 x = w

0 otherwise
.

The required notion of obfuscation is virtual grey-box (VGB) introduced in [BC10]. This notion is weaker
then the standard notion of virtual black-box ([BGI+01]), as it allows the simulator to run in unbounded
time while making at most a polynomial number of oracle queries to the function. In the following
definition we also require that the obfuscation is composable and secure with respect to auxiliary input.
Composable auxiliary-input VGB obfuscators for point functions are constructed in [BC10, Theorem 6.1]
from the Strong Vector Decision Diffie-Hellman assumption, which is a generalization of the strong DDH
assumption of [Can97] for tuples of points. They can also be constructed by assuming strong properties
of cryptographic hash functions [Can97].

Definition 2.3 (`-composable obfuscation VGB obfuscation with auxiliary input [BC10]). A PPT al-
gorithm O is an `-composable VGB obfuscator for point functions with auxiliary-input if the following
conditions are met:

1. Functionality: for every n and I ∈ In, O(I) is a circuit that computes the same function as I.

2. Virtual grey-box: For every PPT adversary A and polynomial p, there exists a (possibly ineffi-
cient) simulator S and a polynomial q such that for all sufficiently large n, any sequence of circuits
I1, . . . , I` ∈ In, (where ` = poly(n)) and for all auxiliary inputs z ∈ {0, 1}∗:

| Pr
A,O

[A(z,O(I1), . . . ,O(I`)) = 1]− Pr
S

[S(I1,...,I`)[q(n)](z, 1|I
1|, . . . , 1|I

`|) = 1]| < 1
p(n)

,
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where (I1, . . . , I`)[q(n)] is an oracle that answers at most q(n) queries, and where every query of the
form (i, x) is answered by Ii(x).

For notational convenience, since we only use point function obfuscation, we denote the oracle provided
to the simulator as Iw(·, ·) where w = w1, ..., w` is the vector of obfuscated points.

3 Computational Fuzzy Extractors

In this section we present our paradigm for constructing computational fuzzy extractors. Definitions
for information-theoretic fuzzy extractors can be found in the work of Dodis et al. [DORS08, Sections
2.5–4.1]. The definition of computational fuzzy extractors allows for a small probability of error. Let M
be a metric space with distance function dis.

Definition 3.1. [FMR13, Definition 2.5] Let W be a family of probability distributions over M. A pair
of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, κ, t)-computational fuzzy
extractor that is (ε, s)-hard with error δ if Gen and Rep satisfy the following properties:

• The generate procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}κ and a helper
string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes an element w′ ∈ M and a bit string p ∈ {0, 1}∗ as inputs.
The correctness property guarantees that if dis(w,w′) ≤ t and (r, p)← Gen(w), then Pr[Rep(w′, p) =
r] ≥ 1 − δ, where the probability is over the randomness of (Gen,Rep). If dis(w,w′) > t, then no
guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W ∈ W, the string r is pseudorandom
conditioned on p, that is δDs((R,P ), (Uκ, P )) ≤ ε.

In the above definition, the errors are chosen before P : if the error pattern between w and w′ depends
on the output of Gen, then there is no guarantee about the probability of correctness. In both our
constructions it is crucial that w′ is chosen independently of the outcome of Gen.

Fuller, Meng, and Reyzin [FMR13] present two approaches for constructing a computational fuzzy
extractor: analyzing the information-reconciliation and privacy amplifications components together or
using a fuzzy conductor and a privacy amplification component. We follow the second approach. The
lower bounds on entropy loss of fuzzy extractors shown by Dodis et al. [DORS08, Section C] extend
immediately to fuzzy conductors. To overcome these bounds, we use a computational version of a fuzzy
conductor. We use the common notion of HILL entropy [HILL99] extended to the conditional case:

Definition 3.2. [HLR07, Definition 3] Let (W,S) be a pair of random variables. W has HILL entropy
at least k conditioned on S, denoted HHILL

ε,s (W |S) ≥ k if there exists a joint distribution (X,S), such that
H̃∞(X|S) ≥ k and δDs((W,S), (X,S)) ≤ ε.

We now define a computational fuzzy conductor and a (computational) randomness extractor. A com-
putational fuzzy conductor is the computational analogue of a fuzzy conductor (introduced by Kanukurthi
and Reyzin [KR09]).

Definition 3.3. A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, m̃, t)-
computational fuzzy conductor that is (ε, s)-hard with error δ if Gen and Rep satisfy Definition 3.1, except
the last condition is replaced with the following weaker condition:
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• for any distribution W ∈ W, the string x has high HILL entropy conditioned on P . That is
HHILL
ε,s (R|P ) ≥ m̃.

A computational extractor is the adaption of a randomness extractor to the computational set-
ting. Any information-theoretic randomness extractor is also a computational extractor; however, unlike
information-theoretic extractors, computational extractors can expand their output arbitrarily via pseu-
dorandom generators once a long-enough output is obtained. We adapt the definition of Krawczyk [Kra10]
to the average case:

Definition 3.4. Let χ be a finite set. A function cext : {0, 1}` × {0, 1}d → {0, 1}κ a (m, ε, s)-average-
case computational extractor if for all pairs of random variables X,Y (with X over {0, 1}`) such that
H̃∞(X|Y ) ≥ m, we have δDs((cext(X;Ud), Ud, Y ), Uκ × Ud × Y ) ≤ ε.

Combining a computational fuzzy conductor and an appropriate computational extractor yields a
computational fuzzy extractor (proof in Appendix B):

Lemma 3.5. Let (Gen′, Rep′) be a (M,W, m̃, t)-computational fuzzy conductor that is (εcond, scond)-hard
with error δ and outputs in {0, 1}`. Let cext : {0, 1}` × {0, 1}d → {0, 1}κ be a (m̃, εext, sext)-average case
computational extractor. Define (Gen,Rep) as:

• Gen(w; seed) (where seed ∈ {0, 1}d): run (r′, p′) = Gen′(w) and output r = cext(r′; seed), p =
(p′, seed).

• Rep(w′, (p′, seed)) : run r′ = Rep′(w′; p′) and output r = cext(r′; seed).

Then (Gen,Rep) is a (M,W, κ, t)-computational fuzzy extractor that is (εcond + εext, s
′)-hard with error δ

where s′ = min{scond − |cext| − d, sext}.

4 Tolerating a Constant Fraction of Errors when Husable ≤ 0

For the remainder of this work, we consider the Hamming metric over some alphabet Z. Our goal is to
derive strong keys for a large class of sources where 0 ≥ Husable = H∞(W )−log |Bt|. Our first construction
is inspired by the construction of digital lockers from point obfuscation by Canetti and Dakdouk [CD08].

Construction 4.1. Let Z be an alphabet and let W = W1, ...,W` be a distribution over Z`. Let O be
an obfuscator for point functions with points from Z. Let C ⊂ {0, 1}` be an error-correcting code. We
describe Gen,Rep as follows:

Gen

1. Input: w = w1, ..., w`

2. Sample c← C.

3. For j = 1, ..., `:

(i) If cj = 0: pj = O(Iwj ).

(ii) Else: Sample rj
$← Z.

Let pj = O(Irj ).

4. Output (c, p), where p = p1 . . . p`.

Rep

1. Input: (w′, p)

2. For j = 1, ..., `:

(i) If pj(w′j) = 1: set c′j = 0.

(ii) Else: set c′j = 1.

3. Set c = Decode(c′).

4. Output c.
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The input w is hidden in two different ways. In locations where cj = 1, the block wj is information-
theoretically unknown. In locations where cj = 0, it is hard to find wj given access to the point obfuscation.
There are two possible reasons for a bit c′j to be 1: because the true value was 1 and because wj 6=
w′j . However, if a bit c′j is 0, this likely means that wj = w′j because collisions when cj = 0 are
unlikely (occurring with probability 1/|Z|). This is the reason for the use of a code that only corrects
0→ 1 flips.

Construction 4.1 is secure if no distinguisher can tell whether it is working with random obfuscations
or obfuscations of Wj . By the security of point obfuscation, anything learnable from the obfuscation is
learnable from oracle access to the function. Therefore, our construction is secure as long as enough blocks
are unpredictable even after adaptive queries to equality oracles for individual symbols. This restriction
on the distribution is captured in the following definition.

Definition 4.2. Let Iw(·, ·) be an oracle that returns

Iw(j, w′j) =

{
1 wj = w′j
0 otherwise.

A source W = W1||...|W` is a (q, α, β)-unguessable block distribution if there exists a set J ⊂ {1, ..., `}
of size at least `− β such that for any unbounded adversary S with oracle access to Iw making at most q
queries

∀j ∈ J, H̃∞(Wj |V iew(SIW (·,·))) ≥ α.

We show some examples of unguessable block distributions in Appendix A. In particular, any source
W where for all j, H∞(Wj) ≥ ω(log n) (but all blocks may arbitrarily correlated) is an unguessable block
distribution (Claim A.3).

Theorem 4.3. Let n be a security parameter. Let Z ⊆ {0, 1}ω(logn) be an alphabet. Let W be a family
of (q, α = ω(log n), β)-unguessable block distributions over Z`, for any q = poly(n). Furthermore, let
C be a (Neight, δcode)-code over Z`. Let O be an `-composable VGB obfuscator for point functions with
auxiliary inputs. Then for any ssec = poly(n) there exists some ε = ngl(n) such that Construction 4.1 is
a (Z`,W, m̃ = H0(C)−β, t)-computational fuzzy conductor that is (εsec, ssec)-hard with error δcode+`/|Z|.

Proof. We first argue security in the following Lemma.

Lemma 4.4. Let all variables be as in Theorem 4.3. For every ssec = poly(n) there exists some εsec =
ngl(n) such that HHILL

εsec,ssec(C|P ) ≥ H0(C)− β.

We give a brief outline of the proof here; the proof is in Appendix C.

Outline. It is sufficient to show that there exists a distribution C ′ with conditional min-entropy and
δDssec ((C,P ), (C ′, P )) ≤ ngl(n). Let J be the set of indices that exists according to Definition 4.2.
Define the distribution C ′ as a uniform codeword conditioned on the values of C and C ′ being equal on
all indices outside of J . We first note that C ′ has sufficient entropy, because H̃∞(C ′|P ) = H̃∞(C ′|CJc) ≥
H∞(C ′, CJc)−H0(CJc) = H0(C)− |Jc| (the second step is by [DORS08, Lemma 2.2b]). It is left to show
δDssec ((C,P ), (C ′, P )) ≤ ngl(n). The outline for the rest of the proof is as follows:

• Let D be a distinguisher between (C,P ) and (C ′, P ). Since P is a collection of obfuscated programs,
there exists a simulator S (outputting a single bit), such that Pr[D(C,P ) = 1] is close to Pr[SO(C) =
1].
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• Show that even an unbounded S making a polynomial number of queries to the stored points cannot
distinguish between C and C ′. That is, ∆(SO(C), SO(C ′)) is small.

• By the security of obfuscation, Pr[SO(C ′) = 1] is close to Pr[D(C ′, P ) = 1].

We now argue correctness of Construction 4.1. We begin by showing that the probability of a single
1→ 0 bit flip in c is negligible.

Lemma 4.5. Let all variables be as in Theorem 4.3. The probability of at least one 1 → 0 bit flip (an
obfuscation of a random block being interpreted as the obfuscation of the point) is ≤ `/|Z| = ngl(n).

Proof. Consider a coordinate j for which cj = 1. Since w′ is chosen independently of the points rj , and
rj is uniform, Pr[rj = w′j ] = 1/|Z|. The lemma follows by the union bound, since there are at most `
such coordinates.

Since there are most t locations for which wj 6= w′j there are at most t 0→ 1 bit flips in c, which the
code will correct with probability 1− δcode, because c was chosen uniformly. Therefore, Construction 4.1
is correct with error at most `/|Z|.

4.1 Discussion of Construction 4.1

To show that Husable can be negative for Construction 4.1, we first calculate the size of the Hamming
ball.

log |Bt| = log
t∑
i=0

(
`

i

)
(|Z| − 1)i > log

(
`

t

)
(|Z| − 1)t = Θ(t log |Z|) + log

(
`

t

)
We consider what entropy is necessary for security. The simplest type of unguessable block distribution

is where each block is independent and has super-logarithmic entropy (Claim A.1). For this type of source
the required entropy is H∞(W ) = `ω(log n). This yields:

Husable = H∞(W )− log |Bt| < `ω(log n)−
(

Θ(t log |Z|) + log
(
`

t

))
.

When t = Θ(`) and the entropy of each block is o(log |Z|), then Husable ≤ 0 and the output entropy is
H0(C)− β (if C is a constant rate code, this is Θ(`)).

Improvements If most codewords have Hamming weight close to 1/2, we can decrease the error toler-
ance needed from the code from t to about t/2, because roughly half of the mismatches between w and
w′ occur where cj = 1.

If ` is not long enough to get a sufficiently long output, the construction can be run multiple times
with the same input and independent randomness.
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5 Trading Errors for Entropy

Construction 4.1 is a computational fuzzy conductor with Husable ≤ 0. Unfortunately, it requires many
blocks of W to have super-logarithmic min-entropy. In this section, we reduce the required entropy of
blocks by obfuscating several blocks simultaneously, at the price of decreasing the effective error tolerance.
The main idea is to sample a random subset of blocks Wj1 , ...,Wjη and obfuscate the concatenation of
these blocks. Denote this concatenated value by V1. This process is repeated to produce V1, ..., V` and
the construction proceeds by either obfuscating Vi or a random point as before. For security each value
Vi needs to be unguessable. This will hold as long as enough blocks contribute some entropy:

Definition 5.1. A distribution W = W1, ...,Wγ is an (α, β)-partial block source if there exists a set of
indices J where |J | ≥ γ − β such that the following holds:

∀j ∈ J, ∀w1, ..., wγ ∈W1, ...,Wγ ,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

Definition 5.1 is a weakening of block sources (introduced by Chor and Goldreich [CG88]), as only
some blocks are required to have entropy conditioned on the past. The choice of conditioning on the past
is arbitrary: a more general sufficient condition is that there exists some ordering of indices where most
items have entropy conditioned on all previous items in this ordering (for example, a “partial” reverse
block source [Vad03]). Let Sampleγ,η(·) be an algorithm that outputs a random subset of {1, ..., γ} of size
η given let rsam bits of randomness.

Construction 5.2 (Sample-then-Obfuscate). Let Z be an alphabet, and let W = W1, ...,Wγ be a source
where each Wj is over Z. Let η be a parameter, C ⊂ {0, 1}` be an error-correcting code and O be an
obfuscator for the family of point functions. Define Gen,Rep as:

Gen

1. Input: w = w1, ..., wγ

2. Select c $← C.

3. For i = 1, ..., `:

(i) Select λi
$← {0, 1}rsam.

(ii) Set ji,1, ..., ji,η ← Sampleη,γ(λi)

(iii) If ci = 0:
Set vi = wji,1 , ..., wji,η .
Set ρi = O(Ivi).
Set pi = ρi, λi.

(iv) If ci = 1: Select ri
$← Zη.

Let pi = O(Iri), λi.

4. Output (c, p), where p = p1 . . . p`.

Rep

1. Input: (w′, p)

2. For i = 1, ..., `:

(i) Parse pi as ρi, λi.

(ii) Set ji,1, ..., ji,η ← Sampleγ,η(λi).

(iii) Set v′i = wji,1 , ..., wji,η .

(iv) If ρi(v′i) = 1 set c′i = 0.

(v) Else set c′i = 1.

3. Set c = Decode(c′).

4. Output c.

The main change in Construction 5.2 is that the obfuscated values are concatenated symbols of W .
This paradigm is similar to sample-then-extract from the locally computable extractors literature [Lu02,
Vad03]. For this reason we call Construction 5.2 sample-then-obfuscate. A crucial difference is that the
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use of a computational primitive (obfuscation) allows us to sample multiple times, because we need to
argue only about individual entropy of Vi, as opposed to the information-theoretic setting, where it would
be necessary to argue about the entropy of the joint variable V .

This construction uses a näıve sampler that takes truly random samples, but the public randomness
may be substantially decreased by using more sophisticated samplers. Goldreich provides an introduction
to samplers in [Gol11].

Theorem 5.3. Let Z be an alphabet. Let n be a security parameter. Let W be the family of (α =
Ω(1), β ≤ γ(1 − Θ(1)))-partial block sources over Zγ where γ = Ω(n). Let η be such that η = ω(log n)
and η = o(γ), and ` be such that ` = O(poly(n)) and ` = ω(log n). Let C be a (Neight′ , δcode) where
t′ = Θ(`). Let O be an `-composable VGB obfuscator for point functions with auxiliary inputs. Then
for every ssec = poly(n) there exists some εsec = ngl(n) such that Construction 5.2 is a (Zγ ,W, m̃, t)-
computational fuzzy conductor that is (εsec, ssec)-hard with error δ for

t ≤ − log(1− t′/(2`))
2

γ − η
η

= O(γ/η) = n/ω(log n)

m̃ = H0(C)

δ = O(`/|Z|+ 2−` + δcode).

The next two sections are dedicated to proving this theorem. For security we argue that each of
the vi values is unguessable. For correctness we show that the induced error rate in v and v′ is a small
constant (with overwhelming probability), so that c′ will be corrected to c with overwhelming probability.

5.1 Security of Construction 5.2

In order to show security Construction 5.2, we show that with overwhelming probability, at each of
the ` iterations, the sampler will choose enough coordinates of W that have high entropy, making Vi
have sufficient entropy. We can then argue that V1, ..., V` forms a block-unguessable distribution. Then
Construction 5.2 is just Construction 4.1 applied to V1, .., V`, and security follows by Lemma 4.4. We
begin by showing that each Vi is statistically close to a high entropy distribution (proof in Appendix D).
Let Λ represent the random variable of all the coins used by Sample and λ = λ1 . . . λ` be some particular
outcome.

Lemma 5.4. Let all variables be as in Theorem 5.3. There exists εsam = O(e−η) = ngl(n) and α′ =
αη(γ − β − η)/γ = ω(log n) such that for each i,

Pr
λ←Λ

[H∞(Vi|Λ = λ) ≥ α′] ≥ 1− εsam.

We can then argue that all Vi simultaneously have individual entropy with good probability (by union
bound):

Corollary 5.5. Let εsam, α′ be as in Lemma 5.4, and all the other variables be as in Theorem 5.3. Then
Prλ←Λ[∀i,H∞(Vi|Λ = λ) ≥ α′] ≤ 1− `εsam.

In Claim A.3 we show that any distribution where each individual block has super-logarithmic min-
entropy forms a unguessable block distribution. This allows us to conclude:

Corollary 5.6. Let εsam, α′ be as in Lemma 5.4, and all the other variables be as in Theorem 5.3. Take
any q = poly(n). For α′′ = α′ − 1 − log(q + 1) = ω(log n), with probability 1 − `εsam over the choice of
Λ = λ, the distribution V |Λ = λ is a (q, α′′, 0)-unguessable block distribution.
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Thus, unless the choice of λ is very unlucky, Construction 5.2 is Construction 4.1 applied to an unguess-
able block distribution V1, ..., V`. That is,

Corollary 5.7. Let all the variables be as in Theorem 5.3. For every ssec = poly(n) there exists εsec =
ngl(n) such that HHILL

εsec,ssec(C|P ) ≥ H0(C).

5.2 Correctness of Construction 5.2

The argument that 1 → 0 flips from c to c′ are unlikely carries over from Construction 4.1. Recall that
the code C corrects up to t′ flips from 0 to 1. We now show that C is up to the task with overwhelming
probability, i.e., that Pr(v,v′)←(V,V ′)[v′ 6∈ Neight′(v)] < ngl(n). The proof is in Appendix E. The correct-
ness argument in Theorem 5.3 is obtained by subtracting the probability of a single 1→ 0 bit flip (`/|Z|)
and the error of the code (δcode).

Lemma 5.8. Let all the variables be as in Theorem 5.3. Then Pr[v′ ∈ Neight′(v)] ≥ 1 − O(2−`), where
the probability is over the coins of Gen.

5.3 Discussion of Construction 5.2

We now show Construction 5.2 can work for partial block sources when Husable ≤ 0. The required entropy
of partial block source is α(γ − β) = Θ(γ). We are able to correct O(γ/η) errors. This yields:

Husable = H∞(W )− log |Bt| < Θ(γ)− t log |Z| = Θ(γ)−Θ(γ/η) log |Z|

That is, Construction 5.2 achieves Husable ≤ 0 when the starting alphabet is super polynomial (noting
that for super polynomial size Z we can set η to be super logarithmic and o(log |Z|)). We note that for
polynomial-size alphabets, Construction 5.2 will still work as long as we use a code that corrects Hamming
errors in both directions (with a polynomial size alphabet the probability of 1→ 0 bits flips is noticeable);
however, for a polynomial-size alphabet, Husable > 0.
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Wolters. Read-proof hardware from protective coatings. In Cryptographic Hardware and
Embedded Systems - CHES 2006, pages 369–383. 2006.

[Vad03] Salil P Vadhan. On constructing locally computable extractors and cryptosystems in the
bounded storage model. In Advances in Cryptology-CRYPTO 2003, pages 61–77. Springer,
2003.

[ZH93] Moshe Zviran and William J. Haga. A comparison of password techniques for multilevel
authentication mechanisms. The Computer Journal, 36(3):227–237, 1993.

A Characterizing unguessable block distributions

Definition 4.2 is an inherently adaptive definition and a little unwieldy. In this section, we partially char-
acterize sources that satisfy Definition 4.2. The majority of the difficulty in characterizing Definition 4.2
is that different blocks may be dependent, so an equality query on block i may reshape the distribution
of block j. In the examples that follow we denote the adversary by S as we consider security against
computationally unbounded adversaries defined in VGB obfuscation (Definition 2.3). We first show some
sources that are unguessable block distributions (Section A.1) and then show distributions with high
overall entropy that are not unguessable block distributions (Section A.2).

A.1 Positive Examples

We begin with the case of independent blocks.

Claim A.1. Let W = W1, ...,W` be a source in which all blocks Wj are mutually independent. Let α be
a parameter. Let J ⊂ {1, ..., `} be a set of indices such that for all j ∈ J , H∞(Wj) = α. Then for any
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q, W is a (q, α− log(q + 1), `− |J |)-unguessable block distribution. In particular, when α = ω(log n) and
q = poly(n), then W is a (q, ω(log n), `− |J |)-unguessable block distribution.

Proof. It suffices to show that for all j ∈ J, H̃∞(Wj |V iew(SIW (·,·)) = α− log(q+1). We can ignore queries
for all blocks but the jth, as the blocks are independent. Furthermore, without loss of generality, we can
assume that no duplicate queries are asked, and that the adversary is deterministic (S can calculate the
best coins). Let A1, A2, . . . Aq be the random variables representing the oracle answers for an adversary
S making q queries about the ith block. Each Ak is just a bit, and at most one of them is equal to 1
(because duplicate queries are disallowed). Thus, the total number of possible responses is q + 1. Thus,
we have the following,

H̃∞(Wj |V iew(SOW (·,·)) = H̃∞(Wj |A1, . . . , Aq)
= H∞(Wj)− |A1, . . . , Aq|
= α− log(q + 1) ,

where the second line follows from the first by [DORS08, Lemma 2.2].

In their work on computational fuzzy extractors, Fuller, Meng, and Reyzin [FMR13] show a construction
for block-fixing sources, where each block is either uniform or a fixed symbol (block fixing sources were
introduced by Kamp and Zuckerman [KZ07]). Claim A.1 shows that Definition 4.2 captures, in particular,
this class of distributions. However, Definition 4.2 captures more distributions. We now consider more
complicated distributions where blocks are not independent.

Claim A.2. Let f : {0, 1}e → Z` be a function. Furthermore, let fj denote the restriction of f ’s output
to its jth coordinate. If for all j, fj is injective then W = f(Ue) is a (q, e − log(q + 1), 0)-unguessable
block distribution.

Proof. Since f is injective on each block, H̃∞(Wj |V iew(SIW (·,·))) = H̃∞(Ue|V iew(SIW (·,·))). Consider
a query qk on block j. There are two possibilities: either qk is not in the image of fj , or qk can be
considered a query on the preimage f−1

j (qk). Then (by assuming S knows f) we can eliminate queries
which correspond to the same value of Ue. Then the possible responses are strings with Hamming
weight at most 1 (like in the proof of Claim A.1), and by [DORS08, Lemma 2.2] we have for all j,
H̃∞(Wj |V iew(SIW (·,·))) ≥ H∞(Wj)− log(q + 1).

Note the total entropy of a source in Claim A.2 is e, so there is a family of distributions with total
entropy ω(log n) for which Construction 4.1 is secure. For these distributions, all the coordinates are
as dependent as possible: one determines all others. We can prove a slightly weaker claim when the
correlation between the coordinates Wj is arbitrary:

Claim A.3. Let W = W1, ...,W` be a source. Suppose that for all j, H∞(Wj) ≥ α, and that q ≤ 2α/4
(this holds asymptotically, in particular, if q is polynomial and α is super-logarithmic). Then W is a
(q, α− 1− log(q + 1), 0)-unguessable block distribution.

Proof. Intuitively, the claim is true because the oracle is not likely to return 1 on any query. Formally,
we proceed by induction on oracle queries, using the same notation as in the proof of Claim A.1. Our
inductive hypothesis is that Pr[A1 6= 0∨ · · · ∨Ak−1 6= 0] ≤ (k− 1)21−α. If the inductive hypothesis holds,
then, for each j,

H∞(Wj |A1 = · · · = Ak−1 = 0) ≥ α− 1 . (1)
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This is true for k = 1 by the condition of the theorem. It is true for k > 1 because, as a consequence
of the definition of H∞, for any random variable X and event E, H∞(X|E) ≥ H∞(X) + log Pr[E]; and
(k − 1)21−α ≤ 2q2−α ≤ 1/2.

We now show that Pr[A1 6= 0 ∨ · · · ∨ Ak 6= 0] ≤ k21−α, assuming that Pr[A1 6= 0 ∨ · · · ∨ Ak−1 6= 0] ≤
(k − 1)21−α.

Pr[A1 6= 0 ∨ · · · ∨Ak−1 6= 0 ∨Ak 6= 0] = Pr[A1 6= 0 ∨ · · · ∨Ak−1 6= 0] + Pr[A1 = · · · = Ak−1 = 0 ∧Ak = 1]

≤ (k − 1)21−α + Pr[Ak = 1 |A1 = · · · = Ak−1 = 0]

≤ (k − 1)21−α + max
j

2−H∞(Wj |A1=···=Ak−1=0)

≤ (k − 1)21−α + 21−α

= k21−α

(where the third line follows by considering that to get Ak = 1, the adversary needs to guess some Wj , and
the fourth line follows by (1)). Thus, using k = q+1 in (1), we know H∞(Wj |A1 = · · · = Aq = 0) ≥ α−1.
Finally this means that

H̃∞(Wj |A1, . . . , Aq) ≥ − log
(

2−H∞(Wj |A1=···=Aq=0) Pr[A1 = · · · = Aq = 0] + 1 · Pr[A1 6= 0 ∨ · · · ∨Aq 6= 0]
)

≥ − log
(

2−H∞(Wj |A1=···=Aq=0) + q21−α
)

≥ − log
(
(q + 1)21−α) = α− 1− log(q + 1) .

A.2 Negative Examples

Claims A.2 and A.3 rest on there being no easy “entry” point to the distribution. This is not always
the case. Indeed it is possible for some blocks to have very high entropy but lose all of it after equality
queries.

Claim A.4. Let p = (poly(n)) and let f1, ..., f` be injective functions where fj : {0, 1}j×log p → {0, 1}n.2

Then define the distribution W1 = f1(U1,...,`),W2 = f2(U1,...,2`), ....,W` = f`(U). There is an adversary
making p× ` = poly(n) queries such that H̃∞(W |V iew(SIW (·,·))) = 0.

Proof. Let x be the true value for Up×`. We present an adversary S that completely determines x. S
computes y1

1 = f1(x1
1), ..., yp1 = f(xp1). Then S queries on (1, y1), ..., (1, yp), exactly one answer returns

1. Let this value be y∗1 and its preimage x∗1. Then S computes y1
2 = f2(x∗1, x

1
2), ..., yp2 = f2(x∗1, x

p
2) and

queries y1
2, ..., y

p
2 . Again, exactly one of these queries returns 1. This process is repeated until all of x is

recovered (and thus w).

The previous example relies on an adversaries ability to determine a block from the previous blocks.
We formalize this notion next. We define the entropy jump of a block source as the remaining entropy
when other blocks are known:

Definition A.5. Let W = W1, ...,W` be a source under ordering i1, ..., i`. The jump of a block ij is
Jump(ij) = maxwi1 ,...,wij−1

H0(Wij |Wi1 = wi1 , ...,Wij−1 = wij−1).

2Here we assume that n ≥ `× log p, that is the source has a small number of blocks.
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If an adversary can learn blocks in succession they can eventually recover the entire secret. In order
for a distribution to be block unguessable the adversary must get “stuck” early enough in their recovery
process. This translates to having a super-logarithmic jump early enough.

Claim A.6. Let W be a distribution and let q be a parameter, if there exists an ordering i1, ..., i` such that
for all j ≤ `− β + 1, Jump(ij) = log q/(`− β + 1), then W is not (q, 0, β)-unguessable block distribution.

Proof. For convenience relabel the ordering that violates the condition as 1, ..., `. We describe an un-
bounded adversary that determines W1, ...,W`−β+1. As before S queries the q/` possible values for W1

and determines W1. Then S queries the (at most) q/(`− β + 1) possible values for W2|W1. This process
is repeated until W`−β+1 is learned.

Presenting a sufficient condition for security is more difficult as S may interleave queries to different
blocks. It seems like the optimum strategy is to focus on a single block at a time but it is unclear how to
formalize this intuition.

B Proof of Lemma 3.5

Proof. It suffices to show if there is some distinguisher D′ of size s′ where

δD
′
((cext(X;Ud), Ud, P ′), (Uκ, Ud, P ′)) > εcond + εext

then there is an distinguisher D of size scond such that for all Y with H̃∞(Y |P ′) ≥ m̃,

δD((X,P ′), (Y, P ′)) ≥ εcond.

Let D′ be such a distinguisher. That is,

δD
′
(cext(X,Ud)× Ud × P ′, Uκ × Ud × P ′) > εext + εcond.

Then define D as follows. On input (y, p′) sample seed ← Ud, compute r ← cext(y; seed) and output
D(r, seed, p′). Note that |D| ≈ s′ + |cext|+ d = scond. Then we have the following:

δD((X,P ′), (Y, P ′)) = δD
′
((cext(X,Ud), Ud, P ′), cext(Y, Ud), Ud, P ′)

≥ δD′((cext(X,Ud), Ud, P ′), (Uκ × Ud × P ′))

− δD′((Uκ × Ud × P ′), (cext(Y,Ud), Ud, P ′))
> εcond + εext − εext = εcond.

Where the last line follows by noting that D′ is of size at most sext. Thus D distinguishes X from all Y
with sufficient conditional min-entropy. This is a contradiction.

C Proof of Lemma 4.4

Proof. Let O be a `-composable VGB obfuscator with auxiliary input for point programs over Z. Let W
be a (q, α = ω(log n), β)-unguessable block distribution. Our goal is to show that for all ssec = poly(n)
there exists εsec = ngl(n) such that HHILL

εsec,ssec(C|P ) ≥ H0(C) − β. Suppose not, that is suppose there is
some ssec = poly(n) such that exists εsec = poly(n) and HHILL

εsec,ssec(C|P ) < H0(C)− β. By Definition 4.2
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there exists a set of indices J such that all blocks within J are unguessable. Define by C ′ the distribution of
sampling a uniform codeword where all locations outside J are fixed. Then H̃∞(C ′|CJc) ≥ H∞(C ′, CJc)−
H0(CJc) = H0(C)− β (by [DORS08, Lemma 2.2b]).

Let D a distinguisher of size at most ssec such that

|E[D(C,P )]− E[D(C ′, P )] > εsec = 1/poly(n).

Define the distribution X as follows:

Xj =

{
Wj Cj = 0
Rj Cj = 1.

By the security of obfuscation (Definition 2.3), there exists a unbounded time simulator S (making at
most q queries) such that

|E[D(P1, ..., P`, C)]− E[SIX(·,·)(C, 1` log |Z|)]| ≤ εsec/3. (2)

We now prove S cannot distinguish between C and C ′.

Lemma C.1. ∆(SIX(·,·)(C, 1` log |Z|), SIX(·,·)(C ′, 1` log |Z|)) ≤ (`− β)2−(α+1).

Proof. It suffices to show that for any two codewords that agree on Jc, the statistical distance is at most
(`− β)2−(α+1).

Lemma C.2. Let c∗ be true value encoded in X and let c′ a codeword in C ′. Then,

∆(SIX(·,·)(c∗, 1` log |Z|), SIX(·,·)(c′, 1` log |Z|)) ≤ (`− β)2−(α+1).

Proof. Recall that for all j ∈ J , H̃∞(Wj |V iew(S)) ≥ α. The only information about the correct value of
c∗j is contained in the query responses. When all responses are 0 the view of S is identical when presented
with c∗ or c′. We now show that for any value of c∗ all queries on j ∈ J return 0 with probability
1 − 2−α+1. Suppose not, that is suppose, the probability of at least one nonzero response on index j is
> 2−(α+1). Since w,w′ are independent of rj , the probability of this happening when c∗j = 1 is at most
q/Z or equivalently 2− log |Z|+log q. Thus, it must occur with probability:

2−α+1 < Pr[non zero response location j]
= Pr[c∗j = 1] Pr[non zero response location j ∧ c∗j = 1]

+ Pr[c∗j = 0] Pr[non zero response location j ∧ c∗j = 0]

≤ 1× 2− log |Z|+log q + 1× Pr[non zero response location j ∧ c∗j = 0] (3)

We now show that for an unguessable block source the remaining entropy α ≤ log |Z| − log q:

Claim C.3. If W is a (q, α, β)-block unguessable distribution over Z then α ≤ log |Z| − log q.

Proof. Let W be a (q, α, β)-block unguessable distribution. Let J ⊂ {1, ..., `} the set of good indices.
It suffices to show that there exists an S making q queries such that for some j ∈ J, H̃∞(Wj |SIW (·,·)) ≤
log |Z| − log q. Let j ∈ J be some arbitrary element of J and denote by wj,1, ..., wj,q the q most likely
outcomes of Wj (breaking ties arbitrarily). Then

∑q
i=1 Pr[Wj = wj,i] ≥ q/|Z|. Suppose not, this means

that there is some wj,i with probability Pr[Wj = wj,i] < 1/|Z|. Since there are Z − q remaining possible
values of Wj for their total probability to be at least 1 − q/|Z| at least of these values has probability
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at least 1/Z. This contradicts the statement wj,1, ..., wj,q are the most likely values. Consider S that
queries its oracle on (j, wj,1), .., (j, wj,q). Denote by Bad the random variable when Wj ∈ {wj,1, .., wj,q}
After these queries the remaining min-entropy is at most:

H̃∞(Wj |SJW (·,·)) = − log
(

Pr[Bad = 1]× 1 + Pr[Bad = 0]×max
w

Pr[Wj = w|Bad = 0]
)

≤ − log (Pr[Bad = 1]× 1)

= − log
(
q

|Z|

)
= log |Z| − log q

This completes the proof of Claim C.3.

Rearranging terms in Equation 3, we have:

Pr[non zero response location j ∧ cj = 0] > 2−α+1 − 2−(log |Z|−log q) = 2−α

When there is a 1 response and cj = 0 this means that there is no remaining min-entropy. If this occurs
with over 2−α probability this violates the block unguessability of W (Definition 4.2). By the union bound
over the indices j ∈ J the total probability of a 1 in J is at most (`−β)2−α+1. Recall that c∗, c′ match on
all indices outside of J . Thus, for all c∗, c′ the statistical distance is at most (`−β)2−α+1. This concludes
the proof of Lemma C.2.

By averaging over all points in C ′ we conclude that ∆(SIX(·,·)(C, 1` log |Z|), SIX(·,·)(C ′, 1` log |Z|)) <
(`− β)2−(α+1). This completes the proof of Lemma C.1.

Now by the security of obfuscation we have that

|E[D(P1, ..., P`, C
′)]− E[SIX(·,·)(C ′, 1` log |Z|)]| ≤ εsec/3. (4)

Combining Equations 2 and 4 and Lemma C.1, we have

δD((P,C), (P,C ′)) ≤ |E[D(P1, ..., P`, C)]− E[SIX(·,·)(C, 1` log |Z|)]|
+ |E[SIX(·,·)(C, 1` log |Z|)]− E[SIX(·,·)(C ′, 1` log |Z|)]|
+ |E[SIX(·,·)(C ′, 1` log |Z|)]− E[D(P1, ..., P`, C

′)]|
≤ εsec/3 + (`− β)2−(α−1) + εsec/3
≤ 2εsec/3 + ngl(n) < εsec.

This is a contradiction and completes the proof of Lemma 4.4.

D Proof of Lemma 5.4

Proof. Consider some fixed i. Recall that there a set J of size γ − β = Θ(γ) such that each w and block
j ∈ J , H∞(Wj |W1 = w1, ...,Wj−1 = wj−1,Wj+1 = wj+1, ...,Wγ = wγ) ≥ α. Since this is a worst case
guarantee, the entropy of Vi can be deduced from the number of symbols in Vi that come from J . Namely,
Denote by X = |{ji,1, ..., ji,η} ∩ J |.

Claim D.1.
H∞(Vi|Λ = λ) ≥ αX.
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Proof. Denote by j1, ..., jη the indices selected by the randomness λi. We begin by noting that H∞(Vi|Λ =
λ) = − log maxv∈Vi Pr[Vi = v|Λ = λ] = − log maxwj1 ,...,wjη Pr[Wj1 = wj1 ∧ · · · ∧Wjηwjη ]. Then

max
wj1 ,...,wjη

Pr[Wj1 = wj1 ∧ · · · ∧Wjη = wjη ] = max
wj1 ,...,wjη

η∏
k=1

Pr[Wjk = wjk |Wjk−1
= wjk−1

∧ ... ∧Wj1 = wj1 ]

≤
η∏
k=1

max
wj1 ,...,wjη

Pr[Wjk = wjk |Wjk−1
= wjk−1

∧ ... ∧Wj1 = wj1 ]

≤
η∏
k=1

max
w1,...,wγ

Pr[Wjk = wjk |W1 = w1 ∧ ... ∧Wjk−1 = wjk−1]

Taking the negative logarithm of both sides we have that

H∞(Vi|Λ = λ) ≥
η∑
k=1

min
w1,...,wγ

H∞(Wjk |W1 = w1 ∧ ... ∧Wjk−1 = wjk−1)

≥
∑
jk∈J

α = αX

This completes the proof of Claim D.1.

We note that X is distributed according to the hypergeometric distribution, and that E[X] = η(γ −
β)/γ. Using the tail bounds from [Chv79, Sca09], we can conclude that Pr[X ≤ E[X]/2] ≤ e−2((γ−β)/2γ)2η =
O(e−η).

Thus, setting α′ = αη(γ−β)
2γ and applying Claim D.1, we conclude that

Pr[H∞(Vi) ≥ α′] ≥ 1−O(e−η).

E Proof of Lemma 5.8

Proof. Define µ = −1
2 log(1 − t′/(2`)) = Θ(1) and note that t ≤ µ(γ − η)/η. Since η = ω(log n), we will

assume η ≥ 2µ. Let the Bernoulli random variable Xi = 1 if and only if vi 6= v′i, and X =
∑`

i=1Xi. We
need to show that Pr[X > t′] = O(2−`).
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E[1−Xi] = Pr[w and w′ agree on positions ji,1, ..., ji,η]

≥
η−1∏
j=0

(
1− t

γ − j

)
≥

η−1∏
j=0

(
1− µ(γ − η)/η

γ − j

)

≥
η−1∏
j=0

(
1− µ

η

(
γ − η
γ − j

))
≥

η−1∏
j=0

(
1− µ

η

)

=
(

1− µ

η

)η
=

((
1− µ

η

)η/µ)µ
≥

((
1
2

)2
)µ

=
(

1
2

)− log
“

1− t′
2`

”
= 1− t′

2`
.

Hence, E[Xi] ≤ t′/(2`) = O(1), and E[X] ≤ t′/2. By the Chernoff bound, we have

Pr

[∑̀
i=1

Xi ≥ t′
]
≤ 2e−2(t′−E[X])2` ≤ 2e−2(t′/2)2` = O(e−`) .
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