
Key Derivation From Noisy Sources With More Errors Than Entropy

Ran Canetti∗ Benjamin Fuller† Omer Paneth‡ Leonid Reyzin§ Adam Smith¶

December 1, 2014

Abstract

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy
secret into the same uniformly distributed key. To eliminate noise, they require an initial enrollment
phase that takes the first noisy reading of the secret and produces a nonsecret helper string to be used
in subsequent readings. This helper string reduces the entropy of the original secret—in the worst case,
by as much as the logarithm of the number of tolerated error patterns. For many practical sources of
secrets, reliability demands that the number of tolerated error patterns is large, making this loss greater
than the original entropy of the secret. We say that such sources have more errors than entropy. Most
known approaches for building fuzzy extractors cannot be used for such sources.

We provide constructions of fuzzy extractors for large classes of sources with more errors than
entropy. Our constructions exploit the structural properties of a source in addition to its entropy
guarantees. Some are made possible by relaxing the security requirement from information-theoretic
to computational.

Reusable fuzzy extractors (Boyen, CCS 2004) remain secure even when the initial enrollment phase
is repeated multiple times with the same or correlated secrets, producing multiple helper strings.
By relying on computational security, we construct the first reusable fuzzy extractors that make no
assumption about how multiple readings of the source are correlated.

Keywords Fuzzy extractors, reusability, key derivation, error-correcting codes, computational en-
tropy, point obfuscation.

1 Introduction

Fuzzy Extractors Cryptography relies on long-term secrets for key derivation and authentication.
However, many sources with sufficient randomness to form long-term secrets provide similar but not
identical values of the secret at repeated readings. Prominent examples include biometrics and other
human-generated data [Dau04, ZH93, BS00, EHMS00, MG09, MRW02], physically unclonable functions
(PUFs) [PRTG02, TSv+06, GCVDD02, SD07], and quantum information [BBR88]. Turning similar
readings into identical values is known as information reconciliation; further converting those values into
uniformly random secret strings is known as privacy amplification [BBR88]. Both of these problems
have interactive and non-interactive versions. In this paper, we are interested in the non-interactive case,
∗Email: canetti@cs.bu.edu. Boston University and Tel Aviv University.
†Email: bfuller@cs.bu.edu. Boston University and MIT Lincoln Laboratory.
‡Email: paneth@cs.bu.edu. Boston University.
§Email: reyzin@cs.bu.edu. Boston University.
¶Email: asmith@cse.psu.edu. Pennsylvania State University; work performed while at Boston University’s Hariri Insti-

tute for Computing and RISCS Center, and Harvard University’s “Privacy Tools” project.

1

which is useful for a single user trying to produce the same key from multiple noisy readings of a secret
at different times. A fuzzy extractor is the primitive that accomplishes both information reconciliation
and privacy amplification non-interactively; fuzzy extractors are defined in [DORS08].

Fuzzy extractors consist of a pair of algorithms: Gen (used once, at “enrollment”) takes a source value
w, and produces a key r and a public helper value p. The second algorithm Rep (used subsequently) takes
this helper value p and a close w′ to reproduce the original key r. The correctness guarantee is that r
will be correctly reproduced by Rep as long as w′ is no farther than t from w in some metric space. In
this work, we consider the Hamming metric. The security guarantee is that r produced by Gen is close to
uniform (information-theoretically [DORS08] or computationally [FMR13]), even given p. This guarantee
holds as long as w comes from a high-quality distribution, which traditionally has been defined as any
distribution with sufficient min-entropy m.

Reusable Fuzzy Extractors An additional desirable security property of fuzzy extractors, introduced
by Boyen [Boy04], is called reusability. This property is necessary if a user enrolls the same or correlated
values multiple times. For example, if the source is a biometric reading, the user may enroll the same
biometric with different organizations. Each of them will get a slightly different enrollment reading wi,
and will run Gen(wi) to get a key ri and a helper value pi. Security for each ri should hold even when an
adversary is given all the values p1, . . . , pq (and, in case some organizations turn out to compromised or
adversarial, a stronger security notion requires security for ri even in the presence of rj for j 6= i). Many
traditional fuzzy extractors are not reusable [Boy04, STP09, BA12, BA13].

Limitations of Known Approaches Constructions of fuzzy extractors are limited by the tension
between security and correctness guarantees: if we allow for higher error tolerance t, then we also need
higher starting entropy m. The reason for this tension is simple: if an adversary who knows p can guess
some w′ within distance t of w, then it will be able to easily obtain the true r by running Rep. In fact,
if t is high enough that there are 2m points in a ball of radius t, then there exists a distribution of w
of min-entropy m contained entirely in a single ball. For this distribution, an adversary can run Rep
on the center of this ball and always learn the key r. Thus, if the security guarantee of a given fuzzy
extractor holds for any source of a given min-entropy m and the correctness guarantees holds for any t
errors, then m must be greater than log |Bt|, where |Bt| denotes the number of points in a ball of radius
t. This condition on the source holds regardless of whether the fuzzy extractor is information-theoretic
or computational, and extends even to the interactive setting. If a source fails this condition, we will says
that it has more errors than entropy.

Unfortunately, sources that have been proposed as prime candidates for authentication have more
errors than entropy. For example, the IrisCode [Dau04], which is the state of the art approach to handling
what is believed to be the best biometric [PPJ03], produces a source that more errors than entropy [BH09,
Section 5]. PUFs with slightly nonuniform outputs suffer from similar problems [KLRW14].

The situation with reusability is even worse: the only known construction of reusable fuzzy extractors
[Boy04] requires very particular relationships between wi values, which are unlikely to hold in any practical
source.

Our Contributions We provide the first constructions of fuzzy extractors that can be used for large
classes of sources that have more errors than entropy. Our constructions work for Hamming errors for
strings w of length γ over some alphabet Z. Naturally, as argued above, these constructions cannot work
for all sources of a given entropy; each construction comes with a constraint on the sources for which it

2

Security Source Structure Error-Tolerance Alphabet Size
Cons. 3.2 Not reusable Most symbols Constant fraction Super constant

Info-theoretic contribute entropy
Cons. 4.1 Reusable Most symbols Sub constant fraction Super constant

Computational contribute entropy
Cons. 5.3 Not reusable Symbols correlated Constant fraction Super polynomial

Computational but hard to guess

Table 1: Summary of new constructions. All constructions support families of distributions with more
errors than entropy.

is secure. Table 1 summarizes our constructions. Our first construction provides information-theoretic
security. It can correct a constant fraction of errors, but requires that a constant fraction of the symbols
contribute fresh entropy, even conditioned on previous symbols (Definition 3.3).

We switch to computational security to obtain constructions with additional features. Our second
construction provides reusability (against computationally bounded adversaries). The reusability we
obtain is very strong: security holds even if the multiple readings wi used in Gen are arbitrarily correlated,
as long as each wi individually comes from an allowed distribution. The allowed distributions include
those that are supported in the first construction, as well as other distributions, such as those with k-wise
independence among symbols for superlogarithmic k. This construction requires that the fraction of errors
is subconstant.

Our third construction removes the need for fresh entropy in the symbols and allows a constant
fraction of symbols of errors, at the cost of requiring a large alphabet size (super-polynomial in the
security parameter). It is secure if symbols in w each have individual super-logarithmic min-entropy, even
if they are arbitrarily correlated. Moreover, a constant fraction of symbols in w may have little or no
entropy, as long as knowledge of their values does not reduce the entropy of the high-entropy symbols too
much (see Definition 5.4).

Our Approach Most known constructions of fuzzy extractors put sufficient information in p to recover
the original w from a nearby w′ during Rep (this procedure is called a secure sketch), and then apply a
randomness extractor to w to get r. Unfortunately, the current techniques for building secure sketches
do not work for sources with more errors than entropy, because they lose at least log |Bt| bits of entropy
regardless of the source. Moreover, this loss is necessary when the source is uniform [DORS08, Lemma
C.1] or when reusability against a sufficiently rich class of correlations is desired [Boy04, Theorem 11].

Additionally, computational definitions of security suffer from similar problems [FMR13, Corollary
3.8, Theorem 3.10]. Thus, we take a different approach and do not attempt to recover w.

Our first construction reduces the alphabet size by hashing each input symbol (which comes from a
large alphabet) into a much smaller set, so that the resulting hash value has low entropy deficiency. The
intuition behind this approach is that it reduces the size of Bt by reducing the alphabet size, but preserves
a sufficient portion of the input entropy. The resulting string no longer has more errors than entropy. We
then apply an information-theoretic fuzzy extractor to the resulting string.

Our second construction, which is computationally secure, is based on obfuscated digital lockers [CD08].
Digital lockers output a secret value only when given the correct input to “unlock” the secret. An obfus-
cated digital locker does not provide information about the locked value or how to unlock it. The main
idea of the construction is to pick a random r and lock r in a digital locker that is unlocked by a random

3

subset of the symbols of w. To tolerate errors in the input, this process is repeated several times, so that
at least one digital locker can be unlocked using w′. We use obfuscation in a way that does not leak
partial information; this is crucial to arguing reusability.

Finally, our third construction tolerates more errors than the second because it uses digital lockers
that are unlocked by single symbols of w. Since we do not assume that every symbol has high individual
entropy, hiding an entire r in every locker then becomes too risky, Instead, we hide a single bit per locker.
To tolerate errors, these bits come from an error correcting code. To ensure an adversary who learns some
bits doesn’t learn anything useful about r, we don’t encode r in the error-correcting code, but rather
extract r (using an information-theoretic [NZ93] or computational [Kra10] extractor) from the decoded
string.

The Required Notion of Obfuscation Our constructions use simulation-secure obfuscation of digital
lockers, however, we do not require full-fledged virtual black-box obfuscation [BGI+01]. Instead, we
rely on the relaxed notion of virtual grey-box obfuscation [BC10]. We also require that the obfuscation
remains secure even when several digital lockers of correlated points are composed. Bitanski and Canetti
constructed composable digital lockers with virtual grey-box security under particular number-theoretic
assumptions [BC10].

Connection to General Obfuscation We note that fuzzy extractors for sources with more errors
than entropy can be trivially constructed from virtual grey-box obfuscation for the class of proximity
point programs. A proximity point program Iw(x) tests if x is within distance t of w. Recently, Bitansky
et al. [BCKP14] constructed such obfuscation based on the strong assumption of semantically secure graded
encodings [PST13]. The construction of Bitansky et al. is based on multilinear encoding and is highly
impractical. Our constructions use obfuscated digital lockers. Obfuscated digital lockers are instantiable
under significantly weaker assumptions and can be implemented quite efficiently. Additionally, the
known obfuscation for proximity point programs is not known to be composable and therefore does not
yield a reusable fuzzy extractor.

Open Problems All of our constructions support more errors than entropy by using two metrics spaces.
Errors are tolerated in one metric space and corrected in a second. To handle more errors than entropy, we
map to a metric space where multiple error patterns are grouped together. All our constructions require
the first metric space to have a super-constant size alphabet. An alternative approach to the problem
may support constant size alphabets.

In this work we restrict the distribution of the original reading w and allow w′ to be an arbitrary point
within distance t. An alternative approach is to restrict the set of w′ where Gen produces the correct key.

Organization The remainder of this paper is organized as follows: we cover notation and fuzzy
extractors in Section 2. We present our information-theoretic construction in Section 3 and our two
computational constructions in Sections 4 and 5.

2 Preliminaries

For a random variables Xi over some alphabet Z we denote by X = X1, ..., Xγ the tuple (X1, . . . , Xγ).
For a set of indices J , XJ is the restriction of X to the indices in J . The set Jc is the complement

4

of J . The min-entropy of X is H∞(X) = − log(maxx Pr[X = x]), and the average (conditional) min-
entropy of X given Y is H̃∞(X|Y) = − log(Ey∈Y maxx Pr[X = x|Y = y]) [DORS08, Section 2.4]. For
a random variable W , let H0(W) be the logarithm of the size of the support of W , that is H0(W) =
log |{w|Pr[W = w] > 0}|. The statistical distance between random variables X and Y with the same
domain is ∆(X,Y) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. For a distinguisher D we write the computational

distance between X and Y as δD(X,Y) = |E[D(X)]− E[D(Y)]| (we extend it to a class of distinguishers
D by taking the maximum over all distinguishers D ∈ D). We denote by Ds the class of randomized
circuits which output a single bit and have size at most s.

For a metric space (M, dis), the (closed) ball of radius t around x is the set of all points within radius
t, that is, Bt(x) = {y|dis(x, y) ≤ t}. If the size of a ball in a metric space does not depend on x, we denote
by |Bt| the size of a ball of radius t. We consider the Hamming metric over vectors in Zγ , defined via
dis(x, y) = {i|xi 6= yi}. For this metric, |Bt| =

∑t
i=0

(
γ
i

)
(|Z| − 1)i. Un denotes the uniformly distributed

random variable on {0, 1}n. Unless otherwise noted logarithms are base 2. Usually, we use capitalized
letters for random variables and corresponding lowercase letters for their samples.

2.1 Fuzzy Extractors

In this section we define computational fuzzy extractors. Definitions for information-theoretic fuzzy
extractors can be found in the work of Dodis et al. [DORS08, Sections 2.5–4.1]. The definition of compu-
tational fuzzy extractors allows for a small probability of error.

Definition 2.1. [FMR13, Definition 2.5] Let W be a family of probability distributions over M. A pair
of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, κ, t)-computational fuzzy
extractor that is (εsec, ssec)-hard with error δ if Gen and Rep satisfy the following properties:

• The generate procedure Gen on input w ∈ M outputs an extracted string r ∈ {0, 1}κ and a helper
string p ∈ {0, 1}∗.

• The reproduction procedure Rep takes an element w′ ∈ M and a bit string p ∈ {0, 1}∗ as inputs.
The correctness property guarantees that if dis(w,w′) ≤ t and (r, p)← Gen(w), then Pr[Rep(w′, p) =
r] ≥ 1 − δ, where the probability is over the randomness of (Gen,Rep). If dis(w,w′) > t, then no
guarantee is provided about the output of Rep.

• The security property guarantees that for any distribution W ∈ W, the string r is pseudorandom
conditioned on p, that is δDssec ((R,P), (Uκ, P)) ≤ εsec.

In the above definition, the errors are chosen before P : if the error pattern between w and w′ depends
on the output of Gen, then there is no guarantee about the probability of correctness. In Constructions 4.1
and 5.3 it is crucial that w′ is chosen independently of the outcome of Gen.

Information-theoretic fuzzy extractors are obtained by replacing computational distance by statistical
distance. We do make a second definitional modification. The standard definition of information-theoretic
fuzzy extractors considers W consisting of all distributions of a given entropy. As described in the
introduction, it is impossible to provide security for all distributions with more errors than entropy. In
both the computational and information-theoretic settings we consider a family of distributions W.

2.1.1 Reusable Fuzzy Extractors

An additional desirable feature of fuzzy extractors is reusability [Boy04]. Inuitively, it is the ability to
support multiple independent enrollments of the same value, allowing users to reuse the same biometric

5

or PUF, for example, with multiple noncommunicating providers. More precisely, the algorithm Gen may
be run multiple times on correlated readings w1, ..., wq of a given source. Each time, Gen will produce
a different pair of values (r1, p1), ..., (rq, pq). Security for each extracted string ri should hold even in
the presence of all the helper strings p1, . . . , pq (the reproduction procedure Rep at the ith provider still
obtains only a single w′i close to wi and uses a single helper string pi). Because the multiple providers
may not trust each other, a stronger security feature (which we satisfy) ensures that each ri is secure even
when all rj for j 6= i are also given to the adversary.

Our ability to construct reusable fuzzy extractors depends on the types of correlations allowed among
w1, . . . , wq. Boyen [Boy04] showed how to do so when each wi is a shift of w1 by a value that is oblivious
to the value of w1 itself (formally, wi is a result of a transitive isometry applied to w1). Boyen also showed
that even for this weak class of correlations, any secure sketch must lose at least log |Bt| entropy [Boy04,
Theorem 11].

We modify the definition of Boyen [Boy04, Definition 6] for the computational setting. We discuss the
our definition and definitions due to Boyen in Appendix A.2.

Definition 2.2 (Reusable Fuzzy Extractors). Let W be a family of distributions over M. Let (Gen,Rep)
be a (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard with error δ. Fix some W1 ∈ W.
Let f2, .., fq, D be a split adversary. Define the following game for all j = 1, ..., q:

• Sampling The challenger samples w1 ←W1, u← {0, 1}κ.

• Perturbation For i = 2, ..., q: the challenger computes (ri, pi)← Gen(wi). Set wi+1 = fi(w1, p1, ..., pi).

• Distinguishing The advantage of D is

Adv(D)
def
= Pr[D(r1, ..., rj−1, rj , rj+1, ..., rq, p1, ..., pq) = 1]
− Pr[D(r1, ..., rj−1, u, rj+1, ..., rq, p1, ..., pq) = 1].

(Gen,Rep) is (q, εsec, ssec, f2, ..., fq)-reusable if for all D ∈ Dssec the advantage is at most εsec.

The definition is parameterized by f2, ..., fq. This adversary implicitly defines distributions W2, ...,Wq

(which depend on W1 and the public values P1, ...Pi). Security seems hopeless if fuzzy extractor is not
secure on each of these distributions on their own. This is the only requirement we make on these
functions. We call these types of functions admissible:

Definition 2.3. Let (Gen,Rep) be a (M,W, κ, t)-computational fuzzy extractor that is (εsec, ssec)-hard
with error δ. In the reusability game above, we say a set of functions f2, ..., fq are admissible if for all
W1 ∈ W for all w1 ∈W1 and ∀p1, ..., pq that are the public outputs of Gen the distribution Wi,w1,p1,...,pi−1 =
fi(w1, p1, ..., pi−1) is a member of W.

2.2 Obfuscation

Our constructions will use obfuscation for two types of circuits: point functions and digital lockers. The
family of point functions In = {Iw}w∈{0,1}n defined as follows:

Iw(x) :

{
1 x = w

0 otherwise
.

6

and the class of digital lockers is In = {Iw,r}w∈{0,1}n,r∈{0,1}κ defined as follows:

Iw,r(x) :

{
r x = w

⊥ otherwise
.

The required notion of obfuscation is virtual grey-box (VGB) introduced in [BC10]. This notion is weaker
then the standard notion of virtual black-box ([BGI+01]), as it allows the simulator to run in unbounded
time while making at a polynomial number of oracle queries to the function. VGB obfuscators for point
functions and digital lockers are constructible from specific number-theoretic assumptions or by strong
assumptions on hash functions. We provide more details and a formal definition in Appendix A.3.

3 Supporting more errors than entropy

In this section we show an information-theoretic fuzzy extractor that supports more errors than entropy.
The construction first condenses entropy from each block of the source and then applies a different fuzzy
extractor to the condensed blocks. We’ll denote the fuzzy extractor on the smaller alphabet as (Gen′,Rep′).
A condenser is like a randomness extractor but the output is allowed to be slightly entropy deficient.
Condensers are known with smaller entropy loss than possible for randomness extractors (e.g. [DPW14]).

Definition 3.1. A function cond : Z × {0, 1}d → Y is a (m, m̃, ε)-randomness condenser if whenever
H∞(W) ≥ m, then there exists a distribution Y with H∞(Y) ≥ m̃ and (cond(W, seed), seed) ≈ε (Y, seed).

The main idea of the construction is that errors are “corrected” on the large alphabet (before condens-
ing) while the entropy loss for the error correction is incurred on a smaller alphabet (after condensing).

Construction 3.2. Let Z be an alphabet and let W = W1, ...,Wγ be a distribution over Zγ. We describe
Gen,Rep as follows:

Gen

1. Input: w = w1, ..., wγ

2. For j = 1, ..., γ:

(i) Sample seedi ← {0, 1}d.
(ii) Set vi = cond(wi, seedi).

3. Set (r, p′)← Gen′(v1, ..., vγ).

4. Set p = (p′, seed1, ..., seedγ).

5. Output (r, p).

Rep

1. Input: (w′, p = (p′, seed1, ..., seedγ))

2. For j = 1, ..., γ:

(i) Set v′i = cond(w′i, seedi).

3. Output r = Rep′(v′, p′).

For Construction 3.2 to be secure we need most blocks to contribute some entropy to the output. We call
this notion a partial block source.

Definition 3.3. A distribution W = W1, ...,Wγ is an (α, β)-partial block source if there exists a set of
indices J where |J | ≥ γ − β such that the following holds:

∀j ∈ J,∀w1, ..., wj−1 ∈W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

7

Definition 3.3 is a weakening of block sources (introduced by Chor and Goldreich [CG88]), as only
some blocks are required to have entropy conditioned on the past. The choice of conditioning on the past
is arbitrary: a more general sufficient condition is that there exists some ordering of indices where most
items have entropy conditioned on all previous items in this ordering (for example, a “partial” reverse
block source [Vad03]). This construction is secure and it supports distributions with more errors than
entropy (proof is in Appendix C).

Lemma 3.4. Let W be the family of (α = Ω(1), β ≤ γ(1 − Θ(1)))-partial block sources over Zγ and let
cond : Z×{0, 1}d → Y be a (α, α̃, εcond)-randomness conductor. Define V as the family of all distributions
with min-entropy at least α̃(γ − β) and let (Gen′,Rep′) be (Yγ ,V, κ, t, εfext)-fuzzy extractor with error δ.1

Then (Gen,Rep) is a (Zγ ,W, κ, t, γεcond + εfext)-fuzzy extractor with error δ.

3.1 More errors than entropy

In this section we show that Construction 3.2 supports partial block sources with more errors than entropy.
The structure of a partial block source implies that H∞(W) ≥ α(γ − β) = Θ(γ). We assume that
H∞(W) = Θ(γ). The condenser of Dodis et al [DPW14] has a constant entropy loss, so α − α̃ = Θ(1).
This means that the input entropy to (Gen′,Rep′) is Θ(γ). We assume that the new alphabet Y is of
constant size. Standard fuzzy extractors on constant size alphabets correct a constant fraction of errors
at a entropy loss of Θ(γ), yielding κ = Θ(γ). Thus, our construction is secure for distributions with more
errors than entropy whenever |Z| = ω(1). More formally:

Errors− Entropy = log |Bt| −H∞(W) ≥ t log |Z| −Θ(γ)− = Θ(γ) log |Z| −Θ(γ) > 0

That is, there exists a super-constant alphabet size for which Construction 3.2 is secure with more errors
than entropy.

4 Adding reusability

In the previous section, we showed it was possible to construct a fuzzy extractor for a family of distribu-
tions with more errors than entropy. Using computational techniques we are able to retain many of the
advantages of Construction 3.2 and achieve a reusable fuzzy extractor.

The construction samples a random subset of blocks Wj1 , ...,Wjη and obfuscates the concatenation
of these blocks. Denote this concatenated value by V1. This process is repeated to produce V1, ..., V`
where at least one Vi should be correct to “unlock” the correct key. Let Sampleγ,η(·) be an algorithm that
outputs a random subset of {1, ..., γ} of size η given let rsam bits of randomness.

Construction 4.1 (Sample-then-Obfuscate). Let Z be an alphabet, and let W = W1, ...,Wγ be a source
where each Wj is over Z. Let η be a parameter, and O be an obfuscator for the family of digital lockers
with κ-bit outputs. Define Gen,Rep as:

1We actually need (Gen′,Rep′) to be an average case fuzzy extractor (see [DORS08, Definition 4] and the accompanying
discussion). Most known constructions of fuzzy extractors are average-case fuzzy extractors. For simplicity we refer to
Gen′,Rep′ as simply a fuzzy extractor.

8

Gen

1. Input: w = w1, ..., wγ

2. Sample r $← {0, 1}κ.

3. For i = 1, ..., `:

(i) Select λi
$← {0, 1}rsam.

(ii) Set ji,1, ..., ji,η ← Sampleγ,η(λi)

(iii) Set vi = wji,1 , ..., wji,η .

(iv) Set ρi = O(Ivi,r).

(v) Set pi = ρi, λi.

4. Output (r, p), where p = p1 . . . p`.

Rep

1. Input: (w′ = w′1, ..., w
′
γ , p)

2. For i = 1, ..., `:

(i) Parse pi as ρi, λi.

(ii) Set ji,1, ..., ji,η ← Sampleγ,η(λi).

(iii) Set v′i = w′ji,1 , ..., w
′
ji,η

.

(iv) Set ρi(v′i) = ri. If ri 6=⊥ output ri.

3. Output ⊥.

The use of a computational primitive (obfuscation of digital lockers) allows us to sample multiple times,
because we need to argue only about individual entropy of Vi, as opposed to the information-theoretic
setting, where it would be necessary to argue about the entropy of the joint variable V . This is the
property that allows reusability.

This construction uses a näıve sampler that takes truly random samples, but the public randomness
may be substantially decreased by using more sophisticated samplers. (See Goldreich [Gol11] for an
introduction to samplers.)

Theorem 4.2. Let Z be an alphabet. Let n be a security parameter. Let W be the family of (α =
Ω(1), β ≤ γ(1−Θ(1)))-partial block sources over Zγ where γ = Ω(n). Let η be such that η = ω(log n) and
η = o(γ), and let c > 1 be a constant and ` be such that ` = nc. Let O be an `-composable VGB obfuscator
for digital lockers (with κ bit outputs) with auxiliary inputs. Then for every ssec = poly(n) there exists
some εsec = ngl(n) such that Construction 4.1 is a (Zγ ,W, κ, t)-computational fuzzy extractor that is
(εsec, ssec)-hard with error δ for

t ≤ −(c− 1)
2

(γ − η) log n
η

= o(γ)

δ = e−n

4.1 Security of Construction 4.1

In this section we outline security of Construction 4.1. A proof of security appears in Appendix D. With
overwhelming probability, at each of the ` iterations, the sampler will choose enough coordinates of W
that have high entropy, making Vi have sufficient entropy. Once each of the V1, ..., V` have high entropy
the obfuscations are unlikely to return a value other than ⊥ to an adversary. We begin by showing that
each Vi is statistically close to a high entropy distribution. Let Λ represent the random variable of all the
coins used by Sample and λ = λ1 . . . λ` be some particular outcome.

Lemma 4.3. Let all variables be as in Theorem 4.2. There exists εsam = O(e−η) = ngl(n) and α′ =
αη(γ − β − η)/γ = ω(log n) such that for each i,

Pr
λ←Λ

[H∞(Vi|Λ = λ) ≥ α′] ≥ 1− εsam.

9

We can then argue that all Vi simultaneously have individual entropy with good probability (by union
bound):

Corollary 4.4. Let εsam, α′ be as in Lemma 4.3, and all the other variables be as in Theorem 4.2. Then
Prλ←Λ[∀i,H∞(Vi|Λ = λ) ≥ α′] ≥ 1− `εsam.

Once all Vi all simultaneously have good entropy, the adversary only sees ⊥ as an output from the
obfuscations (with overwhelming probability). If the adversary only sees ⊥ from the obfuscations, they
have no information about the key.

Lemma 4.5 (Proof in Appendix D). Let all the variables be as in Theorem 4.2. For every ssec = poly(n)
there exists εsec = ngl(n) such that δDssec ((R,P), (Uκ, P)) < εsec.

4.2 Correctness of Construction 4.1

We encode the entire key in each obfuscation. For correctness, at least one of the repeated readings must
be correct with overwhelming probability. Let Vi represent one of the initial readings and V ′i represent a
repeated reading. For showing correctness we must show that Pr[∀i, Vi 6= V ′i] < ngl(n).

Lemma 4.6 (Proof in Appendix D). Let all the variables be as in Theorem 4.2. Then Pr[∀i, vi 6= v′i] <
ngl(n), where the probability is over the coins of Gen.

4.3 Reusability of Construction 4.1

The reusability of Construction 4.1 follows from the security of the VGB obfuscator with auxiliary input.
We consider a bounded q = poly(n) number of reuses. For some fixed i ∈ {1, ..., q} we will treat the
remaining keys as auxiliary input to the adversary, and the simulator still performs comparably to a
distinguisher with access to the obfuscations. Thus, given sufficiently strong reusability we achieve the
following result:

Theorem 4.7. Let q = poly(n), and let all the variables be as in Theorem 4.2, except that O be an
` × q-composable VGB obfuscator for digital lockers (with κ bit outputs) with auxiliary inputs. For
any admissible f2, ..., fq, for all ssec = poly(n) there exists some εsec = ngl(n) such that (Gen,Rep)
is (q, εsec, ssec, f2, ..., fq)-reusable fuzzy extractor.

Proof. The only modification to the outline presented in Section 4.1 is in Lemma 4.5 with the other keys
R1, ..., Ri−1, Ri+1, ..., Rq treated as additional auxiliary input to the adversary/simulator. The simulator
in the definition of composable obfuscation is required to function for arbitrary circuits in the family even
if the choice of these circuits depends on the previous obfuscations. Thus allows reading wi to be chosen
depending on public values p1, ..., pi−1.

4.4 More errors than entropy?

In this section, we show when Construction 4.1 supports partial block sources with more errors than
entropy. The structure of the partial block source implies that H∞(W) ≥ α(γ − β) = Θ(γ). We assume
that H∞(W) = Θ(γ). We are able to correct o(γ) errors. This yields:

Errors− Entropy = log |Bt| −H∞(W) ≥ t log |Z| −Θ(γ) = o(γ) log |Z| −Θ(γ)

10

That is, there exists a super-constant alphabet size for which Construction 4.1 is secure with more errors
than entropy.

Notes: Construction 4.1 works for an arbitrary size alphabet; however, for a constant size alphabet,
the required entropy is greater than the number of corrected error patterns. However, Construction 4.1
is reusability for an arbitrary size alphabet.

In the analysis of Construction 4.1 we restricted our attention to partial block sources, to allow for an
easy comparison with Construction 3.2. However, in fact Construction 4.1 is secure for any source where
sampling produces a high entropy string (entropy ω(log n)) with overwhelming probability. For example,
it is secure for sources with symbols that are ω(log n)/ log |Z|-wise independent.

5 Allowing Correlated Symbols

In the previous two sections, we presented constructions that supported restricted classes of distributions
with more errors than entropy. Unfortunately, both Constructions 3.2 and 4.1 required each symbol
to contribute “fresh” entropy. In this section, we present a computational construction that allows for
correlation between symbols while still supporting more errors than entropy and correcting a constant
fraction of errors. This construction is inspired by the construction of digital lockers from point obfuscation
by Canetti and Dakdouk [CD08]. Instead of having large parts of the string w unlock r, we have individual
symbols unlock bits of the output.

Before presenting the construction we provide some definitions from error correcting codes. We use
error-correct codes over {0, 1}γ which correct up to t bit flips from 0 to 1 but no bit flips from 1 to 0 (this
is the Hamming analog of the Z-channel [TABB02]).2

Definition 5.1. For a point c ∈ {0, 1}γ define Neight(c) as the set of all points where at most t bits ci
are changed from 0 to 1.

Definition 5.2. Let Neight(c) be as in Definition 5.1. Then a set C (over {0, 1}γ) is a (Neight, δcode)-code
if there exists an efficient procedure Decode such that Prc∈C [∃c′ ∈ Neight(c) s.t. Decode(c′) 6= c] ≤ δcode.

Construction 5.3. Let Z be an alphabet and let W = W1, ...,Wγ be a distribution over Zγ. Let O be
an obfuscator for point functions with points from Z. Let C ⊂ {0, 1}γ be an error-correcting code. We
describe Gen,Rep as follows:

2Any code that corrects t Hamming errors also corrects t 0 → 1 errors, but more efficient codes exist for this type of
error [TABB02]. Codes with 2Θ(γ) codewords and t = Θ(γ) over the binary alphabet exist for Hamming errors and suffice
for our purposes (first constructed by Justensen [Jus72]). These codes also yield a constant error tolerance for 0 → 1 bit
flips. The class of errors we support in our source (t Hamming errors over a large alphabet) and the class of errors for which
we need codes (t 0→ 1 errors) are different.

11

Gen

1. Input: w = w1, ..., wγ

2. Sample c← C.

3. For j = 1, ..., γ:

(i) If cj = 0: pj = O(Iwj).

(ii) Else: rj
$← Z.

Let pj = O(Irj).

4. Output (c, p), where p = p1 . . . pγ.

Rep

1. Input: (w′, p)

2. For j = 1, ..., γ:

(i) If pj(w′j) = 1: set c′j = 0.

(ii) Else: set c′j = 1.

3. Set c = Decode(c′).

4. Output c.

Construction 5.3 is secure if no distinguisher can tell whether it is working with random obfuscations
or obfuscations of Wj . By the security of point obfuscation, anything learnable from the obfuscation is
learnable from oracle access to the function. Therefore, our construction is secure as long as enough blocks
are unpredictable even after adaptive queries to equality oracles for individual symbols. This restriction
on the distribution is captured in the following definition.

Definition 5.4. Let Iw(·, ·) be an oracle that returns

Iw(j, w′j) =

{
1 wj = w′j
0 otherwise.

A source W = W1|...|Wγ is a (q, α, β)-unguessable block source if there exists a set J ⊂ {1, ..., γ} of size
at least γ− β such that for any unbounded adversary S with oracle access to Iw making at most q queries

∀j ∈ J, H̃∞(Wj |V iew(SIW (·,·))) ≥ α.

We show some examples of unguessable block sources in Appendix B. In particular, any source W
where for all j, H∞(Wj) ≥ ω(log n) (but all blocks may arbitrarily correlated) is an unguessable block
source (Claim B.3).

Unfortunately, Construction 5.3 is not a computational fuzzy extractor. The codewords c are not uni-
formly distributed and it is possible to learn some bits of c (for the symbols of W without much entropy).
However, we can show that c looks like it has entropy. We use the notion of HILL entropy [HILL99]
extended to the conditional case:

Definition 5.5. [HLR07, Definition 3] Let (W,S) be a pair of random variables. W has HILL entropy
at least k conditioned on S, denoted HHILL

εsec,ssec(W |S) ≥ k if there exists a joint distribution (X,S), such
that H̃∞(X|S) ≥ k and δDssec ((W,S), (X,S)) ≤ εsec.

We now define a weaker object that outputs computational entropy (instead of a pseudorandom
key). We call this object a computational fuzzy conductor. It is the computational analogue of a fuzzy
conductor (introduced by Kanukurthi and Reyzin [KR09]).

Definition 5.6. A pair of randomized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, m̃, t)-
computational fuzzy conductor that is (εsec, ssec)-hard with error δ if Gen and Rep satisfy Definition 2.1,
except the last condition is replaced with the following weaker condition:

12

• for any distribution W ∈ W, the string r has high HILL entropy conditioned on P . That is
HHILL
εsec,ssec(R|P) ≥ m̃.

Computational fuzzy conductors can be converted to computational fuzzy extractors using standard
techniques (see Appendix A.1). The following theorem states the construction is a computational fuzzy
conductor (proof in Appendix E).

Theorem 5.7. Let n be a security parameter. Let Z be an alphabet where |Z| ≥ 2ω(log(n)). Let W be a
family of (q, α = ω(log n), β)-unguessable block sources over Zγ, for any q = poly(n). Furthermore, let
C be a (Neight, δcode)-code over Zγ. Let O be an γ-composable VGB obfuscator for point functions with
auxiliary inputs. Then for any ssec = poly(n) there exists some εsec = ngl(n) such that Construction 5.3
is a (Zγ ,W, m̃ = H0(C) − β, t)-computational fuzzy conductor that is (εsec, ssec)-hard with error δcode +
γ/|Z|.

5.1 More errors than entropy?

In this section, we show that Construction 5.3 can support distributions with more errors than entropy.
We first calculate the size of the Hamming ball.

log |Bt| = log
t∑
i=0

(
γ

i

)
(|Z| − 1)i > log

(
γ

t

)
(|Z| − 1)t = Θ(t log |Z|) + log

(
γ

t

)
The simplest type of unguessable block source is where each block is independent and has super-logarithmic
entropy (Claim B.1). For this type of source the entropy is H∞(W) = γω(log n). This yields:

errors− entropy = log |Bt| −H∞(W) >
(

Θ(t log |Z|) + log
(
γ

t

))
− γω(log n).

When t = Θ(γ) and the entropy of each block is o(log |Z|), then the construction supports more errors
than entropy. Furthermore, the output entropy is H0(C)− β (if C is a constant rate code, this is Θ(γ)).

Improvements If most codewords have Hamming weight close to 1/2, we can decrease the error toler-
ance needed from the code from t to about t/2, because roughly half of the mismatches between w and
w′ occur where cj = 1.

If γ is not long enough to get a sufficiently long output, the construction can be run multiple times
with the same input and independent randomness.

Acknowledgements

The authors are grateful to Nishanth Chandran, Sharon Goldberg, Gene Itkis, Bhavana Kanukurthi, and
Mayank Varia for helpful discussions, creative ideas, and important references.

Ran Canetti is supported by the NSF MACS project, an NSF Algorithmic foundations grant 1218461,
the Check Point Institute for Information Security, and ISF grant 1523/14. Omer Paneth is additionally
supported by the Simons award for graduate students in theoretical computer science. The work of Ben-
jamin Fuller is sponsored in part by US NSF grants 1012910 and 1012798 and the United States Air Force
under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions and recommenda-
tions are those of the authors and are not necessarily endorsed by the United States Government. Leonid
Reyzin is supported in part by US NSF grants 0831281, 1012910, 1012798, and 1422965. Adam Smith is
supported in part by NSF awards 0747294 and 0941553.

13

References

[BA12] Marina Blanton and Mehrdad Aliasgari. On the (non-) reusability of fuzzy sketches and
extractors and security improvements in the computational setting. IACR Cryptology ePrint
Archive, 2012:608, 2012.

[BA13] Marina Blanton and Mehrdad Aliasgari. Analysis of reusability of secure sketches and fuzzy
extractors. IEEE transactions on information forensics and security, 8(9-10):1433–1445,
2013.

[BBR88] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM Journal on Computing, 17(2):210–229, 1988.

[BC10] Nir Bitansky and Ran Canetti. On strong simulation and composable point obfuscation. In
Advances in Cryptology–CRYPTO 2010, pages 520–537. Springer, 2010.

[BCKP14] Nir Bitansky, Ran Canetti, Yael Tauman Kalai, and Omer Paneth. On virtual grey box
obfuscation for general circuits. In Advances in Cryptology - CRYPTO 2014 - 34th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II,
2014.

[BGI+01] Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. In Advances in Cryptology-
CRYPTO 2001, pages 1–18. Springer, 2001.

[BH09] Marina Blanton and William MP Hudelson. Biometric-based non-transferable anonymous
credentials. In Information and Communications Security, pages 165–180. Springer, 2009.

[Boy04] Xavier Boyen. Reusable cryptographic fuzzy extractors. In Proceedings of the 11th ACM
conference on Computer and communications security, CCS ’04, pages 82–91, New York,
NY, USA, 2004. ACM.

[BS00] Sacha Brostoff and M.Angela Sasse. Are passfaces more usable than passwords?: A field
trial investigation. People and Computers, pages 405–424, 2000.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial infor-
mation. In Advances in Cryptology-CRYPTO’97, pages 455–469. Springer, 1997.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit output.
In Advances in Cryptology–EUROCRYPT 2008, pages 489–508. Springer, 2008.

[CG88] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and
probabilistic communication complexity. SIAM Journal on Computing, 17(2), 1988.

[Chv79] Vašek Chvátal. The tail of the hypergeometric distribution. Discrete Mathematics,
25(3):285–287, 1979.

[Dau04] John Daugman. How iris recognition works. Circuits and Systems for Video Technology,
IEEE Transactions on, 14(1):21 – 30, January 2004.

14

[DKRS06] Yevgeniy Dodis, Jonathan Katz, Leonid Reyzin, and Adam Smith. Robust fuzzy extractors
and authenticated key agreement from close secrets. In Cynthia Dwork, editor, Advances
in Cryptology - CRYPTO 2006, volume 4117 of Lecture Notes in Computer Science, pages
232–250. Springer Berlin Heidelberg, 2006.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing,
38(1):97–139, 2008.

[DPW14] Yevgeniy Dodis, Krzysztof Pietrzak, and Daniel Wichs. Key derivation without entropy
waste. In Advances in Cryptology–EUROCRYPT 2014, pages 93–110. Springer, 2014.

[EHMS00] Carl Ellison, Chris Hall, Randy Milbert, and Bruce Schneier. Protecting secret keys with
personal entropy. Future Generation Computer Systems, 16(4):311–318, 2000.

[FMR13] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy extractors. In
Advances in Cryptology-ASIACRYPT 2013, pages 174–193. Springer, 2013.

[GCVDD02] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. Silicon physical
random functions. In Proceedings of the 9th ACM conference on Computer and communi-
cations security, pages 148–160. ACM, 2002.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness
and Computation, pages 302–332. Springer, 2011.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999.

[HLR07] Chun-Yuan Hsiao, Chi-Jen Lu, and Leonid Reyzin. Conditional computational entropy, or
toward separating pseudoentropy from compressibility. In EUROCRYPT, pages 169–186,
2007.

[Jus72] Jørn Justesen. Class of constructive asymptotically good algebraic codes. Information
Theory, IEEE Transactions on, 18(5):652–656, 1972.

[KLRW14] Patrick Koeberl, Jiangtao Li, Anand Rajan, and Wei Wu. Entropy loss in PUF-based key
generation schemes: The repetition code pitfall. In Hardware-Oriented Security and Trust
(HOST), 2014 IEEE International Symposium on, pages 44–49. IEEE, 2014.

[KR09] Bhavana Kanukurthi and Leonid Reyzin. Key agreement from close secrets over unsecured
channels. In EUROCRYPT, pages 206–223, 2009.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In
Advances in Cryptology–CRYPTO 2010, pages 631–648. Springer, 2010.

[KZ07] Jesse Kamp and David Zuckerman. Deterministic extractors for bit-fixing sources and
exposure-resilient cryptography. SIAM Journal on Computing, 36(5):1231–1247, 2007.

[MG09] Rene Mayrhofer and Hans Gellersen. Shake well before use: Intuitive and secure pairing of
mobile devices. IEEE Transactions on Mobile Computing, 8(6):792–806, 2009.

15

[MRW02] Fabian Monrose, Michael K Reiter, and Susanne Wetzel. Password hardening based on
keystroke dynamics. International Journal of Information Security, 1(2):69–83, 2002.

[NZ93] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer
and System Sciences, pages 43–52, 1993.

[PPJ03] Salil Prabhakar, Sharath Pankanti, and Anil K Jain. Biometric recognition: Security and
privacy concerns. IEEE Security & Privacy, 1(2):33–42, 2003.

[PRTG02] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. Physical one-way func-
tions. Science, 297(5589):2026–2030, 2002.

[PST13] Rafael Pass, Karn Seth, and Sidharth Telang. Obfuscation from semantically-secure multi-
linear encodings. Cryptology ePrint Archive, Report 2013/781, 2013. http://eprint.iacr.
org/.

[Sca09] Matthew Scala. Hypergeometric tail inequalities: ending the insanity, 2009.

[SD07] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authenti-
cation and secret key generation. In Proceedings of the 44th annual Design Automation
Conference, pages 9–14. ACM, 2007.

[STP09] Koen Simoens, Pim Tuyls, and Bart Preneel. Privacy weaknesses in biometric sketches. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 188–203. IEEE, 2009.

[TABB02] Luca G Tallini, Sulaiman Al-Bassam, and Bella Bose. On the capacity and codes for the
Z-channel. In IEEE International Symposium on Information Theory, page 422, 2002.

[TSv+06] Pim Tuyls, Geert-Jan Schrijen, Boris Škoriá, Jan Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In Cryptographic Hardware and
Embedded Systems - CHES 2006, pages 369–383. 2006.

[Vad03] Salil P Vadhan. On constructing locally computable extractors and cryptosystems in the
bounded storage model. In Advances in Cryptology-CRYPTO 2003, pages 61–77. Springer,
2003.

[ZH93] Moshe Zviran and William J. Haga. A comparison of password techniques for multilevel
authentication mechanisms. The Computer Journal, 36(3):227–237, 1993.

A Definitions

A.1 Computational Fuzzy Conductors and Computational Extractors

In this section, we show that a computational fuzzy conductor Definition 5.6 can be transformed to a com-
putational fuzzy extractor Definition 2.1. The transformation uses a computational extractor. A computa-
tional extractor is the adaption of a randomness extractor to the computational setting. Any information-
theoretic randomness extractor is also a computational extractor; however, unlike information-theoretic
extractors, computational extractors can expand their output arbitrarily via pseudorandom generators
once a long-enough output is obtained. We adapt the definition of Krawczyk [Kra10] to the average case:

16

http://eprint.iacr.org/
http://eprint.iacr.org/

Definition A.1. A function cext : {0, 1}γ×{0, 1}d → {0, 1}κ a (m, εsec, ssec)-average-case computational
extractor if for all pairs of random variables X,Y (with X over {0, 1}γ) such that H̃∞(X|Y) ≥ m, we
have δDssec ((cext(X;Ud), Ud, Y), Uκ × Ud × Y) ≤ εsec.

Combining a computational fuzzy conductor and a computational extractor yields a computational
fuzzy extractor:

Lemma A.2. Let (Gen′, Rep′) be a (M,W, m̃, t)-computational fuzzy conductor that is (εcond, scond)-hard
with error δ and outputs in {0, 1}γ. Let cext : {0, 1}γ ×{0, 1}d → {0, 1}κ be a (m̃, εext, sext)-average case
computational extractor. Define (Gen,Rep) as:

• Gen(w; seed) (where seed ∈ {0, 1}d): run (r′, p′) = Gen′(w) and output r = cext(r′; seed), p =
(p′, seed).

• Rep(w′, (p′, seed)) : run r′ = Rep′(w′; p′) and output r = cext(r′; seed).

Then (Gen,Rep) is a (M,W, κ, t)-computational fuzzy extractor that is (εcond + εext, s
′)-hard with error δ

where s′ = min{scond − |cext| − d, sext}.

Proof. It suffices to show if there is some distinguisher D′ of size s′ where

δD
′
((cext(X;Ud), Ud, P ′), (Uκ, Ud, P ′)) > εcond + εext

then there is an distinguisher D of size scond such that for all Y with H̃∞(Y |P ′) ≥ m̃,

δD((X,P ′), (Y, P ′)) ≥ εcond.

Let D′ be such a distinguisher. That is,

δD
′
(cext(X,Ud)× Ud × P ′, Uκ × Ud × P ′) > εext + εcond.

Then define D as follows. On input (y, p′) sample seed ← Ud, compute r ← cext(y; seed) and output
D(r, seed, p′). Note that |D| ≈ s′ + |cext|+ d = scond. Then we have the following:

δD((X,P ′), (Y, P ′)) = δD
′
((cext(X,Ud), Ud, P ′), cext(Y, Ud), Ud, P ′)

≥ δD′((cext(X,Ud), Ud, P ′), (Uκ × Ud × P ′))

− δD′((Uκ × Ud × P ′), (cext(Y,Ud), Ud, P ′))
> εcond + εext − εext = εcond.

Where the last line follows by noting that D′ is of size at most sext. Thus D distinguishes X from all Y
with sufficient conditional min-entropy. This is a contradiction.

A.2 Reusability Fuzzy Extractors

The goal of a reusable fuzzy extractor is to allow enrollment of a source across multiple services. A
service i sees an reading of the source wi. Boyen considers two versions of reusable fuzzy extractors, first
where the adversary sees p1, ..., pq (outsider security [Boy04, Definition 6]) and tries to learn about the
values w1, ..., wq or the keys r1, ..., rq. Second, where the adversary controls some subset of the servers
and can key generation on arbitrary p′i (insider security [Boy04, Definition 7]). This allows the adversary

17

to learn a subset of keys ri (by performing key generation on the valid pi). This definition makes sense
when servers are compromised (after enrollment) and act maliciously. In both definitions, the adversary
creates a perturbation function i after seeing p1, ..., pi−1 (and generated keys for outsider security) and
the challenger generates wi = fi(w1). The definition is parameterized by the class of allowed perturbation
functions.

Boyen constructs a outsider reusable cryptographic fuzzy extractor for unbounded q when the pertur-
bation family is a transitive isometric permutation groups. Boyen transforms this construction to insider
security using random oracles.

Insider security strengthens outsider security in two ways. First, it allows the adversary to see some
subset of keys, second it allows the adversary to perform key generation on arbitrary pi. This mixes two
properties of a fuzzy extractor: reusability and robustness [DKRS06]. Robust fuzzy extractors provide
security against modified p. In this work, we show reusability when ri are observed but do not handle
the issue of robustness. That is, we assume keys may be exposed but servers keep honest state. Our
definition lies between outsider and insider security.

We adapt the definition of Boyen to the computational setting (Definition 2.2). The definition of
Boyen considers a single adversary. We split the adversary into two parts, one of which is information-
theoretic and another that is computationally bounded. The functions f2, ..., fq can be thought of as a
single adversary that sees all prior state. However, to provide meaningful security in the computational
setting, we cannot have communication between these adversaries.3 Because these two adversaries do not
communicate we strengthen the definition by allowing the perturbation functions, fi, to see the original
sample w1. This was not allowed in the definition of Boyen as it would make security impossible.

A.3 Obfuscation

In this section, we give a formal definition of the required notion of obfuscation. We require that the
obfuscation is composable and secure with respect to auxiliary input. Composable auxiliary-input VGB
obfuscators for point functions and digital lockers are constructed in [BC10, Theorem 6.1] from the Strong
Vector Decision Diffie-Hellman assumption, which is a generalization of the strong DDH assumption of
[Can97] for tuples of points. They can also be constructed by assuming strong properties of cryptographic
hash functions [Can97].

Definition A.3 (composable obfuscation VGB obfuscation with auxiliary input [BC10]). A PPT algo-
rithm O is an `-composable VGB obfuscator for In (resp. In+κ) with auxiliary-input if the following
conditions are met:

1. Functionality: for every n and I ∈ In, O(I) is a circuit that computes the same function as I.

2. Virtual grey-box: For every PPT adversary A and polynomial p, there exists a (possibly ineffi-
cient) simulator S and a polynomial q such that for all sufficiently large n, any sequence of circuits
I1, . . . , I` ∈ In, (where ` = poly(n)) and for all auxiliary inputs z ∈ {0, 1}∗:

| Pr
A,O

[A(z,O(I1), . . . ,O(I`)) = 1]− Pr
S

[S(I1,...,I`)[q(n)](z, 1|I
1|, . . . , 1|I

`|) = 1]| < 1
p(n)

,

where (I1, . . . , I`)[q(n)] is an oracle that answers at most q(n) queries, and where every query of the
form (i, x) is answered by Ii(x).

3An alternative would be to have a single computationally bounded adversary. Construction 4.1 satisfies this alternative
adaption as well.

18

For notational convenience, when we use point function obfuscation, we denote the oracle provided
to the simulator as Iw(·, ·) where w = w1, ..., wγ is the vector of obfuscated points. When we use digital
lockers we denote the oracle provided to the simulator as Iv,r(·, ·) where v = v1, ..., v` is the vector of
obfuscated points and r is the hidden value (we will hide the same value in each obfuscation).

B Characterizing unguessable block sources

Definition 5.4 is an inherently adaptive definition and a little unwieldy. In this section, we partially char-
acterize sources that satisfy Definition 5.4. The majority of the difficulty in characterizing Definition 5.4
is that different blocks may be dependent, so an equality query on block i may reshape the distribution
of block j. In the examples that follow we denote the adversary by S as we consider security against
computationally unbounded adversaries defined in VGB obfuscation (Definition A.3). We first show some
sources that are unguessable block sources (Section B.1) and then show distributions with high overall
entropy that are not unguessable block sources (Section B.2).

B.1 Positive Examples

We begin with the case of independent blocks.

Claim B.1. Let W = W1, ...,Wγ be a source in which all blocks Wj are mutually independent. Let α
be a parameter. Let J ⊂ {1, ..., γ} be a set of indices such that for all j ∈ J , H∞(Wj) = α. Then for
any q, W is a (q, α− log(q + 1), γ − |J |)-unguessable block source. In particular, when α = ω(log n) and
q = poly(n), then W is a (q, ω(log n), γ − |J |)-unguessable block source.

Proof. It suffices to show that for all j ∈ J, H̃∞(Wj |V iew(SIW (·,·)) = α− log(q+1). We can ignore queries
for all blocks but the jth, as the blocks are independent. Furthermore, without loss of generality, we can
assume that no duplicate queries are asked, and that the adversary is deterministic (S can calculate the
best coins). Let A1, A2, . . . Aq be the random variables representing the oracle answers for an adversary
S making q queries about the ith block. Each Ak is just a bit, and at most one of them is equal to 1
(because duplicate queries are disallowed). Thus, the total number of possible responses is q + 1. Thus,
we have the following,

H̃∞(Wj |V iew(SOW (·,·)) = H̃∞(Wj |A1, . . . , Aq)
= H∞(Wj)− |A1, . . . , Aq|
= α− log(q + 1) ,

where the second line follows from the first by [DORS08, Lemma 2.2].

In their work on computational fuzzy extractors, Fuller, Meng, and Reyzin [FMR13] show a construction
for block-fixing sources, where each block is either uniform or a fixed symbol (block fixing sources were
introduced by Kamp and Zuckerman [KZ07]). Claim B.1 shows that Definition 5.4 captures, in particular,
this class of distributions. However, Definition 5.4 captures more distributions. We now consider more
complicated distributions where blocks are not independent.

Claim B.2. Let f : {0, 1}e → Zγ be a function. Furthermore, let fj denote the restriction of f ’s output
to its jth coordinate. If for all j, fj is injective then W = f(Ue) is a (q, e − log(q + 1), 0)-unguessable
block source.

19

Proof. Since f is injective on each block, H̃∞(Wj |V iew(SIW (·,·))) = H̃∞(Ue|V iew(SIW (·,·))). Consider
a query qk on block j. There are two possibilities: either qk is not in the image of fj , or qk can be
considered a query on the preimage f−1

j (qk). Then (by assuming S knows f) we can eliminate queries
which correspond to the same value of Ue. Then the possible responses are strings with Hamming
weight at most 1 (like in the proof of Claim B.1), and by [DORS08, Lemma 2.2] we have for all j,
H̃∞(Wj |V iew(SIW (·,·))) ≥ H∞(Wj)− log(q + 1).

Note the total entropy of a source in Claim B.2 is e, so there is a family of distributions with total
entropy ω(log n) for which Construction 5.3 is secure. For these distributions, all the coordinates are
as dependent as possible: one determines all others. We can prove a slightly weaker claim when the
correlation between the coordinates Wj is arbitrary:

Claim B.3. Let W = W1, ...,Wγ be a source. Suppose that for all j, H∞(Wj) ≥ α, and that q ≤ 2α/4
(this holds asymptotically, in particular, if q is polynomial and α is super-logarithmic). Then W is a
(q, α− 1− log(q + 1), 0)-unguessable block source.

Proof. Intuitively, the claim is true because the oracle is not likely to return 1 on any query. Formally,
we proceed by induction on oracle queries, using the same notation as in the proof of Claim B.1. Our
inductive hypothesis is that Pr[A1 6= 0∨ · · · ∨Ak−1 6= 0] ≤ (k− 1)21−α. If the inductive hypothesis holds,
then, for each j,

H∞(Wj |A1 = · · · = Ak−1 = 0) ≥ α− 1 . (1)

This is true for k = 1 by the condition of the theorem. It is true for k > 1 because, as a consequence
of the definition of H∞, for any random variable X and event E, H∞(X|E) ≥ H∞(X) + log Pr[E]; and
(k − 1)21−α ≤ 2q2−α ≤ 1/2.

We now show that Pr[A1 6= 0 ∨ · · · ∨ Ak 6= 0] ≤ k21−α, assuming that Pr[A1 6= 0 ∨ · · · ∨ Ak−1 6= 0] ≤
(k − 1)21−α.

Pr[A1 6= 0 ∨ · · · ∨Ak−1 6= 0 ∨Ak 6= 0] = Pr[A1 6= 0 ∨ · · · ∨Ak−1 6= 0] + Pr[A1 = · · · = Ak−1 = 0 ∧Ak = 1]

≤ (k − 1)21−α + Pr[Ak = 1 |A1 = · · · = Ak−1 = 0]

≤ (k − 1)21−α + max
j

2−H∞(Wj |A1=···=Ak−1=0)

≤ (k − 1)21−α + 21−α

= k21−α

(where the third line follows by considering that to get Ak = 1, the adversary needs to guess some Wj , and
the fourth line follows by (1)). Thus, using k = q+1 in (1), we know H∞(Wj |A1 = · · · = Aq = 0) ≥ α−1.
Finally this means that

H̃∞(Wj |A1, . . . , Aq) ≥ − log
(

2−H∞(Wj |A1=···=Aq=0) Pr[A1 = · · · = Aq = 0] + 1 · Pr[A1 6= 0 ∨ · · · ∨Aq 6= 0]
)

≥ − log
(

2−H∞(Wj |A1=···=Aq=0) + q21−α
)

≥ − log
(
(q + 1)21−α) = α− 1− log(q + 1) .

20

B.2 Negative Examples

Claims B.2 and B.3 rest on there being no easy “entry” point to the distribution. This is not always
the case. Indeed it is possible for some blocks to have very high entropy but lose all of it after equality
queries.

Claim B.4. Let p = (poly(n)) and let f1, ..., fγ be injective functions where fj : {0, 1}j×log p → {0, 1}n.4

Then define the distribution W1 = f1(U1,...,γ),W2 = f2(U1,...,2γ),,Wγ = fγ(U). There is an adversary
making p× γ = poly(n) queries such that H̃∞(W |V iew(SIW (·,·))) = 0.

Proof. Let x be the true value for Up×γ . We present an adversary S that completely determines x. S
computes y1

1 = f1(x1
1), ..., yp1 = f(xp1). Then S queries on (1, y1), ..., (1, yp), exactly one answer returns

1. Let this value be y∗1 and its preimage x∗1. Then S computes y1
2 = f2(x∗1, x

1
2), ..., yp2 = f2(x∗1, x

p
2) and

queries y1
2, ..., y

p
2 . Again, exactly one of these queries returns 1. This process is repeated until all of x is

recovered (and thus w).

The previous example relies on an adversaries ability to determine a block from the previous blocks.
We formalize this notion next. We define the entropy jump of a block source as the remaining entropy
when other blocks are known:

Definition B.5. Let W = W1, ...,Wγ be a source under ordering i1, ..., iγ. The jump of a block ij is
Jump(ij) = maxwi1 ,...,wij−1

H0(Wij |Wi1 = wi1 , ...,Wij−1 = wij−1).

If an adversary can learn blocks in succession they can eventually recover the entire secret. In order for
a source to be block unguessable the adversary must get “stuck” early enough in their recovery process.
This translates to having a super-logarithmic jump early enough.

Claim B.6. Let W be a distribution and let q be a parameter, if there exists an ordering i1, ..., iγ such
that for all j ≤ γ − β + 1, Jump(ij) = log q/(γ − β + 1), then W is not (q, 0, β)-unguessable block source.

Proof. For convenience relabel the ordering that violates the condition as 1, ..., γ. We describe an un-
bounded adversary that determines W1, ...,Wγ−β+1. As before S queries the q/γ possible values for W1

and determines W1. Then S queries the (at most) q/(γ − β + 1) possible values for W2|W1. This process
is repeated until Wγ−β+1 is learned.

Presenting a sufficient condition for security is more difficult as S may interleave queries to different
blocks. It seems like the optimum strategy is to focus on a single block at a time but it is unclear how to
formalize this intuition.

C Analysis of Construction 3.2

Proof of Lemma 3.4. Let W ∈ W. It suffices to argue correctness and security. We first argue correctness.
When wi = w′i, then cond(wi, seedi) = cond(w′i, seedi) and thus vi = v′i. Thus, for all w,w′ where
dis(w,w′) ≤ t, then dis(v, v′) ≤ t. Then by correctness of (Gen′,Rep′), Pr[(r, p) ← Gen′(v) ∧ r′ ←
Rep(v′, p) ∧ r′ = r] ≥ 1− δ.

We now argue security. Denote by seed the random variable consisting of all γ seeds and V the entire
string of generated V1, ..., Vγ . To show that R|P, seed ≈γεcond+εfext U |P, seed, it suffices to show that

4Here we assume that n ≥ γ × log p, that is the source has a small number of blocks.

21

H̃∞(V |seed) is γεcond close to a distribution with average min-entropy α̃(γ− β). The lemma then follows
by the security of (Gen′,Rep′).5

We now argue that there exists a distribution Y where H̃∞(Y |seed) ≥ α̃(γ−β) and (V, seed1, ..., seedγ) ≈
(Y, seed1, .., seedγ). First note since W is (α, β)-partial block distribution that there exists a set of indices
J where |J | ≥ γ − β such that the following holds:

∀j ∈ J,∀w1, ..., wj−1 ∈W1, ...,Wj−1,H∞(Wj |W1 = w1, ...,Wj−1 = wj−1) ≥ α.

Then consider the first element of j1 ∈ J , ∀w1, ..., wj1−1 ∈W1, ...,Wj1−1,

H∞(Wj1 |W1 = w1, ...,Wj1−1 = wj1−1) ≥ α.

Thus, there exists a distribution Yj1 with H̃∞(Yj1 |seedj1) ≥ α̃ such that

(cond(Wj1 , seedj1), seedj1 ,W1, ...,Wj1−1) ≈εcond (Yj1 , seedj1 ,W1, ...,Wj1−1)

and since (seed1, ..., seedj1) are independent of these values

(cond(Wj1 , seedj1),Wj1−1, ...,W1, seedj1 , ..., seed1) ≈εcond (Yj1 ,Wj1−1, ...,W1, seedj1 , , ..., seed1)

consider the random variable Zj1 = (Yj1 , cond(Wj1−1, seedj1−1), ..., cond(W1, seed1)) and note that

H̃∞(Zj1 |seed1, ..., seedj1) ≥ α′.

Applying a deterministic function does not increase statistical distance and thus,

(cond(Wj1 , seedj1), cond(Wj1−1, seedj1−1), ..., cond(W1, seed1), seedj1 , ..., seed1)
≈γεcond (Zj1 , seedj1 , ..., seed1)

By a hybrid argument there exists a distribution Z with H̃∞(Z|seed) ≥ α̃(γ − β) where

(cond(Wγ , seedγ), ..., cond(W1, seed1), seedγ , ..., seed1) ≈γεcond (Z, seedγ , ..., seed1).

This completes the proof.

D Analysis of Construction 4.1

D.1 Security

The proof of security for Construction 4.1 uses the definition of block unguessable sources (Definition 5.4).
This definition is adaptive and discussed in Appendix B. We show the security of Construction 4.1:

• Lemma 4.3: Show that sampling is successful with overwhelming probability.

• Corollary 4.4: The outputs V1, .., V` have high individual entropy with good probability.

• The outputs V1, ..., V` are a block unguessable source. This is made formal in the following corollary:
5Note, again, that (Gen′,Rep′) must be an average-case fuzzy extractor. Most known constructions are average-case and

we omit this notation.

22

Corollary D.1. Let εsam, α′ be as in Lemma 4.3, and all the other variables be as in Theorem 4.2.
Take any q = poly(n). For α′′ = α′ − 1− log(q + 1) = ω(log n), with probability 1− `εsam over the
choice of Λ = λ, the distribution V |Λ = λ is a (q, α′′, 0)-unguessable block source.

• Lemma 4.5: An adversary is unlikely to receive any information about the key for a block unguess-
able source.

We now present the proofs of Lemmas 4.3 and 4.5.

Proof of Lemma 4.3. Consider some fixed i. Recall that there a set J of size γ − β = Θ(γ) such that
each w and block j ∈ J , H∞(Wj |W1 = w1, ...,Wj−1 = wj−1,Wj+1 = wj+1, ...,Wγ = wγ) ≥ α. Since this
is a worst case guarantee, the entropy of Vi can be deduced from the number of symbols in Vi that come
from J . Namely, Denote by X = |{ji,1, ..., ji,η} ∩ J |.

Claim D.2.
H∞(Vi|Λ = λ) ≥ αX.

Proof. Denote by j1, ..., jη the indices selected by the randomness λi. We begin by noting that H∞(Vi|Λ =
λ) = − log maxv∈Vi Pr[Vi = v|Λ = λ] = − log maxwj1 ,...,wjη Pr[Wj1 = wj1 ∧ · · · ∧Wjηwjη]. Then

max
wj1 ,...,wjη

Pr[Wj1 = wj1 ∧ · · · ∧Wjη = wjη] = max
wj1 ,...,wjη

η∏
k=1

Pr[Wjk = wjk |Wjk−1
= wjk−1

∧ ... ∧Wj1 = wj1]

≤
η∏
k=1

max
wj1 ,...,wjη

Pr[Wjk = wjk |Wjk−1
= wjk−1

∧ ... ∧Wj1 = wj1]

≤
η∏
k=1

max
w1,...,wγ

Pr[Wjk = wjk |W1 = w1 ∧ ... ∧Wjk−1 = wjk−1]

Taking the negative logarithm of both sides we have that

H∞(Vi|Λ = λ) ≥
η∑
k=1

min
w1,...,wγ

H∞(Wjk |W1 = w1 ∧ ... ∧Wjk−1 = wjk−1)

≥
∑
jk∈J

α = αX

This completes the proof of Claim D.2.

We note that X is distributed according to the hypergeometric distribution, and that E[X] = η(γ −
β)/γ. Using the tail bounds from [Chv79, Sca09], we can conclude that Pr[X ≤ E[X]/2] ≤ e−2((γ−β)/2γ)2η =
O(e−η).

Thus, setting α′ = αη(γ−β)
2γ and applying Claim D.2, we conclude that

Pr[H∞(Vi) ≥ α′] ≥ 1−O(e−η).

23

Proof of Lemma 4.5. Let O be a `-composable VGB obfuscator with auxiliary input for digital lockers
over Z6 . Let W be a (q, α′′ = ω(log n), 0)-unguessable block source. Our goal is to show that for all
ssec = poly(n) there exists εsec = ngl(n) such that δDssec ((R,P), (U,P)) ≤ εsec.

Suppose not, that is suppose there is some ssec = poly(n) such that exists εsec = poly(n) and
δDssec ((R,P), (U,P)) > εsec. Let D be such a distinguisher of size at most ssec. That is,

|E[D(R,P)]− E[D(U,P)] > εsec = 1/poly(n).

Define the oracle Iv1,...,v`,r(·, ·) as follows:

Iv1,...,v`,r(x, i) =

{
r vi = x

⊥ otherwise.

By the security of obfuscation (Definition A.3), there exists a unbounded time simulator S (making at
most q queries) such that

|E[D(R,P1, ..., P`)]− E[SIv1,...,v`,r(·,·)(R, 1` log |Z|)]| ≤ εsec/3. (2)

We now prove S cannot distinguish between R and U .

Lemma D.3. ∆(SIv1,...,v`,r(·,·)(R, 1` log |Z|), SIv1,...,v`,r(·,·)(U, 1` log |Z|)) ≤ `2−α′′.

Proof. It suffices to show that for any two values in {0, 1}κ, the statistical distance is at most `2−α
′′
.

Lemma D.4. Let r be true value encoded in I and let u ∈ {0, 1}κ. Then,

∆(SIv1,...,v`,r(·,·)(r, 1` log |Z|), SIv1,...,v`,r(·,·)(u, 1` log |Z|)) ≤ `2−α′′ .

Proof. Recall that for all j, H̃∞(Vj |V iew(S)) ≥ α′′. The only information about the correct value of r
is contained in the query responses. When all responses are ⊥ the view of S is identical when presented
with r or u. We now show that for any value of r all queries return ⊥ with probability 1− 2−α

′′
. Suppose

not, that is suppose, the probability of at least one nonzero response is > 2−(α′′).
When there is a response other than ⊥ for some j this means that there is no remaining min-entropy

in Vj . If this occurs with over 2−α
′′

probability this violates the block unguessability of V (Definition 5.4).
By the union bound over the indices j the total probability of a response other than ⊥ is at most `2−α

′′
.

Thus, for all r, u the statistical distance is at most `2−α
′′
. This concludes the proof of Lemma D.4.

By averaging over all points in {0, 1}κ we conclude that

∆(SIv1,...,v`,rX(·,·)(R, 1` log |Z|), SIv1,...,v`,r(·,·)(U, 1` log |Z|)) < `2−α
′′
.

This completes the proof of Lemma D.3.

Now by the security of obfuscation we have that

|E[D(R,P1, ..., P`)]− E[SIv1,...,v`,r(·,·)(R, 1` log |Z|)]| ≤ εsec/3. (3)

6In this proof we only consider the case where the sampling has produced a block unguessable source. The negligible
portion of the time when this does not happen in included in the security of Theorem 4.2

24

Combining Equations 4 and 6 and Lemma D.3, we have

δD((R,P), (U,P)) ≤ |E[D(R,P1, ..., P`)]− E[SIv1,...,v`,r(·,·)(R, 1` log |Z|)]|
+ |E[SIv1,...,v`,r(·,·)(R, 1` log |Z|)]− E[SIv1,...,v`,r(·,·)(U, 1` log |Z|)]|
+ |E[SIv1,...,v`,r(·,·)(U, 1` log |Z|)]− E[D(U,P1, ..., P`)]|

≤ εsec/3 + `2−α
′′

+ εsec/3
≤ 2εsec/3 + ngl(n) < εsec.

This is a contradiction and completes the proof of Lemma 4.5.

D.2 Correctness

Proof of Lemma 4.6. Recall that dis(w,w′) ≤ t and that the locations of the errors is independent of the
selected locations. Denote by µ = − (c−1) logn

2 . Since η = ω(log n), we will assume η ≥ 2µ. We begin by
computing the probability that a single vi = v′i.

Pr[vi = v′i] = Pr[w and w′ agree on positions ji,1, ..., ji,η]

≥
η−1∏
j=0

(
1− t

γ − j

)
≥

η−1∏
j=0

(
1− µ(γ − η)/η

η − j

)

≥
η−1∏
j=0

(
1− µ

η

(
γ − η
γ − j

))
≥

η−1∏
j=0

(
1− µ

η

)

=
(

1− µ

η

)η
=

((
1− µ

η

)η/µ)µ
≥
(

1
2

)2µ

≥
(

1
2

)(c−1) logn

=
1

nc−1
.

We then have the probability that all vi 6= v′i as:

Pr[∀i, vi 6= v′i] =
(
1− Pr[vi = v′i]

)`
=
(

1− 1
nc−1

)`
=

((
1− 1

nc−1

)nc−1
)`/nc−1

≤
(

1
e

)nc/nc−1

=
1
en
.

This completes the proof of Lemma 4.6.

E Analysis of Construction 5.3

E.1 Security

Security of Construction 5.3 is similar to the security of Construction 4.1. However, security is more
complicated, the main difficulty is that the definition of block unguessable sources (Definition 5.4) allows

25

for certain weak blocks that can easily be guessed. This means we must limit our indistinguishable
distribution to blocks that are difficult to guess. Security is proved via the following lemma:

Lemma E.1. Let all variables be as in Theorem 5.7. For every ssec = poly(n) there exists some εsec =
ngl(n) such that HHILL

εsec,ssec(C|P) ≥ H0(C)− β.

We give a brief outline of the proof, followed by the proof. It is sufficient to show that there exists
a distribution C ′ with conditional min-entropy and δDssec ((C,P), (C ′, P)) ≤ ngl(n). Let J be the set
of indices that exists according to Definition 5.4. Define the distribution C ′ as a uniform codeword
conditioned on the values of C and C ′ being equal on all indices outside of J . We first note that C ′

has sufficient entropy, because H̃∞(C ′|P) = H̃∞(C ′|CJc) ≥ H∞(C ′, CJc) −H0(CJc) = H0(C) − |Jc| (the
second step is by [DORS08, Lemma 2.2b]). It is left to show δDssec ((C,P), (C ′, P)) ≤ ngl(n). The outline
for the rest of the proof is as follows:

• Let D be a distinguisher between (C,P) and (C ′, P). Since P is a collection of obfuscated programs,
there exists a simulator S (outputting a single bit), such that Pr[D(C,P) = 1] is close to Pr[SO(C) =
1].

• Show that even an unbounded S making a polynomial number of queries to the stored points cannot
distinguish between C and C ′. That is, ∆(SO(C), SO(C ′)) is small.

• By the security of obfuscation, Pr[SO(C ′) = 1] is close to Pr[D(C ′, P) = 1].

Proof of Lemma E.1. Let O be a γ-composable VGB obfuscator with auxiliary input for point programs
over Z. Let W be a (q, α = ω(log n), β)-unguessable block source. Our goal is to show that for all
ssec = poly(n) there exists εsec = ngl(n) such that HHILL

εsec,ssec(C|P) ≥ H0(C) − β. Suppose not, that is
suppose there is some ssec = poly(n) such that exists εsec = poly(n) and HHILL

εsec,ssec(C|P) < H0(C) − β.
By Definition 5.4 there exists a set of indices J such that all blocks within J are unguessable. Define
by C ′ the distribution of sampling a uniform codeword where all locations outside J are fixed. Then
H̃∞(C ′|CJc) ≥ H∞(C ′, CJc)−H0(CJc) = H0(C)− β (by [DORS08, Lemma 2.2b]).

Let D a distinguisher of size at most ssec such that

|E[D(C,P)]− E[D(C ′, P)] > εsec = 1/poly(n).

Define the distribution X as follows:

Xj =

{
Wj Cj = 0
Rj Cj = 1.

By the security of obfuscation (Definition A.3), there exists a unbounded time simulator S (making at
most q queries) such that

|E[D(P1, ..., Pγ , C)]− E[SIX(·,·)(C, 1γ log |Z|)]| ≤ εsec/3. (4)

We now prove S cannot distinguish between C and C ′.

Lemma E.2. ∆(SIX(·,·)(C, 1γ log |Z|), SIX(·,·)(C ′, 1γ log |Z|)) ≤ (γ − β)2−(α+1).

Proof. It suffices to show that for any two codewords that agree on Jc, the statistical distance is at most
(γ − β)2−(α+1).

26

Lemma E.3. Let c∗ be true value encoded in X and let c′ a codeword in C ′. Then,

∆(SIX(·,·)(c∗, 1γ log |Z|), SIX(·,·)(c′, 1γ log |Z|)) ≤ (γ − β)2−(α+1).

Proof. Recall that for all j ∈ J , H̃∞(Wj |V iew(S)) ≥ α. The only information about the correct value of
c∗j is contained in the query responses. When all responses are 0 the view of S is identical when presented
with c∗ or c′. We now show that for any value of c∗ all queries on j ∈ J return 0 with probability
1 − 2−α+1. Suppose not, that is suppose, the probability of at least one nonzero response on index j is
> 2−(α+1). Since w,w′ are independent of rj , the probability of this happening when c∗j = 1 is at most
q/Z or equivalently 2− log |Z|+log q. Thus, it must occur with probability:

2−α+1 < Pr[non zero response location j]
= Pr[c∗j = 1] Pr[non zero response location j ∧ c∗j = 1]

+ Pr[c∗j = 0] Pr[non zero response location j ∧ c∗j = 0]

≤ 1× 2− log |Z|+log q + 1× Pr[non zero response location j ∧ c∗j = 0] (5)

We now show that for an unguessable block source the remaining entropy α ≤ log |Z| − log q:

Claim E.4. If W is a (q, α, β)-block unguessable source over Z then α ≤ log |Z| − log q.

Proof. Let W be a (q, α, β)-block unguessable source. Let J ⊂ {1, ..., γ} the set of good indices. It suffices
to show that there exists an S making q queries such that for some j ∈ J, H̃∞(Wj |SIW (·,·)) ≤ log |Z|−log q.
Let j ∈ J be some arbitrary element of J and denote by wj,1, ..., wj,q the q most likely outcomes of
Wj (breaking ties arbitrarily). Then

∑q
i=1 Pr[Wj = wj,i] ≥ q/|Z|. Suppose not, this means that there is

some wj,i with probability Pr[Wj = wj,i] < 1/|Z|. Since there are Z − q remaining possible values of Wj

for their total probability to be at least 1 − q/|Z| at least of these values has probability at least 1/Z.
This contradicts the statement wj,1, ..., wj,q are the most likely values. Consider S that queries its oracle
on (j, wj,1), .., (j, wj,q). Denote by Bad the random variable when Wj ∈ {wj,1, .., wj,q} After these queries
the remaining min-entropy is at most:

H̃∞(Wj |SJW (·,·)) = − log
(

Pr[Bad = 1]× 1 + Pr[Bad = 0]×max
w

Pr[Wj = w|Bad = 0]
)

≤ − log (Pr[Bad = 1]× 1)

= − log
(
q

|Z|

)
= log |Z| − log q

This completes the proof of Claim E.4.

Rearranging terms in Equation 5, we have:

Pr[non zero response location j ∧ cj = 0] > 2−α+1 − 2−(log |Z|−log q) = 2−α

When there is a 1 response and cj = 0 this means that there is no remaining min-entropy. If this occurs
with over 2−α probability this violates the block unguessability of W (Definition 5.4). By the union bound
over the indices j ∈ J the total probability of a 1 in J is at most (γ−β)2−α+1. Recall that c∗, c′ match on
all indices outside of J . Thus, for all c∗, c′ the statistical distance is at most (γ−β)2−α+1. This concludes
the proof of Lemma E.3.

27

By averaging over all points in C ′ we conclude that ∆(SIX(·,·)(C, 1γ log |Z|), SIX(·,·)(C ′, 1γ log |Z|)) <
(γ − β)2−(α+1). This completes the proof of Lemma E.2.

Now by the security of obfuscation we have that

|E[D(P1, ..., Pγ , C
′)]− E[SIX(·,·)(C ′, 1γ log |Z|)]| ≤ εsec/3. (6)

Combining Equations 4 and 6 and Lemma E.2, we have

δD((P,C), (P,C ′)) ≤ |E[D(P1, ..., Pγ , C)]− E[SIX(·,·)(C, 1γ log |Z|)]|
+ |E[SIX(·,·)(C, 1γ log |Z|)]− E[SIX(·,·)(C ′, 1γ log |Z|)]|
+ |E[SIX(·,·)(C ′, 1γ log |Z|)]− E[D(P1, ..., Pγ , C

′)]|
≤ εsec/3 + (γ − β)2−(α−1) + εsec/3
≤ 2εsec/3 + ngl(n) < εsec.

This is a contradiction and completes the proof of Lemma E.1.

E.2 Correctness

We now argue correctness of Construction 5.3. We begin by showing that the probability of a single 1→ 0
bit flip in c is negligible.

Lemma E.5. Let all variables be as in Theorem 5.7. The probability of at least one 1 → 0 bit flip (an
obfuscation of a random block being interpreted as the obfuscation of the point) is ≤ γ/|Z| = ngl(n).

Proof. Consider a coordinate j for which cj = 1. Since w′ is chosen independently of the points rj , and
rj is uniform, Pr[rj = w′j] = 1/|Z|. The lemma follows by the union bound, since there are at most γ
such coordinates.

Since there are most t locations for which wj 6= w′j there are at most t 0→ 1 bit flips in c, which the
code will correct with probability 1− δcode, because c was chosen uniformly. Therefore, Construction 5.3
is correct with error at most γ/|Z|.

28

	Introduction
	Preliminaries
	Fuzzy Extractors
	Reusable Fuzzy Extractors

	Obfuscation

	Supporting more errors than entropy
	More errors than entropy

	Adding reusability
	Security of Construction 4.1
	Correctness of Construction 4.1
	Reusability of Construction 4.1
	More errors than entropy?

	Allowing Correlated Symbols
	More errors than entropy?

	Definitions
	Computational Fuzzy Conductors and Computational Extractors
	Reusability Fuzzy Extractors
	Obfuscation

	Characterizing unguessable block sources
	Positive Examples
	Negative Examples

	Analysis of Construction 3.2
	Analysis of Construction 4.1
	Security
	Correctness

	Analysis of Construction 5.3
	Security
	Correctness

