
Introducing Fault Tolerance into

Threshold Password-Authenticated Key Exchange

Ivan Pryvalov
MMCI, Saarland University

pryvalov@mmci.uni-saarland.de

Aniket Kate
MMCI, Saarland University

aniket@mmci.uni-saarland.de

April 7, 2014

Abstract

A threshold password-authenticated key exchange (T-PAKE) protocol allows a set of n

servers to collectively authenticate a client with a human-memorizable password such that any

subset of size greater than a threshold t can authenticate the client, while smaller subsets of

servers learn no information about the password. With its protection against offline dictio-

nary attacks, T-PAKE provides a practical solution for an important real-life problem with

password authentication. However, the proposed T-PAKE constructions cannot tolerate any

misbehavior—not even a crash—by a participating server during a protocol execution; the pro-

tocol has to be re-executed until all participating servers behave correctly. This not only presents

a fault management challenge for the servers, but more importantly also can leave the clients

frustrated.

In this work, we present a novel T-PAKE protocol (T-PAKEDKG) which solves the above fault

management problem by employing a batched and offline phase of distributed key generation

(DKG). T-PAKEDKG is secure against any malicious behavior from up to any t < n servers

under the decisional Diffie–Hellman assumption in the random oracle model, and it ensures

protocol completion for t < n/2. Moreover, it is efficient (16n + 7 exponentiations per client,

20n + 14 per server), performs explicit authentication in three communication rounds, and

requires a significantly lesser number of broadcast rounds compared to previous secure T-PAKE

constructions. We have implemented T-PAKEDKG, and have verified its efficiency using micro-

benchmark experiments. Our experimental results show that T-PAKEDKG only introduces a

computation overhead of few milliseconds at both the client and the server ends, and it is

practical for use in real-life authentication scenarios.

1 Introduction

Password-based authentication is the most widely used authentication mechanism in practice.

Therefore, password-authenticated key exchange (PAKE) has been extensively studied in the lit-

erature [11, 25–27, 30]. In an untrusted environment, a PAKE protocol establishes a secure and

authenticated channel between two participants, typically a client and a server. Here, the client

is required to know a human-memorizable keyword, or password. In order to verify the client’s

identity and his knowledge of the password, the server maintains the correct password in a derived

form (typically by employing a one-way function) in a so called “password file”. However, as pass-

words are drawn from a relatively small dictionary, when the server gets compromised in a PAKE

1

MSG06 [32] BJS+11 [8] RG06 [21] T-PAKEDKG T-PAKEI
DKG

Server fault tolerance × × ×
√ √

servers for protocol run (out of n) t+ 1 t+ 1 n [t+ 1, n] [t+ 1, n]

messages sent by Client 1(T)1(B)2 + 1(B) 1 (T)+ 1 2n 1 (T)+ 1 1

messages sent by Serverj 4 (B) 2 n + 4n (B) 1 + 2 (B) 1 + 2 (B)
Server computation complexity O(n) O(1) O(n2) O(n) O(n)

Server public keys
√ √

×
√ √

Authentication type Explicit Implicit 3 Implicit Explicit Implicit

1 (T) denotes a trigger (or client-hello) message. 2 (B) denotes a broadcast message. 3 It is vulnerable to
an online attack described in Section 1.2.

Table 1: Comparison of T-PAKE protocols

protocol, the attacker can launch an (offline) dictionary attack on the password file to recover the

correct passwords eventually. Given the scale and the frequency of the server compromises we are

observing on the Internet (e.g., [31,38]), such attacks present a critical security challenge for online

authentication systems.

In order to mitigate the offline dictionary attack, Ford and Kalinski [23] proposed to distribute

password verification data among n servers, such that all n servers participate in the protocol and

the adversary will have to break into all of them to launch a dictionary attack. MacKenzie et al. [32]

generalized and formalized this concept to define threshold password-authentication key exchange

(T-PAKE), where the password verification data (or the password file) is distributed among n

servers such that the client has to run the authentication protocol with any t+ 1 ≤ n of those and

an attacker who can compromise up to t servers is not able to launch an offline dictionary attack. Di

Raimondo and Gennaro [21] presented a black-box T-PAKE construction for 3t < n using the KOY

protocol [30], verifiable secret sharing (VSS) [22, 34], and a distributed multiplication protocol [5].

Recently, Baghezandi et al. [8] introduced a related concept of password-protected secret sharing

(PPSS), and proposed an efficient T-PAKE construction using a PPSS as a black-box. A PPSS

scheme allows a client to share a secret among n servers such that it can be reconstructed using

a correct password. Although they are interesting theoretically, all these T-PAKE protocols do

not satisfy the basic liveness property of fault tolerance: in all these protocols, if one or more

participating servers misbehave, crash or even if their links to the client get broken due to some

network failure, the protocol instance fails. The client has to restart with a new protocol instance,

possibly with a different subset of the servers. Given the frequent server and link failures on the

Internet, such an experience can be frustrating for the client; his authentication does not succeed

even when he enters a correct password.

1.1 Our Contributions

In this work, we address the above discussed fault-tolerance problem with T-PAKE. We observed

that the root cause of the inability of these protocols to ensure protocol completion in the presence

of a fault is the uncorrelated randomness employed by the participating servers during a T-PAKE

instance. It is possible to solve this problem by correlating their randomness (in a threshold manner)

using a distributed key generation (DKG) protocol [24, 34] such that an adversary compromising

up to t servers has no information about it but randomness from any honest t + 1 servers can be

used to reconstruct the randomness of the rest of the servers.

2

Based on this observation, we propose an efficient, fault-tolerant T-PAKE protocol: T-PAKEDKG.

Our protocol ensures that every T-PAKE execution succeeds without restarting as long as t+ 1 of

the participating servers are honest, and thus it guarantees the protocol completion for n ≥ 2t+ 1.

We achieve this by including a distributed key generation (DKG) protocol [24] as a black-box,

offline mechanism in our construction, and expecting the servers to execute several DKG instances

in a batched fashion in the offline phase. We prove the security of our protocol under the decisional

Diffie–Hellman (DDH) assumption in the random oracle model. The protocol is also efficient in

terms of communication and requires less communication rounds 1 and broadcasts than in the previ-

ous secure T-PAKE protocols [21,32]. Similar to [32], it also maintains security for any pre-defined

t < n subset of compromised servers.

We also implement our T-PAKEDKG protocol as well as the employed DKG protocol [24] and

test their performance in the LAN environment for the 3-server (i.e., n = 3 and t = 1), and the

5-server (i.e., n = 5 and t = 2) settings. Our performance analysis demonstrates the practicality of

the T-PAKEDKG protocol in the real-life password authentication scenarios.

Our T-PAKEDKG protocol performs two-way explicit authentication in three rounds. In this

work, we also present another fault-tolerant T-PAKE protocol T-PAKEI
DKG, which performs implicit

authentication in two rounds. Further, we extend our protocols to work in the asynchronous com-

munication setting (no bounds on message transfer delays) for n ≥ 3t+1 by employing asynchronous

reliable broadcast and asynchronous DKG protocols. Finally, our protocols can be employed to

obtain the first fault tolerant constructions for the related PPSS [8] and PASS [17] primitives using

a trivial transformation suggested in [8, 17].

1.2 Comparison with the Existing Constructions

In Table 1, we compare provably secure generic (involving n ≥ 2 servers) T-PAKE constructions

by MacKenzie et al. [32], Raimondo and Gennaro [21] and Bagherzandi et al. [8] with our T-

PAKEDKG and T-PAKEI
DKG protocols. All previous protocols cannot tolerate any fault, and abort

in the presence of one. In contrast to those, our protocols can be instantiated with a subset of the

servers of a variable size between t+ 1 and n (i.e., [t+ 1, n]), and they abort only when the number

of servers that follow the protocol drops below t+ 1. We distinguish a trigger message (sometimes

called a client-hello message), which simply initiates a protocol instance between a client and a

server. Our T-PAKEI
DKG protocol requires only one message directed from a client and provides

an implicit authentication, which is the best among the compared protocols. A broadcast channel

is used for exchanging messages between servers in a reliable and authenticated manner. In prior

constructions, a broadcast channel was assumed to include the client along with all parties. We

do not find that to be a practical assumption, and restrict a broadcast channel to the servers only.

Our protocols require only two broadcasts per instance, which improves on all previous results. We

do not include the broadcast instances required for DKG in our calculation as they are performed

in an offline and batched manner (with an insignificant amortized overhead). The construction

in [21] requires the clients to know only the password, while the rest of the protocols (including our

protocols) require the clients to know the servers public keys.

The PPSS-based T-PAKE construction [8] also has an important problem. As individuals tend

1We follow a convention about rounds from [32], where a round indicates a transfer of a message from a sender to
a recipient.

3

to choose simple passwords, it becomes crucial to restrict the adversary’s capabilities to online

guessing attacks. The resistance against online attacks was discussed in many works, e.g. Boyko

et al. [14], by placing a limit on a number of unsuccessful authentication attempts. As observed

by Camenisch el at. [17] while introducing password-authenticated secret sharing (PASS) in the

PPSS protocol, the servers do not learn whether the client’s password is correct or not; thus, it

is impossible for the PPSS servers to block client accounts after a number of failed attempts to

authenticate. We find the situation to be even worse: an attacker can efficiently learn whether a

particular password is correct or not by launching a simple attack assuming that the attacker is

able to trigger a PPSS protocol instance multiple times as if she were an honest user. Here, the

attacker can simply trigger two instances of PPSS with the same password. If she gets two different

reconstructed secrets, then the password was wrong, otherwise with an overwhelming probability

the password was correct. We observe that this problem is inherent to the PPSS and PPSS-based

T-PAKE protocols, as the participating servers do not interact with each other in these protocols.

We refer to Appendix A for detailed description of the attack. Finally, we note that the servers can

slow down such an attack to a certain extent only by limiting the frequency of all login attempts

for a given user.

1.3 Application Scenarios

Password authentication protocols are typically used as an entry gate to some functionality that is

offered by a server. In a threshold setting, several servers take tart in authentication a client and

provide desired service (such as downloading some protected information or synchronizing over the

cloud) there up on. If an attacker compromises less than some predefined number of servers, she

has no information about the password and cannot trigger the functionality that is supposed to

come after the authentication succeeded.

We consider the following two application scenarios, which are particularly useful for the cloud

sourcing environment.

Password-Authenticated Secret Sharing—PASS. As discussed earlier, T-PAKE scheme can

be easily turned into PASS [8,17]: here, a client and servers establish secure channels using T-PAKE,

and then the client retrieves secret shares over those channels.

Private Authentication. We say that a T-PAKE has a (t, n)-sharing scheme if there are n

shares, an adversary is allowed to compromise up to t shares, and the protocol completes if at least

t + 1 of them follow the protocol honestly. Typically, there are n servers, each server keeps one

share and a user has no shares. If, instead of (t, n)-sharing scheme, the user implements a (n, 2n−t)
scheme, one can suppress online attacks [8]. In this setting, n servers still keep 1 share each, while

the user keeps n − t shares locally, e.g. using a private device. In order to authenticate, at least

t+ 1 servers are requried to contribute jointly with n− t users’ shares. It means, in particular, that

the user is not able to authenticate if his device is lost.

4

1.4 Outline

The rest of the paper is organized as follows. Section 2 describes the system model, the cryp-

tographic assumption, and the cryptographic tools used in our construction. In Section 3, we

present the detailed description of our T-PAKEDKG protocol, and we perform its security analysis

in Section 4. In Section 5, we provide experimental results for our T-PAKEDKG implementation

in the LAN setting. In Section 6, we present a brief overview of our T-PAKEI
DKG construction,

asynchronous versions of our protocols and reduce the size of the required server public keys.

2 Preliminaries

2.1 Model

The goal of the T-PAKE protocol is to perform distributed authenticated key exchange (dake)

between a client with a password and a subset of servers, such that after a protocol run the client

would hold different session keys, one per server. For our T-PAKE construction, we use the same

system model as in [32] (which extends [10,30]), with slight relaxation regarding the number of the

servers that can participate in a protocol run. We require 2t+ 1 to n servers to participate during

a protocol instance, expect that the instance succeeds if at least t + 1 servers behave correctly.

Moreover, even if t servers are corrupted and collude, the remaining session keys between a client

and honest servers should be unknown to anybody else.

Protocol participants. There are two types of protocol participants: clients and servers. Let

ID := Clients∪Servers be a non-empty set of protocol participants. We assume Servers consists

of n servers {S1, . . . , Sn}, and that these servers are meant to cooperate in authentication of a

client. Each client C ∈ Clients has a password pC (denoted by just p later on). We assume that

the password is drawn uniformly from the set of possible passwords PasswordC (in fact, results

can be extended to other password distributions). Clients and servers are modeled as probabilistic

polynomial time (PPT) algorithms with an input tape and an output tape. Multiple protocol

instances with, possibly, different sets of participants are allowed. We denote by ΠU
i an instance i

of participant U ∈ ID.

Communication. We assume that communication channels between a client and servers are

public and unauthenticated; the goal of T-PAKE is to establish session keys itself. We assume a

broadcast channel among the servers such that a message sent to the broadcast channel is delivered

to all servers. Unlike in [21, 32], where the client does also have access to it, our client does not

have access to the broadcast channel. Further, we assume pair-wise secure channels between the

servers, which are used for distributed key generation before a protocol instance starts.

An adversary A is allowed to compromise up to t servers and has complete control over the

network (except for the secure channels of uncorrupted servers), i.e. she can read, modify, or block

any messages sent by parties via public channels and by corrupted servers via private channels. 2

2A controls the whole network and can launch a DoS attack; however, prevention against these attacks is beyond
the scope of this work.

5

Execution of the protocol. In the real world, a protocol determines how participants behave

in response to inputs from their environment. In the formal model, these inputs are provided by

the adversary.

Formally, the adversary is a probabilistic algorithm with a distinguished tape. Queries written

to this tape are responded to by participants according to the protocol. As defined in [32], the

allowed queries are the following:

- Send(U, i,M): causes message M to be sent to instance ΠU
i . This instance of participant U runs

according to the protocol specification, updates its state appropriately and the output is given

to the adversary.

- Execute(C, i, ((Sj1, lj1), . . . , (Sjk, ljk))): causes P to be executed to completion between ΠC
i and

Π
Sj1
lj1
, . . . ,Π

Sjk
ljk

, where k is a number of servers with 2t+ 1 ≤ k ≤ n. This query captures passive

eavesdropping of an execution.

- Reveal(C, i, Sj): causes the output of the session key skiC,Sj held by ΠC
i corresponding to server

Sj .

- Reveal(Sj , i): causes the output of the session key skiSj held by Π
Sj
i . The Reveal queries model

possible leakage of session keys due to compromise of a server, or cryptanalysis.

- Test(C, i, Sj): causes ΠC
i to flip a bit b. If b = 1, the adversary is given skiC,Sj , else the adversary

is given a random key. The adversary is allowed only a single Test query (of either type) during

the execution of P .

- Test(Sj , i): causes Π
Sj
i to flip a bit b. If b = 1 the adversary is given skiSj , and if b = 0 the

adversary is given a random key. The adversary is allowed only a single Test query (of either

type) during the execution of P . The Test queries are used to define the protocol security; i.e.,

whether an adversary can distinguish a true session key from a random key.

Partnering. To reason about leakage of a password the notion of partnering has been introduced.

Let pid, sid and sk denote a partner-id, a session-id and a session key, respectively. On accept, a

server instance holds pid, sid and sk, and a client instance holds pid, sid and a set (skj1 , . . . , skj2t+1).

Let sid include a common part of the messages sent by the client instance and a reconstructed shared

response sent from t + 1 or more servers to the client. (Broadcast messages are not part of sid,

since a client cannot see them.) Then instances ΠC
i holding (pid, sid, (skj1 , . . . , skj2t+1)), where

pid = I for some I = {j1, . . . , j2t+1}, and Π
Sj
lj

holding (pid′, sid′, sk) are said to be partnered if

j ∈ I, pid′ = C, sid = sid′, and skj = sk.

Freshness. A client instance/server pair (ΠC
i , Sj) is said to be fresh if: (1) Sj is not compromised;

(2) there has been no Reveal(C, i, Sj) query; and (3) if Π
Sj
l and ΠC

i are partnered, there has been

no Reveal(Sj , l) query. A server instance Π
Sj
i is said to be fresh if: (1) Sj is not compromised;

(2) there has been no Reveal(Sj , i) query; and (3) if ΠC
l and Π

Sj
i are partnered, there has been no

Reveal(C, l, Sj) query.

Advantage of the adversary. The advantage of the adversary against the protocol P is defined

as follows. Let SuccdakeP (A) be the event that A makes a single Test query directed to some client

instance/server pair (ΠC
i , Sj) that is fresh and where ΠC

i has terminated, or A makes a single Test

query directed to some server instance (Π
Sj
i) that has terminated and is fresh, and eventually A

6

outputs a bit b′, where b′ = b for the bit b that was selected in the Test query. The dake advantage

of A attacking P is defined to be

AdvdakeP (A) := 2Pr[SuccdakeP (A)]− 1.

Fact 2.1.

Pr[SuccdakeP (A)] = Pr[SuccdakeP ′ (A)] + ε ⇐⇒ AdvdakeP (A) = AdvdakeP ′ (A) + 2ε.

Let κ be the security parameter.

Definition 2.2. Protocol P is a T-PAKE if, for all PPT adversaries A that make at most nin
online attacks and for all dictionary sizes N , there is a negligible function ε such that

AdvdakeP (A) ≤ nin
N

+ ε(κ).

The above definition ensures that the adversary cannot do significantly better than pure pass-

word guessing in online attacks.

2.2 Cryptographic Assumption

Let Gq denote a cyclic group of prime order q, where |q| = κ. Let g be a generator of Gq. The

security of our protocols depends upon the decisional Diffie-Hellman (DDH) assumption [12]. For

X = gx, Y = gy, the Diffie-Hellman function is defined as DH(X,Y) = gxy. Let A be an algorithm

that on input (X,Y, Z) outputs “1” if it believes that Z = DH(X,Y), and “0” otherwise. For any

A running in time ∆,

AdvDDHGq (A) := |Pr
[
(x, y)←R (Zq)2; (X,Y, Z)← (gx, gy, gxy) : A(X,Y, Z) = 1]

− Pr
[
(x, y, z)←R (Zq)3; (X,Y, Z)← (gx, gy, gz) : A(X,Y, Z) = 1] |

Assumption 1 (The DDH Assumption). For any PPT adversary A, AdvDDHGq
(A) is negligible in

κ.

2.3 Cryptographic Tools

Non-Interactive Simulation-Sound Zero-Knowledge Proofs—NIZK. We use NIZK proofs

in our protocols to assure that the protocol messages are well-formed. An NIZK proof system for

language L is a triple of algorithms consisting of a prover P, a verifier V and a simulator S. As

defined in [8], a proof system is (TS , qP , εZK , εSS)-simulation-sound zero-knowledge, if there is a

simulator S running in time TS which answers up to qP prover queries on adversary’s choice such

that statistical difference between the view of an interaction with S and an interaction with the

real prover is at most εZK , and the probability that any adversary interacting with S outputs a

correct proof on a new false statement is at most εSS . The following proof systems are used in our

7

protocol:

LiS1 = {(a, b, ā) ∈ (Gq)
3|∃k ∈ Zq s.t. (a, b, ā) = (gk, (cp)

k, (ḡ)k)}

LC = {(a, e, cp̃, dp̃, ĉp̃, d̂p̃) ∈ (Gq)
6 | ∃(rp̃, p̃) ∈ (Zq)2 s.t.

(e, cp̃, dp̃, ĉp̃, d̂p̃) = (arp̃ , grp̃ , yrp̃hp̃, (ĝ)rp̃ , (ŷ)rp̃(ĥ)p̃)}
LiS2 = {(z, a, δ, P) ∈ (Gq)

4 | ∃(k, x) ∈ (Zq)2 s.t. (yi, a, z) = (gx, gk, δkP−x)}

These proof systems are generalizations of Schnorr’s proof of discrete logarithm knowledge [35]

and Chaum’s proof of equality of discrete logarithms [20]; see also [18, 37]. Prover P essentially

proves that appropriate secrets are used while computing values according to the protocol. Auxiliary

generators ḡ, ĝ, ŷ, ĥ allow to avoid the need for proof of knowledge and enable an efficient simulation

of the protocol [8]. These proof systems achieve error bounds εZK = (qP · qH)/q and εSS = qH/q,

where qH is an upper bound on the number of adversary’s queries to random oracles (hashes). The

simulators’ running time is the same as that of the provers.

Distributed Key Generation—DKG. The distributed key generation (DKG) allows n servers

to generate a random value in a distributed fashion. We refer to the DKG protocol proposed by

Gennaro et al. [24], which requires at most n2 + 5n + 2 exponentiations per server and has the

following properties provided that n ≥ 2t+ 1:

- any subset of honest servers of size t+ 1 defines the same unique secret key k,

- all honest parties have the same public key K = gk,

- the shared secret k is uniformly distributed at random in Zq.
The DKG protocol consists of two phases: a secret sharing of two random polynomials by each

party via Pedersen’s verifiable secret sharing (VSS) [34] and extracting a generated unique value via

Feldman’s VSS [22]. The protocol requires pair-wise secure and authenticated channels between the

servers. Toward security analysis, a simulation of their DKG protocol [24] can be done efficiently;

the simulator knows all of the adversary’s secret values as the adversary provides enough secret

shares of her polynomials to the honest parties (remember that t < n/2).

3 The T-PAKEDKG Protocol

Given the efficiency of the PPSS [8] protocol, we use its password protection and verification

techniques towards our protocol construction. PPSS, however, cannot tolerate any fault, and does

not allow servers to learn if the password is correct or not. We perform communication among

the servers using a broadcast channel to allow them to learn whether the password is correct. In

order to tolerate servers faults, we replace independent randomness generation with a DKG-based

threshold randomness generation, which results in our T-PAKEDKG protocol described below.

Setup. Given a generator g ∈ Gq, n servers {S1, S2, . . . , Sn} with their respective indices {I1, . . . , In},
and a threshold t, the setup protocol generates a shared secret x ← Zq and a public key y = gx

such that each server Si obtains a secret share xi ∈ Zq and the corresponding public key yi = gxi

and any subset of the servers I of size greater than t can reconstruct the secret x =
∑

Ii∈I λixi,

where λi are Lagrange interpolation coefficients.

8

Setup (on public parameters g, q, n, t):

x←R Zq, y ← gx, {xi}ni=1

(t+1,n)←−−−− SS(x), (h, ĝ, ĥ, ŷ, ḡ)← (Gq)
5, {yi ← gxi}ni=1.

Client initialization (on public parameters g, y, h and password p): rp ←R Zq,
(cp, dp)← (grp , yrphp).

Public information: g, h, y, {yj}nj=1, ĝ, ĥ, ŷ, ḡ, (cp, dp).

Private keys: {xi}ni=1. Server Si has a private key xi.

Batch offline (before Client Login): (K := gk, {ki}ni=1)
(t+1,n)←−−−− DKG. Server Si receives ki.

Client Login:

C1 (Client C) Send (C, I = 〈I1, . . . , In〉) to the server Si for all Ii ∈ I.

S1 (Server Si) Compute: (ai, bi, āi)← (gki , (cp)
ki , ḡki), π1i ← ProveS1((ai, bi, āi), ki).

Broadcast: (ai, bi, āi, π1i), Send (ai, bi, āi, π1i) to the client C.

C2 (Client C) IC ← {i | VerifyS1((ai, bi, āi), (π1i))}i∈I . If |IC | < t+ 1 then Abort.

Pick (x̃, rp̃)←R (Zq)2. Compute: ỹ ← gx̃, {ei ← (ai)
rp̃}i∈IC ,

cβ ←
∏
i∈IC (bi/ei)

λi,IC , (cp̃, dp̃, ĉp̃, d̂p̃)← (grp̃ , yrp̃hp̃, (ĝ)rp̃ , (ŷ)rp̃(ĥ)p̃),

K ←
∏
i∈IC a

λi,IC
i , { τi ← 〈ỹ, ai,K〉,

π2i ← ProveC((ai, ei, cp̃, dp̃, ĉp̃, d̂p̃), (rp̃, p̃)), ỹi ← (yi)
x̃, k̃i ← (ai)

x̃,

SKi ← H0(τi, ỹi, k̃i) }i∈IC .

Send (ỹ, cβ, ei, (cp̃, dp̃), (ĉp̃, d̂p̃), π2i) to server Si for all i ∈ IC .

S2 (Server Si) ISi ← {j | VerifyS1((aj , bj , āj), (π1j))}j∈I .
If ¬VerifyC((ai, ei, cp̃, dp̃, ĉp̃, d̂p̃), (π2i)), then Abort. τi ← 〈ỹ, ai,K〉.
Compute: wi ← (cβ)xi , dβi ← (dp/dp̃)

ki , zi ← dβi/wi,

π3i ← ProveS2((zi, ai, dp/dp̃, cβ), (ki, xi)). Broadcast (zi, π3i).

S3 (Server Si) I ′Si ← {j | VerifyS2((zj), (π3j))}j∈ISi . If |I ′Si | < t+ 1 then Abort. If∏
j∈I′Si

(zj)
λj,I′

Si 6= 1 then Abort.

Compute: ỹi ← ỹxi , k̃i ← ỹki , SKi ← H0(τi, ỹi, k̃i).

Figure 1: Protocol: T-PAKEDKG

We can assume that these values are generated by a trusted dealer using Shamir secret sharing

SS(·) [36]; however, it can easily be done in a completely distributed fashion using DKG. We also

require random generators h, ĝ, ĥ, ŷ, ḡ of Gq as additional public parameters. Let H0 ←R Ω be a

random oracle with domain and range defined by the context of its use, where Ω denotes the set of

all functions H from {0, 1}∗ to {0, 1}∞, as defined in [32]. The adversary does not participate in

the setup phase.

Client Initialization. A password p for a client C is transfered to servers as an ElGamal-like

encryption (cp, dp)← (grp , yrphp) with rp ←R Zq. Notice that no private information is required to

generate (cp, dp), and we assume that it is known to the adversary.

9

Client Login. A client C receives as input a set I of n servers and sends a trigger message

to each of them. Upon a trigger message, the server Si broadcasts (and responds separately to

the client C with) (ai, bi, āi) ← (gki , (cp)
ki , ḡki), while ki ← DKG(I, t + 1, n) values are kept

secret until the protocol completion and are deleted afterwards. Note that the DKG instances

are ran as a background process, and the servers keep ki values ready before a protocol instance

starts. The client collects all servers’ messages and prepares an answer for each server separately.

First, he adds his fresh randomness rp̃ ← Zq to each ai as ei ← (ai)
rp̃ . Second, he prepares

cβ ←
∏
i∈IC (bi/ei)

λi,IC which will be used in threshold-decryption on servers’ side, where λi,IC
denotes a Lagrange coefficient for the server Si from the set IC . Third, the client encrypts the

password as (cp̃, dp̃) ← (grp̃ , yrp̃hp̃), where p̃ is his (possibly) correct password and of course kept

secret. At last, the client generates a fresh key pair x̃ ← Zq, ỹ ← gx̃ for the key exchange with

servers.

Upon receiving a message from the client, each server Si broadcasts its partial decryption as zi.

The following holds: zi = dβi/wi = (dp/dp̃)
ki · (cβ)−xi = (yrp−rp̃hp−p̃)ki · (cβ)−xi . Upon receiving

broadcast messages, each server Si calculates the following value:

z̄ =
∏
j∈I′Si

(zj)
λj,I′

Si = (yrp−rp̃hp−p̃)

∑
j∈I′

Si

λjkj
· (cβ)

∑
j∈I′

Si

(−λjxj)

= (yrp−rp̃hp−p̃)k · (cβ)−x = (yrp−rp̃hp−p̃)k · (g(rp−rp̃)
∑
j∈IC

kjλj)−x = h(p−p̃)k.

If the password is correct, i.e. p = p̃, then z̄ evaluates to 1, otherwise it is a random value. Thus,

z̄ does not leak any information about the password (except for its correctness), as it includes

randomness generated using DKG which is discarded immediately after the T-PAKE instance.

Once correctness of the password is verified, each server Si computes a session key SKi. The

session key is obtained by applying a random oracle hash function H0 on DH tuples computed

using the client’s challenge public key ỹ = gx̃, the public key yi = gxi and the DKG share ai = gki

of server Si. All communication between the client and the servers as well as all broadcast messages

are accompanied by the appropriate NIZK proofs of correct computations (refer to Section 2.3). In

Figure 1, we present the complete T-PAKEDKG protocol. Notice that it requires two broadcasts, as

in the T-PAKEDKG compromised servers share enough information to the honest servers and dβj
values can be easily simulated as long as n ≥ 2t+ 1.

Assuming that the adversary compromises at most t servers, the protocol maintains security as

well as the completion guarantee for n ≥ 2t+ 1; i.e., to complete a protocol instance, t+ 1 honest

servers should be online. For n < 2t+1 the protocol is still secure, however its completion guarantee

reduces to that of T-PAKE in [32]. As a client may contact fewer than n servers during his T-PAKE

authentication instance, during a T-PAKEDKG execution in a multi-client system, it is important

to ensure that the same DKG instance employed by every participating server. Assuming that

the employed broadcast primitive sends every message to all (participating and non-participating)

servers, this DKG synchronization can be trivially achieved.

Although our T-PAKEDKG protocol employs the same password protection and verification

techniques as the PPSS protocol [8], the two protocols differ significantly. Along with the already

discussed conceptual differences, the two constructions also differ technically in the following two

ways:

10

i) In T-PAKEDKG, the servers send zi values in unencrypted form as these values cannot relieve

any information about the password once the ki values are discarded.

ii) The reconstruction step of PPSS is not executed by a client; it is rather executed by each

server in T-PAKEDKG to verify the client password.

4 Security Analysis

A secure T-PAKE protocol requires that an adversary cannot determine session keys with signif-

icantly better advantage than that of an online dictionary attack. In this section, we prove that

T-PAKEDKG is secure under the DDH assumption in the random-oracle model given that the ad-

versary can statically corrupt up to t out of n servers. The security proof goes essentially similar

to one of [32].

4.1 Security Proof

Theorem 4.1. Let P be the protocol T-PAKEDKG with n servers described in Figure 1, using

group Gq, and with a password dictionary of size N (that may be into Z∗q). Fix an adversary A
that runs in time ∆, makes nex, nre queries of type Execute, Reveal, respectively, makes nro
queries to the random oracles, and starts at most nin client and server instances. Then for ∆′ =

O(∆ + (nro + nnin + n2nex)∆exp), where ∆exp is the time-cost of a single exponentiation:

AdvdakeP (A) ≤ nin
N

+O(n(nex + nin)) ·AdvDDHGq (∆′)

+O

(
n(nin + nnex)(nex + ninnro)

q

)
Proof. We introduce series of protocols P0, P1,. . . ,P9 (see Figure 2) and show that the difference

between the advantage of A attacking protocols Pi and Pi+1 is negligible. Below, we give informal

description of the protocol reductions, and later provide the details.

P0 → P1: The probability of a collision of nonces is negligible.

P1 → P2: The simulation of SS-NIZNPs is statistically indistinguishable from the real proofs,

except for a simulation error, which is negligible.

P2 → P3: This can be shown using a reduction from DDH. On input (X,Y, Z), we plug in

random powers of Y for the global public key K generated by DKG, and random powers of X for

the clients’ ỹ values, and then check H0 queries for appropriate powers of Z.

P3 → P4: This can be shown using a reduction from DDH. On input (X,Y, Z), we plug in

random powers of Y for ŷ, random powers of X for ĉp̃, and d̂p̃ contains Z values. If (X,Y, Z) is a

true DH tuple, then all values are of correct form. Otherwise d̂p̃ is a random value.

P4 → P5: This is straightforward, since the view of the adversary is indistinguishable in these

two protocols.

P5 → P6: This is straightforward, since this could only increase the probability of the adversary

succeeding. Below we will use the fact that DLogĝ(ĥ) is known, and that zi value computed when

authenticating a client’s dp̃ value by an uncompromised server does not use the secret share of that

server.

11

P0 The original protocol T-PAKEDKG.

P1 Nonces are distinct.

P2 ZK proofs are simulated.

P3 Key exchange is replaced with a perfect key exchange.

P4 Value d̂p̃ from a client is replaced with a random value.

P5 Authentication of an honest client is changed so that uncompromised servers compute zi
values without using their secret shares. Also, value ŷ is generated with a known discrete
log.

P6 The adversary succeeds if it ever sends a dp̃ value associated with a correct password.

P7 On any adversary login attempt for C, dβi and zi values are replaced with random values.

P8 dp̃ value from an honest client is replaced with a random value.

P9 In initialization procedure, (cp, dp) values are replaced with random values.

Figure 2: Informal description of the protocols P0 through P9

P6 → P7: This can be shown using a reduction from DDH. On input (X,Y, Z), we plug Y in

for y, random powers of X for ai, and construct dβi and zi in such way that they include Z. If

(X,Y, Z) is a true DH tuple, then all values are of correct form. Otherwise dβi and zi are random

values.

P7 → P8: This can be shown using a reduction from DDH. On input (X,Y, Z), we plug Y in for

y, random powers of X for cp̃, and construct dp̃ value in such way that it contains Z. If (X,Y, Z)

is a true DH tuple, then all values are of correct form. Otherwise dp̃ is a random value.

P8 → P9: This can be shown using a reduction from DDH. On input (X,Y, Z), we plug Y in

for cp, X for y, and construct dp in such way that it contains Z. If (X,Y, Z) is a true DH tuple,

then all values are of correct form. Otherwise dp is a random value.

Let J be a set a corrupted servers. For any uncompromised server i, Ji = J ∪ {i}.

Protocol P1. Let E be the event that one or more clients generate the same ỹ value in different

queries to a client in step C2 (let’s call it E1), or that DKG for ki values generates the same global

value gk in two different instances (E2), or that a server Si holds the same ki value in two different

instances (E3), or that in the initialization procedure two servers receive (generate) the same values

yi and yj (E4). Let P1 be a protocol that is identical to P0 except that if E occurs, the protocol

aborts (and thus the adversary fails).

Note that if E does not occur, the it will never be the case that A makes a Reveal(C, i, Sj)

query where ΠC
i generated key skiC,Sj = H0(τj , ỹj , k̃j) or a Reveal(Sj , i) query where Π

Sj
i generated

key skiSj = H0(τj , ỹj , k̃j), and there is another client or server instance that generates a key using

H0(τj , ỹj , k̃j) that is not a partner to the instance corresponding to the Reveal query.

Claim 4.2. For any adversary A,

AdvdakeP0
(A) ≤ AdvdakeP1

(A) +
O(n2 + (nin + (n+ 1)nex)2)

q
.

12

Proof. The probability that two server keys yi and yj are equal is bounded by P [E4] ≤
1

q
+ . . . +

n− 1

q
=
O(n2)

q
. Similarly, P [E3] ≤

O((nnex)2)

q
. Here we rely on fact that at least one honest

server participates in generating ki value (although we consider DKG as a black-box). Finally,

P [E1] ≤
O((nin + nex)2)

q
and P [E2] ≤

O((nin + nex)2)

q
.

Protocol P2. Let P2 be a protocol that is identical to P1 except that ZK proofs (LiS1,LC ,LiS2)
are simulated. If simulation of ZK fails, P2 aborts.

Claim 4.3. For any adversary A,

AdvdakeP1
(A) ≤ AdvdakeP2

+
O((nin + nnex)(nro + nin + nnex))

q
.

Proof. P2 and P1 are statistically indistiguishable except for the case when simulation of ZK fails.

This is bounded by

SimerrS1(nro, nin + nnex) + SimerrC(nro, nin + nex) + SimerrS2(nro, nin + nnex)

≤ (nin + nnex)(nro + nin + nnex)

q
+

(nin + nex)(nro + nin + nex)

q2

+
(nin + nnex)(nro + nin + nnex)

q2
≤ 3(nin + nnex)(nro + nin + nnex)

q
.

Simulation Soundness. We define Fraud as the event that the adversary is able to provide a

valid proof for a statement that does not satisfy the particular relation corresponding to that type

of SS-NIZKP. Let E1, E2 and E3 be such events for LS1, LC , LiS2. Let Fraud = E1 ∨ E2 ∨ E3.

Claim 4.4. For any adversary A running against P3,

Pr(Fraud) = εSS ≤
3nnin(nro + 1)

q
.

Proof. The proof of Claim 4.4 is similar to the proof of Claim 5.5 in [32]. Let ε be the probability that

E1 occurs when A is running against protocol P2. We construct an algorithm D that simulates P2

with the following changes: D guesses which server query will cause E1 to occur, and on that query

D outputs the pair ((aj , bj , āj), π1j) associated with that query and halts. D outputs a valid proof

that doesn’t satisfy LS1 with probability ε
nnin

. This implies SerrS1(nro, nin + nex) ≥ ε
nnin

, where

Serr(nro, npr) is the soundness error of the corresponding ZK protocol given nro random oracle

queries and npr proof queries. For this protocol, SerrS1 ≤
nro + 1

q
, so Pr[E1] ≤

nnin(nro + 1)

q
.

In a similar way, we can show that Pr[E2] ≤
nin(nro + 1)

q
, and Pr[E3] ≤

nnin(nro + 1)

q
.

13

Protocol P3. Let E be the event that A makes an H0(τi, ỹi, k̃i) query for a value k̃i = DH(ỹ, ai)

for some ai belonging to an uncompromised server Si, and for some ỹ generated in a query to a

client C that generated τi, where ỹi may have any value. Let P3 be a protocol that is identical to

P2 except if E occurs, the protocol aborts, and we say adversary fails.

Claim 4.5. For any adversary A running in time ∆, there is a ∆′ = O(∆+(nro+nnin+n2nex)∆exp)

such that

AdvdakeP2
(A) ≤ AdvdakeP3

(A) + 2AdvDDHGq (∆′) +
O(nin + nex + nron)

q
.

Proof. Proof of Claim 4.5 is similar to the proof of Claim 5.3 in [32]. Let ε be the probability that

E occurs when A is running against protocol P2. Then Pr(SuccdakeP2
) ≤ Pr(SuccdakeP3

(A)) + ε, and

thus by Fact 2.1, AdvdakeP2
≤ AdvdakeP3

+ 2ε.

We construct an algorithm D that tries to distinguish between valid DH triples and random

triples by running A on a simulation of the protocol. Given triple (X,Y, Z), D simulates P2 for A
with the following changes:

1. In the initialization phase, ḡ ← gr0 , where r0 ←R Zq.

2. In the batch offline phase, replace DKG for ki values with a simulation: K ← Y φ, where

φ←R Zq, and for each uncompromised server Si,

ai ←

(
Y φ∏

j∈J g
kj ·λj,Ji

)(λi,Ji)
−1

.

3. In step S1 in a query to an uncompromised server Si, use ai generated in a simulation of

DKG, bi ← a
rp
i , ā← ar0i .

4. In step C2 in a query to a client C, ỹ ← Xψ, where ψ ←R Zq. Then for each uncompromised

server Si, SKi ←R {0, 1}κ.

5. In step S2 in a query to an uncompromised server Si, dβi ←
(
bi
ei

)x
.

6. In step S3 in a query to an uncompromised server Si, if ỹ was generated in a query to a client

C, SK ← SKi for the SKi value generated by that query.

7. In step S3 in an H0 query, if the query is (τi, ỹi,

(
Zψφ∏

j∈J ỹ
tjλj,Ji

)(λi,Ji)
−1

), for τi, φ generated

in a query to a client C, and ψ generated in the pre-initialization phase for uncompromised

server Si, and ỹi being any value, D outputs 1 and halts.

8. If A finishes, D outputs 0 and halts.

If (X,Y, Z) is a DH triple, this simulation is perfectly indistinguishable from P2 until E occurs,

when the simulation halts and D outputs 1. If (X,Y, Z) is a random triple, then D outputs 1

only if A happens to query H0 with a third parameter equal to Zψφ. This could happen if ψ or

φ generated by the simulation is zero, or if none of them is zero but the Z value is such that one

of the nro queries made by the adversary to H0 has a third parameter equal to Zψφ. The former

14

probability is at most nin+nex
q , and the latter is at most nron

q . Let ∆′ be the running time of D,

and note that ∆′ = O(∆ + (nro + nnin + n2nex)∆exp). The advantage of D is

AdvDDHGq (D) = Pr[D outputs 1|DH triple]− Pr[D outputs 0|DH triple]

≥ ε− nin + nex + nron

q

The claim follows from the fact that AdvDDHGq
(D) ≤ AdvDDHGq

(∆′).

Protocol P4. Let P4 be a protocol that is identical to P3 except that d̂p̃ is replaced with a random

value.

Claim 4.6. For any adversary A running in time ∆, there is a ∆′ = O(∆+(nro+nnin+n2nex)∆exp)

such that

AdvdakeP3
(A) ≤ AdvdakeP4

(A) + 2(nin + nex)

(
AdvDDHGq (∆′) +

3nnin(nro + 1)

q
+

1

q

)
.

Proof. We use a hybrid argument over nin + nex sessions. For each l ∈ [0, nin + nex], we define an

intermediate protocol P l3 which follows P4 on the first l sessions, and on the remaining sessions it

follows P3. Clearly, P 0
3 ≡ P3 and Pnin+nex3 ≡ P4.

Let’s consider sessions l and l+ 1. Assume Advdake
P l3

= Advdake
P l+1
3

+2ε. By Fact 2.1, it follows that

Pr(Succdake
P l3

(A)) = Pr(Succdake
P l+1
3

(A)) + ε.

We construct an algorithm D that tries to distinguish between valid DH and random triples by

running A on a simulation of the protocol.

Given (X,Y, Z), D simulates P l+1
3 with the following changes:

1. In the initialization phase, ĝ ← gr0 , ḡ ← Xr1 , ŷ ← Y , where (r0, r1)←R (Zq)2.
2. In step C2 in a query to a client C, cp̃ ← X1/r0 , dp̃ ← Xx/r0hp̃, ĉp̃ ← X, d̂p̃ ← Z1/r0 ĥp̃, and

for each server Sj , ej ← (āj)
1/(r0r1).

3. If A succeeds the simulation, D outputs 1, else D outputs 0 and halts.

If (X,Y, Z) is a true DH triple, then D is statistically indistinguishable from P l3, because values

from a client are correctly computed, with rp̃ = a/r0 and x̂ = DH(ĝ, ŷ) = b/r0. Note there is a εSS
probability that simulation of proofs fails. If (X,Y, Z) is a random triple, then D is statistically

indistinguishable from P l+1
3 .

Let ∆′ be the running time of D, and note that ∆′ = O(∆ + (nro + nnin + n2nex)∆exp). The

advantage of D is

AdvDDHGq (D) = Pr[D outputs 1|DH triple]− Pr[D outputs 1|random triple]

≥ Pr[Succdake
P l3

(A)]− εSS − Pr[SuccdakeP l+1
3

(A)]− 1

q
= ε− εSS −

1

q
.

The claim follows from the fact that AdvDDHGq
(D) ≤ AdvDDHGq

(∆′).

Protocol P5. Let P5 be a protocol that is identical to P4 except for the following:

1. In the initialization phase, x̂← Zq is generated, ŷ ← (ĝ)x̂.

15

2. In step C2 in a query to a client C, dp̃ ← yrp̃hp, d̂p̃ ← (ŷ)rp̃(ĥ)p.

3. In step S2 in a query to an uncompromised server Si that uses a dp̃ value produced in a client

query (i.e., (d̂p̃/(ĉp̃)
x̂) = (ĥ)p), zi ←

(∏
j∈J

(
dβj
cβxj

)λj,Ji)−1/λi,Ji
. Note that this computation

does not rely on the secret keys xi or ki of uncompromised servers. Also, note that tj values of

compromised servers are known to the system since the adversary gives enough shares during

a DKG run to at least t + 1 uncompromised servers. Therefore dβj values can be efficiently

computed provided that n ≥ 2t+ 1.

Claim 4.7. For any adversary A,

AdvdakeP4
(A) ≤ AdvdakeP5

(A) + (nin + nex) · O(nninnro)

q
.

Proof. We use a hybrid argument over nin + nex sessions. For each l ∈ [0, nin + nex], we define an

intermediate protocol P l4 which follows P5 on the first l sessions, and on the remaining sessions it

follows P4. Clearly, P 0
4 ≡ P4 and Pnin+nex4 ≡ P5. Additionally, we introduce a set of cp̃ values used

in the first l sessions to decide whether zj should be real or random. More formally, for session l,

zj ← Zq iff cp̃ ∈ {cmp̃ }lm=1, where cmp̃ denotes cp̃ value in the m-th session.

Let’s consider sessions l and l + 1. We show that if Fraud doesn’t occur, P5 is perfectly indis-

tinguishable from P4. For this we simply need to show that in query to an uncompromised server

Sj , zj values computed in P l4 and P l+1
4 will be the same.

Protocol P6. Let P6 be a protocol that is identical to P5 except that in a query to an uncompro-

mised server Si for a client C and using parameters par∗ = (τi, ei, cβ, cp̃, dp̃, ĉp̃, d̂p̃) where par∗ was

never used in a query to a client C, if (d̂p̃/(ĉp̃)
x̂) = (ĥ)p, then P6 stops and we say that A succeeds.

Claim 4.8. For any adversary A, AdvdakeP5
(A) ≤ AdvdakeP6

(A).

Proof. By having P6 stop and saying that A succeeds, we could only increase the probability of

success of A.

Protocol P7. Let P7 be a protocol that is identical to P6 except for the following:

1. In step S2 in a query to an uncompromised server Si, dβi ← Zq.
2. In step S2 in a query to an uncompromised server Si, that uses values (cp̃, dp̃) not used

in any query to a client C, and that uses a τ ′ value, compute zj as follows. If there is a

(z̄∗, τ ′) pair recorded for this τ ′, use that z̄∗, else choose z̄∗ ←R Zq and record (z̄∗, τ ′). Then

zi ←

(
z̄∗ ·

∏
j∈J

(
cβ
xj

dβj

)λj,Ji)1/λi,Ji

.

Claim 4.9. For any adversary A running in time ∆, there is a ∆′ = O(∆+(nro+nnin+n2nex)∆exp)

such that

AdvdakeP6
(A) ≤ AdvdakeP7

(A) + nnex ·
(

2AdvDDHGq (∆′) +
O(nninnro)

q

)
.

16

Proof. We use hybrid argument over nin + nex sessions. For each l ∈ [0, nin + nex], we define an

intermediate protocol which follows P7 on the first l sessions, and on the remaining sessions it

follows P6. Clearly, P 0
6 ≡ P6 and Pnin+nex6 ≡ P7.

Let’s consider sessions l and l+ 1. Assume Advdake
P l6

= Advdake
P l+1
6

+2ε. By Fact 2.1, it follows that

Pr(Succdake
P l6

(A)) = Pr(Succdake
P l+1
6

(A)) + ε.

We construct an algorithm D that tries to distinguish between valid DH and random triples by

running A on a simulation of the protocol. Given (X,Y, Z), D simulates P l+1
6 with the following

changes:

1. In the initialization phase, (y, h, ĥ, ḡ, ĝ)← (Y, Y r0 , Zr1 , gr2 , Zr3), where r0, r1, r2, r3 ← Zq.
2. In the batch offline phase, replace DKG for ki values with a simulation: K ← X, and for

each uncompromised server Si,

ai ←

(
X∏

j∈J g
kj ·λj,Ji

)(λi,Ji)
−1

.

3. In step S1 in a query to an uncompromised server Si, (bi, āi)← (ai
rp , ai

r2).

4. In step S2 in a query to an uncompromised server Si,

dβi ←

 Zr0p · Zrp∏
j∈J dp

kj ·λj,Ji
·

∏
j∈J dp̃

kj ·λj,Ji(
d̂p̃/(ĉp̃)x̂

)r0/r1
· (ĉp̃)1/r3


(λi,Ji)

−1

.

5. In step S2 in a query to an uncompromised server Si,

zi ← dβi ·

(∏
j∈J cβ

xj ·λj,Ji

Zrp · (ĉp̃)−1/r3

)(λi,Ji)
−1

.

We show that if Fraud does not occur, when (X,Y, Z) is a DH triple, then the simulation of the

server query (for dβi) is statistically indistinguishable from the server query (for dβi) in P l6. When

(X,Y, Z) is a random triple, then the simulation of the server query (for dβi) is statistically indis-

tinguishable from the server query in P l+1
6 , the statistical difference coming from the 1

q probability

that (X,Y, Z) is actually a DH triple, and probability that Fraud occurs.

17

Assume a client C tries to authenticate. Without loss of generality, we may assume that:

(cp, dp) = (grp , yrphp), (aj , bj , āj) = (gkj , grpkj , ḡkj),

(cp̃, dp̃) = (grp̃ , yrp̃hp̃), (ĉp̃, d̂p̃) = (ĝrp̃ , (ŷ)rp̃(ĥ)p̃), ej = gkjrp̃ ,

cβ =
∏
j∈IC

(
bj
ej

)λj,IC
=
∏
j∈IC

(
grpkj

gkjrp̃

)λj,IC
= g(rp−rp̃)

∑
j∈I λj,IC kj = g(rp−rp̃)k,

dβj =

(
dp
dp̃

)kj
=

(
yrphp

yrp̃hp̃

)kj
= (yrp−rp̃hp−p̃)kj ,

zj =
dβj

(cβ)xj
=

(yrp−rp̃hp−p̃)kj

g(rp−rp̃)kxj
,

z̄ =
∏
j∈ISi

(zj)
λj,ISi =

∏
j∈ISi

(
(yrp−rp̃hp−p̃)kj

g(rp−rp̃)kxj

)λj,ISi

=
(yrp−rp̃hp−p̃)

∑
j∈ISi

λj,ISi
kj

(g(rp−rp̃)k)
∑
j∈ISi

λj,ISi
xj

=
(yrp−rp̃hp−p̃)k

g(rp−rp̃)kx
=
y(rp−rp̃)kh(p−p̃)k

y(rp−rp̃)k
= h(p−p̃)k,

for some rp̃, {kj}j∈I , p̃ ∈ Zq and k value generated by DKG.

If Fraud does not occur, when (X,Y, Z) is drawn from the set of DH triples, dβj = (yrp−rp̃hp−p̃)kj ,

zj =
(yrp−rp̃hp−p̃)kj

g(rp−rp̃)kxj
and z̄ = Zr0(p−p̃) = h(p−p̃)k, as in P l6, . When (X,Y, Z) is drawn from the set

of random triples, di and zi are random correlated with other servers values, as in P l+1
6 .

Let ∆′ be the running time for D, and note that ∆′ = O(∆ + (nro + nnin + n2nex)∆exp). The

advantage of D is

AdvDDHGq (D) = Pr[D outputs 1|DH triple]− Pr[D outputs 1|random triple]

≥ Pr[Succdake
P l6

(A)]− 3nnin(nro + 1)

q

− Pr[Succdake
P l+1
6

(A)]− 1

q
− 3nnin(nro + 1)

q

= ε− 1

q
− 6nnin(nro + 1)

q
.

The claim follows from the fact that AdvDDHGq
(D) ≤ AdvDDHGq

(∆′).

Protocol P8. Let P8 be a protocol that is identical to P7 except that in a query to a client C, dp̃
value is replaced with a random value.

Claim 4.10. For any adversary A running in time ∆, there is a ∆′ = O(∆ + (nro + nnin +

18

n2nex)∆exp) such that

AdvdakeP7
(A) ≤ AdvdakeP8

(A) + (nin + nex) ·
(

2AdvDDHGq (∆′) +
O(nninnro)

q

)
.

Proof. We use a hybrid argument over nin + nex sessions. For each l ∈ [0, nin + nex], we define

an intermadiate protocol which follows P7 on the first l sessions, and on the remaining sessions it

follows P8. Clearly, P 0
7 ≡ P7 and Pnin+nex7 ≡ P8.

Let’s consider sessions l and l+ 1. Assume Advdake
P l7

= Advdake
P l+1
7

+2ε. By Fact 2.1, it follows that

Pr(Succdake
P l7

(A)) = Pr(Succdake
P l+1
7

(A)) + ε.

We construct an algorithm D that tries to distinguish between DH and random triples. Given

triple (X,Y, Z), D simulates P l+1
8 with the following changes:

1. In the initialization phase, (ĝ, ḡ)← (gr0 , gr1), y ← Y and ŷ = (ĝ)x̂.

2. In step C2 in a query to a client C, cp̃ ← X, dp̃ ← Z · hp, ĉp̃ ← Xr0 , d̂p̃ ← (ĉp̃)
x̂(ĥ)p, and

ej ← (āj)
1/r0 .

When (X,Y, Z) is drawn from the set of DH triples, the simulation is statistically indistinguish-

able from P l7, the statistical difference coming from probability that Fraud occurs. When (X,Y, Z)

is a random triple, the simulation is statistically indistinguishable from P l+1
7 , the statistical differ-

ence coming from the probability that Fraud occurs, and 1
q the probability that (X,Y, Z) is actually

a DH triple.

Let ∆′ be the running time for D, and note that ∆′ = O(∆ + (nro + nnin + n2nex)∆exp). The

advantage of D is

AdvDDHGq (D) = Pr[D outputs 1|DH triple]− Pr[D outputs 1|random triple]

≥ Pr[Succdake
P l7

(A)]− 3nnin(nro + 1)

q

− Pr[Succdake
P l+1
7

(A)]− 1

q
− 3nnin(nro + 1)

q

= ε− 1

q
− 6nnin(nro + 1)

q
.

The claim follows from the fact that AdvDDHGq
(D) ≤ AdvDDHGq

(∆′).

Protocol P9. Let P9 be a protocol that is identical to P8 except that in the initialization phase

(cp, dp) values are replaced with random values.

Claim 4.11. For any adversary A running in time ∆, there is a ∆′ = O(∆ + (nro + nnin +

n2nex)∆exp) such that

AdvdakeP8
(A) ≤ AdvdakeP9

(A) + 2AdvDDHGq (∆′) +
O(nninnro)

q
.

Proof. We construct an algorithm D that tries to distinguish between DH and random triples.

Given triple (X,Y, Z), D simulates P8 with the following changes: in the initialization procedure,

y ← X, (cp, dp)← (Y,Z · hp).

19

When (X,Y, Z) is drawn from the set of DH triples, the simulation is statistically indistin-

guishable from P8, the statistical difference coming from the probability that Fraud occurs. When

(X,Y, Z) is a random triple, the simulation is statistically indistinguishable from P9, the statistical

difference coming from the probability that Fraud occurs, and 1
q the probability that (X,Y, Z) is

actually a DH triple.

Let ∆′ be the running time for D, and note that ∆′ = O(∆ + (nro + nnin + n2nex)∆exp). The

advantage of D is

AdvDDHGq (D) = Pr[D outputs 1|DH triple]− Pr[D outputs 1|random triple]

≥ Pr[SuccdakeP8
(A)]− 3nnin(nro + 1)

q

− Pr[SuccdakeP9
(A)]− 1

q
− 3nnin(nro + 1)

q

= ε− 1

q
− 6nnin(nro + 1)

q
.

The claim follows from the fact that AdvDDHGq
(D) ≤ AdvDDHGq

(∆′).

In P9, authentication from an honest client will be accepted and no information about the ses-

sions keys is leaked. Adversaries’ attempts will be responded with random values (with probability
1
q that these values hit a correct value that matches a correct password), unless she guesses a pass-

word correctly. Let E be the event that Fraud occurs, A succeeds in a password guess (as defined

in P6), or random values (as defined in P7) hit a correct ones.

Pr[SuccdakeP9
(A)] ≤ Pr[SuccdakeP9

(A)|E] · Pr[E]

+ Pr[SuccdakeP9
(A)|¬E] · (1− Pr[E])

≤ Pr[E] +
1

2
(1− Pr[E])

=
1

2
+
Pr[E]

2
≤ 1

2
+
nin
2N

+
nin
2q

+
3nnin(nro + 1)

2q
,

which implies AdvdakeP9
(A) ≤ nin

N
+
nin
q

+
3nnin(nro + 1)

q
.

The theorem follows from this fact, along with claims 4.2 through 4.11.

4.2 Forward Secrecy

Unlike the previous T-PAKE protocols [8,32], our protocol provides immediate forward secrecy; i.e.,

a protocol instance becomes forward secret once the random values used by the honest participants

are erased.

Intuitively, immediate forward secrecy arrives from the fact that a session key is generated by

the DH function involving random elements (gki , gx̃) coming both from the server Si and the client

C. To formally prove it, we can introduce additional Corrupt queries to capture a corruption

model of the adversary, as it is done in [30]. Three corruption scenarios are possible for T-PAKE:

i) the client password is leaked to the adversary (i.e., an oracle Corrupt1(C) returns a password

pC for C ∈ Clients); ii) the password verification data (cp, dp) at the server Si is replaced with a

20

Computation Time Response Time
Setting Server Client Client

n = 3, t = 1 44± 3 35± 1 72± 3
n = 5, t = 2 58± 5 56± 1 99± 4

Table 2: The average server and the client computation time (excluding the DKG computation time),
and the average client response time for the T-PAKEDKG protocol (in msec)

Batch size
Setting 1 10 10 1000

n = 3, t = 1 8± 3 62± 7 620± 20 6080± 190
n = 5, t = 2 28± 6 130± 13 1100± 40 10900± 300

Table 3: Computations time (per server) for the DKG protocol [24] various batch sizes (in msec)

value of the adversary’s choice (i.e., an oracle Corrupt2(Si, C, (c′p, d
′
p)) replaces the stored (cp, dp)

on the server Si with (c′p, d
′
p)); iii) the private key share xi is leaked to the adversary (i.e., an oracle

Corrupt3(Si) returns xi belonging to the server Si, which allows the adversary to reconstruct x).

In cases when the adversary uses the Corrupt queries to ensure that the partnered client and server

instances are associated with the same password verification data, we would have to update the

“freshness” and “partnering” definitions. The adversary advantage would also have to be defined

based on the updated model and it should not be significantly greater than that with an online

dictionary attack.

5 Implementation and Performance Analysis

We have implemented our T-PAKEDKG protocol from Section 3 as well as the DKG protocol [24]

(which is required in the batched and offline fashion) and performed micro-benchmarks to verify its

performance in the LAN setting. In this section, we discuss our implementation and experiments,

and analyze the performance of T-PAKEDKG.

5.1 Implementation and Experiments

Our T-PAKEDKG implementation is a single-threaded C++ program. It uses the GMP library [1]

for all large finite-field computations, and the Relic toolkit [6] for elliptic curve cryptography (ECC)

with 128-bit security. It employes the Boost [3] library for performing the network-level communica-

tion between servers and clients, and the OpenSSL [4] library for secure communication among the

servers required for the DKG protocol. An anonymized version of our implementation is available

online [2].

For our experiments, we used six 3.30 GHz (Intel i3) Linux machines with 8 GB RAM connected

using a 1 Gbps LAN. We run experiments for the 3-server (i.e., n = 3 and t = 1), and 5-server (i.e.,

n = 5 and t = 2) settings.

In order to determine an average performance, we ran the experiments at least ten times for

each parameter set. Our experiments are terminating and conducted via the method of independent

replications, where a single replication consists of individual observations corresponding to the time

required for every participating T-PAKE server and the client.

21

5.2 Performance Analysis

The average computation time for a T-PAKEDKG server instance and a T-PAKEDKG client instance,

and the average response time for a client are available in Table 2. For the three-server setting

(n = 3, t = 1), computation costs for the server instance and the client instance are respectively

44 ± 3 msec and 35 ± 1 msec, while the average delay a client experiences due to the T-PAKEDKG

execution is 72± 3 msec. The client delay is smaller than the combined computation costs for the

server and client instances as the server complete their authentication only the client send her final

message. For the five-server setting (n = 5, t = 2), computation costs for the server and client

instances are respectively 58 ± 5 msec and 56 ± 1 msec, while the average delay for the client is

99± 4 msec.

We find that these computations costs (or overheads) for the T-PAKEDKG protocol can easily

be accommodated in the existing password authentication infrastructure. Therefore, we propose

the T-PAKEDKG protocol as a practical password authentication system to tolerate the server

compromises and the subsequent offline dictionary attacks.

Notice that the above time measures do not include the DKG instances; we analyze the perfor-

mance of the DKG instances separately as we expect them to be executed in a batched and off-line

fashion. In Table 3, we present the average per server computation time measures for the DKG

protocol [24] for the batch sizes 1, 10, 100, and 1000 and for two parameter settings (n = 3, t = 1)

and (n = 5, t = 2). From the table, we expect every DKG instance to take approximately 6 msec

for the (n = 3, t = 1) setting, and approximately 10 msec for the (n = 5, t = 2) setting. Therefore,

a DKG instance requires less than 1/5 of time required for a T-PAKEDKG instance.

This performance of the DKG implementation can be further improved using the batched veri-

fication techniques [9] as well as the multi-exponentiations techniques (e.g, using Shamir’s trick [33,

Algo. 14.88]). In the ECC setting, where group inverses come for free, the number of exponen-

tiations can be further reduced using Avanzi’s algorithm [7] based on a sliding windows method.

Moreover, performance for the T-PAKEDKG protocol as well as the DKG protocol can be fur-

ther improved using the multi-threaded implementation. In the future, we will incorporate these

techniques in our implementation.

6 Extensions

In this section, we propose three enhancements for our T-PAKEDKG protocol. We first improve

the three-round T-PAKEDKG protocol to a two-round T-PAKEI
DKG, which instead achieves implicit

authentication. We then extend our T-PAKEDKG and T-PAKEI
DKG protocols to the asynchronous

communication setting. Finally, we propose an enhancement to our protocol setup, using which

the public information size can be reduced linearly in n.

6.1 The Two-round T-PAKEI
DKG Protocol

T-PAKEI
DKG (Figure 3) is a modification of T-PAKEDKG and provides only implicit authentication.

The protocol has only two message flows between a client-server pair. The client sends his fresh

public key ỹ and a commitment to a password (cp̃, dp̃) to all the servers. The servers randomize,

partially decrypt the message to zj and verify if the password was correct or not. Upon a successful

22

Setup (on public parameters g, q, n, t):

x←R Zq, y ← gx, {xi}ni=1

(t+1,n)←−−−− SS(x), (h, ĝ, ĥ, ŷ, ḡ)← (Gq)
5, {yi ← gxi}ni=1.

Client initialization (on public parameters g, y, h and password p): rp ←R Zq,
(cp, dp)← (grp , yrphp).

Public information: g, h, y, {yj}nj=1, ĝ, ĥ, ŷ, ḡ, (cp, dp).

Private keys: {xi}ni=1. Server Si has a private key xi.

Batch offline (before Client Login): (K := gk, {ki}ni=1)
(t+1,n)←−−−− DKG. Server Si receives ki.

Client Login

C1 (Client C) Let I = 〈I1, . . . , In〉. Pick (x̃, rp̃)←R (Zq)2.
Compute: ỹ ← gx̃, (cp̃, dp̃, ĉp̃, d̂p̃)← (grp̃ , yrp̃hp̃, (ĝ)rp̃ , (ŷ)rp̃(ĥ)p̃),

π1 ← ProveC((cp̃, dp̃, ĉp̃, d̂p̃), (rp̃, p̃)).

Send (C, I, ỹ, (cp̃, dp̃), (ĉp̃, d̂p̃), π1) to the server Si for all Ii ∈ I.

S1 (Server Si) If ¬VerifyC((cp̃, dp̃, ĉp̃, d̂p̃), (π1)) then Abort.

Compute: (ai, bi, ei, āi)← (gki , (cp)
ki , (cp̃)

ki , ḡki),

π2i ← ProveS1((ai, bi, ei, āi), ki).

Broadcast: (ai, bi, ei, āi, π2i).

S2 (Server Si) ISi ← {i | VerifyS1((ai, bi, ei, āi), (π1i))}i∈I .
Compute: cβ ←

∏
j∈ISi

(bi/ei)
λj,ISi , wi ← (cβ)xi , dβi ← (dp/dp̃)

ki ,

zi ← dβi/wi, π3i ← ProveS2((zi, ai, dp/dp̃, cβ), (ki, xi)). Broadcast (zi, π3i).

S3 (Server Si) I ′Si ← {j | VerifyS2((zj), (π3j))}j∈ISi . If |I ′Si | < t+ 1 then Abort.

If
∏
j∈I′Si

(zj)
λj,I′

Si 6= 1 then Abort. Let τi ← 〈ỹ, ai,K〉. Compute: ỹi ← ỹxi ,

k̃i ← ỹki , SKi ← H0(τi, ỹi, k̃i). Send (ai, bi, ei, āi, π2i) to the client C.

C2 (Client C) IC ← {i | VerifyS1((ai, bi, ei, āi), (π2i))}i∈I . If |IC | < t+ 1 then Abort.

Compute: K ←
∏
i∈IC a

λi,IC
i , {τi ← 〈ỹ, ai,K〉, ỹi ← (yi)

x̃, k̃i ← (ai)
x̃,

SKi ← H0(τi, ỹi, k̃i)}i∈IC

Figure 3: Protocol: T-PAKEI
DKG

verification, the servers send their nonces (aj , bj , ej) to the client such that he could derive the

session keys. All the messages are supplied with appropriate NIZK proofs. An adversary is allowed

to corrupt up to t servers, but she does not learn session keys established between the client and

honest servers.

Informally, the security of T-PAKEI
DKG is implied from the security of T-PAKEDKG as the

adversary learns the same public messages such as ai, bi, ei here as in T-PAKEDKG. Although

generation of ei and cβ is shifted from the client side to the servers in T-PAKEI
DKG, the client

can verify the well-formedness of these values. The rest of the proof remains almost the same,

and therefore is skipped. T-PAKEI
DKG provides only implicit authentication, and using standard

techniques (e.g., [10]) an additional round of communication can be added afterwards to perform

explicit authentication.

23

6.2 The Asynchronous Communication Setting

The servers in our T-PAKEDKG and T-PAKEI
DKG protocols employ the broadcast channel to com-

municate with each other in a reliable and authenticated manner. Consequently, we consider our

communication model to be (bounded) synchronous. It is, however, possible to make our proto-

cols work in the completely asynchronous communication setting that does not put any bounds on

message transfer delays [16].

This involves replacing the employed broadcast channel by an asynchronous reliable broadcast

protocol such as [15], and the employed synchronous DKG protocol [24] by an asynchronous DKG

protocol such as [16,28]. Due to the inherent difficulty of distinguishing between a slow server and

a crashed server in the asynchronous communication setting the above asynchronous primitives

(and consequently the asynchronous versions of our protocols) ask for n ≥ 3t+ 1 servers instead of

the n ≥ 2t+ 1 servers required otherwise. The protocols and their proofs remain exactly the same

except that, to ensure the termination, we require |ISi | ≥ 2t+ 1 such that |I ′Si | will be ≥ t+ 1.

6.3 Reducing the Public Key Size

The current public information that the client needs to obtain and maintain is of the size O(nκ)

as it contains a public key yi for every server Si. It is possible to reduce this public information

size to O(κ) using a constant-size polynomial commitments protocol [29]. In this case, the public

information contains only a (single element) polynomial commitment as the public key for the set

of n servers. Every server Si includes its public key yi = gxi and its witness in its first message to

the client along with an NIZK proof of knowledge of exponent xi. The resulting protocol, however,

also requires the t-strong Diffie–Hellman (t-SDH) assumption [13].

7 Conclusion and Future Work

7.1 Conclusion

T-PAKE protocols provide a practical solution for the offline dictionary attack problem with pass-

word authentication by mitigating the risk in a threshold manner. However, we observed that

the existing T-PAKE constructions fail the basic liveness requirement of any fault-tolerant com-

munication protocol: none of these protocols can tolerate any misbehavior by one or more par-

ticipating servers without restarting the protocol and replacing the misbehaving servers. This not

only presents a serious fault management challenge for the servers, but can also leave the clients

frustrated.

We addressed the fault tolerance problem with T-PAKE (and in turn the associated PASS

primitive) by adding a batched and offline phase of DKG. Our resulting protocols ensure the

security and guaranteed termination properties for every protocol instance for n ≥ 2t+ 1. We have

proved their security under the DDH assumption in the random oracles model. Both protocols

also improve upon the existing T-PAKE protocols in terms of communication and require at least

two broadcasts less than other secure T-PAKE constructions. Using the asynchronous broadcast

and DKG protocols, they can also work in the asynchronous setting for n ≥ 3t + 1. Finally, we

implemented our T-PAKEDKG protocol, and verified its performance in the LAN environment for

(n = 3, t = 1) and (n = 5, t = 2). We find that our protocol adds a small computation overhead

24

of < 0.1 sec in both settings, and propose it for real-world password authentication system. In the

near future, we plan to analyze its performance in the cloud environment.

7.2 Future Work

In this work, we prove the protocol security only against a static attacker. It presents an inter-

esting challenge to prove security against an adaptive attacker with an adaptively secure DKG

protocol [19].

References

[1] GMP: The GNU Multiple Precision Arithmetic Library. http://www.openssl.org.

[2] Our T-PAKE Implementation. https://sites.google.com/site/tpakefaulttolerant/.

[3] The Boost C+ Libraries. http://www.boost.org.

[4] The OpenSSL Project. http://gmplib.org.

[5] M. Abe. Robust distributed multiplication without interaction. In CRYPTO, pages 130–147,

1999.

[6] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient LIbrary for Cryptography. http:

//code.google.com/p/relic-toolkit/.

[7] R. M. Avanzi. The Complexity of Certain Multi-Exponentiation Techniques in Cryptography.

J. Cryptology, 18(4):357–373, 2005.

[8] A. Bagherzandi, S. Jarecki, N. Saxena, and Y. Lu. Password-protected secret sharing. In

CCS’11, pages 433–444, 2011.

[9] M. Bellare, J. A. Garay, and T. Rabin. Fast Batch Verification for Modular Exponentiation

and Digital Signatures. In EUROCRYPT, pages 236–250, 1998.

[10] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure against

dictionary attacks. In EUROCRYPT, pages 139–155, 2000.

[11] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-based protocols secure

against dictionary attacks. In IEEE Computer Society Symposium on Research in Security

and Privacy, pages 72–84, 1992.

[12] D. Boneh. The Decision Diffie-Hellman Problem. In ANTS, pages 48–63. 1998.

[13] D. Boneh and X. Boyen. Short Signatures Without Random Oracles and the SDH Assumption

in Bilinear Groups. J. Cryptology, 21(2):149–177, 2008.

[14] V. Boyko, P. MacKenzie, and S. Patel. Provably secure password-authenticated key exchange

using Diffie-Hellman. In EUROCRYPT, pages 156–171, 2000.

25

http://www.openssl.org
https://sites.google.com/site/tpakefaulttolerant/
http://www.boost.org
http://gmplib.org
http://code.google.com/p/relic-toolkit/
http://code.google.com/p/relic-toolkit/

[15] G. Bracha. An Asynchronous [(n-1)/3]-Resilient Consensus Protocol. In PODC’84, pages

154–162, 1984.

[16] C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl. Asynchronous Verifiable Secret Sharing

and Proactive Cryptosystems. In CCS’02, pages 88–97, 2002.

[17] J. Camenisch, A. Lysyanskaya, and G. Neven. Practical yet universally composable two-server

password-authenticated secret sharing. In CCS’12, pages 525–536, 2012.

[18] J. Camenisch and M. Stadler. Proof systems for general statements about discrete logarithms.

Citeseer, 1997.

[19] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Adaptive security for threshold

cryptosystems. In CRYPTO, pages 98–115, 1999.

[20] D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO, pages 89–105,

1992.

[21] M. Di Raimondo and R. Gennaro. Provably secure threshold password-authenticated key

exchange. J. Comput. Syst. Sci., 72(6):978–1001, 2006.

[22] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. In FOCS, pages

427–438, 1987.

[23] W. Ford and B. S. Kaliski Jr. Server-assisted generation of a strong secret from a password.

In WETICE, pages 176–180, 2000.

[24] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key generation for

discrete-log based cryptosystems. J. Cryptology, 20(1):51–83, 2007.

[25] O. Goldreich and Y. Lindell. Session-key generation using human passwords only. J. Cryptol-

ogy, 19(3):241–340, 2006.

[26] S. Halevi and H. Krawczyk. Public-key cryptography and password protocols. ACM Trans.

Inf. Syst. Secur., 2(3):230–268, 1999.

[27] D. P. Jablon. Strong password-only authenticated key exchange. ACM SIGCOMM Computer

Communication Review, 26(5):5–26, 1996.

[28] A. Kate and I. Goldberg. Distributed Key Generation for the Internet. In ICDCS, pages

119–128, 2009.

[29] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-Size Commitments to Polynomials and

Their Applications. In ASIACRYPT, pages 177–194, 2010.

[30] J. Katz, R. Ostrovsky, and M. Yung. Efficient and secure authenticated key exchange using

weak passwords. J. ACM, 57(1), 2009.

[31] Linkedin password file compromise, 2012. http://blog.linkedin.com/2012/06/06/

linkedin-member-passwords-compromised.

26

http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised
http://blog.linkedin.com/2012/06/06/linkedin-member-passwords-compromised

[32] P. MacKenzie, T. Shrimpton, and M. Jakobsson. Threshold password-authenticated key ex-

change. J. Cryptology, 19(1):27–66, 2006.

[33] A. Menezes, P. V. Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC Press,

1st edition, 1997.

[34] T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

CRYPTO, pages 129–140, 1991.

[35] C.-P. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4(3):161–174,

1991.

[36] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

[37] V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ciphertext attack.

J. Cryptology, 15(2):75–96, 2002.

[38] Yahoo password file compromise, 2012. http://security.yahoo.com/

information-regarding-recent-password-compromise-000000466.html.

A The Online Attack on the PPSS-based T-PAKE

As suggested in Table 1, due to the already discussed inherent limitations of PPSS, a T-PAKE

construction based on the PPSS protocol [8] is not secure against an online password guessing

attack. An adversary can attack the protocol as follows: i) Pick a password candidate p̃ from

the set of possible passwords D. ii) Trigger two instances of the protocol with sId1 and sId2 and

p̃1 = p̃2 = p̃. iii) Upon reconstruction of secrets ŝk1 and ŝk2 stop any further execution of the

protocol instances. iv) If ŝk1 6= ŝk2 then the password is wrong, remove p̃ from D and go to step

i; else the guessed password is correct p̃ = p. Importantly, in the above scenario, no server can

distinguish between an honest client or the attacker.

27

 http://security.yahoo.com/information-regarding-recent-password-compromise-00000 0466.html
 http://security.yahoo.com/information-regarding-recent-password-compromise-00000 0466.html

	Introduction
	Our Contributions
	Comparison with the Existing Constructions
	Applications
	Outline

	Preliminaries
	Model
	Cryptographic Assumption
	Cryptographic Tools

	The T-PAKEDKG Protocol
	Security Analysis
	Security Proof
	Forward Secrecy

	Implementation and Performance Analysis
	Implementation and Experiments
	Performance Analysis

	Extensions
	The Two-round T-PAKEDKGI Protocol
	The Asynchronous Communication Setting
	Reducing the Public Key Size

	Conclusion and Future Work
	Conclusion
	Future Work

	The Online Attack on the PPSS-based T-PAKE

