
FORGERY ON STATELESS CMCC WITH A SINGLE QUERY

Guy Barwell

University of Bristol

Abstract. We present attacks against CMCC that invalidate the claimed
security of integrity protection and misuse resistance. We exploit the fact zero-
padding is used on both the message and authenticated data and demonstrate
how one may generate a forgery with a single call to the encryption oracle.
From this we calculate the ciphertext of the chosen message, yielding a forgery
and so breaking INT-CTXT. In the nonce-reuse setting, existence of a forgery
leads directly to a 2-query distinguisher.

1. Description of Stateless CMCC

CBC-Mac-Counter-CBC[5] (henceforth CMCC) is a CAESAR[1] submission,
and comes in both stateful and stateless forms. In this note we consider the state-
less version, which is the recommended con�guration, and demonstrate a weakness
in the mode of operation itself. As such, our attacks holds across all stateless
parameter sets, irrespective of the choice of primitives.

1.1. Notation. Following the original paper, let B be the blocksize in bits,τ the
number of authenticity bits and N a Public Message Number which must be a
nonce, with recommended values (B, τ, |N |) = (128, 64, 32). No secret message
number is used in the stateless version. Let ⊕ and || denote respectively the xor
and concatenation of two strings. Constant bytes are provided in hexadecimal and
typeset in typewriter font (eg 0xB6). Finally, 0α is the string of α zero bits.

Whilst all lengths will be given in bits, as per submission requirements[1] they
shall all be exact number of bytes, and thus multiples of 8.

Where appropriate, EK represents an encryption oracle, whilst CMCCK is the
CMCC encryption function under key K.

1.2. Components. For clarity of notation, we will describe CMCC in terms of
the following well known components, each instantiated with an appropriate block-
cipher (for which the recommendation is aes):

• Let Padb(M) be the function that returns bitstring M padded up to b bits
by appending su�ciently many zero bits.

• Let MSBb(M) be the Most Signi�cant Bits function, returning bitstring
M truncated to the �rst b bits.

• Let Ek(m) be the encryption of a single block m with key k using the block
cipher.

• Let CBCN
k (M) be the cipher block chaining mode[3] encryption of message

M under key k and initial value N .
• Let MACN

k (M) be an unforgable MAC on message M under key k and
with initial value N . The recommended instantiation is AES-CMAC[4].

1

FORGERY ON STATELESS CMCC WITH A SINGLE QUERY 2

Algorithm 1 Stateless CMCC Encryption if 2|A|+ |M |+ τ ≤ 2B

CMCC(N,A,M)(1.1)

K̄, L1, L2, L̄2, L3 ← KeyExpansion(K)(1.2)

W ← EK̄

(
(0xB6)B−|N |||N

)
(1.3)

P1||P2 ←M ||0τ (st. |P1| ∈ {|P2|, |P2| − 8})(1.4)

R0 ← PadB(P1)(1.5)

R1 ← CBCW
L3

(R0)(1.6)

X ←MSB|P2|(R1)⊕ P2(1.7)

T1 ← PadB(X||A)(1.8)

T2 ← EL2
(T1)(1.9)

X2 ←MSB|P1|(T2)⊕ P1(1.10)

S0 ← PadB(X2)(1.11)

S1 ← CBCW
L1

(S0)(1.12)

X1 ←MSB|P2|(S1)⊕X(1.13)

ReturnX1, X2(1.14)

• Let CTRN
k (M) be the counter mode encryption[2] of M under key k with

initial counter value N .

The internal mechanism KeyExpansion(K) is instantiated by the scheme as
simply splitting a key K several block lengths long into separate keys.

1.3. CMCC Encryption. We split the two possible cases of the algorithm into
two separate listings. In Algorithm 1 we provide the algorithm used to encrypt if
the message,associated data and tag lengths satisfy 2 · |A| + |M | + τ ≤ 2B, and
Algorithm 2 provides the code used otherwise.

The decryption algorithm on input (K,N,A,X1, X2) uniquely recovers P1||P2

from 1.4 (2.4 in the long version) and if this string parses as M ||0τ returns that M .
Otherwise (if the string does not end with 0τ) the string fails authentication and
decryption returns ⊥. For a full listing of the algorithm, see the original paper [5].

2. Attacks on stateless CMCC

We now describe e�cient forgeries against the two variants.

2.1. Forgery on stateless CMCC for short messages. Let (N,A,M) be an
encryption input triple such that 2(|A|+ 8) + |M |+ τ ≤ 2B (for example, it would
su�ce to have an empty message and half a block of associated data). We produce
a forgery by appending a zero byte to the associated data and submitting the same
ciphertext.

Consider the di�erence between the internal variables of the routine when en-
crypting (N,A,M) and (N,A||0x00,M). The only place the input variables dif-
fer is on line 1.8, where in the former T1 ← PadB(X||A), and in the latter
T1 ← PadB(X||A||0x00). However, since the padding is with zero bytes and up
to the same length, in each case T1 takes the same value. Thus for the whole

FORGERY ON STATELESS CMCC WITH A SINGLE QUERY 3

Algorithm 2 Stateless CMCC Encryption if 2|A|+ |M |+ τ > 2B

Encrypt(N,A,M)(2.1)

K̄, L1, L2, L̄2, L3 ← KeyExpansion(K)(2.2)

W ← EK̄

(
(0xB6)B−|N |||N

)
(2.3)

P1||P2 ←M ||0τ (st |P1| ∈ {|P2|, |P2| − 8})(2.4)

R0 ← Padβ(P1) (β = min {β ∈ BN : β ≥ |P2|})(2.5)

R1 ← CBCW
L3

(R0)(2.6)

X ←MSB|P2|(R1)⊕ P2(2.7)

V ←MACW
L2

(X||A)(2.8)

X2 ← CTRV
L̄2

(P1)(2.9)

S0 ← Padβ(X2)(2.10)

S1 ← CBCW
L1

(S0)(2.11)

X1 ←MSB|P2|(S1)⊕X(2.12)

ReturnX1, X2(2.13)

of the calculation the internal variables are the same in each case. Therefore, by
requesting the encryption (X1, X2) = EK(N,A||0x00,M) from the encryption or-
acle, we can can produce the forgery on the associated data, since we know that
CMCCK(N,A,M) = (N,A,X1X2).

2.2. Related ciphertexts from related messsages in stateless CMCC for

Longer messages. The key observation is that the method used to parse input on
line 2.5 and apply padding on line 2.7 allow us to create two messages M,M̃ such
that the majority of the internal variables take the same values whether calculating
CMCCK(N,A,M) or CMCCK(N,A, M̃). As a result, the ciphertext from one
can be used to form the ciphertext of the other by modifying just the �nal byte.

Lemma 1. Let (N,A,M) be a valid nonce, associated-data, message triple with

|M | = 2iB + 8− τ for some i ∈ N and 2|A|+ |M |+ τ > 2B. Write M = M1||M2

with |M1| = iB and |M2| = iB + 8 − τ , and set M̃ = M1||0x00||M2. Then, if

(X1, X2) = CMCCK(N,A,M) and (X̃1, X̃2) = CMCCK(N,A, M̃), we have that

MSBiB(X1) = MSBiB(X̃1), and X2 = MSBiB(X̃2).

Proof. For clarity's sake, we let the internal variables from the encryption of M
use the same notation as in Algorithm 2, and their counterparts during the second
encryption shall use the same variable names, marked with a tilde. A direct com-
parison of the two encryptions is provided in Appendix A.

The �rst line on which the internal variables will di�er is 2.4, where (P1, P2) =

(M1,M2||0τ), as opposed to (P̃1, P̃2) = (M1||0x00,M2||0τ). In particular, we have

that P̃2 = P2 and P̃1 = P1||0x00. |P1| = iB, whilst the other three are of length

iB + 8 bits. Therefore, on line 2.5 both P1 and P̃1 are zero padded up to the next
block boundary, meaning R̃0 = R0 = M1||0B . Thus the di�erence between P1 and

P̃1 is hidden by the padding.

FORGERY ON STATELESS CMCC WITH A SINGLE QUERY 4

Results: Previous [5] New (short) New (long)
τ = 64 32 8 64 32 8 64 32 8

Con�dentiality of plaintext 128 128 128
integrity for plaintext 64 32 16 7 7 7

integrity for Assoc. data 64 32 16 0 0 0
integrity for PMN 64 32 16
Table 1. Comparison of integrity goals for statelessAES-CMCC

v1 with t byte tag

This directly leads to the internal variables across lines 2.6,2.7 and 2.8 being
equal, meaning (R1, X, V) = (R̃1, X̃, Ṽ). Therefore, the streams generated by the

counter on line 2.9 are also equal, and since P̃1 = P1||0x00 we have X̃2 = X2||χ for
some unknown byte χ.

Now, line 2.10 again zero pads up to the next block boundary, and so S0 =
X2||0B , whilst S̃0 = X2||χ||0B−8. Notice that, because P1 was a multiple of the
block length, the only di�erence between these values occurs in the �nal block.
This is important since on line 2.11 we now encrypt S0 and S̃0 in CBC mode,
which means that S1 and S̃1are equal on all but the �nal block. Finally, this means
that X1 and X̃1 are equal on all but the �nal block. Since |X1| = |P2| = iB + 8,

any di�erence between X1 and X̃1 occurs within the �nal8 bits. �

2.3. Forgery on stateless CMCC for longer messages. To produce a forgery
in the int-ctxt game, we pick an associated-data/message pair that satis�es the
requirements of Lemma 1. For example: (A,M) = (0B , 04B+8−τ). Having construc-

ted M̃ as above, we query the encryption oracle for (X̃1, X̃2) = EK(N,A, M̃) for

some valid nonce. Let X2 = MSBiB(X̃2), and set X̄1 = MSBiB(X̃1). From
the result above, we know that the valid encryption of CMCCK(N,A,M) =
(X1||δ,X2) for some byte δ. Thus to construct a forgery we simply guess all 28

possible values of δ, and query each one to the decryption oracle. One of these will
be a valid ciphertext, and thus a valid forgery.

Therefore, with one query of the encryption oracle and at most 28 queries of the
decryption oracle (expected number of queries 27) a forgery can be produced for
stateless CMCC for longer messages.

3. Comparison with security claims of CBCC

3.1. Integrity. Table 2.1 of [5] provides integrity goals for the scheme, and is
reproduced in the �rst three columns of Table 1. The next triplet of columns refer
to the strength of the protection o�ered when a very short message is used, as
investigated in Section 2.1, and the �nal set to those investigated in Section 2.3.
The new results are signi�cantly lower than the claimed security level.

3.2. Robustness: Extending the forgery to an distinguisher against MRAE.

Section 2.1 of the CMCC submission document states that robustness against
Public-Message-Number abuse (ie nonce reuse) should be optimal. However, since
we are able to calculate a valid encryption for a known message without query-
ing the oracle on it, we can construct a distinguisher against the misuse resistance
claim. First, we follow the method given in this note to �nd the encryption for

FORGERY ON STATELESS CMCC WITH A SINGLE QUERY 5

a message M we have not queried the oracle on. Then, after querying the oracle
for C = EK(N,A,M), we can compare C with our forgery, and thus distinguish a
CMCC-Encrypt oracle from a Random Oracle with overwhelming probability.

Similarly, Section 2.2 states that it should not be possible to modify a valid
ciphertext to cause a predictable change in the plaintext, something we demonstrate
is possible.

4. Conclusion

We have presented attacks that demonstrate the integrity guarantees of CMCC
are not as high as originally conjectured, and that some of the security claims of
CMCC are therefore not met. This attack is due to the use of zero-padding, and
it might be possible to resolve the weakness using a more robust padding scheme,
even if the validity of paddings is not checked.

5. Acknowledgements

The author is grateful for helpful discussions and comments on a previous draft
provided by Martijn Stam and GavenWatson. Thanks also to Daniel Bernstein for
coordinating the CAESAR competition and hosting the submissions.

This work was conducted whilst Guy Barwell a PhD student in the University
of Bristol Cryptography-Security group. He was supported by an EPSRC grant.

References

[1] Daniel Bernstein. CAESAR: Competition for Authenticated Encryption: Security, Applicab-
ility, and Robustness. http://competitions.cr.yp.to/caesar.html, 2013. 1

[2] M Dworkin. Recommendation for Block Cipher Modes of Operations. NIST SP 800-38A,
December 2001. 2

[3] FIPS. 81: DES Modes of Operation. Issued December, 2:63, 1980. 1
[4] JH Song, R Poovendran, J Lee, and T Iwata. RFC 4493: The AES-CMAC algorithm. Technical

report, Technical report, Corporation for National Research Initiatives, Internet Engineering
Task Force, Network Working Group, 2006. 1

[5] Jonathan Trostle. AES-CMCC: v1. Submitted to CAESAR competition, March 2014. 1, 2, 4

FORGERY ON STATELESS CMCC WITH A SINGLE QUERY 6

Appendix A. comparison between encryption

(N,A,M1||M2) and (N,A,M1||0x00||M2)

Encrypt(N,A,M1||M2) Encrypt(N,A,M1||0x00||M2)(2.1)

L1, L2, L3 ← KeyExpansion(K) L1, L2, L3 ← KeyExpansion(K)(2.2)

K̄, L̄2 ← KeyExpansion(K) K̄, L̄2 ← KeyExpansion(K)

W ← EK̄

(
(0xB6)16−|N |||N

)
W ← EK̄

(
(0xB6)16−|N |||N

)
(2.3)

P1||P2 ←M1||M2||0τ P̃1||P̃2 ←M1||0x00||M2||0τ(2.4)

//P1 = M1, P2 = M2||0τ //P̃1 = P1||0x00, P̃2 = P2

//|P1| = iB; |P2| = iB + 8 //|P̃1| = |P̃2| = iB + 8

R0 ← Pad(i+1)B(P1) R0 ← Pad(i+1)B(P1||0x00)(2.5)

R1 ← CBCW
L3

(R0) R1 ← CBCW
L3

(R0)(2.6)

X ←MSB|P2|(R1)⊕ P2 X ←MSB|P2|(R1)⊕ P2(2.7)

V ←MACW
L2

(X||A) V ←MACW
L2

(X||A)(2.8)

X2 ← CTRV
L̄2

(P1) X̃2 ← CTRV
L̄2

(P1||0x00)(2.9)

//|X2| = |P1| = iB //X̃2 = X2||χ (for some byte χ)

S0 ← Pad(i+1)B(X2) S̃0 ← Pad(i+1)B(X2||χ)(2.10)

//S0 = X2||0B //S̃0 = X2||χ||0B−8

S1 ← CBCW
L1

(X2||0B) S̃1 ← CBCW
L1

(X2||χ||0B−8)(2.11)

//MSBiB(S̃1) = MSBiB(S1)

X1 ←MSBiB+8(S1)⊕X X̃1 ←MSBiB+8(S̃1)⊕X(2.12)

//MSBiB(X̃1) = MSBiB(X1)

//ie: they only di�er on �nal byte

ReturnX1, X2 Return X̃1, X̃2(2.13)

	1. Description of Stateless CMCC
	1.1. Notation
	1.2. Components
	1.3. CMCC Encryption

	2. Attacks on stateless CMCC
	2.1. Forgery on stateless CMCC for short messages
	2.2. Related ciphertexts from related messsages in stateless CMCC for Longer messages
	2.3. Forgery on stateless CMCC for longer messages

	3. Comparison with security claims of CBCC
	3.1. Integrity
	3.2. Robustness: Extending the forgery to an distinguisher against MRAE

	4. Conclusion
	5. Acknowledgements
	References
	Appendix A. comparison between encryption (N,A,M1||M2) and (N,A,M1||0x00||M2)

