Making RSA—-PSS Provably Secure Against Non-Random Faults

Gilles Barthe!, Francois Dupressoir', Pierre-Alain Fouque?, Benjamin Grégoire?, Mehdi Tibouchi?,
and Jean-Christophe Zapalowicz*

! IMDEA Software Institute
gilles.barthe@imdea.org,francois.dupressoir@imdea.org
2 Université de Rennes 1 and Institut universitaire de France

pierre-alain.fouque@ens.fr

3 NTT Secure Platform Laboratories
tibouchi.mehdi@lab.ntt.co.jp
* INRIA
benjamin.gregoire@inria.fr, jean-christophe.zapalowicz@inria.fr

Abstract. RSA-CRT is the most widely used implementation for RSA signatures. However, determin-
istic and many probabilistic RSA signatures based on CRT are vulnerable to fault attacks. Nevertheless,
Coron and Mandal (Asiacrypt 2009) show that the randomized PSS padding protects RSA signatures
against random faults. In contrast, Fouque et al. (CHES 2012) show that PSS padding does not protect
against certain non-random faults that can be injected in widely used implementations based on the
Montgomery modular multiplication. In this article, we prove the security of an infective countermeasure
against a large class of non-random faults; the proof extends Coron and Mandal’s result to a strong
model where the adversary can force the faulty signatures to be a multiple of one of the prime factors
of the RSA modulus. Such non-random faults induce more complex probability distributions than in
the original proof, which we analyze using careful estimates of exponential sums attached to suitable
rational functions. The security proof is formally verified using appropriate extensions of EasyCrypt, and
provides the first application of formal verification to provable (i.e. reductionist) security in the context
of fault attacks.

Keywords: Fault Attacks, PSS, RSA—CRT, Infective countermeasure, Formal Verification, EasyCrypt

1 Introduction

Signature schemes are among the most widely used constructions in cryptography. Although there
is much interest in signature schemes based on elliptic curves, RSA signatures are still widely used.
Moreover, many implementations of RSA, including OpenSSL and implementations for embedded
devices such as smartcards, use the well-known Chinese Remainder Theorem (CRT) technique
for computing modular exponentiations more efficiently: exponentiations using the CRT can be
expected to be 4 times faster than those using full-size exponents. However, when unprotected,
RSA-CRT is vulnerable to the so-called Bellcore attack, first introduced by Boneh, DeMillo and
Lipton [8], and later refined [3,31]. An adversary who knows the padded message and can inject
a fault in one of the half exponentiations can efficiently factor the public modulus using a single
faulty signature and a GCD computation.

Many countermeasures have been proposed to mitigate this vulnerability, including extra
computations and sanity checks of intermediate and final results (see [26]). The simplest such
protection is to verify the signature before releasing it. This is reasonably cheap since the public
exponent e is usually small. Another approach is to use an extended modulus, as in Shamir’s trick [27]
and its later refinements which also protect CRT recombination using Garner’s formula [7,13,29,14].
Finally, redundant exponentiation algorithms [19,26] such as the Montgomery Ladder can be
used. Regardless of the approach, RSA-CRT fault countermeasures tend to be rather costly: for

example, Rivain’s countermeasure [26,20] has a stated overhead of 10% compared to an unprotected
implementation, and is purportedly more efficient than previous works [19,29,20].

Boneh et al.’s original fault attack does not apply to RSA signatures with probabilistic encoding
functions, but some extensions of it were proposed to attack randomized ad-hoc padding schemes
such as ISO 9796-2 and EMV [15,17]. At Asiacrypt 2009, Coron and Mandal [16] paved the way of
provable security against side-channel attack in a practical setting by proving that RSA-PSS is
secure against random faults in the random oracle model. Injecting a fault on the half-exponentiation
modulo the second factor ¢ of N produces a result that can be modeled as uniformly distributed
modulo ¢, and the result of such a fault cannot be used to break RSA-PSS signatures. It is
tempting to conclude that using RSA—PSS should enable signers to dispense with costly RSA-CRT
countermeasures. However, Fouque et al. [18] show that it is possible to break RSA-PSS using
certain non-random faults if the result is not checked. Indeed, they obtain a key recovery attack
with a few faulty signatures on CRT implementations of RSA-PSS that use the state-of-the-art
modular multiplication algorithm of Montgomery [23]. Thus, even with PSS, it remains important
to check the signature before releasing it.

Infective Countermeasures. Checking results before release is a simple and practical security
measure, but it is not sufficient by itself, since simple tests can be easily bypassed by flipping
the outcome of a comparison [2,28]. Infective countermeasures are an alternate approach in which
results are released all the time, but become gibberish when faulty computations occur: a fault
(usually not controlled by the adversary) results in a random value, which consequently makes
the faulty signature random. From a security point of view, since faults may not be random, we
may not be able to prove that the faulty output is fully random. However, one may ask that the
output be independent of secret information even in the presence of non-random faults. Infective
countermeasures have been used before by Canetti and Goldwasser [11] to deal with fault-injecting
adversaries when decrypting ciphertexts in a distributed manner. One such countermeasure for
RSA-CRT was proposed by Boscher, Handschuh and Trichina [9]. In their technique, the signer
computes the signature S and recomputes ¥y’ = S¢ mod N to check the signature against the padded
message y, before returning S + y,, — (y mod p) + y; — (y mod q) if ¥’ =y, and an error otherwise.
Even if the adversary bypasses the verification 3’ = y, the output signature mixes the fault and
correct signature in a non-trivial way. Still, this countermeasure was later attacked by Trichina
and Korkikyan [28] for deterministic padding schemes. We tackle the problem of masking faulty
signatures so as to prevent the exploitation of faults and protect validity checks.

Our contributions. In this paper we generalize the fault model from [18] and consider a very
powerful adversary able to inject non-random faults. In particular, our adversaries are able to force
the signature to be a multiple of one of the prime factors. We consider a simple countermeasure
(see Fig. 1) that uses infective techniques, mixing additional randomness into faulty signatures
in a provably secure way. In practice, we show that our random infection masks faulty signatures
enough for us to prove the security of RSA-PSS under the RSA assumption in the random oracle
model if enough additional randomness is provided. Concretely, we sample a random value r’ and
add r" - (y — 9') to the signature mod N, where y is the original padded message and ¢’ is the
padded message recovered from the signature. When the signature is computed correctly, (y — ¢/')
is zero and the correct signature is returned. If the signature is faulty, we show that the masked
output is statistically close to uniform and hence leaks no secret information. We prove such results
in two key lemmas corresponding to [16, Lemmas 1, 2]|. Since our faults are non-random, the
probability distributions are more complex; we use careful estimates of exponential sums attached to

corresponding rational functions to establish their regularity. We only analyze this countermeasure
when the validity check is performed in the standard way (by computing the public permutation),
but our random infection might also be used to protect other checks such as Rivain’s [26,20]. In
the same way, although we use RSA-CRT as a motivating example, our fault model is in fact
independent of the way the modular exponentiation is implemented, and is not limited to fault
attacks on RSA-CRT. A discussion of the faults we model can be found in Section 3.

Figure 1 Protected signing algorithm
function SIGN(sk, pk,m) > sk = (dp,dq, ap,aq, N), pk = (ep, €q, bp, bg, N)
: r + {0,1}%0 > Start of PSS padding

1:

2

3 w < H(m,r)

L st G(w) @ (]| 0%)

5: y < 0s2ip(0 || w | st)

6: op + y? mod p > Signature computation
7 Oq y% mod ¢

8 o+ (ap-0p+aq-04) mod N

9: yp < 0°” mod p > Internal recomputation of the padded message
10: Yg < 0% mod ¢

11: y' < (bp - yp + bg - yy) mod N

12: r’ « {0,1}*\{0} > Infective countermeasure
13: o' +~o+r" - (y—y')mod N

14: return i2osp(c”’)

The second contribution of the paper is a formal proof of security of the countermeasure using
EasyCrypt [4], a computer-aided framework that has previously been used to reason about the
security of cryptographic constructions—but was never applied to fault attacks and countermeasures.
Our proof is the first application of formal verification to provable security against fault attacks,
as other works [12,24,25] applying formal verification to fault attacks are focused on proving the
correctness of the countermeasures (that is, that the protected program either returns the same
result as the original program, or fails), but do not provide any provable security guarantees. Apart
from increasing our confidence in the effectiveness of the countermeasure, our formal proof reveals
a glitch in the proof of Coron and Mandal [16], and also paves the way for formally verifying the
effectiveness of the countermeasures on standard implementations of PKCS probabilistic signing, in
the same way that [1] uses EasyCrypt to prove security of an implementation of PKCS encryption.

2 Related work

Christofi et al [12] use program verification techniques for proving Vigilant’s countermeasure for
CRT-RSA. Their approach is based on a transformation that takes a source program p under
scrutiny and outputs a program p whose code embeds all possible faults. Informally, the program p
contains for each program point where a fault can be forced a switch statement that models the
faults allowed at that program point; the case analysis of the switch statement triggers which fault
will be forced, and hence is performed on an additional argument of the program. By proving that
the transformed program is correct for all possible inputs, one thus obtains a guarantee that the
program is correct for all faults. In their work, Christofi et al take as correctness criterion that
the transformed program either returns a value that matches the value returned by the original

program on the same input, or else returns an error. Intuitively, their criterion entails that the
program obtained by transformation either outputs the correct result, or detects that there is a
fault during execution and aborts. While it is a natural guarantee to seek, their theorem does not
constitute a proof of security in the sense of provable security, but rather a heuristic to validate
a countermeasure. Using their approach, Christofi et al validate with the Frama-C platform the
correctness (in the sense mentioned above) of Vigilant’s countermeasure for CT-RSA.

Rauzy and Guilley [25] develop symbolic methods to analyze fault attacks against RSA-CRT
implementations. Broadly speaking, they formalize arithmetic computations as algebraic expressions,
and develop an axiomatic theory for (dis)proving equalities between two expressions. Their theory
includes all the equations from the theory of rings, equations for the modulo operator, and some
specific results, such as Euler’s theorem and the Chinese Remainder Theorem. The central component
of their tool is a procedure that takes an expression and returns a simplified form. Given an expression
e that represents an arithmetic computation, their tool computes the set of expressions that represent
faulty variants of e and tests for all expressions € in this set if the expression ged(N, e — é) simplifies
to p or ¢, where N is the RSA modulus and p and ¢ are its prime factors. If some expression é
is found, then the algorithm is considered insecure; on the contrary, the algorithm is considered
secure if no expression e that passes the test is found. Their tool is useful to find fault attacks on an
algorithm, or as a heuristics to gain some confidence in an algorithm, but only provides guarantees
of security against a very restricted class of attackers. Moreover, it is specialized to deterministic
signature schemes and cannot deal with randomized paddings like PSS.

Moro et al [24] focus on the specific class of instruction skip attacks, in which an adversary forces
to skip the execution of a targetted instruction. These attacks apply to several architectures, and
can be realized for instance by introducing glitches into the clock signal of the microcontroller. The
approach pursued by Moro et al is to make program execution fault-tolerant using redundancy. In
order to achieve acceptable performance, their redundancy scheme is designed to account for some
inner characteristics of fault attacks; for instance, their model reflects the hardness of forcing several
faults within a small number of clock cycles. Concretely, they focus on the Thumb-2 instruction set
that is available on ARM architectures, and provide for each instruction a possible replacement
for execution in the presence of instruction skip faults. Replacements are sequences of instructions
which are given a faulty semantics; Moro et al use a model-checker to establish the equivalence
between execution of the instruction without faults and executing the replacement sequence of
instructions with instruction skip faults. The strength of their approach lies in its generality: namely,
the transformation can be applied to arbitrary programs, and significantly improve resistance against
instruction skip attacks. However, their approach is not suitable to obtain the strong guarantees
required by provable security.

3 Our results

Instead of considering the many possible faults an adversary could inject in Fig. 1, we give the
adversary access to two distinct oracles (Fig. 2) that compute valid signatures and generalize faulty
signatures, as justified in Section 3. As discussed, our fault model is independent of the algorithm
used to compute modular exponentiation. We therefore simplify notations by using more standard
definitions for public and secret key, where a public key pk is composed of a public exponent e and
a modulus N, and a secret key sk is composed of a private exponent d and a modulus N.
Throughout the security proof, we consider a fixed k that serves as the size of the modulus and
signatures. In particular, we assume that the modulus is balanced, that is N = p- ¢ is such that

2k=1 < N < 28 and 2F/2-1 < p < ¢ < 2K/2. We also assume that public exponents produced by
the key generation algorithm are upper bounded by some constant e,,,; much smaller than 2 (in
practice, 2'¢ + 1 is often used). PSS padding is computed using two hash functions #, outputting
bitstrings of length kj, and G, producing bitstrings of length k,, where kj, + k4 + 1 = k. In addition,
the padding scheme uses a random salt of length ky < k4. For simplicity, we model # as a function
from {0,1}* x {0, 1}* to {0,1}*" and G as a function from {0,1}** to {0,1}*s. This is done without
loss of generality. In algorithm and game descriptions, we denote with i2osp and o0s2ip the conversions
between integers and their binary representations. For simplicity, i2osp always produces a bitstring
of length k.

Figure 2 Oracles in our fault model

oracle F(m,¢,a)
r 4+ {0, 1}

oracle S(m) 1:
r + {0,1}% 2
w < H(m,r) 3 w < H(m,r)
st Glw) @ (r]| 0Fa~0) L st e Glw) @ (r |0k k)
y < 0s2ip(0 || w]| st) 5: y < 0s2ip(0]|w|| st)
o+ y*mod N 6: o+ y*mod N
7 r’ « {0,1}*\{0}
8 oc'=¢-o+a-p+r - -ymod N
9 return i2osp(o’)

return i2osp(o)

1:

2

3

4

5

6

7

1: oracle V(m, o)

2: s < 0s2ip(o)

3 if 0 <s < N then

4 y < smod N

5 b||wl| st < i20sp(y)

6 Ty < st® G(w)

7 W'« H(m,r)

8 return b =0Aw =w' Ay = 0FsFo
9 else

0

10: return L

We reduce the UF-CMA security of the faulty signature scheme presented in Fig. 2, when the
adversary is given access to the faulty signature oracle, along with the valid signature oracle and
the random oracles # and G, to the one-way security of RSA. We consider a forgery valid even if
it was produced by the faulty signature oracle. In the rest of this paper, we use S to denote the
valid signature oracle, ¥ to denote the faulty signature oracle, X to denote the RSA key generation
algorithm, and % for the PSS verification algorithm. Subscripts identify the game in which a
particular oracle appears. We denote with QX the set of query-response pairs for queries made to
oracle X so far.

Figure 3 Initial and Final Games

1: game UF-CMA 1: game OW-RSA

2: (e,d,N) «+ x() 2: (e,d,N) + x()

3: (m, s) « 2579, N) 3: z* « [0..N)

4: b+ V(m,s) 4: y* <+ z*° mod N
5: win < b A (m,s) ¢ Q° 5: erﬂ’g(e,N,y*)
6 return win 6 return z = z~

Verification Snature No 7 =0 7 =0 7=0
No o ap + r'y mod N|aq + v’y mod N|r'y mod N
yp =0 o+ ap +r'y mod N|ap + r'y mod Nl|ag + v’y mod N|r'y mod N
yg =0 o+ ag+r'y mod N|ap + r'y mod N|aq + 7'y mod N|r'y mod N
y =0 oc+7rymod N |ap+ r'y mod Nl|aq + r'y mod N|r'y mod N

Table 1. Output of # under various faults with a¢ a random value.

Theorem 1 (UF-CMA security of protected PSS in the presence of faults). Given a CMA
adversary 4 against the faulty signature scheme (X, S, F, V) that makes at most q queries to H,
qg queries to G, qs queries to S and qy queries to F, we build a one-way inverter I such that

Pr[uy-cma : win] < Pr[oOwW-Rs4 : ¢ = =] + €

with
60_(Q7{+QS+QT)'(QH+QQ+QS+QT)+(QG+1)'QT'3+1+
- o
(a5 +ar) (@ tas+ar) *ar (@t Dban+as autl - (e, +1)-F
2ko ok-2 a7 20—k/2

Remark 1. This theorem allows us to conclude directly with a security claim for PSS when e,,q, is
reasonably small (typically 216 4-1), p > k/2 + 200, and the modulus is not too large (see Remark 2).

Fault model justification. In this section, we justify our fault model, described by oracle ¥ in
Fig. 2. Our faulty signature oracle computes the correct padded message y, samples v’ and returns
o' =€yl 4a-p+r -ymodN, with a € Z/NZ and € € {0,1} chosen by the adversary. We allow
multiple faults to be injected, but only during the RSA-CRT computations (lines 6-8 and 9-11 of
the protected signing Fig. 1). In other words, we do not consider faults during the computation of
the padding (lines 2-5) or while the countermeasure is being applied (lines 12-13). This assumption
can be justified by the fact that RSA—CRT computations are usually the privileged target of fault
attacks since the secret exponent as well as the secret primes are involved. Sometimes, faults can be
injected on public parameters [10,6], however such faults modify computation with secret values, o,
and o, during CRT recombinaison and so this is treated in our model. In this model, we do not
consider safe errors which consider specific implementations.

Our fault model can be viewed as a generalization of the various faults presented by Fouque
et al. [18]: the Null faults (forcing a small register to 0), the Constant faults (forcing a small register
to a constant) and the Zero High-Order Bits faults (forcing part of a small register to 0). When
applied during the RSA-CRT computations to a precise small register, these faults may allow the
adversary to factor the RSA modulus. They apply to any padding scheme, including randomized
padding schemes such as PSS. More precisely the purpose of these faults is to transform a signature
into a multiple or close multiple of one of the modulus’s prime factors. In the context of the proof,
we wish to give our attacker as much power as possible. Thus we let him set the faulty signature
to 0 or to a multiple of one of the prime factors. We also let him apply these faults to the public
exponentiation used to check the validity of the signature. We let the adversary inject these faults
independently of the particular algorithm or implementation of modular exponentiation.

Table 1 describes the form of the signature under various null faults. As discussed, we let the
adversary fault the private exponentiation o and its CRT components o, and o, as well as the
public exponentiation used for checking ¢y’ and its CRT components y]’[, and yg. Note that modeling
a as a uniform random integer module N would already let us capture all possible faults that yield
a multiple of p. By letting the adversary choose the value of a, we are in fact able to capture more
faults, some of which may be interesting and practical. Considering the symmetry between p and g,
all results in this table are of the form e-y? +a-p -+ 7' -y mod N.

4 Statistical Lemmas

We need several results on the regularity of the probability distributions related to the infective
countermeasure. Recall that the statistical distance between a random variable X on a finite set S
and the uniform distribution is defined as:

Al(X):;-Z‘Pr[X:s]—L;.
ses

We say that X is d-statistically close to uniform when A (X) <.

Our proof of Lemma 3 relies on exponential sums in Z/mZ, so we first fix some notations
and recall useful standard results. For any integer m, we denote by e,, the additive character
Z/mZ — C* given by e,,(x) = exp(2imrz/m). The following results hold.

Proposition 1 (Orthogonality). For all x € Z/mZ, we have:

mz_le (Cx):{o if c20 (mod m),

m ifc=0 (mod m).

Lemma 1 ([30, Problem 11.c]). For any modulus’ m > 60 and any non negative integers h, k,

we have:
k+h

Z en(cr)
=k

m—1

< (m —1)logm.

c=1

Lemma 2 (Weil [21]). Consider a prime modulus p. For all polynomials g(X),h(X) € Fp[X]
such that the rational function f(X) = h(X)/g(X) is not constant on Fy,, the bound:

> ep(f(f’f))‘ < (max(degg,degh) +v —1) - p'/?
z€Fp
g(z)#0

holds, where v is the number of distinct zeros of g(X) in the algebraic closure of Fy.

We now discuss our key statistical lemmas. The first one ensures that the faulty signature
o' = €o + ap — r'y is indistinguishable from a uniform random if the nonce 7’ is large enough. We
write = instead of 7’ in the rest of this section.

5 We will assume that this bound on m holds for all moduli involved in our computations below, i.e. p, ¢ > 60, which
is of course satisfied for all RSA moduli in practice.

Lemma 3. Let N = pq be a k-bit balanced RSA modulus (i.e. N = pq for primes p,q such that

60 < g < p < 2q) and e the public exponent, 0 < y < 28=1 q random integer and x a random

nonzero p-bit integer. Let a € Z/NZ and € € {0,1} two fized values. The statistical distance between

the distribution of o' = ey® + ap + zy mod N and the uniform distribution modulo N is bounded as:
(4e? + 1)N'/2(log? N)

!
Al(O')S o — 1 .

Proof. The full proof is provided in Appendix A; more precisely, this result follows directly from
Lemma 7 with X = [1,2°) and Y = [0, 2k_1). For the reader’s convenience, we provide a short proof
sketch below.

The idea of the proof is to express the statistical distance as an exponential sum over Z/NZ.
Indeed, let s = ¢’ — ap. Using the orthogonality property of additive characters (Prop. 1), the
probability that s can be written as ey? + xy mod N, with € X and y € Y* = Y N (Z/NZ)* is:

d . L N s — eyt
Prs=ey +$?J]:#X#y*(2. NZeN<c<x_ y >>

T,y)EX XY* c=0

since the equation is equivalent to x = (s — ey?)/y. The contribution of ¢ = 0 is exactly 1/N, and if
we put it aside we get:

N-1
1 maxi<c<n—1 |Be eyl — s

Pr s = eyitayl——| < == here B, = e <c)
N e e e) B DD where Be=) ex(e=

yeY*

Z en(cx)

TEX

c=1

Then, the sum in ¢ and = can be bounded as N log N using Lemma 1, whereas the sums B, are
exponential sums for rational functions, and can be bounded using Lemma 2, a famous theorem by
Weil related to the Riemann hypothesis for function fields. There are a few subtle points to deal
with: the sums B, are in fact incomplete exponential sums (they are like Weil sums but restricted to
an interval), and they are for a composite modulus (while Weil’s theorem applies to prime moduli).
Nevertheless, we can prove that |B.| < 4e? N 1/210g N for all ¢, and conclude that:

1| _ 4e*N'/21og* N

Pr s=eyft +ay] — —| <
(x,y)exw*[Y d N| ™ #XHY*

Since the result we want is for (z,y) € X x) rather than X x Y*, we have to account for the
difference, which yields a slightly worse bound in 4e? 4 1 rather than 4e?: overall, we find the
statistical distance to be bounded as

1 4e2 + 1)N3/210¢2 N (4e2 + 1)N/210g? N
Pr [s:eyd+azy]—— SN-(6+) 8 §(6+) o8
(zy)€XXY N HXH#Y 201 —1/2

s€EZ/NT.
as required, since #) > N/2. O

Remark 2. Concretely, this result means that, for a small public exponent e, it suffices to choose p
slightly larger than half of the size of the modulus N to obtain a distribution that is statistical close
to uniform. For example, if e < 2'6 41 and N is a typical RSA modulus (less than 20000 bits, say),
then taking p to be 200 bits larger than half of the length of N ensures that §; < 27128,

Moreover, we conjecture that much smaller values of p are in fact sufficient to obtain a close to
uniform distribution and make our security proof go through (e.g. 200 bits rather than k/2 + 200
bits). Indeed, assuming the Generalized Riemann Hypothesis (GRH), we can prove that this is the
case for € = 0 (see Appendix C) using estimates based on multiplicative character sums rather than
exponential sums, and we conjecture that a similar estimate holds for e = 1 as well.

The security proof requires another statistical lemma which ensures that the adversary has a
negligible probability of querying the correct value w < #H(M,r) given a faulty signature. This
lemma can be easily derived from Lemma 8 proved in appendix B.

Lemma 4. Let N,e be asin Lemma 3 and a € Z/NZ, € € {0, 1} be two fized values, and assume that
p > kp+k/2+2logy k+logy(2¢?+1). For any choice of o' € Z/NZ such that s = o' —ap € (Z/NZ)*
and any ky-bit value ', the probability that a solution (x,y) € [1,2°) x [0,2871) of the equation
o' = ey + ap + vy mod N satisfies that the most significant ky, bits w € [0,2%) of y coincides with

w' is bounded as: 5

Pr [w = CU/|O'/:| § QTh

Remark 3. The probability that s is not invertible can be easily bounded by 3/ VN for balanced
RSA modulus. Concretely, this result means that, for a small public exponent e, we can choose p
slightly larger than half of the size of the modulus N and kj,.

5 Security proof

The hash functions G and # are modelled as random oracles. For clarity, we display the initial
definition of A on the left in Fig. 4. The initial definition of G is similar. We assume two global
maps h and g are used to build the random oracles. Our proof works mostly by transforming the
random oracle #. We therefore display the code for # for each transition, only displaying other
oracles when they suffer non-trivial changes. The proof, including all intermediate games, is fully
formalized in EasyCrypt.

Game 0. We initially transform both random oracles to keep track of the first caller to make a
particular query. It can be either the adversary (Adv), the signature oracle (Sig), or the faulty
signature oracle (FSig). Calls made by the experiment when checking the validity of the forgery do
not need to tag their query as they are the last queries made to the random oracles and do not
need to update its state. We also extend the internal state of # with an additional field for use
later in the proof, and currently set to a default value L.

Games 1 and 2. In Game 1, we anticipate a call to G on the output of # every time #H is called.
When # is called by either one of the signing oracles, we return the result of that call to G as well
as the result of the current # query, allowing broad simplifications to the signing oracles.

In Game 2, we deal with collisions on r and w values in the signing oracles. In later steps of
the proof, we will need the control-flow of the faulty signature oracle to be completely independent
from both r and w, and we modify the oracle to allow these later transformations. Fresh queries
are treated normally. Non-fresh queries made by the signing oracles are resampled as fresh if the
previous query had been made by the faulty signature oracle. Non-fresh queries made by the faulty
signature oracle are resampled, but not stored into the state. Game 1 is perfectly indistinguishable

Figure 4 Initial transition

: extending state

1:
2
3:
4

oracle #H(m,r)
if (m,r) ¢ dom(h) then
h[m, 7] < {0, 1}

return hlm,r]

1: oracle #,(m,r)

2 if (m,r) ¢ dom(h) then
3: w <« {0,1}"

4 him,r] + (w,c, L)

5

return 7 (h[m, r])

Pr[uf-cma™ 7" : win] = Pr[Gameo : win)

Figure 5 Games 1 and 2: anticipating calls to G and removing signing collisions

1:
2
3:
4

oracle #;(c, m,r)
if (m,r) ¢ dom(h) then
w « {0,1}"
h{m, r] + (w,c, 1)
st « G(c,w)
else
w + w1 (h[m,r])
if ¢ = Adv then
st L
else
st + G(c,w)

return (w, st)

1: oracle #:(c, m,)
9 .. (m,7) ¢ dom(h) V ¢ = FSig v
(¢ = Sig A m2(h[m, r]) = FSig)

3 w + {0,1}"

4: st « {0,1}"

5: if ¢ # FSig vV (m, r) ¢ dom(h) then
6: him,r] < (w,c, L)

7 if ¢ # FSig Vw ¢ dom(g) then
s gle] © (st & (r]| 0% *),)
9: else

10: w + m1(h[m,r])

11: if ¢ = Adv then
12: st L
13: else
14: (w, st) «+ L
15: return (w, st)

then

Pr[Game0 : win] < Pr[Game2 : win] +

2ko

(gs + q5) - (g + g5 + q7) n (qs + g5 + qr) - (g6 + @ + 45 + q7)

2kn

10

from Game 0, and Game 2 can be distinguished from Game 1 if either i. the fresh r used in
#H-queries made by the signing oracles collides with a previously used r (with probability at most
(qs +q7) - (qsr + g5 + q5) - 27%0); changes introducing this failure are marked in red (lines 2, 5 and
6); ii. or the fresh w used in G-queries made by the signing oracles collides with a previously used w
(with probability at most (g« + s +aq#) - (46 + qor + a5+ q7) - 27Fn): changes introducing this failure
are marked in blue (lines 4, 7 and 8). Note that the value stored in g at line 8 in #; is uniformly
distributed since st is.

Game 3. Given that # now samples both bitstrings that compose the final padded message, we
compute the entire signature in # when called by either one of the signing oracles. We transform
the experiment to sample an integer 2* and compute y* = z*° mod N to serve as one-way challenge.
We embed it in the state when replying to # queries made by the adversary. Everything up to this
point has been set up so that the signing oracles can simply use 73(h[m, r]) as the padded message
for m with salt r. Game 3 includes this simplification.

We introduce additional notation for clarity in the rest of the proof. Consider the function:

f y* -0 mod N if ¢ = Adv
N)y*c: O —
(M) o€ mod N otherwise

For a set X C Z/NZ, we denote by pim(e,N),y*,c(X) the uniform distribution on the set
S = {0’ € Z/NZ | f(e,N),y*,c(U) S X}

Figure 6 Games 3 and 4: Embedding the one-way challenge and oracle queries in #

oracle #;(c, m,r)
i (m,r) ¢ dom(h) V ¢ = FSig V
! (¢ = Sig A m2(h[m, r]) = FSig)

1: 1: oracle H;(c, m, 1)

9 then 2 if (m,r) ¢ dom(h) V¢ = FkSlg1 then
‘ : 2 3: O = PIM(g Ny y* e ([0..2))

3 T PIM(e Ny, y= e ([0.2571)) 4: Y < fle,n)%,c(0)

4: Y fe.n),y,c(0) 5: b||w]| st < i20sp(y)

5: b|lw]| st « i2osp(y) 6 if ¢ # FSig then

6: if ¢ # FSig V (m, r) ¢ dom(h) then 7 him,r] < (w,c,0)

7 8
8

him,r] + (w,c,0) glw] (st @ (r]| 0Fa=%0) ¢)

: if ¢ # FSig V w ¢ dom(g) then 9: else
9: glw] = (st ® (r][0%7%0), c) 10: w < 71 (h[m, 7))
10: else 11: if ¢ = Adv then
11: w w1 (h[m,r]) 12: st <« L
12: if ¢ = Adv then 13: else
13: st L 14: (w,st) + L
14: else 15: return (w, st)
15: (w,st) « L
16: return (w, st)

Pr[Game2 : win] < Pr[Game3 : win] + 9 5+2 Pr[Game3 : win] < Pr[Gamed : win] + % + qi‘giﬁ

Game 3 is indistinguishable from Game 2 exactly when z* is invertible. Therefore, the probability
k
that the adversary distinguishes the two games is exactly %. We have p+¢—1 < 227! and

21 < p. ¢ and we can therefore bound the probability of this simulation failing by 92-5%2, Since

11

the invertibility of z* is important in some later steps, we in fact let # compute a response only
when z* is invertible. In later stages, since z* is not public, we instead check the invertibility of
y*, which is equivalent. For simplicity, we omit discussions regarding this detail in the rest of this
section.

Game 4. In this game, we stop keeping track of the random oracle queries made by the faulty
signature oracle. This is an important step towards being able to apply Lemma 3, which only
discusses the statistical distance between two distributions on ¢’, rather than (w,¢’). Note that,
in Coron and Mandal’s proof, Lemma 3 is applied before this transition, in a context in which its
premises are not fulfilled.

By removing data about random oracle queries, we introduce observable changes in the game’s
behaviour whenever the adversary queries # with an r that was used previously in a faulty signature
query, or whenever the adversary queries G with an w that was used previously in a faulty signature
query. We bound the probability of the adversary guessing an w value using Lemma 4. Since the
view of the adversary does not depend on r values sampled by the faulty signature oracle (see
Fig. 7), the probability of the adversary guessing an r value used in generating a faulty signature is
easily bounded.

Game 5. Our main goal at this stage is to show that faulty signatures are in fact indistinguishable
from uniform randomness and can be simulated without using the random oracles. Once this is
done, we will be able to resume the proof of security following more standard PSS proofs.

We now use Lemma 3 to completely simulate faulty signature oracle queries. We focus on the
faulty signature oracle, inlining and simplifying # knowing that ¢ = FSig. On the left, we display
the simplified faulty signature oracle from Game 4 for reference.

Figure 7 Game 5: sampling faulty signatures

1: oracle #,(m,¢,a) 1: oracle Fs(m,¢, a)

2 r« {0,1}* 2 r« {0,1}%0

3: o pim Ny, ([0.2571)) 3 o'« [0..N)

4: y + 0 mod N 4 return i2osp(o’)
5 1« {0,1}°\0

6 o' +—¢cota-p—1-y

7 return i2osp(o’)

qy - (4egnaw + 1) -k
2p—k/2

Pr[Gamed4 : win] < Pr[Game5 : win] +

We make use of elementary properties of the statistical distance and Lemma 3 to bound the
probability of distinguishing Games 5 and 6. Note that sampling o in pim(y) 4= . ([0..2k_1)) and
applying the public RSA permutation to obtain y is perfectly equivalent to sampling y in [O..2k_1).

Game 6. With the faulty signature oracle simplified away, we can now focus on simulating the
signature oracle. From now on, the ¢ argument to # can no longer be FSig. More generally, it is
impossible for any entry in h or g to be tagged with FSig.

The signature oracle we have defined at this point is not a valid simulator as it does not run
in polynomial time. To ensure that it does, we replace the sampling operation at line 3 in Fig. 6

12

(right) with the loop displayed on the left of Fig. 8 to sample 0. The adversary can distinguish the
two games whenever the loop finishes in a state where y does not start with a 0 bit.

Figure 8 Game 6 and inverter: sampling ¢ in polynomial time

1: while (10 <y < 2" ") Ai < ko do 1: oracle Z(e, N, y*)
2 o+ [0..N) 2: (m, s) < 2’957 (¢, N)
3y feny.e(o) 3 o + 0s2ip(s)
4 T i+1 4: y < oc®mod N
5: b||wl| st « i20sp(y)
6: Ty st ® glw]
7 (W', Adv, u) < h[m,]
8 return o - u !
Pr[Game5 : win] < Pr[Game6 : win] + ”Q‘Tt]q‘ Pr[Game6 : win] < Prlow-Rsa” : ¢ = z*] + Qk% i 2§7}i1

At each iteration of the loop, the o sampled is invalid with probability at most % The probability
that all iterations produce an invalid o is therefore bounded by 2%0, since all samples are independent.
H, may now be queried g4 + ¢s times, allowing us to conclude.

Reduction All the oracles are simulated without using any secret data. We now focus on building
an inverter. The adversary can win in two disjoint cases:

— either the #-query made by the verification algorithm is fresh (this occurs with probability at
most 27F#),

— or the #-query made by the verification algorithm was previously made by the adversary. If the
query was made by the signature oracle, the forgery cannot be fresh.

In the latter case, the one-way challenge can then be recovered by the inverter shown on the right

of Fig. 8. The key observation is that, in case of a successful forgery, we have y = ¢ mod N (line 4)

and y = y* - u® mod N (by invariant on h). By definition of y* and the morphism and injectivity

properties of RSA, we therefore have o = z* - u. We need to also consider the case where a u stored

in the h map by the adversary is not invertible, which occurs with probability at most g4 - 9—k/2+1
The final bound is obtained by transitively using the individual transition bounds.

6 Formalization

We have formalized the security proof using EasyCrypt. The formal proof contains the sequence of
games outlined in the previous Section and justifications for all transitions between games. Lemmas 3
and 4 are stated as axioms in our formalization. Formally verifying the lemmas in EasyCrypt, or
any other proof assistant, would first require to build a verified library for additive characters that
covers at least the results used in our proof, and is outside the scope of this work.

A tarball containing the formal proof and the pre-release version of EasyCrypt used for the
proof can be found at https://wuw.easycrypt.info/downloads/chesl14/faultyPSS.tar.bz2.

Overview of EasyCrypt. EasyCrypt [4] is a tool-assisted framework that supports the verification
of code-based game-playing proofs. Games are written in a core probabilistic procedural imperative

13

https://www.easycrypt.info/downloads/ches14/faultyPSS.tar.bz2

language, and using a module system to account for instance for adversaries. For the clarity of
presentation, we simply view an adversary as an abstract procedure.

Reasoning about game-based proofs is based on two main tools. The first tool is a probabilistic
relational Hoare logic pRHL that allows to relate two games. Its judgments are of the form {®}G; ~
G2{¥} where @ and ¥ are binary relations on states, G; and Gy are games. Informally, the judgment
is valid if the two subdistributions obtained by executing G; and G5 on two initial memories that
are related by @ are themselves related by ¥. The main use of pRHL is for performing transitions
between two games. In particular, when the relation ¥ simply corresponds to equivalence between
states, one can conclude that for every event E, we have Pr[G1 : E] = Pr[G2 : E]. In the more
general case where the relation ¥ corresponds to equivalence between states up to a failure event F’,
one can conclude from the valid judgment that for every event F,

PriG1: E] < Pr|G2: E]+ Pr[G2: F|

The second tool is a probabilistic Hoare logic pHL that allows to (upper or lower) bound the
probability of an event in a game. Its judgments are of the form {®#}G{¥} ¢ p where ¢ and ¥ are
predicates on states (events), G is a game, p is a probability expression and ¢ is a comparison
operator =, <, >. Informally, the judgment is valid if the probability of ¥ in the subdistribution
obtained by executing G on an initial memory satisfying @ is equal (or upper bounded, or lower
bounded, depending on the comparison operator ¢) by p. The main use of pHL is for bounding the
probability of failure events.

The combination of pRHL and pHL provides a powerful framework that captures the most
common patterns of reasoning used in cryptographic proofs. We refer to [5,4] for more information.

References

1. J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir. Certified computer-aided cryptography: efficient
provably secure machine code from high-level implementations. In A.-R. Sadeghi, V. D. Gligor, and M. Yung,
editors, ACM CCS 13, pages 1217-1230, Berlin, Germany, Nov. 4-8, 2013. ACM Press.

2. R. J. Anderson and M. G. Kuhn. Low cost attacks on tamper resistant devices. In B. Christianson, B. Crispo,
T. M. A. Lomas, and M. Roe, editors, Security Protocols Workshop, volume 1361 of Lecture Notes in Computer
Science, pages 125-136. Springer, 1997.

3. C. Aumiiller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert. Fault attacks on RSA with CRT: Concrete results
and practical countermeasures. In B. S. Kaliski Jr., Cetin Kaya. Koc¢, and C. Paar, editors, CHES 2002, volume
2523 of LNCS, pages 260-275, Redwood Shores, California, USA, Aug. 13-15, 2002. Springer, Berlin, Germany.

4. G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin. Computer-aided security proofs for the working
cryptographer. In P. Rogaway, editor, CRYPTO 2011, volume 6841 of LNCS, pages 71-90, Santa Barbara, CA,
USA, Aug. 14-18, 2011. Springer, Berlin, Germany.

5. G. Barthe, B. Grégoire, and S. Zanella-Béguelin. Formal certification of code-based cryptographic proofs. In $6th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, pages 90-101, New
York, 2009. ACM.

6. A. Berzati, C. Canovas-Dumas, and L. Goubin. Public key perturbation of randomized RSA implementations. In
S. Mangard and F.-X. Standaert, editors, CHES 2010, volume 6225 of LNCS, pages 306—-319, Santa Barbara,
California, USA, Aug. 17-20, 2010. Springer, Berlin, Germany.

7. J. Blomer, M. Otto, and J.-P. Seifert. A new CRT-RSA algorithm secure against Bellcore attacks. In ACM
Conference on Computer and Communications Security, pages 311-320, 2003.

8. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating errors in cryptographic computations.
Journal of Cryptology, 14(2):101-119, 2001.

9. A. Boscher, H. Handschuh, and E. Trichina. Fault resistant RSA signatures: Chinese remaindering in both
directions. TACR Cryptology ePrint Archive, 2010:38, 2010.

14

10. E. Brier, D. Naccache, P. Q. Nguyen, and M. Tibouchi. Modulus fault attacks against RSA-CRT signatures. In
B. Preneel and T. Takagi, editors, CHES 2011, volume 6917 of LNCS, pages 192—206, Nara, Japan, Sept. 28 — Oct. 1,
2011. Springer, Berlin, Germany.

11. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem secure against adaptive chosen
ciphertext attack. In J. Stern, editor, FEUROCRYPT’99, volume 1592 of LNCS, pages 90-106, Prague, Czech
Republic, May 2-6, 1999. Springer, Berlin, Germany.

12. M. Christofi, B. Chetali, L. Goubin, and D. Vigilant. Formal verification of a CRT-RSA implementation against
fault attacks. J. Cryptographic Engineering, 3(3):157-167, 2013.

13. M. Ciet and M. Joye. Practical fault countermeasures for Chinese remaindering based cryptosystems. In
L. Breveglieri and I. Koren, editors, FDTC, pages 124-131, 2005.

14. J.-S. Coron, C. Giraud, N. Morin, G. Piret, and D. Vigilant. Fault attacks and countermeasures on Vigilant’s
RSA-CRT algorithm. In FDTC, pages 89-96, 2010.

15. J.-S. Coron, A. Joux, I. Kizhvatov, D. Naccache, and P. Paillier. Fault attacks on RSA signatures with partially
unknown messages. In CHES, pages 444456, 2009.

16. J.-S. Coron and A. Mandal. PSS is secure against random fault attacks. In M. Matsui, editor, ASTACRYPT 2009,
volume 5912 of LNCS, pages 653-666, Tokyo, Japan, Dec. 6-10, 2009. Springer, Berlin, Germany.

17. J.-S. Coron, D. Naccache, and M. Tibouchi. Fault attacks against EMV signatures. In CT-RSA, pages 208-220,
2010.

18. P.-A. Fouque, N. Guillermin, D. Leresteux, M. Tibouchi, and J.-C. Zapalowicz. Attacking RSA-CRT signatures
with faults on Montgomery multiplication. J. Cryptographic Engineering, 3(1):59-72, 2013.

19. C. Giraud. An RSA implementation resistant to fault attacks and to simple power analysis. IEEE Trans.
Computers, 55(9):1116-1120, 2006.

20. D.-P. Le, M. Rivain, and C. H. Tan. On double exponentiation for securing RSA against fault analysis. In
J. Benaloh, editor, CT-RSA 201/, volume 8366 of LNCS, pages 152-168, San Francisco, CA, USA, Feb. 25-28,
2014. Springer, Berlin, Germany.

21. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1996.

22. H. L. Montgomery. Topics in multiplicative number theory. Springer-Verlag, 1971.

23. P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44:519-521, 1985.

24. N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson. Formal verification of a software countermeasure against
instruction skip attacks. Journal of Cryptographic Engineering, pages 1-12, 2014.

25. P. Rauzy and S. Guilley. A formal proof of countermeasures against fault injection attacks on CRT-RSA. Journal
of Cryptographic Engineering, pages 1-13, 2013.

26. M. Rivain. Securing RSA against fault analysis by double addition chain exponentiation. In M. Fischlin, editor,
CT-RSA 2009, volume 5473 of LNCS, pages 459-480, San Francisco, CA, USA, Apr. 20-24, 2009. Springer, Berlin,
Germany.

27. A. Shamir. Improved method and apparatus for protecting public key schemes from timing and fault attacks.
Patent Application, 1998. WO 1998/052319 A1l.

28. E. Trichina and R. Korkikyan. Multi fault laser attacks on protected CRT-RSA. In L. Breveglieri, M. Joye,
I. Koren, D. Naccache, and 1. Verbauwhede, editors, FDTC, pages 75-86. IEEE Computer Society, 2010.

29. D. Vigilant. RSA with CRT: A new cost-effective solution to thwart fault attacks. In E. Oswald and P. Rohatgi,
editors, CHES 2008, volume 5154 of LNCS, pages 130-145, Washington, D.C.,; USA, Aug. 10-13, 2008. Springer,
Berlin, Germany.

30. I. M. Vinogradov. Elements of number theory. Dover, 1954.

31. S.-M. Yen, S.-J. Moon, and J. Ha. Permanent fault attack on the parameters of RSA with CRT. In R. Safavi-Naini
and J. Seberry, editors, ACISP 03, volume 2727 of LNCS, pages 285-296, Wollongong, NSW, Australia, July 9-11,
2003. Springer, Berlin, Germany.

A Proof of Lemma 3

Fix two positive integers X, Y < N and some integer constant h € [0, N —Y), and consider the sets
X=[1,X]|CZ/NZ,Y =[h,Y +h) CZ/NZ and Y* =Y N (Z/NZ)*. X and Y are of cardinality
X, Y respectively, and we define Y* = #)*. Note that Y > Y* > Y — p — ¢ since there are fewer
than p + ¢ non-invertible elements in Z/NZ.

We want to estimate the regularity of the distribution of elements of the form 2y + ey € Z/NZ
for z € X and y € Y. To do so, for any s € Z/NZ, we denote by T'(s) the number of representations

15

of s as a sum of the form zy + ey? for (z,y) € X x), and by T*(s) the corresponding number for
(z,y) € X x Y*. In other words:

T(s) =#{(z,y) € X x V| s=ay+ey’t; T*(s) =#{(z,9) € X x V* | s = 2y + ey}

Our goal is to prove that for almost all s € Z/NZ, T'(s) is close to its average value XY /N, subject
to suitable bounds on X and Y. To do so, we first estimate 7%(s) using exponential sum techniques.

Lemma 5. For all s € Z/NZ, we have:

XY+
T*(s) — N’ < 4> N'/210g% N.

Proof. Note that for y € Y* (hence invertible), we have s = zy + ey? if and only if z = (s — ey?)/y
in Z/NZ. As a result, Lemma 1 ensures that:

1= s — ey 1= eyt — s
re= 3 g e (o)) = 5 X Tenten T en(e-)
(z,y)EX XY* c=0 c=0 zeX yeY*
N-1
Xy* 1 d_
== NZ en(cz) Z ey(c Eyy 8)7
c=1 z€ yeY*
by putting aside the contribution of ¢ = 0. Now define:
d
_ . eyt — 3)
B = lglglg%c_l |B.| where B, = Z eN (c " .
yey*
We then have: Nt
. XY™ B —
- X < 5 > | X ewten)] < Blog, 1)
= T

by Lemma 1. Therefore, estimating 7(s) reduces to obtaining an appropriate bound on B, which
we will do using Weil’s theorem (Lemma 2), which provides a bound on sums of the form:

Sile) =Y ep(p(x))

z€lF,
p(x)F#00

for rational functions ¢ on the finite field Fy, provided that ¢ is not constant. Now write:

d_ d_ N
b= 3 ex(e M) wed= 3 en(e) L g el)
we(Z/NZ)* we(Z/NZ)* yeY = =0
d

= % i D en(=cy) > eN(C' eww_ *+ C’w>

=0yey we(Z/NT)*

N
AT Send) Y (L)

=0yey 2€(Z/NZ)*

16

using the change of variable z¢ = w. If we pick integers u, v such that up + vq = 1, we see that the
sum in z decomposes as:

2% + ecz — cs 2% + ecz — cs
> eN< ~)z > eN((UZH-UQ)‘)

2&(Z/NZ)* 2€(Z/NZ)* =
= Z ep (vfgcf(zp) mod p) Z e <ufc7c/(zq) mod q)
z2p€FS zq€FY

= Sp(vfee mod p) - Sq(ufe mod q)

where the rational function f. . is given by f.»(z) = (2% + ecz — cs)/z°.

Now, if ¢ # 0 (mod p), vf. mod p is a non constant rational function in Fy(z) of degree at most
2e whose denominator vanishes in exactly one point of E, so Lemma 2 ensures ‘Sp(v fe, mod p)} <
2e,/p. On the other hand, if ¢ =0 (mod p), we have:

Sp(vfe.r mod p) = Z ep(vd'2%) = Z ep(vdw) =

zE]F;; wE]F;;

p—1 ifd =0 (mod p),
-1 otherwise.

And the corresponding results hold for Sq(uf.). As a result, to bound B,, we should distinguish
the case when c is invertible mod N from the case where it is a multiple of p or g. When c is
invertible, we directly have:

N
‘Bc’ < % Z ‘ ZeN(_c/y>’ : }Sp(vfc,c’ mod p)} : ‘Sq(ufc,c’ mod Q)‘

/=0 yey
N
1 4e2\/N - Nlog N
SN,Z()‘;);eN(—C'y>"2€\/I3'2€\/5§ CIN NIEN _ 2112106 N
=0y

by Lemma 1. On the other hand, suppose that ¢ is a multiple of p. We have:

—1 p—1
‘Bc’ = ‘N Z Z eN(_c/y) ’ Sq(ufc,c’ mod Q) + T Z Z eN(_C/y) ’ SQ(quC' mod Q)
d€Z/NZ ye)y c€Z/NZ yey
c'#20 mod p =0 mod p
-1
1 q
<~ NlogN-2ey/g + % 3 ‘ Zeq(—c”y)‘ - 2e/g < 2er/q - log N + 2ey/q - log g < 4e2NV21og N,
'=0 yey

by applying Lemma 1 once for the modulus N and once for q. The same bound holds when c is a
multiple of ¢, so that B < 4¢2N'/21og N. Together with (1), this concludes the proof. O

Lemma 6. For all s € Z/NZ, the difference T'(s)—T"*(s) is non negative, vanishes if s is invertible,
and is bounded as follows otherwise:

X+2XY/N+Y/p+Y/q ifs=0,
T(s)—T"(s) < { XY/N+Y/p if s # 0 but s = 0 mod p,
XY/N +Y/q if s # 0 but s = 0 mod q.

In particular, T(s) — T*(s) < 3X +p+ q for all s.

17

Proof. Indeed, if s is invertible, the equation s = zy + ey? = y(x + eyd_l) can have no solution with
y & (Z/NZ)*. Hence T'(s) = T*(s).

Similarly, suppose that s is zero mod p but not mod ¢. Then all solutions (x,y) to the equation
must satisfy y Z 0 mod g, so solutions with y & Y* are of the form (z, pyo) with yo € [h/p, (Y +h)/p).
Moreover, for each given value of yg, we have z = —pyg_1 mod ¢, so the reduction of x mod ¢ is
fixed and there can thus be at most X/q + 1 solutions. Therefore, in total, we have:

X Y XY Y
L-2.t

T(s)—T*(s)g(Elep T

as required, and the corresponding result when s is zero mod g but not mod p follows for the same
reason.

Finally, when s = 0, we can distinguish three types of solutions with y & Y*: i. those for which y
is zero mod p but not mod ¢, and there are at most XY /N + Y/p of them as above; ii. those for
which y is zero mod ¢ but not mod p, and there are at most XY/N + Y/q of them; iii. and those
with y = 0, in which case all values of x satisfy the equation. Hence:

as required. And the bound by 3X + p + ¢ follows from the fact that ¥ < V. a

Lemma 7. Suppose that N is a balanced RSA modulus (i.e. N = pq for primes p,q such that
60 < g < p < 2q). Then, the following holds:

Z X

T(s) — XY < (4¢2 +1)N3/%10g? N. (2)
S€Z/NZ

N

In particular, the statistical distance to uniform of elements of the form xy + ey® in Z/NZ with
(z,y) € X x Y is bounded by (4e* + 1)N3/2(log? N)/(XY'), and is therefore negligible for XY >
e2N3/249 for any & > 0.

Proof. We decompose the sum from (2) as:

SUCEETERY

S€Z/NZ SE€Z/NZ

XY+ XY* XY

T(s)—T"(s) T*(s) — Al

D

SE€Z/NZ

p>

SE€Z/NZ

and denote by S, .59, 53 the three sums on the right-hand side. We have:
S3=X- (Y -Y)<X-(N—p(N)<X-(p+q) <X 3g<3N%?

since X < N. Moreover, by Lemma 5, we have Sy < N - 4e2N'/21log? N = 4e2N?3/2log? N. And
Lemma 6 ensures that:

S1< Y BX+p+<(p+ae) (X +p+q) <3VN-AN =12V
s¢(Z/NZ)*

Thus, the sum from (2) is bounded by:
S+ Sy + S5 < 4e*N3/%(log? N + 15) < (4€* + 1)N3/?log? N

since log? N > log? 60 > 15. This concludes the proof. a

18

B Proof of Lemma 4

Suppose Y is of the form [0,Y) with Y = mY) for some integers m,Yy > 1, and write), =
WY, (w+1)Yy) for w=10,1,...,m — 1. We claim that for XYj large enough, for each s € (Z/NZ)*,
the number of solutions of the equation s = zy + ey? with (z,y) € X x), is roughly independent
of w. More precisely, the following holds.

Lemma 8. Suppose N as in Lemma 3 and assume that o = (4€% + 2)N3/2log? N/(XYp) < 1/2.
Then, for all s € (Z/NZ)* and 0 < w < m, the probability that a solution (z,y) € X x Y of the
equation s = xy + ey® satisfies y € Y, is bounded as:

1 4o

Pr[yeyw | (x,y)eXxyands:xy+eyd]—— < —.
m m

Proof. Let us denote by T, (s) the number of solutions x,% of the equation s = 2y 4 ey such that
(z,y) € X x Y, and by T,5(s) the number of solutions such that, in addition, y is invertible. We

have:
T,(s) _ IME)

T(s) T*(s)

where the second equality holds by Lemma 6. And by Lemma 5, we have:

PriyeV, | (x,y)eXxyands::L‘y—i—eyd] =

XY XYy

N

X
+ 5 (Y =Y") <4(e + N2 log? N +1-3VN

‘T*(s) < ‘T*(s)

XY,
< 4(e® +2)N'?10g? N < aTO,

and similarly, again by Lemma 5, |T%(s) — XYO/N’ < aXYy/N. Thus, we get:

l—a o (1-a) <Tj(s)< A0 (14 a) :1—|—oz.
mta L. (1+a/m)” Ts) = - (1-a/m) m-a

It follows that:

1
mm+a) m+a m_-T*s) m_m—a m mm—a)

(m+1a 1-a«a 1<Tj(s)

And finally, if we bound (m + 1)/m above by 2 and « by 1/2, we obtain:

Tx(s) 1 < 2 4o 4o

w R —

= < —
T*(s) m|~- m—=1/2 2m—-1"m

as required. O

C Statistical indistinguishability for smaller p
We prove that under GRH, Lemma 5 holds on average with a much better bound for € = 0 (and we

conjecture that the same is true for e = 1). We formulate the bound on (Z/NZ)* for simplicity, but
one can easily extend the result to Z/NZ with the approach of Lemma 7.

19

Lemma 9. Assume that the Generalized Riemann Hypothesis holds, and let N, X,Y be as in
Appendixz A. For any § > 0 there exists a constant cs > 0 such that:
1 N
Pr [s:xy]—‘§05N5 M

Z x XYy
se€(Z/NZ)* w(y’ey()ze/fvngi

In particular, zy is statistically close to uniform in (Z/NZ)* for XY > N3,

Proof. The proof uses multiplicative characters x of Z/NZ rather than additive ones. The deviation
from the average at a given s € (Z/NZ)* can be written as:

Pr[s = zy| — gp(lN) Z Z x(zy)x(s)

X#xo (xy)eX XY

where xq is the trivial character. It follows that:

D

s€(Z/NZ)*

2

- CrrE L S e D))

XX #Xo x,y,2 Yy’ s

1
P(N)

Pr[s = zy] —

and the sum in s on the right-hand side vanishes for y # x’ and evaluates to ¢(N) otherwise. Hence:

2 Ve O sl

S€(Z/NZ)* XF#X0

1 2

Pris = xy] —)

where we write S(x) = > cx X(%) 2,y X(y). Now since X is an interval of the form [1, X], it is

classical that GRH implies, for any ¢ > 0, ’ D ovex X(CL‘)’ < ¢sXY2N? for some constant ¢ > 0 (see
e.g. [22, Eq. (13.2)]). Hence:

1 2 N25 N26
Pr[s = — <
Z r[s a:y] gD(N) - X Y2 ZZX XY ’
se(Z/NZ)*
from which the stated result follows using the Cauchy—Schwarz inequality. O

20

	Making RSA–PSS Provably Secure Against Non-Random Faults

