
Practical and Secure Query Processing for

Large-scale Encrypted Cloud Storage Systems

Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

Wuhan University1, University at Buffalo, SUNY2

{cheng,qianwang,peng}@whu.edu.cn, kuiren@buffalo.edu

Abstract. With the increasing popularity of cloud-based data services,
data owners are highly motivated to store their huge amount of (poten-
tially sensitive) personal data files on remote servers in encrypted form.
Clients later can query over the encrypted database to retrieve files of
interest while preventing database servers from learning private infor-
mation about the contents of files and queries. In this paper, we inves-
tigate new and novel SSE designs which meet all practical properties,
including one-round multi-keyword query, comprehensive and practical
privacy protection, sublinear search time, and efficient dynamic data op-
eration support. Moreover, our solutions can well support parallel search
and run for very large-scale cloud databases. Compared to the existing
SSE solutions, our solution is highly compact, efficient and flexible. Its
performance and security are carefully characterized by rigorous analy-
sis. Experimental evaluations conducted over large representative real-
word data sets demonstrate that compared with the state-of-the-art our
solution indeed achieves desirable properties for large-scale encrypted
database systems.

Key words: Cloud storage, encrypted data, one-round multi-keyword
query, data dynamics, parallel search

1 Introduction

In the cloud computing paradigm, providing database-as-a-service (DaaS) al-
lows a third party service provider to host database as a service, providing its
customers seamless mechanisms to create, store, and access databases at cloud
with adequate storage resource, convenient data access and reduced manage-
ment and infrastructure costs [1, 2]. But database outsourcing also raises data
confidentiality and privacy concerns due to data owner’s loss of physical data
control. To provide privacy guarantees for sensitive data such as personal iden-
tities, health records and financial data etc., a straightforward approach is to
encrypt the sensitive data locally before outsourcing [2,3,3,4]. While providing
strong end-to-end privacy, encryption becomes a hindrance to data computa-
tion/utilization, i.e., it is hard to retrieve data files based on their content as
in the plaintext search domain. In addition, clients are also concerned about
their query privacy, expecting that both the data content and query purposes
in plaintext not to be leaked to the remote database server.

To allow a client to retrieve encrypted data files of interest, many searchable
symmetric encryption (SSE) solutions have been proposed [5–12]. The existing
SSE solutions, however, either have large search time complexity and privacy

2 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

guarantee under weaker security model [5, 6], or cannot support efficient data
operations and parallel computations [8,9], or introduce relatively large storage
cost and low search efficiency [11, 12]. Besides, to achieve efficient searches, re-
searchers have weaken the privacy guarantee without the protection of access
pattern and search pattern. In recent years, researchers have put great effort into
the practicality of SSE constructions. Kamara et al. [10] designed a two-level
dynamic encrypted index based on the inverted index approach. As a following
work, Kamara et al. [13] further proposed a parallelizable and dynamic SSE
scheme based on the red-black tree data structure, achieving stronger privacy
guarantee during data updates. In the most recent work [14], Cash et al. pro-
posed a new SSE construction, supporting sublinear multi-keyword Boolean
queries. However, their schemes have to execute multi-round interactions for
the security concern, with relatively high computational burden on the client.
To the best of our knowledge, none of existing SSE solutions satisfy all desir-
able properties in terms of one-round multi-keyword query, comprehensive and
practical privacy protection, sublinear search time and efficient dynamic data
operation support. Thus, there still exists much room for us to explore more ef-
ficient, flexible and practically-secure index constructions for processing queries
over encrypted cloud storage systems.

In this paper, we introduce a suite of new and novel SSE index designs
for processing queries over encrypted cloud storage systems. Our construction
addresses the main limitations of each of the existing inverted index approaches
by carefully making a trade-off between query efficiency and query privacy, with
flexible and comprehensive query functionalities. In particular, our solution has
a very compact index construction achieves practical privacy guarantee and
supports one-round multi-keyword query, scalability, parallel computation and
efficient data updates. Our technical contributions are as follows.

– We propose a bucket-encrypting index structure (BEIS) with moderate com-
putational cost, based on a new bloom filter-based probabilistic informa-
tion coding approach. The BEIS naturally allows efficient one-round multi-
keyword query without sacrificing query privacy.

– We propose an enhanced version of BEIS to further improve the query
efficiency, based on a new hierarchical data structure while keeping the
same privacy guarantee. Due to the nice and decomposable index structure,
query processing over BEIS and its hierachical version (HBEIS) can both
be parallelized in multi-core architectures and support efficient and secure
data updates.

– We present a formal security analysis of our schemes, showing that the
proposed schemes enjoy security against adaptive chosen-keyword attacks
(CKA2) and can help mitigate the leakage of search pattern privacy. To
demonstrate the practicality of our solutions, we conduct experimental eval-
uations using large representative real-world data sets. It is shown that our
HBEIS construction can increase the query performance from approximately
6 to 102 times with a representative dataset of 5 · 105 data files.

Sample Title 3

2 Related Work, Preliminaries and Definitions

2.1 Related Work

Following the idea of trading security for efficiency, the first notable SSE scheme
along this direction was proposed by Song et al. [5] with weaken security, and
the search time of the scheme is linear in the length of the file collection. By
associating an encrypted index to each file, the SSE construction proposed by
Goh [6] achieves search time that is proportional to n, the number of files in
the collection. In particular, a formal security model (IND-CKA) with respect
to index indistinguishability was first introduced to prove the semantic secu-
rity of indexes, and one appealing property of this solution is that it handles
dynamic data efficiently and securely (without revealing any private informa-
tion about the contents of data and keywords). In 2006, Curtmola et al. [8]
generalized security definitions of SSE (CKA1 and CKA2) and proposed a new
encrypted index structure that associates with the entire file collection. The
resulting search time is optimal and sublinear in |dw|, the number of files that
contain keyword w. Recently, Kamara et al. [10] extended the inverted index
approach [8] and designed a two-level dynamic encrypted index which allows for
both addition and removal of data files. This construction achieves the overall
best performance in single-core architectures due to its high query efficiency and
dynamic index. Motivated by advances in multi-core architectures, Kamara et
al. [13] proposed a parallelizable and dynamic SSE scheme based on red-black

tree data structure. The search executes in parallel O(|dw|
p

log |d|) time, where

p and |d| are the number of the available processors and the total data files,
respectively. Among others, one limitation of the above SSE solutions is that
they only support single-keyword search, the direct extension to multi-keyword
search requires to compute the intersection of disjunctive queries for each key-
word. Besides, to trade privacy for efficiency, the existing SSE designs leak the
access pattern and the search pattern. The multi-keyword search problem over
encrypted data was investigated by Cao et.al [12] and a multi-keyword ranked
search scheme was proposed using the secure kNN computation technique [15].
However, their approach is limited by the large index storage cost due to its
associated large dictionary, and the low search efficiency due to its high vector
computation cost introduced in the one-to-one search. Still, the access pattern
and the search pattern during query execution are still in risk without any pro-
tection. In the latest literature [14], the authors designed the first SSE scheme
which supports sublinear multi-keyword Boolean queries by providing trade-offs
between performance and privacy. Unfortunately, for each query, their schemes
have to execute two/three rounds of interaction for security concerns, and put
too much computational burden on the client (the time complexity of the trap-
door generation in terms of token is O(q|dw|), where a token can be roughly
expressed as gx and q is the number of query keywords. To enrich the func-
tionalities, the notion of fuzzy and/or similarity keyword search over encrypted
data have been proposed and investigated in [11, 16]. Li et.al [11] put forth a
fuzzy keyword search scheme by building a large “fuzzy set” associated with
both the encrypted index and the search queries. Based on locality sensitive
hashing, Kuzu et.al [16] proposed a more generic solution for distinct similarity
contexts. A two-server model is considered to mitigate the risk of access pattern

4 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

leakage, but similar to existing SSE solutions which leak the search pattern, it
leaks the similarity pattern.

2.2 Problem Statement and Notations

In cloud-based database systems, the data owner outsources a large-scale collec-
tion of data files d = (d1, . . . , d#d) to the remote database server in encrypted
form c = (c1, . . . , c#c). The data files d can represent text files or records in
a relational database. To enable the query service over c for effective informa-
tion retrieval, the data owner needs to build an encrypted index γ based on d

and outsources (γ, c) to the remote database server. Later, a client (for ease
of exposition, in the following statements when we mention a client, we refer
it as the data owner or an authorized user) can use a multi-keyword query
q = {w1, . . . , w#q} (note that for a relational database, keywords are attribute-
value pairs) to query and retrieve data files of interest in the database. To this
end, the client generates an encrypted query token τ (i.e., trapdoor of q) and
sends it to the remote cloud server. After receiving τ , the cloud executes the
query on γ and returns all the encrypted data files cq that satisfy the query,
i.e., each of cq contains all the query keywords in q for the ‘AND’ logic query,
or cq contains the ranked (possible top-k) encrypted data files for the ‘OR’ logic
query based on a specific similarity measurement. Finally, the client can locally
decrypt cq and obtain data contents in plaintext form.

The database system is a dynamic one. That is, at any time the data owner
or authorized users may add or remove one or more data files du from the remote
database. To do so, the client generates an encrypted update token τu. Given
τu, the database server can execute secure updates on c and the corresponding
index γ. In multi-core architectures, the database server is expected to execute
parallel computations or say parallel keyword search in our application scenario.
Formally, a searchable encrypted database system is defined as below.

Definition 1. (A searchable encrypted database) A searchable encrypted database
consists of six polynomial-time algorithms (KeyGen, BuildIndex, Trapdoor, Query,
UpdateInfo, Update) such that:

sk ← KeyGen(1k): is a probabilistic key generation algorithm run by the data
owner. It takes as input a security parameter k and outputs the secret key sk.

(γ, c)← BuildIndex(sk,d): is a (possibly probabilistic) algorithm run by the data
owner to build the encrypted index. It takes as input the secret key sk and data
collection d and outputs an encrypted index γ and ciphertexts c.

τ ← Trapdoor(sk,q): is a (possibly probabilistic) algorithm run by the data
owner or authorized users to generate a search token. It takes as input sk and
a given query request q, and outputs the corresponding trapdoor τ .

cq← Query(τ ,γ, c): is a deterministic algorithm that run by the database server.
It takes as input the search token τ , the encrypted index γ and c and outputs a
sequence of encrypted data files cq.

τu ← UpdateInfo(sk,du): is a (possibly probabilistic) algorithm that takes as
input the secret key sk and a set of data files du to be added or deleted, and
outputs an update token τu.

(γ′, c′) ← Update(τu,γ, c): is a deterministic algorithm run by the database

Sample Title 5

server. It takes as input the encrypted index γ and a update token τu and outputs
the updated encrypted data collection c′ and index γ

′.

We use id(dj) to denote the identifier of the data file dj and id(d) to denote
the identifiers of all data files in d. The keyword universe (which contains all
distinct keywords) extracted from d is denoted by w = (w1, . . . , w#w). In our
construction, we use div ∈ {0, 1}#d to denote a data identifier vector (DIV),
where the jth entry of div is 1 if dj is included; 0 otherwise. By this definition,
given wi, we can use divi or divwi

to denote all data files that contain wi (i.e., the
corresponding entries in divi are 1’s.). We also use dw to denote the all data files
that contain w and φ(div) to denote the number of 1’s in div. In addition, we

use d̂iv to denote a joint data identifier vector computed from multiple divs based
on pre-defined computations. Standard bitwise Boolean operations are defined
on binary vectors: bitwise OR (union) “

∨
” and bitwise AND (intersaction)

“
∧
”, which also take the same notations for single bit OR and AND operations,

respectively. Given a vector v, we refer its jth element as v[j] or vj .

2.3 Security Model and Definitions

We follow the widely-accepted security definitions of SSE in [6, 8–10] for our
construction. However, in our application scenario q is a multi-keyword query
instead of a single-keyword one.

Definition 2. (Search Pattern π). Given a sequence of s query requests Q =
{q1, . . . , qs}, the search pattern privacy is defined as a symmetric binary s× s

matrix π, where the element π[i, j] = 1 if qi = qj and π[i, j] = 0 otherwise.

Definition 3. (Access Pattern Ap). Given a sequence of s query requests Q =
{q1, . . . , qs}. Let τ = {τ1, . . . , τs} be the corresponding trapdoors of Q and
{cq

1
, . . . , cqs} be the sequence of query results. The access pattern privacy then

is defined as {Ap(τ1) = id(cq
1
), . . . , Ap(cqs) = id(cqs)}.

Definition 4. (History). A history H = (d,Q), which contains the interaction
history between a client and the cloud database server, consists of a collection
of data files d and s query requests Q = {q1, . . . , qs}.

Definition 5. (View). A view of adversaries contains all information that ad-
versaries can access directly. Let c = {c1, . . . , c#c} be a collection of encrypted
data files, id(cj) be the identifier of the encrypted data file cj, γ be the encrypted
index of c, τQ = {τq

1
, . . . , τqs} be the trapdoors for a history H = (d,Q). Then,

V iew(H) = {id(c1), . . . , id(c#c), c,γ, τQ} is defined as the view of H.

Definition 6. (Trace). A trace presents information users allow adversaries
to access. Given a history H = (d,Q), let |cj | be the size of the encrypted
form cj of the data file dj (dj ∈ d), id(cj) be the identifier of the encrypted
data file cj, π(H) and Ap(H) be the search and access patterns for H. Then,
Trace(H) = {|c1|, . . . , |c#c|, id(c1) , . . . , id(c#c), π(H), Ap(H)} is defined as the
trace of H.

Definition 7. (Adaptive Security (CKA2) for Searchable Encrypted Database).
A searchable encrypted database is said to be adaptively secure, if for all s ∈
N and for all (non-uniform) probabilistic polynomial-time adversaries A =

6 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

{A0, . . . ,As−1}, then there exists a (non-uniform) probabilistic polynomial-time
simulators S = {S0, . . . ,Ss−1} such that S can simulate the adversary’s view of
a s-query history H from Trace(H) with probability negligibly close to 1. For-
mally, for all polynomials and a sufficiently large κ, let s = poly(κ) and H be
a s-query history, there exists a simulator S such that for all polynomial-size
distinguishers D:

|Pr[D(A(V iew(H))) = 1]− Pr[D(S(Trace(H))) = 1]| ≤ negl(k),

where the probabilities are taken over H and the internal coins of the key gen-
eration and the encryption.

3 Our Constructions

3.1 Probabilistic Coding Data Structure

Base on Definition 1, we present the basic structure of our index construction.

KeyGen(1k): Given a security parameter k, generate two random k-bit strings
sk1 and r. Call sk2 ← SKE.KeyGen(1k, r), where SKE is a PCPA-secure sym-
metric encryption scheme. Output sk = (sk1, sk2).

BuildIndex(sk,d): Extractw = {w1, . . . , w#w} from d and generate {div1, . . . , div#w}.
Construct a data structure γ consisting of m buckets. Each bucket of γ is ini-
tially set to be empty. Select a collection of K independent keyed hash functions
hi=[1,K] = {hi|i ∈ [1,K]} (or pseudo-random functions), where hi : {0, 1}

∗
×

{0, 1}
k
→ [m]. For each wi (i ∈ [1,#w]), compute (x1 = h1(wi, sk1), . . . , xK =

hK(wi, sk1)). For each xj (j ∈ [1,K]), insert divi into bucket γ[xj] according to
the following rule: If the bucket γ[xj] is empty, store divi in the bucket, denoted
by γ[xj] = divi; otherwise update the bucket by storing the “union” of divi and
the “old” DIV previously stored in bucket γ[xj], denoted by γ[xj] = γ[xj]

∨
divi.

Let c← Enc(sk2,d). Output (γ, c).

Trapdoor(sk,q): For each wi (i ∈ [1,#q]), compute (x1 = h1(wi, sk1), . . . , xK =
hK(wi, sk1)). Generate the union of all positions as τ . Output τ and the query
logic information (‘AND’ or ‘OR’).

Query(γ, c, τ): Execute τ over γ according to the client-specified query logic:
1) Conjunction logic query. The server computes divτ from the buckets at the
all positions in τ as divτ =

∧
y∈τ

γ[y]. Recover data identifiers from divτ and
output the corresponding encrypted data files. To state the correctness, let τw
be the sub-trapdoor for a single keyword w in q. Thus, τw ⊂ τ and

divτ =
∧

w∈q

∧

y∈τw

γ[y] =
∧

w∈q,y∈τw

γ[y] =
∧

y∈τ

γ[y]. (1)

2) Disjunction logic query. The server computes the similarity score, denoted
by score(dj ,q), between data file dj and query q. We define the score against
the trapdoor τ as

score(dj ,q) =
∑

y∈τ

γ[y][j]. (2)

Output the ranked encrypted data files with score(dj ,q) ≥ K, where K is the
number of the keyed hash functions.

Sample Title 7

Remarks. For multi-keyword conjunction queries, as can be seen from Eq. (1),
the query result of the index structure is equivalent to that of the post-processing
of results of single-keyword queries. For multi-keyword disjunction queries, a
keyword contained in both the data dj (during the index construction) and the
query q will be mapped to the same set of buckets in the index. Therefore,
score(dj ,q) is simply the number of common buckets mapped by the keywords
in dj and q. Intuitively, the larger number of common buckets, the higher sim-
ilarity between the data dj and the query q. If a data file dj contains at least
one query keyword, there must be score(dj ,q) ≥ K. Due to this property, the
server can send back all ranked encrypted data items with score(dj ,q) ≥ K or
the ranked encrypted data items with the top-k highest scores, where k could
be user-specified.

3.2 BEIS: Bucket-Encrypting Index Structure

On the basis of probabilistic coding data structure, we present a bucket-encrypting
index structure (BEIS), enabling efficient query processing over encrypted data
and providing semantic security against adaptive adversaries (CKA2). BEIS in-
herits the bucket-based index structure (the probabilistic coding data structure)
to gain efficient query performance and encrypts all information in the index
structure. Our analysis and experimental evaluation show that compared to the
state-of-the-art of SSE, BEIS enjoys better performance at both the client and
cloud sides and comprehensive and practical privacy guarantee. Moreover, BEIS
supports one-round search with different query logics instead of multiple rounds
of interactions for each query.
BEIS with Random Generator. The centerpiece of BEIS is to design a new
non-trivial and non-deterministic encryption function which encrypts the bits
of the data identifier vector stored in the indexing buckets and a search algo-
rithm which outputs data identifiers of the target encrypted data files without
exposing the bit values of vectors that have been searched.

KeyGen(1k): Given a security parameter k, choose two prime numbers α, β and
two k-bit strings sk1, r uniformly at random. Generate sk2 ← SKE.KeyGen(1k, r),
where SKE is a PCPA-secure symmetric encryption scheme. Output sk = (α, β, sk1, sk2).

Let F : {0, 1}k × {0, 1}∗ → {0, 1}k be a pseudo-random function, which
is a polynomial-time computable function that cannot be distinguished from a
random function by any polynomial-time adversaries.

BuildIndex(sk,d): After constructing the bucket based index structure γ from
data files d, we encrypt γ as follows: For each γ[y][j] (y ∈ [1,m], j ∈ [1,#d]),
i.e., the jth bit of the vector stored in the yth bucket of γ:

– Generate the two associated secret parameters denoted by ζyj = F (sk1, y||j||1)
and λyj = F (sk1, y||j||2). The notation || denotes string concatenation. Let
b = γ[y][j] and store the encrypted form of b into γ[y][j] as

γ[y][j] = α(bβ + ζyj) + λyj , (3)

where ζyj and λyj can be considered as privacy parameters to prevent b,
α and β from the greatest common divisor (GCD) based attack. This en-
cryption algorithm has been shown to be provably secure on the basis of
approximate GCD problem [17]. Please refer [17] for details.

8 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

The client outsources the encrypted data files c encrypted under sk2 and γ to
the cloud server.

Trapdoor(sk,q): The trapdoor consists of two components. One is the bucket po-
sitions Pq mapped by all query keywords, which is denoted by Pq = {hj(wi, sk1)|j ∈
[1,K] and i ∈ [1,#q]}. With these positions and sk1, the client recoveries asso-
ciated secret parameters ζyj and λyj for each y ∈ Pq and j ∈ [1,#d]. Another
component is called the search token, denoted by stq, which is generated under
the positions Pq according to different query logics:
1) Conjunction logic. Compute the search token for the ‘AND’ logic

stq,j =
∑

y∈Pq

[α(β + ζyj) + λyj] for j ∈ [1,#d]. (4)

2) Disjunction logic. Generate randomly a privacy parameter qj from [1, αβ] for
j ∈ [1,#d] and compute the search token for the ‘OR’ logic

stq,j =
∑

y∈Pq

[αζyj + λyj − qj] for j ∈ [1,#d], (5)

where qj is used to guarantee the security of our algorithm, i.e., preventing
α and β from being exposed in query processing. Note that qj is constrained
within [1, αβ) so that qj do not affect the ranking of results.

Then the client sends the trapdoor τ = {Pq, stq = {stq,1, . . . , stq,#d}} and
the query logic information (‘AND’ or ‘OR’) to the cloud server.

Query(γ, c, τ): Receiving the trapdoor τ = {Pq, stq}, the cloud server excutes
the query according to the user-specified query logic. Let IDs be the sequence
of identifiers of the returned data files in the following discussion.
1) Conjunction logic. For each j ∈ [1,#d], add id(dj) into IDs if

∑

y∈Pq

γ[y][j] = stq,j. (6)

2) Disjunction logic. For each j ∈ [1,#d], add id(dj) into IDs and compute
the similarity score score(dj ,q)

score(dj ,q) =
∑

y∈Pq

γ[y][j]− stq,j . (7)

Rank the identifiers in IDs in accordance with the similarity scores. Finally,
the cloud server returns the (or ranked) encrypted data files.

The following theorem shows the effectiveness of BEIS, i.e., the returned
data files and their similarity scores in BEIS are the same as those of the plain-
text search over the basic index structure (without encrypting the index).

Theorem 1. Searching over BEIS with random generator is equivalent to search-
ing over the basic index structure.

Proof. See Appendix A.

BEIS with Homomorphic Generator. In the above BEIS construction
scheme with the random generator, the client has to pay the cost for generat-
ing and transmitting search tokens in Trapdoor. To reduce the communication

Sample Title 9

KeyGen(1k): choose sk1, r
$
← {0, 1}k and two prime numbers α, β. Generate sk2 ←

SKE.KeyGen(1k, r). Output sk = (α, β, sk1, sk2).
BuildIndex(sk,d):
1. for each y ∈ [1, m], generate secret roots ζy0 = F (sk1, y||1), λy0 = F (sk1, y||2) and
µy0 = F (sk1, y||3).
2. for ∀y ∈ [1, m], ∀j ∈ [1,#d], generate two secret parameters:

λyj = λy0 +
1

2
fh(h(j)µy0), (8)

ζyj = ζy0 +
1

2α
fh(h(j)µy0). (9)

3. encrypt the plaintext index γ according to Eq. (3) and let c← Enc(sk2,d).
4. output (γ, c).
Trapdoor(sk,q):
1. generate bucket positions Pq = {hj(wi, sk1)|j ∈ [1, K] and i ∈ [1,#q]}.
2. for each y ∈ Pq, recover ζy0, λy0 and µy0 .
3. compute the root token str:

str =
∑

y∈Pq

[α(β + ζy0) + λy0]. (10)

4. Output τ = {Pq, str, fh(
∑

y∈Pq
µy0)} and the query logic (‘AND’ or ‘OR’).

Query(γ, c, τ):
1. ∀j ∈ [1,#d], generate the search token stq:

stq,j = str + fh(h(j))fh(
∑

y∈Pq

µy0). (11)

2. execute the query:
1) conjunction logic. For each j ∈ [1,#d], add id(dj) into IDs if

∑

y∈Pq

γ[y][j] mod p = stq,j mod p. (12)

2) disjunction logic. For each j ∈ [1,#d], compute the similarity score score(dj ,q)

score(dj ,q) = (stq,j −
∑

y∈Pq

γ[y][j]) mod p (13)

and add id(dj) into IDs if score(dj ,q) ≥ Kαβ mod p. Rank identifiers in IDs.
3. Output cq.

Fig. 1. The query processing over BEIS with homomorphic generator.

overhead, we next present another BEIS construction with the homomorphic
generator used for generating the secret parameters in BuildIndex and recov-
ering them in Trapdoor. With the homomorphic generator, a tiny cost will be
put on the client to generate a root token str of the search token stq. After
receiving str, the cloud server can generate the complete search token stq by
using pre-defined functions without reducing the level of security. By doing so,
our scheme achieves a more practical value by migrating the computational task
of the search token generation from clients to the cloud, eliminating the large

10 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

communication cost. We show the details of the homomorphic generator in the
following processing steps: the generation of the secret parameters ζyj , λyj for
each required bucket position y and each bit position j of DIV, the generation
of the root token str and the complete search token stq. The other processing
steps are the same as BEIS construction with random generator and will not
be discussed here due to the space limitation. Let h : {0, 1}∗ → {0, 1}k be a
random oracle. We start the discussion from an additive and multiplicative ho-
momorphic generator fh: Let s be a sensitive value to be protected, p and q be
two distinct large prime numbers,

fh(s) = (s+ rp) mod pq, (14)

where r is a randomly-chosen integer and f−1
h (fh(s)) = fh(s) mod p. Assuming

that s1, s2 are two randomly-selected private values, it is easy to show fh’s homo-
morphic properties: f(s1)+f(s2)⇔ f(s1+s2) and f(s1)f(s2)⇔ f(s1s2), where
the notation ⇔ represents the equivalency relation. In the following discussion,
we will utilize the homomorphic properties of fh for our index construction and
query processing. In Query, we use IDs to record identifiers of the returned data
files, and the value Kαβ mod p can be provided by the client when generating
search tokens. The query processing over BEIS construction with homomorphic
generator is described in Fig. 1.

Theorem 2. Searching over BEIS with homomorphic generator is equivalent
to searching over BEIS construction with random generator.

Proof. See Appendix B.

Theorem 3. The BEIS construction with homomorphic generator is adaptively
secure under the CKA2 model.

Proof. See Appendix C.

Discussions of search pattern privacy mitigation. Due to the probabilistic
nature of our index construction, it can help mitigate the search pattern pri-
vacy leakage. Let τ1, τ2 be the trapdoors of two queries q1 and q2. According
to Definition 2, the mitigation of the search pattern leakage should make q1

indistinguishable from q2 even though τ1 = τ2. We next analyze the probability
psp of the case τ1 = τ2 but q1 6= q2. We use q̂ to denote the supper set of all
queries. For ease of analysis, we consider the following equivalent case: Given
q1 ⊂ q̂ and τ1, what is the probability that there exists q2 ⊂ q̂ (q2 6= q1)
such that τ1 = τ2. ∀w ∈ q̂ − q1 and its trapdoor τw , there must exist one po-
sition y ∈ τ1 with two possible cases: 1) τw ⊂ τ1 \ {y}; 2) y ∈ τw and there
exists at least one position in τw that locates in {1, . . . ,m}\{τ1}. Therefore, we
can compute psp = 1 − [(#τ1−1

m
)K + K

m
(1 − (#τ1

m
)K−1)]#q−#q

1 . Undoubtedly,
K,#τ1,#q1 ≪ m,#q̂ and q̂ ⊇ w. Then, we have psp ≥

1
2 since #q̂ is relatively

large. Therefore, from a practical point of view, for all probabilistic polynomial-
time adversaries there exists no probabilistic polynomial-time simulator that
can distinguish τ1 from τ2.

Sample Title 11

4 HBEIS: Hierarchical BEIS Construction

In BEIS, the index construction and query processing do not involve any ex-
pensive encryption operations as compared to most of existing SSE solutions,
so the query efficiency can be very high. However, in the execution of queries,
the cloud server needs to check each data file to generate the identifiers of re-
turned data files. To accommodate large-scale storage systems, in this section,
we extend our index construction to a hierarchical BEIS (HBEIS) to address
this problem and gain much higher query efficiency on the cloud side, at the
price of a slightly higher cost for index construction, storage and update.

Given a data set d, a bucket-based index γ in plaintext form will be con-
structed. Then, we construct the hierarchical bucket-based structure (HBS),
which is a bucket-based binary tree. At each leaf of the HBS, a data file iden-
tifier is stored. At the root or each internal node u of the HBS, a m-bucket
vector γu is stored. All buckets of γu will be set a boolean value in the HBS
initialization. Specifically, if γu[y] = 1 (the y-th bucket of γu), then there is at
least one path from u to a leaf node that stores an identifier id(dj), such that
γ[y][id(dj)] = 1. That means that the data identifier vector γ[y] stored in the
y-th bucket of γ includes the data file dj . Intuitively, in order to guarantee the
above property of the bucket vector γu, we generate γu as follows: Let l and r

be the left child storing the bucket vector γl and the right child of r storing the
bucket vector γr, respectively. The bucket vector γu is computed recursively as
follows: γu = γl

∨
γr. Note that each leaf v storing the data identifier id(dj) is

associated with a virtual bucket vector γv, which will not be physically stored
in the disk. Then, we let γv[y] = γ[y][id(dj)] for each y ∈ [1,m].

After building the plaintex index γ and the HBS, we discuss the encryption
of the buckets and the query processing following the logic in section 3.2. For
the root or every internal node u of HBS, it has an unique identifier id(u).

KeyGen(1k): Given a security parameter k, choose two additional prime numbers

α̂
$
← {0, 1}k and β̂

$
← {0, 1}k uniformly at random in addtion to (α, β, sk1, sk2).

Output sk = (α, β, α̂, β̂, sk1, sk2).

BuildIndex(sk,d): The generation of γ is shown in section 3.2 and will not be
repeated here. For the encryption of HBS, the client generates additional se-
cret roots ζ̂y0 = F (sk1, y||4), λ̂y0 = F (sk1, y||5), µ̂y0 = F (sk1, y||6) for each
y ∈ [1,m]. Then, for the root and each internal node u of the HBS, the client
generates two secret parameters for each bucket position y ∈ [1,m] as follows:

λ̂yid(u) = λ̂y0 +
1

2
fh(h(id(u))µ̂y0) (15)

ζ̂yid(u) = ζ̂y0 +
1

2α̂
fh(h(id(u))µ̂y0), (16)

where we let h(id(u)) = 1 if u is the root of the HBS. Let b = γu[y] and then
store the encrypted b into γu[y] as follows:

γu[y] = α̂(bβ̂ + ζ̂yid(u)) + λ̂yid(u). (17)

Finally, the client outsouces the index (including the encrypted γ and HBS) to
the cloud together with the encrypted data files.

Trapdoor(sk,q): Given a query q, the client generates the bucket positions Pq

12 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

mapped by all query keywords and the two root tokens denoted by str (used for
the search over γ) and ŝtr (used for the search over the encrypted HBS). We
show the generation of ŝtr following the generation of str:

ŝtr =
∑

y∈Pq

[α̂(β̂ + ζ̂y0) + λ̂y0]. (18)

Then the client sends the trapdoor τ = {Pq, str, ŝtr, fh(
∑

y∈Pq
µy0), fh(

∑
y∈Pq

µ̂y0)}

and the query logic information (‘AND’ or ‘OR’) to the cloud.

Query(γ, c, τ): After receiving the trapdoor τ = {Pq, str, ŝtr, fh(
∑

y∈Pq
µy0),

fh(
∑

y∈Pq
µ̂y0)}, the cloud server first performs the query over the encrypted

HBS as follows: starting from the root of the HBS, the cloud server checks the
buckets at positions Pq of node u and continues to check u’s children if u meets
the query. Return all data identifiers stored in the leaves that have been reached
after this traversal is over. More specifically, let l and r be the left and the right
child of a node u respectively, and let ˆIDs be the sequence of the output data
identifiers, we recursively define a checking algorithm check(u) as follows:

– Compute the search token ŝtPq,u = ŝtr + fh(h(id(u)))fh(
∑

y∈Pq
µ̂y0).

– As for the conjunction query, if
∑

y∈Pq
γu[y] mod p 6= ŝtq,u mod p, return;

As for the disjunction query, if score(u,q) = (ŝtq,j−
∑

y∈Pq
γu[y]) mod p <

Kα̂β̂ mod p, return. Note that Kα̂β̂ mod p is provided by the query client.
– If u is a leaf, add the associated data identifier to ˆIDs, else call check(l) and

check(r).

Then for each data identifier id(dj) ∈ ˆIDs, the cloud server computes the search
token stPq,j with the root token str and performs the query over γ[y][j](y ∈ Pq)
according to the user-specified query logic. The detailed query processing is
shown in section 3.2 and will not be repeated here.

5 The Support of Data Dynamics and Parallel Search

5.1 The Support of Dynamic Data Operations

In practice, the support of efficient data dynamics is highly required by an (en-
crypted) indexing scheme, i.e., data adding and data deletion operations are
supported without needing to either re-index the entire data collection or make
use of generic and expensive dynamization techniques. To the best of our knowl-
edge, the existing SSE solutions that can support data dynamics were proposed
in [9] and [10]. The construction in [10] relies on an additional deletion index
that has the same size with the search index. Besides, the update involves com-
plex operations (i.e., encryption and decryption operations) which may affect
the update efficiency with a large index size. As for the privacy, the update op-
erations may reveal a non-trivial amount of information, e.g., the single data file
adding operation in both [9] and [10] will leak the number of keywords contained
in the data file.

Our constructions can address the above problems and easily fulfill more
efficient data adding and deletion operations. We start from the update of γ.
To delete existing data files du, the client can submit the deletion token τu

Sample Title 13

consisting of the identifiers of du to the cloud server. Then the server checks all
non-empty buckets of the index γ and resets γ[y][id(dj)] = 0 for each dj ∈ du

and each bucket of γ. The time complexity of updating γ is O(m̂), where m̂

represents the number of non-empty buckets of γ. Obviously, it will be very
time-consuming when m̂ is relatively large. A better solution is that the client
constructs an auxiliary index structure which is called as Deletion Table while
not sacrificing any data privacy guarantee. The deletion table is constructed to
quickly look up the buckets encoding the data files to be deleted. Firstly, we build
the plaintext deletion table as a bidimensional table T = {[id(dj), Tid(dj)]|dj ∈
d}, where Tid(dj) = {y|γ[y][id(dj)] = 1}. Then T is encrypted as follows: T =
{[F (sk1, id(dj)), SKE.Enc(kj , Tid(dj))]|dj ∈ d}, where kj = SKE.Enc(sk1, dj).
Then, T will be outsourced to the cloud together with the encrypted index.
Obviously, the deletion table does not leak the number of keywords contained
in the updated index since each data file is always associated with the same
number of keywords. The cloud will find and decrypt the corresponding items
of T with {F (sk1, id(dj)), SKE.Enc(sk1, dj)|dj ∈ du} submitted by the client.
Finally, the cloud updates the corresponding buckets of the index γ and deletes
the corresponding items of T.

To add new data files du, the client locally encrypts the data files as cu
and builds the corresponding sub-index τu for du which has the same features
with the index γ on the cloud. τu will be used to update the index γ or say
be merged into γ stored on the remote database server. The construction of
sub-index τu is the same as the initial index construction shown in section 3.2.
On the cloud side, the server performs the adding update by directly merging τu
and Tu into γ and T, respectively. With respect to the update of the HBS, it is
slightly more complicated than the update of γ since it may involve the update
of the structural update of the HBS. To add or delete the data files du (with
the corresponding identifiers), the update of the HBS will require two rounds of
communication in order to guarantee the update security. We show the sketch
of the HBS update as follows due to the space limitation.

– The client sends the identifiers of du and the type of update token (adding
or deleting) to the cloud server.

– The cloud server performs the structural update of the HBS only based on
the node identifiers of the HBS, the data identifiers of du and the type of
data update request. As shown in section 4, the query time is proportional to
the height of the HBS. Therefore, the HBS can be viewed as a red-black tree
and the structural update of the HBS will involve the necessary rotations
that are performed during an update of a red-black tree, so that the height of
the HBS can always be maintained to be logarithmic. Please refer to [13] for
more details of such update operations on a red-black tree. After updating
the structure of the HBS, the cloud server returns the update auxiliary
information AI to the client. The information AI contains portion of the
HBS that consists of all nodes (along with the encrypted bucket vectors
stored at them) accessed during the update. That is, AI suffices to perform
the update of the HBS for supporting the dynamic operations of du, in
absence of the rest of the tree which is a complementary tree of AI in the
HBS.

– After receiving AI which can be considered as a sub-HBS, if the update
is an adding operation of du, the client first encrypts the data files du

14 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

as cu and computes the virtual bucket vector γu for each u ∈ AI which
stores the identifier of the data file in du. Then, the client decrypts the
encrypted bucket vectors stored in AI and performs the bottom-up update
of all plaintext bucket vectors storing the nodes of AI. For each node u of
the updated AI, the client changes its identifier from id(u) to id(u′). Finally,
the client encrypts AI (i.e., encrypts all bucket vectors stored in AI) and
sends the encrypted AI to the cloud together with the encrypted data cu.
As shown in the section 4, in the encryption of AI, the change of the node
identifier will give rise to the re-computation and re-randomization of the
secret parameters of all nodes in AI, thus preventing the cloud server from
inferring information about the plaintext bucket vectors stored in AI by
comparing the initial AI with the updated AI.

– After receiving cu and the updated AI, the cloud copies AI to the already
structurally-updated HBS (note that the HBS was structurally updated in
step 2) and outputs the new HBS and the updated c.

5.2 The Support of Parallel Search

To support parallel search, the cloud server constructs a compact addressing
hash table which stores a pair: a data identifier and the address pointing to
the encrypted data for each file in c. Let 0,1,. . . ,p − 1 be the processors that
are available. Parallel search is run over γ as follows: each processor searches
separately over the partitions of γ, each of which encodes the same number
of data files and is stored separately (i.e., the partitions can be denoted by

{γ[y][j]|y ∈ [1,m], j ∈ [1, #d

p
]}, . . . , {γ[y][j]|y ∈ [1,m], j ∈ [(p−1)#d

p
,#d]}). The

parallel search over HBS is executed in a similar manner as in [13]. Due to the
space limitation, we eliminate the execution details here.

6 Theoretical Analysis and Experiments

6.1 Query Accuracy Analysis

In our index structure, there exists a tiny false positive probability due to the
probabilistic multi-hash based encoding/decoding. Fortunately, the probabil-
ity of false decodings can be reduced to almost a negligible level by properly
choosing system parameters m,K.

Theorem 4. The false positive rate of a query q is

¬pq =

{ exp

φ(
∧

wi∈q divi)+exp
, for the conjunction logic

exp

φ(
∨

wi∈q
divi)+exp

, for the disjunction logic,
(19)

where φ(
∧

wi∈q divi) and φ(
∨

wi∈q divi) denote the number of “1”s in
∧

wi∈q divi
and

∨
wi∈q divi, respectively, and exp denotes the expectation of the number of

the falsely returned data files for a given query q.

Proof. See Appendix D.

Sample Title 15

Fig. 2. (a). The false positive rate of the query. (b). The time cost of index construc-
tion.

6.2 Performance Evaluation

To demonstrate the feasibility and scalability, we implement our constructions
(BEIS and HBEIS) and the following state-of-the-art to present a comparative
analysis of the feasibility and scalability: 1) SSE [10], the first to achieve si-
multaneously the sublinear search time, dynamic update and CKA2 security;
2) OXT [14], the first to achieve multi-keyword boolean query with sublin-
ear search time; 3) RBT-SSE, the first parallel and dynamic SSE scheme [13]
based on Red-Black-Tree (RBT). We implement all schemes in Java program-
ming language and execute them in 64-bit OpenJDK 1.7, and the cryptographic
algorithm is implemented using the open APIs: including the 128-bit AES, SHA-
256 and NIST 224p elliptic curve. The experiments are performed on a 64-bit
Windows 7 operation system with Intel Core i3-2330M processor 2.20GHz and
4GB RAM. The experimental projects are run on Eclipse and single-threaded
on the processors. To show the practical viability of our solution, we choose a
real-word dataset for the experiments: Enron Email Dataset (EED) [18], where
an email is regarded as a data file to be outsourced.
The false positive rate of the query. Fig. 2(a) shows the experimental
evaluation of the false positive rate of the query. In the experiment, we set
#d = 20000 and #w = 20000. Then, we first build different indices by using
different values of m and K. For each index, we execute two types of queries
over the index and each data point in the figure is the average of 103 queries.
As shown from the results, the false positive rate is extremely small or even
negligible by choosing suitable m and K. From a practical point of view, it
implies our scheme achieves desirable privacy guarantee without sacrificing the
query accuracy and space efficiency much.
The time cost of index construction. In SSE and OXT, the time for building
index is linear with the number of global keyword-data pairs and the construc-
tion of them involves the encryption of the distinct keywords and all keyword-
data pairs. Like SSE and OXT, our BEIS construction also involves the en-
cryption of the index buckets. Fortunately, BEIS achieves privacy guarantee by
using highly efficient and compact operations which involve only simple algebra
operations (i.e., addition, subtraction and multiplication) over integers, and it
is much more efficient than other cryptographic operations used in the litera-
ture [10, 13, 14]. In Fig. 2(b), it is shown that the index construction time of
BEIS is a slightly higher than that of SSE scheme but much lower than those
of OXT and RBT-SSE.
The time cost of query performance. Fig. 3 shows the time cost of single
keyword queries versus the number of data files (as large as 500000 data files).

16 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

Fig. 3. The time cost of query performance. (a) At the client side. (b) At the cloud
side.

Fig. 4. The time cost of the ‘AND’ logic query performance. (a) At the client side.
(b) At the cloud side.

Fig. 5. The time cost of the ‘OR’ logic query performance. (a) At the client side. (b)
At the cloud side.

Fig. 6. The time cost of index update. (a). Add operation. (b). Delete operation.

Sample Title 17

Not surprisingly, due to the use of lightweight algebra operations for token
generation and query processing, HBEIS and BEIS provide much higher query
efficiency than three benchmarks at both the client and the cloud sides. Figs. 4
and 5 show the time cost of multi-keyword query (AND and OR logics) versus
the number of keywords (used for multi-keyword query) from 2 to 10. As can
be seen from Figs. 4 and 5, the time cost at the client side is almost linear
with the number of query keywords in our constructions (BEIS, HBEIS), SSE
and RBT-SSE. In OXT, however, the time cost at the client side is associated
to the prevalence of one of the query words in the data collection, and it is
relatively higher because the client needs to execute the exponent arithmetic
(such as gx). For the time cost at the cloud side, SSE depends on the prevalence
of the query words in the data collection, and OXT depends on the number
of the pairs, each of which consists of a query keyword and one of data files
queried by the selected query keyword. As can be seen, HBEIS and BEIS achieve
comparable query performance which is better than SSE, OXT and RBT-SSE.
To obtain a fair comparison, we implement multi-keyword query in SSE and
RBT-SSE by post-processing of all results of single-keyword queries. The query
time in both HBEIS and RBT-SSE depends on the number of “reached” nodes
in the hierarchical structure during the query processing. With the increase of
keywords, the AND logic query will reduce the number of “reached” nodes,
while the OR logic query will increase the value.
The time cost of dynamic index update. In our experiment, the number
of data files to be added or deleted is ranging from 10 to 100. Fig. 6(a) and (b)
show the execution time to add and delete data files, respectively. As shown
in Fig. 6, the costs of adding files mostly fall on the client since the client has
to build the secure sub-index for the new data files. Even so, the cost is only
associated with the data files to be added, and it will not incur additional cost
for the original index stored in the cloud. For the deletion operation, the client
only needs to send a small deletion information (i.e., a deletion request) to
the cloud, and the cloud will execute the index update after finding the right
positions (to be updated) in the index.

7 Conclusion

In this paper, we introduced a suite of new and novel SSE index designs for
processing queries over large-scale encrypted databases. Our index constructions
made trade-offs between query efficiency and query privacy, with flexible and
comprehensive query functionalities. Through rigorous security analysis under
strong security model and extensive experiments on representative real-word
datasets, we demonstrate the effectiveness and practicality of our constructions.

References

1. Hacigms, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
IEEE (2002) 29–38

2. Hacigms, H., Lyer, B., Li, C., Mhrotra, S.: Executing sql over encrypted data in
the database-server-provider model. In: SIGMOD, ACM (2002) 216–227

3. Kamara, S., Lauter, K.: Cryptographic cloud storage. In: Financial Cryptography
Workshops. (2010) 136–149

18 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

4. Gonzalez, L.M.V., Rodero-Merino, L., Caceres, J., Lindner, M.A.: A break in
the clouds: Towards a cloud definition. Computer Communication Review (CCR)
39(1) (2009) 50–55

5. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: IEEE Symposium on Security and Privacy, IEEE (2000) 44–55

6. Goh, E.J.: Secure indexes. IACR (2003)
7. Chang, Y., Mitzenmacher, M.: Privacy preserving keyword searches on remote

encrypted data. In: ACNS. (2005) 442–455
8. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric

encryption: Improved definitions and efficient constructions. In: ACM CCS, ACM
(2006) 79–88

9. van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P.H., Jonker, W.: Computa-
tionally efficient searchable symmetric encryption. In: Workshop on Secure Data
Management, ACM (2010) 87–100

10. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric en-
cryption. In: ACM CCS, ACM (2012) 965–976

11. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search
over encrypted data in cloud computing. In: INFOCOM, IEEE (2010) 441–445

12. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword
ranked search over encrypted cloud data. In: INFOCOM, IEEE (2011) 829–837

13. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric en-
cryption. In: Financial Cryptography. (2013) 258–274

14. Cash, D., Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M.C., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
CRYPTO. (2013) 353–373

15. Wong, W.K., Cheung, D.W.L., Kao, B., Mamoulis, N.: Secure knn computation
on encrypted databases. In: SIGMOD, ACM (2009) 139–152

16. Kuzu, M., Islam, M.S., Kantarcioglu, M.: Efficient similarity search over encrypted
data. In: ICDE, IEEE (2012) 1156–1167

17. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: EUROCRYPT. (2010) 24–43

18. Cohen, W.W.: Enron email dataset. (http://www.cs.cmu.edu/∼enron/)

A Proof of Theorem 1

Proof. i) For the conjunction logic query, as shown in Eq. (1), divτ [j] = 1 if
and only if γ[y][j] = 1 for each y ∈ Pq. Similarly, in BEIS, for ∀j ∈ [1,#d], if
there exists y ∈ Pq such that the original plaintext bit value of γ[y][j] is ‘0’,
then

∑
y∈Pq

γ[y][j] < stq,j since γ[y][j] = α(0β+ ζyj)+λyj < α(β+ ζyj) +λyj .

Therefore, id(dj) ∈ IDs if and only if γ[y][j] = 1 for each y ∈ Pq.
ii) For the disjunction logic query, for ∀y ∈ Pq and ∀j ∈ [1,#d], let byj be

the original plaintext bit value of γ[y][j]. For ∀j ∈ [1,#d], we have

score(dj ,q) =
∑

y∈Pq

γ[y][j]− stq,j

=
∑

y∈Pq

γ[y][j]−
∑

y∈Pq

[αζyj + λyj − qj]

=
∑

y∈Pq

[α(byjβ + ζyj) + λyj]−
∑

y∈Pq

[αζyj + λyj − qj]

=
∑

y∈Pq

[αβbyj] + qj = αβ
∑

y∈Pq

byj + qj .

Sample Title 19

Here, qj will not affect the result ranking since qj ∈ [1, αβ). We can conclude
that score(dj ,q) is proportional to

∑
y∈Pq

byj shown in Eq. (2). This completes
the proof.

B Proof of Theorem 2

Proof. i) For the conjunction query, given γ, τ and a data dj ∈ d, suppose that
the original plaintext bit value of γ[y][j] is ‘1’ for each y ∈ Pq. Because γ[y][j]
is encrypted as in Eq.(3) and by the homomorphic properties of fh, we have

∑

y∈Pq

γ[y][j] mod p =
∑

y∈Pq

[α(1β + ζyj) + λyj] mod p

=
∑

y∈Pq

[α(1β + ζy0 +
1

2α
fh(h(j)µy0)) + λy0 +

1

2
fh(h(j)µy0)] mod p

=
∑

y∈Pq

[α(β + ζy0) + λy0 + fh(h(j)µy0)] mod p

= [str + fh(h(j))fh(
∑

y∈Pq

µy0)] mod p

= stq,j mod p.

Based on the above analysis, for ∀j ∈ [1,#d] suppose that there exist some
bucket positions P ∈ Pq such that the original plaintext bit value of γ[y][j] is
‘0’ for each y ∈ P . Then we must have stq,j −

∑
y∈Pq

γ[y][j] = #Pαβ, where
#P denotes the number of positions in P . Because in practice #P ≪ p and p is
a prime number, we have #Pαβ mod p 6= 0, and there must be

∑
y∈Pq

γ[y][j]
mod p 6= stq,j mod p.

ii) For the disjunction query, we follow the same proof logic as Theorem. 1.
∀y ∈ Pq and ∀j ∈ [1,#d], we let byj be the original plaintext bit value of γ[y][j].
As shown in Eq. (13), ∀j ∈ [1,#d], we have

score(dj ,q) = (stq,j −
∑

y∈Pq

γ[y][j]) mod p

= (str + fh(h(j))fh(
∑

y∈Pq

µy0)−
∑

y∈Pq

γ[y][j]) mod p

= (αβ
∑

y∈Pq

byj) mod p.

When αβ mod p ≤ p

#Pq

, score(dj ,q) is proportional to
∑

y∈Pq
byj. This com-

pletes the proof.

C Proof of Theorem 3

Proof. We consider a polynomial-size simulator S = {S0, . . . ,Ss} such that
for all polynomial-size adversaries A = {A0, . . . ,As}, the outputs of the two
experiments: Real∗SSE,A(k) and Sim∗

SSE,A,S(k) defined in [8] are computation-
ally indistinguishable. That is, the simulated view V iewS(H) and the real view

20 Fangquan Cheng1, Qian Wang1, Kui Ren2, Zhiyong Peng1

V iewR(H) of a s-query history H are computationally indistinguishable. Con-
sider the simulator S adaptively generates the simulated view V iewS(H) =
{id(c1)

∗, . . . , id(c#c)
∗, c∗1, . . . , c

∗
#c,γ

∗, τ ∗
q1
, . . . , τ ∗

qs
} as follows:

S0(1
k, H(d)): S0 chooses n random Strings {c∗1, . . . , c

∗
#c} such that |c1| =

|c∗1|, . . . , |c#c| = |c
∗
#c|. Because A does not know the key sk2, the PCPA-

security of SKE guarantees that each c∗j is indistinguishable from a real ci-
phertext cj . S0 simply copies the identifier list in the trace, i.e., id(c1)

∗ =
id(c1), . . . , id(c#c)

∗ = id(c#c). Obviously, the identifer lists of V iewS(H) and
V iewR(H) are distinguishable. S0 constructs a bucket-based data structure γ∗,
where each bucket will be used to store a vector, and γ

∗[y][j] denotes the jth bit
of the vector stored in the yth bucket. The number of the buckets and the size
of a vector can be obtained from the trace, and thus they are indistinguishable
from that of γ. S0 chooses two random values R1

y0 and R2
y0 for each bucket

position y. For each y, S0 chooses a random values id(j)∗, and then computes
R1

y0+f(id(j)∗R2
y0) and inserts it into γ

∗[y][j] for each bit j of the vector stored
in the bucket γ∗[y]. According to Eqs. (3) and (14), for any bucket position y

and any vector bit j, γ∗[y][j] is indistinguishable from γ[y][j], because A does
not know the secret keys {α, β, sk1}. S0 includes γ

∗ and R1
y0, R2

y0 for each
bucket position y in the state stS and outputs {c∗1, . . . , c

∗
#c,γ

∗, stS}.

S1(1
k, H(d,Q = q1)): Let #q1 be the number of keywords in q1. S1 ran-

domly chooses bucket positions for #q1K times. Let P ∗
q
1

be the chosen bucket

positions. S1 sets τ ∗
q
1

= {P ∗
q
1

, st∗r =
∑

y∈P∗
q1

R1
y0, f(

∑
y∈P∗

q1

R2
y0)}. According to

the definition of PRF, P ∗
q
1

is indistinguishable from Pq
1
. st∗r and f(

∑
y∈P∗

q1

R2
y0)

are distinguishable from str and f(
∑

y∈Pq1

µy0) respectively, because A does

not know the keys {α, β, sk1}. Thus, τ
∗
q
1

is indistinguishable form τq
1
. S1 in-

cludes τ
∗
q
1

in stS , and outputs (τ ∗
q
1

, stS). With the trapdoor τ
∗
q1
, the adver-

sary A1 is able to execute the query over γ∗, in a way that the query returns
the same results as the access pattern Ap(H). This can be achieved by ap-
propriate use of the random oracle (the output of which is indistinguishable
from a random value). Namely, the output id(j)∗ = h(j) of the random ora-
cle in Query is programmed by the simulator in the following manner: if dj
is contained in the access pattern Ap(H), then id(j)∗ is the value such that
[R1

y0 + f(id(j)∗)f(R2
y0)] mod p = γ

∗[y][j] mod p for each y ∈ P ∗
q
1

. Otherwise,

id(j)∗ is the value such that [R1
y0 + f(id(j)∗)f(R2

y0)] mod p 6= γ
∗[y][j] mod p

for at least one position y ∈ P ∗
q
1

. The simulator can do this since it stored the
state stS .
Si(1

k, H(d,Q = {q1, . . . ,qi})): For 2 ≤ i ≤ s, Si first checks whether qi

has appeared before by using the search pattern π(H). If qi has not appeared
before, then Si generates the trapdoor in the τ

∗
qi

in the same way as S1 does.
Otherwise, Si retrieves the trapdoor previously used for qi and uses it as τ

∗
qi
.

Si includes τ
∗
qi

in stS , and outputs (τ ∗
qi
, stS). Similarly, τ ∗

qi
is indistinguishable

form τqi
since A does not know secret keys {α, β, sk1}. This completes the

proof.

D Proof of Theorem 4

Proof. We compute exp by first discussing the tricky case where q ⊂ w. Es-
sentially, the false returning of each encrypted data is independent of other

Sample Title 21

encrypted data files. Thus, for each data dj ∈ d, we use pj to denote the prob-
ability of that dj is falsely returned.

For ease of presentation, we start from a single keyword wi (wi ∈ q but
wi 6∈ dj). Since wi ∈ w, idvi should have been encoded into the K buck-
ets γ[hi(wi, sk1)] for i ∈ [1,K]. The false decoding of idvi happens if and
only if all K buckets are encoded by data identifier vectors of other key-
words besides that of wi. Without loss of generality, we assume there are
K additional data identifier vectors {îdv1, . . . , d̂ivK} which are repeatedly
encoded into the K buckets {γ[h1(wi, sk1)], . . . ,γ[hK(wi, sk1)]}, respectively.
Here, each d̂ivi might be the joint of multiple data identifier vectors. In the
decoding process, divτ is decoded from the K buckets {γ[h1(wi, sk1)], . . . ,
γ[hK(wi, sk1)]} = {divi

∨
d̂iv1, . . . , divi

∨
d̂ivK}. We denote p̂j as the prob-

ability of wi which is falsely considered as a membership of dj . Let nj be the
number of distinct keywords in dj , we have

p̂j = (1 − (1−
1

m
)Knj)K ≈ (1− e−Knj�m)K . (20)

Now we discuss pj as follows: 1) The conjunction logic query. For ∀dj ∈ d,
dj will be falsely returned if and only if all keywords in q are hit by dj while
there exists at least one keyword in q which is actually not contained in dj . By
contradiction, dj will not be falsely returned if there always exists a keyword in
q which is not contained and hit by dj . Thus, we have pj = 1− (1− p̂j) = p̂j. 2)
The conjunction logic query. Similarly, for ∀dj ∈ d, dj will be falsely returned
if there exists at least one keyword in q that is hit by dj , where all keywords
in q are not contained in dj . By contradiction, dj will not be falsely returned if
none of the keywords in q is hit by dj . Thus, we have pj = 1− (1− p̂j)

#q.

Then we can compute the expectation exp =
∑

dj∈d̂
pj, where d̂ denotes the

collection of data files which might be falsely returned. In the conjunction logic
query, #d̂ = #d, and #d̂ = #d−φ{

∨
wi∈q divi} in the disjunction logic query.

When considering the case that wi 6∈ w and the false positive decoding happens,
the returning of any data files is a false decoding. In this case, we compute exp

over d, i.e., d̂ = d. Based on exp, we can easily compute ¬pq as Eq. (19).

