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Abstract. With the advent of networking applications collecting user data on
a massive scale, the privacy of individual users appears to be a major concern.
The main challenge is the design of a solution that allows the data analyzer to
compute global statistics over the set of individual inputs that are protected by
some confidentiality mechanism. Joye et al. [7] recently suggested a solution
that allows a centralized party to compute the sum of encrypted inputs collected
through a smart metering network. The main shortcomings of this solution are
its reliance on a trusted dealer for key distribution and the need for frequent key
updates. In this paper we introduce a secure protocol for aggregation of time-
series data that is based on the Joye et al. [7] scheme and in which the main
shortcomings of the latter, namely, the requirement for key updates and for the
trusted dealer are eliminated. Moreover our scheme supports a dynamic group
management, whereby as opposed to Joye et al. [7] leave and join operations do
not trigger a key update at the users.
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1 Introduction

Progress in statistical data processing enables data analyzers to infer extremely use-
ful information from the massive amount of data collected through networks and dis-
tributed applications. Such data analysis has tremendous benefits in a wide range of ap-
plications. In an e-health scenario, statistics derived from the collected data sets would
greatly help field studies about diseases and the effect of a specific medicine. Another
scenario entails a different environment whereby data is produced by a set of users
that hold smart meters. Smart meters can report accurately at specific time intervals
energy, gas or water consumption. Considering electricity consumption for instance, a
data analyzer with cooperation of an energy provider can compute useful statistics such
as average electricity consumption over large population of users along a specific time
period. These statistics can then help the energy provider perform various operations
such as load balancing and forecasting for potential acquirement.

Despite its merits, statistical data processing is challenged with privacy issues such
as the confidentiality of private data. Frequent smart-readings with inappropriate anal-
ysis by companies may leak private information such as the number of people that live
in a place, the time period in which the house is empty and personal habits that can be a



valuable asset to marketing retailers [10]. Serious privacy breaches are possible without
any doubt in the medical scenario as well, in which the disclosure of personal data to
untrusted data analyzers jeopardizes user personal information in various ways: It af-
fects insurance coverage since records are exposed to insurance companies. Moreover,
a social discrimination is possible owing to the exposure of medical treatments.

While encryption of data would protect data privacy, data analysis by an untrusted
aggregator would become challenging. The most prominent privacy preserving solu-
tions for data analysis benefit from cryptographic algorithms [13] that either introduce a
high computation cost at the aggregator or restrict the possible range of values that users
can submit due to the need of discrete logarithm computation. To mitigate this draw-
back, Joye et al. [7] proposed a nifty construction which as the solution in [13] calls
for a fully trusted dealer. The reliance on trusted key dealer however can be deemed
unrealistic for real world applications. In addition, this solution builds upon a static key
management scheme where user joins and leaves induce a significant overhead in terms
of communication.

In this paper, we improve the design of the privacy preserving aggregation protocol
suggested by Joye et al. [7] by eliminating the need for key redistribution following a
user join or leave and the need for fully trusted key dealer. The features of the enhanced
protocol can be summarized as follows:

– No key dealer. Contrary to most previous privacy preserving aggregation protocols,
there is no trusted key dealer in our scheme. In contrast, we introduce a semi-trusted
party called collector which gathers partial key information from users through a
secure channel.

– Support for dynamic user populations. No coordination is required to manage
changes in the population of users. This is possible due to a self-generated key
mechanism by which no key agreement between users is required.

– Privacy. With respect to privacy, the scheme assures aggregator obliviousness as
introduced by Elaine Shi et al. [13]. That is, the untrusted aggregator only learns the
sum and the average over users’ private data at the end of the protocol execution.
Moreover, we show that the collector does not derive any information about the
users’ private data.

– Efficiency. Like Joye et al. [7] our scheme enables the computation of the sum and
the average over a large number of users without restrictions on the range of users’
values. It is also scalable in the sense that decryptions performed by the aggregator
do not depend on the number of users.

2 Problem Statement

We consider a scenario where an aggregatorAwould like to compute the aggregate sum
of the private data of some users Ui. Similarly to the work of [7] and [13], we restrict
ourselves to time-series data which is a series of data point observations measured at
equally spaced time intervals. A straightforward approach to compute the aggregate
sum would be encrypting Ui’s individual data using the public key of A. This solution
however relies on a trusted aggregator which first decrypts the users’ individual data
using its secret key then computes the sum. To tackle this issue, [7] and [13] employ



a combination of secret sharing techniques and additively homomorphic encryption to
enable aggregator A to compute the sum of users’ data without compromising users’
privacy. The idea is to have a trusted third party called key dealer that provides each
user Ui with a secret share ski while supplying the aggregator A with the secret key
skA defined as −∑

ski. Each user Ui encrypts its private data using its secret share
ski and forwards the resulting ciphertext to the aggregator, which in turn combines the
received ciphertexts so as to obtain an encryption of the sum of the users’ data that can
be decrypted using the aggregator’s secret key skA.

Although such solutions prevent the aggregator from learning users’ confidential
data, they suffer from two main limitations which we aim to address in this paper. The
first limitation is that they build upon the assumption that the key dealer is trusted and
does not have any interest in undermining user privacy. Whereas the second shortcom-
ing –which is generally overlooked– is that these solutions only support static groups
of users and as a result they are fault intolerant. Namely, in the case of user failures, ag-
gregatorA cannot compute the aggregate sum. Along these lines, we propose a solution
for privacy preserving data aggregation of time-series data that draws upon the work of
[7] and which in addition to supporting dynamic group management and arbitrary user
failures does not depend on trusted key dealers. The idea is to introduce an intermediary
untrusted party that we call collector, who helps the aggregatorA with the computation
of the sum of users’ individual data, without any prior distribution of secret keys by a
trusted dealer.

2.1 Entities

A scheme for dynamic and privacy preserving data aggregation for time-series involves
the following entities:

– Users Ui: At each specific time interval t, each user Ui produces a data point xi,t
that it wants to send to an aggregator. Each data point contains private sensitive
information pertaining to user Ui. To protect the confidentiality of the value of xi,t
against the aggregator and eavesdroppers, user Ui encrypts xi,t using some secret
input ski and forwards the resulting ciphertext ci,t to the aggregator. It also sends
to the collector some auxiliary information auxi,t that will be used later to compute
the aggregate sum of individual data. Without loss of generality, we denote U the
set of users Ui in the system.

– Collector C: It is an untrusted party which upon receiving the auxiliary information
auxi,t sent by users Ui ∈ U at time interval t computes a function g of auxi,t.
Hereafter, we denote auxt the output of function g at time interval t.

– Aggregator A: It is an untrusted entity which upon receipt of ciphertexts ci,t and
the auxiliary information auxt at time interval t computes the sum

∑

Ui∈U
xi,t over

the data points xi,t underlying ciphertexts ci,t.

2.2 Privacy Preserving and Dynamic Time-Series Data Aggregation

A privacy preserving and dynamic time-series data aggregation protocol consists of the
following algorithms:



– Setup(1τ ) → (P, skA, skC , {ski}Ui∈U): It is a randomized algorithm which on
input of a security parameter τ , outputs the public parameters P that will be used
by subsequent algorithms, the secret key skA of aggregator A, the secret key skC
of collector C and the secret keys {ski}Ui∈U of users Ui.

– Encrypt(t, ski, xi,t) → ci,t: It is a deterministic algorithm which on input of time
interval t, secret key ski of user Ui and data point xi,t, encrypts xi,t and outputs the
resulting ciphertext ci,t.

– Collect((auxi,t)Ui∈U, skC) → auxt: It is a deterministic algorithm executed by
collector C which on input of the auxiliary information (auxi,t)Ui∈U provided by
individual users Ui and collector C’s secret key skC computes a function g over
auxi,t and outputs the result auxt.

– Aggregate({ci,t}Ui∈U, auxt, skA) →
∑
xi,t: It is a deterministic algorithm run by

aggregator A. It takes as inputs ciphertexts {ci,t}Ui∈U, auxiliary information auxt
supplied by collector C and aggregator A’s secret key skA, and outputs the sum∑
xi,t, where xi,t is the plaintext underlying ciphertext ci,t.

2.3 Privacy Definitions

In accordance with the work of [7, 13], we assume in this paper an honest-but-curious
model. This means that while the participants in the protocol are interested in learning
the individual data of users, they still comply with the aggregation protocol. Namely,
users are always presumed to submit a correct input to the aggregation protocol. Actu-
ally, data pollution attacks where users submit bogus values to the aggregator is orthog-
onal to the problem of privacy preserving data aggregation. We also assume that while
users Ui may collude with either aggregator A or collector C by disclosing their private
inputs, aggregator A and collector C never collude.

In this section, we present two formalizations: The first one defines privacy against
aggregator A which we call in compliance with previous work aggregator oblivious-
ness, whereas the second formalization defines privacy against collector C which we
refer to as collector obliviousness.

Aggregator Obliviousness Aggregator Obliviousness (AO) ensures that for each time
interval t, the aggregator learns nothing other than the value of

∑
Ui∈U xi,t from ci-

phertexts ci,t and the auxiliary information auxt that it receives from users Ui ∈ U and
collector C respectively. It ensures also that even if aggregator A colludes with an arbi-
trary set of users K ⊂ U, it will only be able to learn the value of the aggregate sum of
honest users (i.e.

∑

Ui∈U\K

xi,t) and nothing else.

To formally capture the capabilities of an aggregator A against the privacy of ag-
gregation protocols, we assume that A is given access to the following oracles:

– Osetup,A: When called, this oracle provides aggregator A with the public parame-
ters denoted P of the aggregation protocol and any secret information skA that may
be needed by aggregator A to perform the aggregation.



Algorithm 1: Learning phase of the aggregator obliviousness game
(P, skA)← Osetup,A;
// A executes the following a polynomial number of times
ski ← Ocorrupt(uidi);
A → t;
// A is allowed to call Oencrypt for all users Ui
ci,t ← Oencrypt(t, uidi, xi,t);
auxt ← Ocollect,A(t);

Algorithm 2: Challenge phase of the aggregator obliviousness game
A → t∗, S∗;
A → X 0

t∗ ,X 1
t∗ ;

〈(cbi,t∗)Ui∈S∗ , auxbt∗〉 ← OAO(X 0
t∗ ,X 1

t∗);
A → b∗ ;

– Oencrypt: When queried with time t, identifier uidi of some user Ui and a data point
xi,t, oracle Oencrypt outputs the encryption ci,t of xi,t in time interval t using Ui’s
secret key ski.

– Ocorrupt: When queried with the identifier uidi of some user Ui, the oracle Ocorrupt

returns the secret key ski of user Ui.
– Ocollect,A: When called with time t, this oracle returns the auxiliary information
auxt that collector C computed during time interval t. We note that in schemes such
as [13, 7] where a collector is not needed, the aggregator will not call this oracle.

– OAO: When called with a subset of users S ⊂ U and with two time-series
(Ui, t, x0i,t)Ui∈S and (Ui, t, x1i,t)Ui∈S such that

∑
x0i,t =

∑
x1i,t, this oracle flips a

random coin b ∈ {0, 1} and returns an encryption of the time-serie (Ui, t, xbi,t)Ui∈S
(that is the tuple of ciphertexts (cbi,t)Ui∈S) and the corresponding auxiliary infor-
mation auxbt that aggregator A should receive from the collector in time interval
t.

Aggregator A has access to the above oracles in two phases: a learning and a chal-
lenge phase. In the learning phase (cf. Algorithm 1), aggregator A first calls the oracle
Osetup,A that providesA with the set of public parameters P associated with the aggre-
gation protocol together with any secret information skA that aggregatorAmay need to
execute the aggregation correctly. Next, A compromises users Ui by calling the oracle
Ocorrupt which returns the secret keys of compromised users. Then, A picks a time in-
terval t and issues encryption queries (t, uidi, xi,t) to the oracle Oencrypt which outputs
the corresponding ciphertexts ci,t. Finally,A calls the oracleOcollect to get the auxiliary
information auxt computed by collector C in time interval t.

In the challenge phase (see Algorithm 2), aggregatorA chooses a subset S∗ of users
that were not compromised and a challenge time interval t∗ for which it did not make
an encryption query during the learning phase. A then submits two time-series X 0

t∗ =
(Ui, t∗, x0i,t∗)Ui∈S∗ andX 1

t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ to the oracleOAO, such that
∑
x0i,t =



∑
x1i,t. Oracle OAO accordingly flips a coin b ∈ {0, 1} and returns the encryption

(cbi,t∗)Ui∈S∗ of the time-serie X bt∗ and the auxiliary information auxbt∗ computed by
collector C for time interval t∗. At the end of the challenge phase, aggregatorA outputs
a guess b∗ for the bit b.

We say that aggregatorA succeeds in the aggregator obliviousness game, if its guess
b∗ = b.

Definition 1 (Aggregator Obliviousness). An aggregation protocol is said to ensure
aggregator obliviousness if for any aggregator A, the probability Pr(b = b∗) 6 1

2 + ε,
where ε is a negligible function.

Collector Obliviousness Collector Obliviousness (CO) guarantees that collector C
cannot infer any information about the private input of individual users Ui either from
the messages it receives directly from the users or the protocol exchange between the
users and the aggregator. It also entails that even in the case where collector C colludes
with a set of users K, it does not gain any additional information about the individual
values of honest users Ui in U \K.

To formally reflect the adversarial capabilities of collector C against aggregation
protocols, we assume that in addition to the oracles Oencrypt and Ocorrupt, collector C is
given access to the following oracles:

– Osetup,C : When queried, this oracle supplies collector C with the public parameters
denoted P of the aggregation protocol and any secret information skC that collector
C may need during the aggregation protocol.

– Ocollect,C : When invoked with time t, identifier uidi of some user Ui and ciphertext
ci,t, this oracle returns the auxiliary information auxi,t that corresponds to cipher-
text ci,t that user Ui computed during time interval t.

– OCO: When called with a subset of users S ⊂ U and with two time-series
(Ui, t, x0i,t)Ui∈S and (Ui, t, x1i,t)Ui∈S, this oracle flips a random coin b ∈ {0, 1}
and returns to collector C an encryption of the time-serie (Ui, t, xbi,t)Ui∈S (i.e. the
ciphertexts (cbi,t)Ui∈S) and the corresponding auxiliary information computed by
users Ui ∈ S (i.e. (auxbi,t)Ui∈S).

Collector C accesses the aforementioned oracles in a learning and a challenge phase.
In the learning phase (cf. Algorithm 3), collector C first queries the oracle Osetup,C
which supplies C with the set of public parametersP of the aggregation protocol and the
secret information skC that collector C should have to execute the aggregation properly.
Then, C calls the oracle Ocorrupt to compromise users in the system. Next, it selects a
time interval t and submits encryption queries (t, uidi, xi,t) to the oracleOencrypt which
outputs the corresponding ciphertexts ci,t. Finally, it issues queries (t, uidi, ci,t) to the
oracle Ocollect,C to get the auxiliary information auxi,t generated by users Ui for time
interval t and ciphertext ci,t.

In the challenge phase (see Algorithm 4), collector C selects a subset S∗ of honest
users and a challenge time interval t∗ for which it did not make an encryption query
in the learning phase. Then, C queries the oracle OCO with two time-series X 0

t∗ =
(Ui, t∗, x0i,t∗)Ui∈S∗ and X 1

t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ . OCO then picks randomly a bit b ∈



Algorithm 3: Learning phase of the collector obliviousness game
(P, skC)← Osetup,C ;
// C executes the following a polynomial number of times
ski ← Ocorrupt(uidi);
C → t;
// C is allowed to call Oencrypt and Ocollect,C for all users Ui
ci,t ← Oencrypt(t, uidi, xi,t);
auxi,t ← Ocollect,C(t, uidi, ci,t);

Algorithm 4: Challenge phase of the collector obliviousness game
C → t∗, S∗;
C → X 0

t∗ ,X 1
t∗ ;

(〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ ← OCO(X 0
t∗ ,X 1

t∗) ;
C → b∗ ;

{0, 1} and returns the tuple (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ for the time-serie X bt∗ . At the end of
the challenge phase, collector C outputs a guess b∗ for the bit b.

We say that collector C succeeds in the collector obliviousness game, if its guess
b∗ = b.

Definition 2 (Collector Obliviousness). An aggregation protocol is said to ensure col-
lector obliviousness if for any collector C, the probability Pr(b = b∗) 6 1

2 + ε, where ε
is a negligible function.

3 Idea of Solution

The homomorphic scheme suggested by Joye and Libert [7] allows an untrusted aggre-
gator to evaluate the sum or the average without any access to individual data. However
to support this functionality, a fully trusted dealer has to distribute secret keys to each
user Ui and as a result, it will be able to decrypt. Our scheme extends Joye and Libert
scheme [7] through two major enhancements :

– No key dealer: Our scheme does not require a trusted key dealer that might get
individual private data samples.

– Dynamic group management: In the Joye and Libert scheme [7], each join or
leave operation triggers a new key redistribution for all the users in the aggrega-
tion system, whereas in our protocol, join and leave operations are possible without
any key update at the users. Hence, dynamic group management is assured with
significantly lower communication and computation overhead. The proposed pro-
tocol is also resilient to user failures that may occur due to communication errors
or hardware failures.

In order to eliminate the need for a fully trusted dealer and to support dynamic group
management without inducing additional communication or computation overhead, we
employ two techniques:
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Fig. 1. Overview of our protocol for a single time interval t. pkA,t is public known value.

– Responsibility splitting mechanism: Each user Ui sends an encryption of its private
data sample to aggregator A and an obfuscated version of its secret key ski to the
semi trusted collector C, in such a way that neither the aggregator nor the collector
can violate the privacy of individual samples provided by users.

– Self-generation of secret keys: The secret keys used to encrypt individual data sam-
ples are generated independently by users with no coordination by a trusted key
dealer.

An overview of our solution is depicted in figure 1. Each user Ui chooses indepen-
dently its secret key ski whereas the untrusted aggregator generates a random key skA.
For each time interval t, aggregator A publishes an obfuscated version pkA,t of the se-
cret key skA. Users Ui on the other hand encrypt their private data samples xi,t with
their secret keys ski using the Joye-Libert cryptosystem, and send the corresponding ci-
phertexts ci,t to aggregatorA. They also obfuscate their secret keys ski using pkA,t and
sends the resulting auxiliary information auxi,t to collector C through a secure channel.
Collector C computes a function g(t) of the auxiliary information auxi,t it has received
and forwards the output auxt to aggregator A. Upon receiving the ciphertexts ci,t and
the auxiliary information auxt, A uses its secret key skA and learns the sum

∑
xi,t for

the time interval t.
In this manner, we eliminate the need of a trusted key dealer that knows users’ pri-

vate keys while ensuring that neither the aggregator nor the collector can infer informa-
tion about users’ individual data, and we achieve efficient dynamic group management
that does not call for any key update mechanism.



4 Protocol Description

Without loss of generality, we assume in the remainder of this section that the aggrega-
tion system comprises n users denoted U = {U1, ...,Un}.

Now before providing the description of our solution, we first give a brief overview
of the Joye-Libert (JL) scheme [7].

4.1 Joye-Libert Scheme

– SetupJL: A trusted dealer D selects randomly two safe prime numbers p and q and
sets N = pq. Then, it defines a cryptographic hash function H : Z → Z∗N2 and
outputs the public parameters PJL = (N,H). Finally, the dealer D distributes to
each user Ui ∈ U a secret key ski ∈ [0, N2] and sends skA = −∑n

i=1 ski to the
untrusted aggregator A.
We note that hereafter all computations are performed ”modN2” unless mentioned
otherwise.

– EncryptJL: For each time interval t, each user Ui encrypts its private data xi,t using
the secret key ski and outputs the ciphertext ci,t = (1 + xi,tN)H(t)ski mod N2.
We point out that ciphertexts ci,t fulfills the following property:

n∏

i=1

ci,t =

n∏

i=1

(1 + xi,tN)H(t)ski = (1 +

n∑

i=1

xi,tN)H(t)
∑n

i=1 ski

= (1 +

n∑

i=1

xi,tN)H(t)−skA

– AggregateJL: Upon receiving ci,t the untrusted aggregator computes

Pt =

n∏

i=1

ci,tH(t)skA = 1 +

n∑

i=1

xi,tN mod N2

and recovers
∑n
i=1 xi,t by computing Pt−1

N in Z. The value Pt−1
N is meaningful as

long as
∑n
i=1 xi,t < N .

We recall that the JL scheme is aggregator oblivious in the random oracle model
under the decisional composite residuosity (DCR) assumption (cf. [7]).

4.2 Description

Our protocol runs in four phases:

– Setup: A trusted third party T P selects two safe primes p and q, sets N = pq, and
picks a cryptographic hash function H : {0, 1}∗ → Z∗N2 . T P then publishes the
public parameters P = (N,H) and goes offline. Next, aggregator A generates a
random secret key skA ∈ Z∗N2 , and each user Ui ∈ U independently chooses its
random secret key ski ∈ [0, N2] without any coordination by a trusted key dealer.
It is important to note here that contrary to the JL scheme, the trusted third party
T P does not know the individual secret keys of users Ui, and once the public
parameters P are published it can go offline.



– Encrypt: For each time interval t, each user Ui encrypts its private data xi,t using
its secret key ski and the algorithm EncryptJL as shown in subsection 4.1, and sends
the resulting ciphertext ci,t = (1 + xi,tN)H(t)ski mod N2 to aggregator A.

– Collect: For each time interval t, aggregator A publishes pkA,t = H(t)skA . Each
user Ui then computes the auxiliary information auxi,t = pkskiA,t = H(t)skAski using
its secret key ski and sends auxi,t to collector C through a secure channel.
Upon receiving auxi,t (1 6 i 6 n) from users Ui ∈ U, collector C computes

auxt =
n∏

i=1

auxi,t =
n∏

i=1

H(t)skAski = H(t)skA
∑n

i=1 ski

and sends the result to aggregator A.
Notice here that C does not obtain the secret value H(t)ski employed by users Ui
during the encryption, rather it only learns an obfuscated encoding of it which is
auxi,t = H(t)skAski .

– Aggregate: Upon receiving the ciphertexts ci,t (1 6 i 6 n) and the auxiliary
information auxt, aggregator A calculates:

Pt = (

n∏

i=1

ci,t)
skA = ((1 +

n∑

i=1

xi,tN)H(t)
∑n

i=1 ski)skA

= (1 +

n∑

i=1

xi,tN)skAH(t)skA
∑n

i=1 ski

Since the order of (1 +
∑n
i=1 xi,tN) in Z∗N2 is either N or divisor of N , we have:

Pt = (1 +

n∑

i=1

xi,tN)sk
′
AH(t)skA

∑n
i=1 ski = (1 + sk′A

n∑

i=1

xi,tN)H(t)skA
∑ski

i=1

where sk′A = skA mod N .

Finally, aggregator A computes It =
Pt
auxt
−1
N = sk′A

∑n
i=1 xi,t in Z and evaluates

Rt = sk′A
−1
It mod N =

∑n
i=1 xi,t mod N to obtain the sum of xi,t. Notice

that since skA ∈ Z∗N2 , sk′A is in Z∗N . Now to obtain the average of the data points
xi,t, aggregator A computes Rt

n in Z.
As in [7], the result of the aggregation is meaningful as long as

∑n
i=1 xi,t < N .

4.3 Privacy Analysis

Now the privacy of the above scheme can be stated as follows:

Aggregator Obliviousness

Theorem 1. The proposed solution ensures aggregator obliviousness under the deci-
sional composite residuosity (DCR) assumption in Z∗N2 .



Proof. Assume there is an aggregatorA that breaks the aggregator obliviousness of our
scheme with a non-negligible advantage ε. We show in what follows that there exists
an aggregator B that uses A to break the aggregator obliviousness of the JL protocol
(which is ensured under DCR) with a non-negligible advantage ε.

For ease of exposition, we denote OJL
setup, OJL

corrupt, OJL
encrypt and OJL

AO the oracles
needed for the aggregator obliviousness game of the JL protocol. We also assume that
the aggregation system of the JL scheme involves n users U = {U1, ...,Un}, each is
endowed with secret key ski.

Now to break the aggregator obliviousness of the JL scheme, aggregator B simulates
the aggregator obliviousness game of our scheme for aggregator A as follows:

Learning phase.

– To simulate the oracle Osetup,A for aggregator A, B first invokes the oracle OJL
setup

which returns the public parameters P = {N,H} (where N is the product of
two safe primes, and H : Z → Z∗N2 is a cryptographic hash function) and the
aggregator secret key skB . We recall that according to the description of the JL
scheme skB = −∑n

i=1 ski. Then, B supplies aggregator A in our scheme with the
public parameters P = {N,H}. After receiving P , aggregator A selects a secret
key skA ∈ Z∗N2 and for each time interval t it publishes pkA,t = H(t)skA .

– Whenever A submits a corruption query for some user Ui to the oracle Ocorrupt, B
relays this query to the corruption oracle OJL

corrupt of the JL scheme which accord-
ingly returns the secret key ski of user Ui.

– Whenever A calls the encryption oracle Oencrypt with an encryption query
(t, uidi, xi,t), B forwards this query to OJL

encrypt which returns the matching cipher-
text ci,t = (1 + xi,tN)H(t)ski to B. Next, B provides A with ci,t.

– Whenever A queries the collection oracle Ocollect,A with time interval t, B com-
putes auxt = pk−skBA,t which it returns to A. Note that auxt = pk−skBA,t =

H(t)−skAskB = H(t)skA
∑

ski corresponds to the actual auxiliary information that
a collector in our scheme could have computed.

Challenge phase. In the challenge phase, A chooses a subset S∗ of users that were
not compromised and a challenge time interval t∗ for which it did not make an encryp-
tion query during the learning phase. A publishes pkA,t∗ = H(t∗)skA . A then submits
two time-series X 0

t∗ = (Ui, t∗, x0i,t∗)Ui∈S∗ and X 1
t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ such that∑

x0i,t∗ =
∑
x1i,t∗ to B which simulates oracle OAO as follows:

– It submits the time-series X 0
t∗ and X 1

t∗ to the oracle OJL
AO which picks randomly

b ∈ {0, 1} and returns the encryption (cbi,t)Ui∈S∗ for the time-serie X bt∗ .
– Then it computes the auxiliary information auxbt∗ = pk−skBA,t∗ = H(t∗)−skAskB =

H(t∗)skA
∑

ski matching the time interval t∗.
– Finally, B returns (cbi,t∗)Ui∈S∗ and auxbt∗ to A.

It is important to notice here that aggregator A cannot tell whether it is interacting
with the actual oracles or with aggregator B during this simulated game. As a matter of
fact, the messages that A receives during this simulation are correctly computed.



Now at the end of the challenge phase, A outputs a guess b∗ for the bit b. Note
that if A has a non-negligible advantage ε in breaking the aggregator obliviousness of
our scheme, then this entails that it outputs a correct guess b∗ for the bit b with a non-
negligible advantage ε. Notably, if A outputs b∗ = 1, then (cbi,t∗)Ui∈S is an encryption
of time-serie X 1

t∗ ; otherwise it is an encryption of time-serie X 0
t∗ . Now to break the

aggregator obliviousness of the JL scheme, it suffices that B outputs the bit b∗.
To conclude, if there is an aggregator A which breaks the aggregator obliviousness

of our solution, then there exists an aggregator B which breaks the aggregator obliv-
iousness of the JL scheme with the same non-negligible advantage ε. This leads to a
contradiction under the decisional composite residuosity assumption in Z∗N2 . ut

Collector Obliviousness
Theorem 2. The proposed scheme assures collector obliviousness in the random or-
acle model under the decisional composite residuosity (DCR) assumption in Z∗N2 , the
quadratic residuosity (QR) assumption in Z∗N and the decisional Diffie-Hellman (DDH)
assumption in the subgroup of quadratic residues in Z∗N .

Proof. Assume there is a collector C that breaks the collector obliviousness of our
scheme with a non-negligible advantage ε. We show in what follows that there exists
an aggregator B that uses C to break the aggregator obliviousness of the JL protocol
(which is ensured under DCR) with a non-negligible advantage ε′.

To break the aggregator obliviousness of the JL scheme, aggregator B simulates the
collector obliviousness game of our scheme to collector C as follows:

Learning phase.

– To simulate the oracle Osetup,C for collector C, B first queries the oracle OJL
setup

which returns the aggregator’s secret key skB and the public parameters P =
{N,H} (where N is the product of two safe primes and H : Z → Z∗N2 is a
cryptographic hash function). Then, B supplies collector C with the public param-
eters P = {N,H}. Finally, aggregator B picks randomly skA ∈ Z∗N2 and for each
time interval t, B simulates aggregator A by publishing pkA,t = H(t)skA .

– Whenever C queries the oracle Ocorrupt for some user Ui, B forwards the query to
the corruption oracle of the JL scheme OJL

corrupt which outputs the secret key ski of
user Ui.

– Whenever C submits an encryption query (t, uidi, xi,t) to oracle Oencrypt, B
sends this query to OJL

encrypt which returns the matching ciphertext ci,t = (1 +

xi,tN)H(t)ski to B. B then provides C with ciphertext ci,t.
– Whenever C queries the collection oracleOcollect,C with time interval t, user identi-

fier uid and ciphertext ci,t, B simulates Ocollect,C as follows:
• It submits the encryption query (t, uidi, 0) to OJL

encrypt which returns accord-
ingly (1 + 0 ·N)H(t)ski = H(t)ski .

• Then using skA it computes auxi,t = H(t)skiskA .

It is noteworthy that the messages that C received so far are correctly computed.
This entails that C cannot detect during the learning phase that it is interacting with
aggregator B.



Challenge phase. In the challenge phase, C chooses a subset S∗ of users that were
not compromised and a challenge time interval t∗ for which it did not make an en-
cryption query during the learning phase. Next, C submits two time-series X 0

t∗ =
(Ui, t∗, x0i,t∗)Ui∈S∗ and X 1

t∗ = (Ui, t∗, x1i,t∗)Ui∈S∗ to B which simulates oracle OCO

as follows:

– It picks time-serie X 0
t∗ and generates a new time serie X ′1t∗ = (Ui, t∗, x′1i,t∗)Ui∈S∗

such that
∑
x0i,t =

∑
x′1i,t and provides oracle OJL

AO with the time series X 0
t∗ and

X ′1t∗ . OJL
AO consequently flips a coin b ∈ {0, 1} and returns the tuple of ciphertexts

(cbi,t∗)Ui∈S∗ such that (cbi,t∗)Ui∈S∗ is an encryption of the time-serie X 0
t∗ if b = 0;

otherwise, it is an encryption of the time-serie X ′1t∗ .
– Upon receipt of (cbi,t∗)Ui∈S∗ , B selects randomly pkA,t∗ ∈ Z∗N2 , and computes
auxbi,t∗ of each user Ui ∈ S by picking a random number rbi,t∗ ∈ Z∗N2 and setting
auxbi,t∗ = rbi,t∗ .

– Finally, B gives (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ to collector C. It is important to indicate here
that under the DDH assumption and the random oracle model, C cannot detect that
pkA,t∗ and auxbi,t∗ are generated randomly, instead of being computed as pkA,t∗ =
H(t∗)skA and auxi,t∗ = H(t∗)skiskA (cf. Lemma 4.3).

Now notice that if b = 0 and if C does not detect that 〈(auxi,t∗)Ui∈S∗ , pkA,t∗〉 are
generated randomly, then from the point of view of collector C (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗
corresponds to a well formed tuple for the time-serie X 0

t∗ , and as a result, C will have a
non-negligible advantage ε in breaking collector obliviousness of our scheme. Notably,
C will output the correct guess b∗ = 0 for the bit b with a non-negligible advantage ε.
In this case, if B outputs the bit b∗ = 0 then it will break the aggregator obliviousness
of the JL scheme with a non-negligible advantage ε.

If b = 1, then the tuple (〈cbi,t∗ , auxbi,t∗〉)Ui∈S∗ is independent of the time-series X 0
t∗

and X 1
t∗ submitted by C. Consequently, C will return with probability 1/2 either the bit

b∗ = 1 or the bit b∗ = 0. Therefore, to break the aggregator obliviousness of the JL
scheme, all B needs to do is output b∗. ut

Lemma 1 In the random oracle model, collector C cannot detect that pkA,t∗ and
(auxi,t∗)Ui∈S∗ are generated randomly under the decisional composite residuosity
(DCR) assumption in Z∗N2 , the quadratic residuosity (QR) assumption in Z∗N and the
decisional Diffie-Hellman (DDH) assumption in the subgroup of quadratic residues in
Z∗N .

Let ODDH be an oracle which upon a DDH query, first selects randomly g in the
subgroup of quadratic residues in Z∗N and the pair (a, b) ∈ Z∗φ(N)/4 (φ(N) is the Euler
totient of N ), then flips a random coin β ∈ {0, 1}. If β = 0, then ODDH selects c
randomly from Z∗φ(N)/4; otherwise, it sets c = ab. Finally, ODDH returns the tuple
(g, ga, gb, gc).

We say that an adversaryB breaks the DDH assumption in the subgroup of quadratic
residues, if it can tell whether gc = gab or not.



Proof (sketch). Assume there is a collector C that detects pkA,t∗ and (auxi,t∗)Ui∈S∗ are
generated randomly. We show in the random oracle model that there exists an adversary
B that uses collector C to break DDH in the subgroup of quadratic residues in Z∗N under
DCR in Z∗N2 and QR in Z∗N .

– Let (g, ga, gb, gc) be the DDH tuple provided by ODDH to adversary B.
– Let RN denote the subgroup of Z∗N2 defined as RN = {hN , h ∈ Z∗N2}. We recall

that RN is of order φ(N) = (p − 1)(q − 1) and thus there exists an isomorphism
ρ : Z∗N → RN . Notably, ρ could be defined as: ∀ g ∈ Z∗N , ρ(g) = gN mod N2.

– Let QRN denote the subgroup ofRN defined as QRN = {h̃2, h̃ ∈ RN}.

Game 0. This game is the collector obliviousness game: Adversary B executes the
setup algorithm by generating the users’ secret keys ski and the aggregator A’s secret
key skA and by publishing the public parameters P = (N,H), where H is a crypto-
graphic hash function H : Z → Z∗N2 . By having the user’s secret keys ski and A’s
secret key skA, adversary B can simulate successfully the collector obliviousness game
to collector C.

Game 1. This game is identical to the above game except for the following:

– For each time interval t, B publishes pkA,t = H(t)skAN ∈ RN instead of pkA,t =
H(t)skA ∈ Z∗N2 (i.e., the aggregator’s secret key is actually skAN instead of skA).

– For each time interval t, B computes auxi,t = (H(t)ski)skAN ∈ RN instead of
auxi,t = (H(t)ski)skA ∈ Z∗N2 .

Note that under the DCR assumption, C cannot tell whether pkA,t and auxi,t are inRN
or not, and accordingly, Game 0 and Game 1 are computationally indistinguishable.

Game 2. In this game, we compute pkA,t as H(t)2skAN mod N2 and auxi,t as
(H(t)ski)2skAN mod N2. Note that under the quadratic residuosity assumption in Z∗N ,
Game 1 and Game 2 are computationally indistinguishable. Indeed, if there is a distin-
guisher D that is able to tell for instance whether pkA,t is an element of QRN or not,
then D can be used to break the quadratic assumption in Z∗N by employing the isomor-
phism ρ : Z∗N → RN . Namely, given an element g ∈ Z∗N , one computes ĥ = ρ(g) and
submits ĥ to D. If D outputs that ĥ is of the form h̃2 (h̃ ∈ RN ), then one outputs that g
is quadratic residue in Z∗N .

Game 3. This game is identical to Game 2 except that this time adversary B controls a
random oracle H and instead of generating the secret key skA randomly in Z∗N2 , it sets
pkA = ga mod N and uses the random oracle to simulate that it possesses the secret
key skA = a. We recall that (g, ga, gb, gc) is the DDH tuple that adversary B received
from ODDH.

Without loss of generality, we assume that collector C makes q hash queries to the
random oracleH.
Random Oracle Simulation. To answer the queries of the random oracleH, adversary B
keeps a table TH of tuples (ti, ri, coini(t), H(ti)) as explained next. On a query H(t)
toH, adversary B replies as follows:



– If there is a tuple (t, r, coin(t), H(t)) that corresponds to t in table TH , then B
returns H(t).

– If t has never been queried before, then B picks a random number r ∈ [0, N/4],
and flips a random coin coin(t) ∈ {0, 1} such that: coin(t) = 1 with probability
p, and it is equal to 0 with probability 1 − p. If coin(t) = 0, then B answers
with H(t) = grN mod N2. Otherwise, it answers with H(t) = grbN mod N2.
Finally, adversary B stores the tuple (t, r, coin(t), H(t)) in table TH .

Notice that H(t) ∈ QRN instead of being in Z∗N2 , nonetheless collector C cannot
detect this fact thanks to the QR assumption in Z∗N and the DCR assumption in Z∗N2 .

Now suppose that coin(t∗) = 1, then H(t∗) is of the form gr
∗bN . Accordingly,

B simulates the oracle OCO, by computing pkA,t∗ = gr
∗cN mod N2 and auxi,t∗ =

gr
∗skicN mod N2. Note that in the case where c = ab, then pkA,t∗ = H(t∗)a =

H(t∗)skA and auxi,t∗ = H(t∗)skiskA , and as a result, collector C continues the collector
obliviousness game. However, if c 6= ab and if C has a non-negligible advantage ε in
detecting that pkA,t∗ and auxi,t∗ are randomly generated, then C aborts the game with
non-negligible advantage ε. Therefore, to break the DDH assumption, B outputs 1 when
collector C continues the collector obliviousness game; and outputs 0 otherwise.

We remark here that the event coin(t∗) = 1 occurs with probability Π = p(1 −
p)q−1, where q is the number of hash queries that C issues during the collector oblivi-
ousness game. The probabilityΠ is maximal when p = 1/q and it equals toΠmax ' 1

eq .
Therefore, the advantage ε′ of adversary B in breaking DDH is equal to ε

eq . ut

4.4 Dynamic Group Management

Suppose at time interval t a set of users F fail to participate in the protocol execution.
This event does not affect the computation of the aggregate sum by the aggregator A.
Indeed, each user Ui 6∈ F computes: auxi,t = pkskiA,t and encrypts its data by computing
ci,t = (1 + xi,tN)H(t)ski . Upon receiving the auxiliary information auxi,t from users
Ui 6∈ F, collector C computes auxt =

∏

Ui 6∈F
auxi,t =

∏

Ui 6∈F
H(t)skAski . When aggregator

A receives the ciphertexts ci,t from users Ui 6∈ F and auxt from collector C, it first
computes the product

∏

Ui 6∈F
ci,t and computes as depicted above the value of

∑

Ui 6∈F
xi,t.

Thus, our solution will still function correctly even when an arbitrary number of users
fail to submit their contributions to the protocol as long as collector C operates properly.

Similarly, if a set of k new users J = {U∗1 , ...,U∗k} join the protocol at time t, nothing
changes from the point of view of aggregatorA and collector C. Notably, the new users
U∗i compute the auxiliary information aux∗i,t = pk

sk∗i
A,t corresponding to their ciphertexts

c∗i,t. The collector C in turn evaluates the product auxt =
∏

Ui∈U
auxi,t ×

∏

U∗i ∈J
aux∗i,t,

whereas the aggregator A calculates the product
∏

Ui∈U
ci,t ×

∏

U∗i ∈J
c∗i,t. Now provided

with auxt and the secret key skA, aggregatorA can derive the sum
∑

Ui∈U
xi,t+

∑

U∗i ∈J
x∗i,t.



5 Evaluation

Table 1 depicts the theoretical computation and communication cost of our protocol.
In each time interval t, aggregator A first publishes pkA,t = H(t)skA , whereas each
user Ui computes the ciphertext ci,t = (1 + xi,tN)H(t)ski which consists of one ex-
ponentiation, one multiplication, one addition and one hash evaluation in Z∗N2 . User
Ui also performs an additional exponentiation to compute the auxiliary information
auxi,t = pkskiA,t = H(t)skAski ∈ Z∗N2 . Then, the collector receives the auxiliary infor-
mation auxi,t (1 6 i 6 n) and computes the product auxt =

∏n
i=1 auxi,t which calls

for n − 1 multiplications in Z∗N2 . Finally, the aggregator computes the sum
∑n
i=1 xi,t

by performing n− 1 multiplications, one exponentiation, one division in Z∗N2 and one
division in Z. Moreover, if l is the size in bits of N , then each user Ui sends 2l bits for
ciphertext ci,t to aggregator A and 2l bits for auxi,t to collector C. As such, the overall
communication cost per user is 4l per time interval.

Algorithm Computation Communication
User 2 EXP+1MULT+1ADD+1HASH 4 · l
Aggregator 2 EXP+2DIV+(n− 1)MULT+1HASH 2 · l
Collector (n− 1)MULT 2 · l

Table 1. Performance analysis

Implementation. We implemented our scheme in Charm [2, 1]. Charm is a program-
ming framework that provides cryptographic abstraction in order to build security pro-
tocols. We extended the Charm framework with an implementation of the JL encryption
using Python 3.2.3. All of our benchmarks are executed on Intel Core i5 CPU M 560
@ 2.67GHz × 4 with 8GB of memory, running Ubuntu 12.04 32bit.

To evaluate our scheme empirically, we generated a synthetic dataset with numbers
ranging between 1 and 1000 and we varied the size of the modulus N . Table 2 shows
the encryption time for different data ranges and different modulus sizes. As expected,
a slight increase in the encryption time (which is in the magnitude of microseconds)
occurs as we increase the size of N .

We also assessed the computation cost at the aggregator A. More specifically, we
measured the time needed to compute the product Pt = (

∏n
i=1 ci,t)

skA . In table 3 the
benchmark results are shown. The multiplication time was measured in seconds and
experiments were conducted for different values of N and the number of users n.

6 Related Work

Önen and Molva [11] introduced a scheme to compute aggregate statistics over wireless
sensor networks with multilayer encryption by transforming a block cipher into a sym-
metrically homomorphic encryption. Even if the proposed solution provides generic
confidentiality, the sink-aggregator is fully trusted and shares keys with the sensors.



HH
HHN

Values [1-10] [1-100] [1-1000]

1024 110.13µs 112.23µs 114.57µs
2048 116.50µs 117.15µs 118.34µs
3072 116.99µs 118.23µs 120.83µs

Table 2. Computation overhead of encryption
with different security levels and possible plain-
text range values. The benchmarks were exe-
cuted 106 times in order to eliminate time in-
consistencies due to concurrent memory usage.

H
HHHN

Users
350 700 1000 2500

1024 0.26 s 2.40 s 9.65 s 49.92 s
2048 0.65 s 5.82 s 24.16 s 123.19 s
3072 1.01 s 9.37 s 39.34 s 198.12 s

Table 3. Aggregation time as a function of the
size of modulus N and the number of users n.

In [5], the authors proposed a protocol for secure aggregation of data using a modi-
fied version of Paillier homomorphic encryption. The aggregator which is interested in
learning the aggregate sum of data is able to decrypt without knowing the decryption
key. The idea behind the scheme is a secret sharing mechanism executed between users
such that the aggregation of encrypted data reveals the sum if and only if all users’ data
is aggregated. However, this scheme suffers from an increased communication cost due
to secret share exchange between users. A solution that blends multiparty computation
with homomorphic encryption is also presented in [8], but contrary to our scheme it
does not address the issue of dynamic group management.

The authors in [12, 4, 6, 3] studied privacy preserving data collection protocols with
differential privacy. The combination of differential privacy with non conventional en-
cryption schemes can provide an acceptable trade-off between privacy and utility. In
[12], a secret sharing mechanism and additively homomorphic encryption are employed
together with the addition of appropriate noise to data by the users. Upon receiving
the encrypted values a second round of communication is required between users and
aggregator to allow for partial decryption and noise cancellation. At the end of the
protocol, the aggregator learns the differential private sum. Jawurek and Kerschbaum
[6] eliminate this extra communication round between the users and the aggregator
by introducing a key manager which unfortunately can decrypt users’ individual data.
Barthe et al. [3] proposed a solution whereby each smart meter in the protocol estab-
lishes an ephemeral DH shared secret with all the aggregators. In their scheme the
service provider is willing to learn a noisy weighted sum. Interestingly dynamic leaves
and joins are supported with the cost of shared secrets between the smart meter and
all the aggregators. Aggregators also, unless they collude they cannot learn individual
meterings.

Chan et al. [4] devised a privacy preserving aggregation scheme that computes the
sum of users’ data, and handles user joins and leaves of smart meters and arbitrary user
failures. The decrypted sum is perturbed with geometric noise which ensures differ-
ential privacy. Nonetheless, this solution calls for a fully trusted dealer that is able to
decrypt users’ individual data. The authors in [9] presented a solution to tackle the issue
of key redistribution after a user joins or leaves. The propounded solution is based on
a ring based grouping technique in which users are clustered into disjoint groups, and
consequently, whenever a user joins or leaves only a fraction of the users is affected.



The existing work that resembles the most ours is the work of [13, 7]. Actually,
Song et al. [13] employs an additively homomorphic encryption scheme with differen-
tial noise to ensure aggregator obliviousness. The proposed solution is based on a linear
correlation between the keys which is known to the untrusted aggregator. However the
decrypted sum is encoded as an exponent, thus forcing a small plaintext space. Whereas
Joye et al. [7] designed a solution that addresses the efficiency issues of [13]. Notably,
Joye et al. [7] introduced a nifty solution to compute discrete logarithms in composite
order groups in which the decision composite residuosity problem is intractable. Still,
the scheme in [7] depends on a fully trusted key dealer which renders the scheme im-
practical for a real world application. Moreover, both schemes do not tackle either the
issue of dynamic group management or user failures.

7 Concluding Remarks

In this paper, we presented a privacy preserving solution for time-series data aggrega-
tion which contrary to existing work supports arbitrary user failures and does not de-
pend on trusted key dealers. The idea is to rely on a semi-trusted collector which plays
the role of an intermediary between the users and the aggregator, and which enables
the aggregator to compute the aggregate sum of users’ private data without undermin-
ing users’ privacy. An interesting feature of the proposed scheme is that users’ joins
and leaves do not incur any additional computation or communication cost at either the
users or the aggregator. Furthermore, the scheme is provably privacy preserving against
honest-but-curious aggregators and collectors. Finally, initial evaluation results using
the Charm cryptographic framework demonstrate the practicality of the propounded
solution.

Acknowledgments

We thank the anonymous reviewers for their suggestions for improving this paper. We
are also grateful to Melek Önen for early discussions.
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