Handycipher: a Low-tech, Randomized, Symmetric-key Cryptosystem

Bruce Kallick
Curmudgeon Associates
Winnetka, IL 60093
curmudgeon@rudegnu.com

Handycipher is a low-tech, randomized, symmetric-key, stream cipher, simple enough to permit pen-and-paper encrypting and decrypting of messages, while providing a significantly high level of security by using a nondeterministic encryption procedure, multiple encryption, and randomly generated session keys.

1. Introduction

For several thousand years cryptography was concerned largely with developing various kinds of substitution and transposition ciphers which, through sharing a manageably sized secret key, permitted easy encryption and decryption of messages using nothing more than pen and paper. This has all changed, of course, within our lifetime and now with public key cryptosystems, employing massively powerful computers, so-called hand ciphers are for the most part interesting only to historians and hobbyists.

Yet one can conceive of circumstances in which a reasonably secure pen-and-paper cipher would be invaluable; for example, someone needing to send or receive a secret message might not have access to a computer, or might need to refrain from using one to avoid arousing suspicion that messages are being exchanged secretly. Indeed, Bruce Schneier, a cryptographer and fellow at Harvard's Berkman Center, designed the Solitaire cipher [5] used in the novel Cryptonomicon for such a scenario.

Moreover, apart from any consideration of potential real-world applications, it is an interesting challenge to explore how much security against a large-scale computer-based cryptanalytic attack is theoretically possible using nothing more than a few hours of effort with pen and paper. The problem of designing such a cipher has received little attention in the recent cryptographic literature, and Schneier's Solitaire is widely regarded as the best serious attempt to deal effectively with this problem yet to have been devised. In this paper we describe a cipher which compares favorably in that it is somewhat easier to implement by hand, is less subject to error propagation, and needs no additional equipment besides pen and paper (unlike Solitaire which requires an ordered deck of cards).
In his seminal 1949 paper which heralded the emergence of modern cryptography, Shannon [6] observed:

> ...we can frame a test of ciphers which might be called the acid test. It applies only to ciphers with a small key (less than, say, 50 decimal digits), applied to natural languages, and not using the ideal method of gaining secrecy. The acid test is this: How difficult is it to determine the key or a part of the key knowing a small sample of message and corresponding cryptogram? [...] Note that the requirement of difficult solution under these conditions is not, by itself, contradictory to the requirements that enciphering and deciphering be simple processes.

In this spirit, then, the cipher described in this paper is proposed as a candidate for a modern formulation of Shannon's acid test. Using a small key (34 decimal digits), Handycipher incorporates a nondeterministic encryption procedure along the lines described by Rivest and Sherman [4], and employs multiple encryption as suggested by

Merkle and Hellman [2], as well as a randomly generated session key for each message. Combining a simple 31-character substitution cipher with a nondeterministic homophonic substitution cipher that uses a cipher alphabet of 23,190 tokens results in a novel system which, while quite easy to implement by hand, confers enough complexity to the relationship between ciphertext and plaintext and that between ciphertext and key to achieve a significant level of computational security against both statistical analysis and known-plaintext, chosen-plaintext, and chosen-ciphertext attack models.

2. The core cipher

Handycipher is based on a core cipher which operates on plaintext strings over the ordered 31-character alphabet A

$$
A=\{A B C D E F G H I J K L M N O P Q R S T U V W X Y Z, .-\quad \text { ? } \mathcal{A}\}
$$

and generates ciphertext strings over A^{*}, the same alphabet omitting the space character ${ }^{\wedge}$. Some permutation of the 31 characters of A is chosen as the secret shared key K, say for example,

L C P - F O Q ? R H X G U J S K E A ^ I B W Z T M V N, Y D
and the 30 non-space characters of K are displayed as a 5×6 table, T_{K}

L	C	P	-	F	O
•	Q	?	R	H	X
G	U	J	S	K	E
A	I	B	W	Z	T
M	V	N	,	Y	D

and the ordering of the 31 characters in K is displayed as a substitution table, ξ_{K}
I: A B C D E F G H I J K L M N O P Q R $\xi_{\mathrm{K}}(\mathrm{m}): 19222311851311211517126286381016251427231230242974920$

Then, by referring to T_{K} and ξ_{K}, plaintext characters are encrypted into k-tuples of ciphertext characters by means of the following scheme:

Regarding the first five columns of T_{K} as a 5×5 matrix comprising five rows, five columns, and two principal diagonals, each plaintext character is encrypted by first expressing its position in K as a five digit binary number $\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~b}_{5}$ and by using the position of the 1 's in this number as a pattern, associating that character with a subset of the characters comprising a randomly chosen row, column, or diagonal. Then a randomly chosen permutation of that subset is taken as the corresponding k-tuple of ciphertext characters.

For example, the plaintext character a occupying position $19=10011$ is encrypted into one of the six permutations of one of the twelve 3 -tuples

$$
\{L-F . \text { RH GSK AWZ M, Y LAM CIV PBN }-W \text {, FZY LWY FIM }
$$

whereas the the plaintext character J occupying position $15=01111$ is encrypted into one of the 24 permutations of one of the twelve 4 -tuples

```
{CP-F Q?RH UJSK IBWZ VN,Y .GAM QUIV ?JBN RSW, HKZY OJWY RJIM}
```

This roughly sketched scheme is now defined more precisely as follows.
A plaintext message M is encrypted into a ciphertext cryptogram C by means of the encryption algorithm E defined as follows:

Core cipher encryption algorithm: $\mathbf{C} \Leftarrow \mathbf{E}(\mathbf{K}, \mathbf{M})$

First, omitting ^ the remaining 30 characters of K are displayed as a 5×6 table T_{K} by writing successive groups of six characters into the five rows of the table.

The first five columns of T_{K} comprise a 5×5 square array (or matrix) M_{K} and the rows, columns, and diagonals of M_{K} are designated $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{5}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}$, $\mathrm{C}_{5}, \mathrm{D}_{1}$, and D_{2}, respectively.

Also, a simple (numerical coding) substitution ξ_{K} is applied, transforming each character m of M into the number $\xi_{K}(m)$ representing its position in K (i.e., if $K=$ $k_{1} k_{2} \ldots k_{31}$ then $\xi_{k}(m)=i$ where $\left.m=k_{i}\right)$.

Then the following three steps are applied in turn to each character m of M .

1. A random choice is made between:
1.1. Column-encryption: One of the five columns in M_{K}, say C_{j}, is chosen at random, or
1.2. Row-encryption: One of the five rows in M_{K}, say R_{j}, is chosen at random, subject to the restriction that $\xi_{\mathrm{K}}(\mathrm{m}) \neq 1,2,4,8$, or 16 , or
1.3. Diagonal-encryption: One of the two diagonals in M_{K}, say D_{j}, is chosen at random, subject to the restriction that $\xi_{\mathrm{K}}(\mathrm{m}) \neq 1,2,4,8$, or 16 , or
1.4. Null-insertion: A "null character" is randomly chosen from the sixth column of T_{K}, a flag is set, and Step 1 is restarted. ${ }^{1}$
2. $\xi_{\mathrm{K}}(\mathrm{m})$ is expressed as a five digit binary number, $\mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3} \mathrm{~b}_{4} \mathrm{~b}_{5}$, and
2.1. If 1.1 was chosen in step 1 , then for each i such that $b_{i}=1$, the i-th element of C_{j} is chosen, yielding a subset of the five characters comprising C_{j}, or
2.2. If 1.2 was chosen in step 1 , then for each i such that $b_{i}=1$, the i-th element of R_{j} is chosen, yielding a subset of the five characters comprising R_{j}, or
2.3. If 1.3 was chosen in step 1 , then for each i such that $b_{i}=1$, the i-th element of D_{j} is chosen, yielding a subset of the five characters comprising D_{j}.
3. The elements of the subset specified in step 2 are concatenated in a randomly chosen order. If the flag was set in Step 1, the string is prefixed by the chosen null character and the flag is reset. If this string, composed of one to six ciphertext characters, satisfies all of the following three restrictions, where \bar{m} denotes the character immediately preceding m in M , then it is taken as $\sigma(\mathrm{m})$. Otherwise, Step 1 is restarted.

[^0]3.1. If \bar{m} was column-encrypted then the first character of $\sigma(\mathrm{m})$ must not lie in the column containing $\sigma(\bar{m})$. If, in addition, $\xi_{\mathrm{K}}(\bar{m})=1,2,4,8$, or 16 then the first character of $\sigma(\mathrm{m})$ must also not lie in the row or any diagonal containing $\sigma(\bar{m})$, and
3.2. If \bar{m} was row-encrypted then the first character of $\sigma(\mathrm{m})$ must not lie in the row containing $\sigma(\bar{m})$, and
3.3. If \bar{m} was diagonal-encrypted then the first character of $\sigma(m)$ must not lie in the diagonal containing $\sigma(\bar{m})$.

Finally, the strings produced in Step 3 for each character of M are concatenated forming C.
As a result of the restrictions contained in Steps 1 and 3, the resulting ciphertext cryptogram $C=\sigma\left(m_{1}\right) \sigma\left(m_{2}\right) \sigma\left(m_{3}\right) \ldots$ can be unambiguously decrypted into the plaintext message $M=m_{1} m_{2} m_{3} \ldots$ by means of the decryption algorithm D defined as follows:

Core cipher decryption algorithm: $\mathbf{M} \Leftarrow \mathbf{D}(\mathrm{K}, \mathrm{C})$

C is divided into contiguous groups of characters, proceeding from left to right, at each stage grouping as large an initial segment of the remaining ciphertext as possible composed of characters contained in either the same column, row, or diagonal of M_{K} -stopping at and discarding null characters-then inverting the association between binary numbers and subsets of column, row, or diagonal elements invoked in step 2 of the encryption algorithm, and finally decoding that number by inverting the substitution ξ_{K}.

Thus each plaintext character m is encrypted by randomly choosing a row, column, or diagonal of the key matrix M_{K} and representing that character's numerical code $\xi_{\mathrm{K}}(\mathrm{m})$ by an n-tuple $\sigma(m)$ of characters lying in the chosen row, column, or diagonal. So that in decryption it will be possible to tell where one encrypted character ends and the next begins, $\sigma(\mathrm{m})$ is not allowed to begin with any character lying in the same row, column, or diagonal chosen to encrypt the previous plaintext character nor is it allowed, when the previous character was encrypted as a single cyphertext character, to begin with any character lying in any row or diagonal containing that previous cyphertext character. Finally, the five characters lying in the sixth column of T_{K} may be used as null characters when required to demarcate successive character encryptions.

With any key, and ignoring the addition of null characters, of the 31 characters comprising the plaintext alphabet A:
five are encrypted into one of 5 length- 1 ciphertext unigrams,
ten are encrypted into one of $12 \times 2!=24$ length -2 ciphertext bigrams,
ten are encrypted into one of $12 \times 3!=72$ length -3 ciphertext trigrams, five are encrypted into one of $12 \times 4!=288$ length -4 ciphertext 4 -grams, and one is encrypted into one of $12 \times 5!=1440$ length 5 ciphertext 5 -grams.
Taking into account that each n-gram can optionally be prefixed by one of five null characters, the size of the cipher alphabet is seen to be:
$5 \times 5 \times 6+10 \times 24 \times 6+10 \times 72 \times 6+5 \times 288 \times 6+1 \times 1440 \times 6=23,190$.

3. Example encryption with the core cipher

Although any permutation of the entire plaintext alphabet can be chosen as K, the problem of remembering and secretly sharing it can be made easier by formalizing a way of generating the key from a more memorable key passphrase. The following method is designed to work well with Handycipher. The passphrase is processed from left to right, omitting all duplications, spaces, and non-alphabet characters; then ^ and all other alphabet characters missing from the resulting string are appended in reverse order, i.e., in the order:

```
{^ ? - , Z Y X WV U T S R Q P O N M L K J I H G F E D C B A}
```

A passphrase can be more easily communicated secretly than the key, for example by using, on the nth day of the year, the first fifty characters on the nth page of a previously agreed upon book. As a more fanciful example, the passphrase could be the first verse of a folk song (perhaps, as a plot device, identified by a secret agent's whistling the melody) as in:

ON TOP OF OLD SMOKY, ALL COVERED WITH SNOW, I LOST MY TRUE LOVER FOR COURTING TOO SLOW.
which generates the key K O N T P F L D S M K Y , A C V E R W I H U G. ^ ? - Z X Q J B
and associated table T_{K}

O	N	T	P	F	L
D	S	M	K	Y	,
A	C	V	E	R	W
I	H	U	G	.	?
-	Z	X	Q	J	B

The substitution ξ_{κ} can be written

and the encryption process can be summarized as

A	13	01101	DA- NTF	SCZ SMY	MVX CVR	KEQ HU.	YRJ ZXJ	SVJ KV-
B	31	11111	ODAI- ONTPF	NSCHZ DSMKY	TMVUX ACVER	PKEGQ IHUG.	FYR.J -ZXQJ	OSVGJ FKVH-

C	14	01110	DAI	SCH	MVU	KEG	YR.	SVG
NTP	SMK	CVE	HUG	ZXQ	KVH			
D	7	00111	AI-	CHZ	VUX	EGQ	R.J	VGJ
TPF	MKY	VER	UG.	XQJ	JH-			
E	16	10000	O	N	T	P	F	
F	5	00101	A-	CZ	VX	EQ	RJ	VJ
			TF	MY	VR	U.	XJ	V-

etc., where, in each row, the groups of characters comprising the rightmost six columns are the subsets referred to in Step 2 of the encryption algorithm. In other words, A is randomly transformed into one of the six permutations of one of the twelve triples in row $1, B$ is randomly transformed into one of the 120 permutations of one of the twelve quintuples in row $2, \mathrm{E}$ is randomly transformed into one of the five characters in row 5 , etc., subject to the restrictions specified in steps 1 and 3 .

So, for example, the plaintext CATS AND DOGS can be encrypted as follows ${ }^{2}$:

$\underline{\mathrm{m}}$		$\xi_{K}(\mathrm{~m})$	C/R/D	$\underline{\sigma(m)}$
C	14	01110	C_{2}	CSH
A	13	01101	C_{1}	AD-
T	3	00011	D_{2}	H-
S	8	01000	C_{5}	Y
\wedge	24	11000	R_{3}	CA
A	13	01101	R_{4}	. HU
N	2	00010	R_{4}	BG
D	7	00111	D_{2}	-HV
\wedge	24	11000	C_{3}	TM
D	7	00111	R_{1}	? PFT
0	1	00001	C_{4}	Q
G	22	10110	D_{1}	VGO
S	8	01000	C_{3}	M

yielding the ciphertext
CSHAD-H-YCA. HUBG-HVTM?PFTQVGOM
Note that - H could not have been chosen instead of $\mathrm{H}-\mathrm{for} \sigma(\mathrm{T})$ according to restriction 3.1.; similarly, K could not have been chosen instead of y for $\sigma(\mathrm{S})$ according to restriction 3.3. The choice of R_{4} to encrypt the sixth character forced the use of a null character for $\sigma(\mathrm{N})$; the use of a null character in $\sigma(\mathrm{D})$ was optional.

This ciphertext would be decrypted by dividing it, according to the table T_{K}, as CSH AD- H- Y CA .HU G -HV TM PFT Q VGO M

[^1](dropping the null characters в and ?) and then finding each group's associated binary number, converting to decimal, and decoding by inverting the substitution ξ_{K}

```
    n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
\xiK}\mp@subsup{K}{}{-1}(\textrm{n}):O N T P F L D S M K Y , A C V E R W I H U G . ^ ? - Z X Q J B
```

For a slightly larger example consider the 229-character plaintext
It haunts me, the passage of time. I think time is a merciless thing. I think life is a process of burning oneself out and time is the fire that burns you. But I think the spirit of man is a good adversary. -- Tennessee Williams
which can be encrypted by the core cipher in approximately 10^{33} different ways including, for example, this 506 -character ciphertext: ${ }^{3}$

```
Q-J KY NO X- SMY I.U WU -H M NS JZ N XZ NO .J NC WO HI C QKE D BS BVRC
KMD O CA WQ FT KP ZH G.I SY T JX-Q MT JF. MT -H RF ,FOP . EC OD JQ I.G NF
WP SO HZN Y NS FNT SD -K P JF GVS FH- AI LN BY BS -Z PF UI PGQ I CHN YKDM
FK G.I SD HZ -X FPO H LPN LAC XQ HNZ JR P Z- HZN LS TM SVJ DS E FO ?J
LZQX O K WM NS ?J A- FK DYSMK VAR J- H ?ARE BG ?KMD FK X G F D T AI JR SN
?- MYD UX OS ?.UH W. KYM -Z GJ QPG YJ LF AC JOG K TM .G BVA N KF RV .JF -
F N ,AC UX CN RVC PF KF RVEAC OFT BYD I Y TM HK- X EPQ I.UG NO ZSNHC FJR
UX FY ZNH -Z ,JQ IU DKY . EC SD XU IU F IH S E TUX BOF JOG ER OD J U. FY
SJ -VK G YF UXT D NO .HU OD CHN - ,J CZH DO XZJ TFP ZJQX T ZN ,D LSMY O-
HSZ DMKY Z- KP LSKD AEC HI QG ?F I WI T K ?D WP LT DO Q- GJO KM HV NZH
VXM RC M
containing 38 null characters.
```

 Q-J KY NO X- SMY I.U WU -H M NS JZ N XZ NO .J NC WO HI C QKE D BS BVRC
 KMD O CA WQ FT KP ZH G.I SY T JX-Q MT JF. MT -H RF ,FOP . EC OD JQ I.G NF
WP SO HZN Y NS FNT SD -K P JF GVS FH- AI LN BY BS -Z PF UI PGQ I CHN YKDM

FK G.I SD HZ -X FPO H LPN LAC XQ HNZ JR P Z- HZN LS TM SVJ DS E FO ?J

LZQX O K WM NS ?J A- FK DYSMK VAR J- H ?ARE BG ?KMD FK X G F D T AI JR SN

?- MYD UX OS ?.UH W. KYM -Z GJ QPG YJ LF AC JOG K TM . G BVA N KF RV .JF

-F N ,AC UX CN RVC PF KF RVEAC OFT BYD I Y TM HK- X EPQ I.UG NO ZSNHC FJR

[^2]

Although the average bandwidth expansion factor apart from added null characters, averaged over all possible keys and all possible messages uniformly distributed, is
$(5 \times 1+10 \times 2+10 \times 3+5 \times 4+1 \times 5) / 31=2.58$
for the example key above, noting the distribution of length-n expansions among the characters of A, namely

```
length-1: E N O P S
length-2: \(\quad\) F \(\quad\) K L M R T \(W\), ^
length-3: A C D G I U x Y - ?
length-4: \(\mathrm{J} Q \mathrm{~V}\) z .
length-5: в
```

and using the usual frequency distribution of these 31 characters in English, an average bandwidth expansion factor can be computed as:
$1 \times 0.28+2 \times 0.45+3 \times 0.23+4 \times 0.02+5 \times 0.01=2.2$
while that of this particular encryption is $(506-38) / 229=2.04$.

4. Handycipher

Handycipher operates with the same plaintext and ciphertext alphabets, and encrypts a message M using a key K by first generating a random session key K^{\prime} and encrypting M with the core cipher using K^{\prime} to produce an intermediate ciphertext $\mathrm{C}^{\prime} . \mathrm{K}^{\prime}$ is then encrypted with the core cipher using K and embedded in C^{\prime} at a location based on K and the length of M , producing the final ciphertext C .

Extending the core cipher in this way confers several advantages in security at little computational cost. Because each plaintext message is encrypted with a different randomly generated session key, the primary secret key is less exposed to any attack that depends on having a lot of ciphertext to work with, and the security of the cipher is less compromised by encrypting multiple messages with the same key.

Handycipher encryption algorithm: $\mathbf{C} \Leftarrow \mathbf{E}^{*}(\mathrm{~K}, \mathrm{M})$

1. Generate a random 31-character key K^{\prime} with associated table T_{K} ' and coding substitution $\xi_{\mathrm{K}^{\prime}}$.
2. Encrypt M with the core cipher and K^{\prime}, yielding C^{\prime}.
3. Encrypt K^{\prime} with the core cipher and K, and append a null character (from T_{K}), yielding $\mathrm{K}^{\prime \prime}$.
4. Compute $\mathrm{j}=\left\{\left\lfloor\left(\left|\mathrm{C}^{\prime}\right|+\left|\mathrm{K}^{\prime \prime}\right|\right) / 31\right\rfloor-3\right\} \cdot\left(\xi_{\mathrm{K}}(\mathrm{U})-1\right)+\xi_{\mathrm{K}}(\mathrm{F})-1.4$
5. Insert $\mathrm{K}^{\prime \prime}$ into C^{\prime} immediately following position j as calculated in step 4, yielding C .

Handycipher decryption algorithm: $\mathbf{M} \Leftarrow \mathbf{D}^{*}(\mathrm{~K}, \mathrm{C})$

1. Calculate $\mathrm{j}=\{\lfloor|\mathrm{C}| / 31\rfloor-3\} \cdot\left(\xi_{\mathrm{K}}(\mathrm{U})-1\right)+\xi_{\mathrm{K}}(\mathrm{F})-1$ and begin decrypting the substring of C immediately following position j with the core cipher and K .
2. Continue until 31 plaintext characters have been decrypted, yielding the session key, K^{\prime}.
3. Remove the decrypted substring from C , leaving C^{\prime}.
4. Decrypt C^{\prime} with the core cipher and K^{\prime}, yielding M .

5. Example encryption with Handycipher

Continuing with the previous example, to encrypt the Williams quote with Handycipher, at first a random 31-character session key K^{\prime} is generated, say the one used as an example in Section 2:

$$
L C P-F O . Q \text { ? R H X G U J SKEA A I B W Z T M V N, Y D }
$$

with associated table $\mathrm{T}_{\mathrm{K}}{ }^{\prime}$

L	C	P	-	F	O
-	Q	$?$	R	H	X
G	U	J	S	K	E
A	I	B	W	Z	T
M	V	N	,	Y	D

and coding substitution $\xi_{\mathrm{K}^{\prime}}$

[^3]The quote is then encrypted with the core cipher using this $\xi_{\mathrm{K}^{\prime}}$ and $\mathrm{T}_{\mathrm{K}^{\prime}}$, yielding, for example, this ciphertext as C^{\prime}

```
NMYR- ,?.MA .WYL, NVLQJ AZIPU CW-RI CFKHY XLPXZ AIRW, GSFJW Y-LFD CEPHR
.JQYO SG.?W SYKLP ML.H. ?SUGI FSW,L GUCVG L?PNY ,VGKJ P?JYF CUR,- PJNL-
CAWJG MFJCA BFL-S -QICZ FRIWN PJX,L A-T-? .YLQF C-ZBA ?PJVQ UW,SL JVUCN
MCLFY ZHABZ -RSFM -SENG MLBZF IABJL Y-XMN HR.PL VIWRB WEBFZ CT-JF BJKYM
NP-LB WIC-A IBLJY RS-DU KJFJW BQ?.B PDCWA ,GM?. ,NRJI OFCLM NLF-. Q?WJL
YQBAF LCYKF TRQ.F IKFLG MPKFQ VCRMI SGPJE ZBUVC HZO,M BAUGK ?NBMY ,TFLC
GJIUC BJ?RI BAILK FWJQL IJ-PC D,YNG L?R.J ?BVQC XPLYL JPL?P NIMR. ?HMNV
TKG.? MFR?N BZFJG LNBML GHZVC UNP?. ?D?RN JABHF ZRH.L CPBAY LJDPA BFZYL
GE?HQ IJZKN BPJ?F JLAM? .HRQY HZFW- ZHLRH .A.NM ,VZBW JLFJT GXSCU .QHFI
LG.S- R.RPX CW-DR .NMZF YK?.H NTM?H .YLWM ,VP
```

K^{\prime} is encrypted with the core cipher and K , and terminated with a null character, yielding $\mathrm{K}^{\prime \prime}$, for example,

$$
\begin{aligned}
& X Q S G V R O P N X V-E A R V K E P Q J O S Y D V A Z-X V F H J R F Z X Q-B D \\
& \text { GKOCZSKPHZNEPKGQBIGDYSKJGCRH. GUWGCVQJZREVL }
\end{aligned}
$$

The position at which the encrypted session key will be inserted is calculated as

$$
\begin{aligned}
\mathrm{j} & =\left\{\left\lfloor\left(\left|\mathrm{C}^{\prime}\right|+\left|\mathrm{K}^{\prime \prime}\right|\right) / 31\right\rfloor-3\right\} \cdot\left(\xi_{\mathrm{K}(\mathrm{U})}-1\right)+\xi_{\mathrm{K}(\mathrm{~F})}-1 \\
& =\{\lfloor(578+84) / 31\rfloor-3\} \cdot 20+5-1 \\
& =364
\end{aligned}
$$

$\mathrm{K}^{\prime \prime}$ is inserted following the 364 th character of C^{\prime}, yielding C

```
NMYR- ,?.MA .WYL, NVLQJ AZIPU CW-RI CFKHY XLPXZ AIRW, GSFJW Y-LFD CEPHR
.JQYO SG.?W SYKLP ML.H. ?SUGI FSW,L GUCVG L?PNY ,VGKJ P?JYF CUR,- PJNL-
CAWJG MFJCA BFL-S -QICZ FRIWN PJX,L A-T-? .YLQF C-ZBA ?PJVQ UW,SL JVUCN
MCLFY ZHABZ -RSFM -SENG MLBZF IABJL Y-XMN HR.PL VIWRB WEBFZ CT-JF BJKYM
NP-LB WIC-A IBLJY RS-DU KJFJW BQ?.B PDCWA ,GM?. ,NRJI OFCLM NLF-. Q?WJL
YQBAF LCYKF TRQ.F IKFLG MPKFQ VCRMI SGPJE ZBUVC HZO,M BAUGK ?NBMY ,TFLC
GJIUX QSGVR OPNXV -EARV KEPQJ OSYDV AZ-XV FHJRF ZXQ-B DGKOC ZSKPH ZNEPK
GQBIG DYSKJ GCRH. GUWGC VQJZR EVLCB J?RIB AILKF WJQLI J-PCD ,YNGL ?R.J?
BVQCX PLYLJ PL?PN IMR.? HMNVT KG.?M FR?NB ZFJGL NBMLG HZVCU NP?.? D?RNJ
ABHFZ RH.LC PBAYL JDPAB FZYLG E?HQI JZKNB PJ?FJ LAM?. HRQYH ZFW-Z HLRH.
A.NM, VZBWJ LFJTG XSCU. QHFIL G.S-R .RPXC W-DR. NMZFY K?.HN TM?H. YLWM,
VP
```


6. Cryptanalytic vulnerability

Handycipher is conjectured to be remarkably strong for a pen-and-paper cipher, based on the following considerations.

It seems reasonable to assume that any effective attack will be based on determining the makeup of the twelve rows, columns, and diagonals of the key matrix M_{K} as well as the sixth column of the key table T_{K} containing the five null characters. However, any such strategy will almost certainly require a fairly large amount of ciphertext to be effectivefar more than is likely to be encountered in a typical pen-and-paper cipher application.

The 506-character ciphertext generated by the core cipher encryption of the 229character Tennessee Williams quotation in Section 3, for example, contains 249 distinct unordered bigrams (i.e., counting all permutations of a bigram as one) of which only 13 occur more than four times; 429 distinct unordered trigrams of which only two occur more than three times (and only one consists of characters colinear in M_{K}); 469 distinct unordered 4 -grams of which only four occur more than two times (and none consists of characters colinear in M_{K}).

Moreover, even if an attack were to successfully discover the thirteen subsets of A* which comprise the rows, columns, and diagonals of M_{K} and the sixth column of T_{K}, thereby completely determining how to divide a ciphertext into its component n-grams, decryption would remain an intractable problem. Such an attack would, in effect, only reduce the problem to one of breaking a homophonic substitution cipher with 99 cipher alphabet tokens (those distinct unordered n-grams occuring in the ciphertext that are encryptions of plaintext characters) and a ciphertext size of 229. Moreover, of these 99 tokens only five (four encryptions of \wedge : Do, DS, FK, -z and one encryption of I : HNz) occur more than three times. That such a problem is beyond the scope of known ciphertextonly attacks against homophonic substitution ciphers is implied by the work of Dhavare, et al. [1]

7. Challenge cryptograms

Two 506-character plaintext messages M_{1} and M_{2} have each been encrypted with Handycipher using the same key K , yielding the two cryptograms C_{1} and C_{2} contained in the Appendix, not necessarily in that order. The first 229 characters of M_{1} consist of the Williams quotation in Section 3. Four challenges in increasing order of difficulty are offered:

1. Determine whether C_{1} is the encryption of M_{1} or of M_{2}.
2. Reveal the plaintext following the first 229 characters of M_{1}.
3. Reveal M_{2}.
4.Reveal K.

8. Implementation notes

8.1. When implementing the core cipher encryption by hand it's helpful to proceed by first writing the plaintext message vertically; then adding a second column containing, adjacent to each character $m, \xi(m)$; then a third column containing the column, row, or diagonal of M_{K} to be used in step 1 of the encryption algorithm; finally a fourth column containing $\sigma(m)$.

Thus a worksheet might look like:

m	$\xi(\mathrm{m}) \mathrm{C/R} / \mathrm{D} \boldsymbol{\sigma}(\mathrm{m})$		
C	14	C_{2}	CSH
A	13	C_{1}	AD-
T	3	D_{2}	H-
S	8	C_{5}	Y
	24	R_{3}	CA
A	13	R_{4}	. HU
N	2	R_{4}	BG
D	7	D_{2}	-HV
^	24	C_{3}	TM
D	7	R_{1}	PFT
0	1	C_{4}	Q
G	22	D_{3}	VGO
S	8	C_{3}	M

Proceeding in this way facilitates choosing columns, rows, diagonals, and character orderings in $\sigma(m)$ in a random fashion.
8.2. Although the process is tedious, with a bit of practice one can reasonably expect to encrypt or decrypt messages with the core cipher at a rate of approximately three plaintext characters per minute. At that rate the 229 character Williams quotation takes about an hour and a quarter to encrypt and perhaps an additional 20 minutes to generate, encrypt, and insert the session key.
8.3. For the random choices made in steps 1 and 3 of the core cipher encryption algorithm and step 1 of the Handycipher encryption algorithm to be truly random, one can use a single six-sided die (as described, for example, by Reinhold [3]); however, it's sufficient for our purpose that these choices merely be made nondeterministically since a hand cipher need only be capable of protecting a small number of short messages. Nonetheless, trying to choose randomly can only make cryptanalysis more difficult. One can improve one's skill at behaving randomly by visiting Chris Wetzel's website [7].
8.4. Although there is little propagation of errors in both encrypting and decrypting (which is particularly desirable in a hand cipher) special care should be taken when processing the session key K^{\prime} in step 3 of the Handycipher encryption algorithm and step 2 of the decryption algorithm since any error introduced into the key will be propagated.
8.5. Null characters should perhaps be introduced more frequently than was done in the example in Section 3, where the frequency distribution of ciphertext characters is fairly flat except for the five null characters which together occur only 38 times. Null characters should certainly be introduced in encrypting the session key so that its length is not predictable, and the encrypted session key needs to end with a null character to ensure that its boundary is demarcated in the decryption process.
8.6. Frequency distribution of ciphertext characters could easily be further flattened by introducing into Step 1 of the Handycipher encryption algorithm, modifying K^{\prime} so as to avoid $\xi_{\mathrm{K}^{\prime}}(\mathrm{m})$ being $0,1,2,4$, or 16 for m equal to any of the five most frequent plaintext letters \{^ E T O A\}, ensuring that none of them will be encrypted into one of the five length-1 ciphertext unigrams.
8.7. Source code implementing the encryption and decryption algorithms, written in ANS standard Forth, is available on request from the author.

9. References

1. A. Dhavare, R. M. Low, M. Stamp, Efficient cryptanalysis of homophonic substitution ciphers, Cryptologia 37 (2013) 250-281.
2. R. Merkle, M. Hellman, On the security of multiple encryption, CACM 24 (1981) 465-467.
3. A. G. Reinhold, How do I use dice to create random character strings?(1995), available at http://world.std.com/\~reinhold/dicewarefaq.html\#randomstrings.
4. R. L. Rivest, A. T. Sherman, Randomized encryption techniques, in Advances in Cryptology: Proceedings of Crypto 82 (1982).
5. B. Schneier, The Solitaire encryption algorithm (1999), available at https:// www.schneier.com/solitaire.html.
6. C. E. Shannon, Communication theory of secrecy systems. Bell System Technical Journal 28 (1949) 659-715.
7. C. Wetzel, Can you behave randomly? (1999) available at http://faculty.rhodes.edu/ wetzel/random/intro.html.

10. Appendix

C_{1}

MN.ED FTZBV DTSJR HKV.L CHRCH YGMKV EHSRX UCAUS CAVZJ M.BVS CH.OH VMYPG XQCS, GBOQH FBKTP FBSZW YPO-F TD?XZ ECVLY SCIMN JZHSJ EXZWT DF?,Y USXMV YSJHT EXZQH .CEJS RGQBS RHZBS -ZEXC SH.CD ?O.UY MGXCY FPTOQ ACABG OMU?O CBRK, NJ.EW MZJ.?VKTF LDVBD ,HBQG .NJ,K NCOHB W?J.Z MAOGB TJHSD TFPID FTZIU ?.,OJ NM-JH SNKCT FCNBW U?DO. SHJ.O NFEKU HVCIY GSH.U OLXBU O.FKN YCFND LTFU. ?ITHS JQGHA UCSNZ AQLZX -XQEF TRHSN HK?RY PCKES JHXZL EQHLC .?.HB OVN.M VDSQX EIJN. ?VK,O UFDTE IZQEL O?U-. JNOCY U,JTG VYSHJ AEGPV MCYXS UEBHO RTJWC YPMOD .URKF TDK?F LVKPL FTUCS ?EVYC KHBOV YMR?K -VDPL TV?KB HQOFD PT.OU RWQGH OVKR, XQZNJ R?CNK JTZSV KAR?K NZ,G? RKILP F-ZLE XQUSX CJN.B OG,HB UCSO? UD.CS UGVPC XLC?V DFTCN BKFVZ TVRKP MCBLD TPFJT K?PFT LHC.T DFQLZ NBFU. O,VSY CLDFT BZDSK VRNJO U,JMN U?OZS BMJCY UMWN? VKFNK CBSVD NJFDT AYMPV GOBQH VZUSC LXZQY PTPSB ZE-XS UYVSZ CHJN. VMYR? K,UYX BHG-. KV?GV YALSR H.CHA VTJHR UXJ-Q -XSMT JFBJ- WSOGD VNE,I A-QKB JH-VT ZWHBJ RHWDM IOP,Q CVOXJ FCVNE OVHBE J-?E. WK.US XNJEO LZVIQ C,SYC R-QZX OQVRK LH.CV ZVYUC OHQBY SXIQX ZNMJ. ZLQXZ .MQXZ O?L.K ?V-?F PDR?K EHRTC BNVYP GM-E? -?OUZ QXV-Y SUXHS R.UOC KFLCK RWKZQ XPMYG CF-KC .DAFP DAJN, MVGPN KCHST JQGHM GYOLC D. XCY HB-U. O-NZW HUCSD VSEXQ WOGJS R-?QG OBHKU YCLCZ SDBR? KSUCX Y-GYP MZXUD LDTFB SVYMG HQGOU XCYS- FT.OU BSLCQ XZWQN CKFBI .DZQX OKEXE -LDFT A.MGV PYBSZ GOQSZ O.UNF HVCBG HOQ-G OKV?S JHTGQ HUCS? QZELB KCXZQ BKZ.Y CUESZ VN.JZ DBVTF UO.QB ,H,US CVTHR JGHB, OBHFL PUDWH SEW.U ONM.S CXUKS VB-.Z A?UOT F?-KN CER?K HTRWC BNSRT ,YMV, HOBQY UJN-U .OEZX NCBFZ BSLHV .NM.F T?LX. LK?NF CYGM, YSWBK CWMGY QBGVR KUY.U ?V,ZE XLQKM NJRK? SYDPF KTJRH CNBQB EXUXG YMXCQ ED. OU MGYSD VRJSO BQHRJ ,CBO. U-HTJ SRIDO U.-RJ U.OEH RTJ,C SYEXZ JT,OU H.CTS HRJIQ XBHOJ MRSHN WMBGH Q.CHE NBFKU .?TFQ ZXVQB .UOXY CNJM, YMG?U .QXDT FAZLX QENJ. CXYVM YQO?K RVESN HGBPG YVW.N J-MYG BDZ.H LISUC ?VRKX E.DKJ N.PQB ICXUS ITJSH ?UOVD BWCY?
C_{2}
EUO-G I.WNG ZL.YQ JEIC, M-DGW UMHLQ WVGKG O.I-K FVJ,B UA.XN .WQRS PXOMG UYMQT WQHWI LGOIL BREZN QUYNW GMJFD ,NUWQ LW,US BJYCU ILPIB KXNGW UMEZB SWBCV PJQWB ZXQTE ZNPIL ADNLW UN.QZ D-ONL ZPFCV UJRKV AIOGL QR.?L H-MHZ VBTLU N,SBU R-FDW MSUAW Q.HEI LGNUI BPMK- ,WTZV BGI-G . QOPL QRW.Y IJ.LQ WPCWI UJLHP XNOS, D-S-, FMQUM PSXO. I-GPM IBQDZ QWRLK . NEZH WZELD NMB?Y X.NSU WGMZM GUYUI CWM,- DV,FM -TYXM NS?ON .UNMW BM-.L .?QVC PXQYP CLEDN ZVF?M -FDIN OSXP. DF-?U SLSPR L.F-W ,D-WA UYJ.W L?ENY XUICY LM.?O SKGIO FM-.L KLTXY MQ?DZ ELRF, TGMFT GVB.D ,-MIY R-F,D TMUGN RLVPR M,HLD ZNUNR ZGBVP VC,RF MBLPO SPXKU IL-MC VPFBM LIWJC IPILE IYCAB S,UIA LYIXR Q.WML RXYTQ MLW.- FWTQI MBPLF VAVGT Z.IOR .EDZL YCXNS .UYEI CNPO- F.BRE NDZLC IEWQS NMDFW .PCWG .-ILZ EDXWV CF?TQ LKCUQ W.RPX B,RUL TVMBC PWILP A,FM- JGBW- . OGM, -AL.A RD, XO TMZGJ RTYXG ZBTIU HW-GI O.LBS NAHWU NSVPH WSJPF VINWS IBPSE NFKVT ZXTPR .WZ,T YDQXU BALZH UIYOB UITJB UIB,T -DQXF SHW?, OPCAS QCO,P WGQBT AFWDZ SP,-M DQHSN OMLTW .HRCW HI.-G JYCG- .IHLY UBSUQ WCVWF QSN?T GQCPN GWMUA FVWCL AXPOS YXQU, -M.IZ LALQR ?WSUB ,VTBG DF-IO CVPWF ?WFVC JTV.B GACEI BG?LU ,SRBG I.-QK ,FQ.W RHSBU DLKLO GIJSO NX-.G UE-.I GOQTX SU,BE QVDZM QW.RQ A. KTM SBU,Q JSB,U RNPOI CQNLZ DEK,R BUIOG UBWIP WNMGU HOIGM IPBRA USRB, LW.G. W-GWC JNOXS RZVBG LMZNL ICBMI WPCAP XOMLP NSOP? QWL.Y CF,DL . WBGZ T?UHW BLENL ZD.Q, RIOL- ,EUID LHLQ? L,RSU BGZBK SBRCY ,SUWD -MF,L MBI.A CWBGZ KVWL- ,DWEZ AOIGW Q-O?L VOSNB IMP?L GBZHE NLIPG -EWCF VNUZG VTBUM GW.-? .LKWA YOPLB HZBR. LWQH. UZDQ. UI.F, -MAMQ TCWVF KLZQJ GBZ.R QLIGQ USB.C GMYI, -LSXM GIPL- ,WSXV TMOYT JZNEG IKSUQ MYXTW SXURB ,NEWC JQRW. YCIUZ TBGK. JNSYX MQTU, RBKTP CFREG M?Q.O SWNMR ,SUBO .G-T? TMWL. Q,RCY UIGIL HO.IB MYIMN EICMD ,-CLJ G-TYM XWOIE IUCYF M-,., FKWRL .QMGF ,D?MY TQSXN JZBTI -O

[^0]: ${ }^{1}$ It's a fairly straightforward exercise to show that null-insertion is only forced when $\xi_{\kappa}(m)=1,2,4,8$, or 16 and $\sigma(\mathrm{m})$ must lie in the same row used to encrypt the character immediately preceding m in M .

[^1]: ${ }^{2}$ In the fourth column the row, column, or diagonal chosen in Step 1 is indicated.

[^2]: ${ }^{3}$ The ciphertext characters are displayed here divided this way for clarity of exposition; in practice, of course, they would instead only be customarily divided into groups of five.

[^3]: ${ }^{4}$ Here $\lfloor x\rfloor$ denotes the integer part of x and $I C I$ denotes the length of C. The formula is designed merely to make the value of j depend on K and ICl . (The choice of U and F is arbitrary and based on their central position in the usual frequency distribution etaoinshrdlucmfgypwbvkxjqz.)

