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Abstract—This paper presents differential fault analysis of the
MICKEY family of stream ciphers, one of the winners of eStream
project. The current attacks are of the best performance among
all the attacks against MICKEY ciphers reported till date. The
number of faults required with respect to state size is about
1.5 times the state size. We obtain linear equations to determine
state bits. The fault model required is reasonable. The fault model
is further relaxed without reproducing the faults and allowing
multiple bit faults. In this scenario, more faults are required
when reproduction is not allowed whereas, it has been shown
that the number of faults remains same for multiple bit faults.

Index Terms—MICKEY-128 2.0, MICKEY v1, MICKEY 2.0,
MICKEY-128, Side Channel Attack, Fault Attack

I. INTRODUCTION

Stream ciphers have gained popularity in recent years in
resource constrained environments. Considerable amount of
effort in contemporary research have been given to stream
ciphers. eStream [1] project started in 2005 introduced a
number of stream ciphers in hardware and software efficient
environments. The aim was to standardize stream ciphers.
Over the years the eStream ciphers have undergone extensive
crypanalytic efforts. After comparing strengths, throughput
and few other essential criteria the winners were declared.
The winners of the eStream project [3] were 7 candidates, 3
in hardware category and 4 in software category. Researchers
have widely analyzed strengths of the 7 ciphers in vast
cryptnalytic environments.

Very large number of cryptanalysis of ciphers are studied
by the research community in recent years. Algebraic or
statistical analysis mostly target the mathematical strength of
the ciphers. Side channel attack of stream ciphers is another
class of analysis of strength of ciphers, which includes, power
analysis, fault analysis and timing analysis etc. Side channel
attacks target implementations of ciphers. Implementations
leak a number of side channel information, such as, power
consumption, electromagnetic profile, faulty output etc. A side
channel attacker analyzes these side channel information to
break a cryptosystem. In recent literature, a large number of
work on side channel attacks are published. Power analysis and
fault analysis are most explored types of side channel attack.
Most of the ciphers in the eStream portfolio are susceptible to
side-channel-attacks ([13], [14], [15], [2]).

Fault attacks (or Differential Fault Attack(DFA)) are vastly
explored in recent years and are efficient form of side channel
attacks. In this scenario, attacker induces faults during cipher

operations. The fault-free and faulty ciphertexts/keystreams are
then analyzed to deduce partial or full value of the secret key.
One of the main advantages of fault attacks is that it is practical
like most side channel attacks and once required fault model is
established the system may be broken in at most a few hours.
Fault attacks have been shown to be successful against both
block ciphers ([9], [10]) and stream ciphers ([13], [14], [15]).
Recent literature shows that stream ciphers are extremely
vulnerable to fault attacks([13], [14], [15]). Practical methods
of fault induction are also studied in contemporary literature.
Clock glitch, laser shots ([17], [18]) etc. are efficiently and
accurately applicable in fault induction.

Fault attacks are successfully applied against almost all
the eStream winners like Trivium, Grain, Mickey [19] from
the hardware category and against Rabbit and Sosemnauk
from the software category. Fault attack is reported against
Mickey-128 [20] and Mickey 2.0 in [21]. In the paper [20],
the mentioned faults and fault-free/faulty keystreams to break
MICKEY-128 following initialization are reported as, 640 and
960 respectively. While [21] takes 216.7 faults to break the
MICKEY 2.0. A preliminary version of this paper appeared
in [22]. In this paper, we present a fault attack on MICKEY-
128 2.0, which is the latest version of MICKEY and no known
result of fault attack is present against it. We show that this
version can be attacked using 480 random single-bit faults and
480 pairs of faulty and fault-free keystreams. We show that our
attack can easily be applied to all versions of the MICKEY
family namely, MICKEY v1, MICKEY 2.0, MICKEY-128 and
MICKEY-128 2.0 with maximum number of 480 faults.

This paper is organized as follows. Following this introduc-
tion we describe the design of MICKEY stream ciphers in
section 2. The fault attack model of our attack is presented in
section 3. In section 4 we have described detail procedure of
our attack against all the ciphers of MICKEY family. Section
5 relaxes assumptions of the fault model. Finally, section 6
concludes the paper.

II. BACKGROUND

In this section, we briefly discuss specification of the
MICKEY family of stream ciphers. Throughout the paper, +
refers to modulo 2 addition.

A. Specification of the MICKEY Stream Ciphers
The cipher family MICKEY, which stands for, Mutual

Irregular Clocking KEYstream generator is one of the win-
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ners of the eStream cipher contest. A number of MICKEY
ciphers are introduced to the eStream project over its duration,
MICKEY v1 being the first and MICKEY-128 2.0 being the
final cipher. Here, we briefly discuss the specification of the
MICKEY ciphers. A detailed description may be found in [5]
(MICKEY v1), [6] (MICKEY 2.0), [7] (MICKEY-128) and
[19](MICKEY-128 2.0).

The structure of MICKEY consists of two registers, R and
S. For different ciphers this registers are of different lengths.
For MICKEY v1 the length, s is 80 for both the registers,
while the lengths are 100, 128 and 160 for MICKEY 2.0,
MICKEY-128 and MICKEY-128 2.0 respectively. Although
the design concept of all the versions are same but they differ
in the size of the state registers, s and so on security of the
ciphers.

The initialization algorithm takes v bits of key and
IV LENGTH number of IV bits to initialize the system.
The initialization algorithm is described in algorithm 1. The
cipher takes, v = 128/80 bit key k0, . . . , k127/k0, . . . , k79 and
IV LENGTH number of IV bits, v0, . . . , vIV LENGTH−1,
where, 0 ≤ IV LENGTH ≤ 128/0 ≤ IV LENGTH ≤
80. MICKEY v1 and MICKEY 2.0 takes 80 bits of key, while
MICKEY-128 and MICKEY-128 2.0 takes 128 bits of key.

Algorithm 1 INIT()
Initialize R and S registers are loaded with zeros.
for (i=0 to IV LENGTH-1) do

CLOCK KG(TRUE, ivi)
end for
for (i=0 to v-1) do

CLOCK KG(TRUE, ki)
end for
for (i=0 to s-1) do

CLOCK KG(TRUE, 0)
end for

The overall system is clocked through CLOCK KG func-
tion. Its description is given in algorithm 2.

The registers R and S are clocked following procedures
CLOCK R and CLOCK S respectively, which are called from
procedure CLOCK KG (algorithm 2). The different versions
of ciphers takes different parameters and executes CLOCK R
and CLOCK S which clocks R and S registers respectively.
For different versions the algorithms are described in the
appendix. The update of each bits of R and S (ri and si)
is derived in closed form in comments of the algorithms.

Finally, the keystream generation is performed by algorithm
3 for all the ciphers.

Hence, the update of R and S registers following initializa-
tion can be written as,

1. MICKEY-128 2.0

rk(i) = (k > 0)rk−1(i− 1) + (k ∈ RTAPS)r159(i− 1)

+(s54(i− 1) + r106(i− 1))rk(i− 1)

sk(i) = (k > 0)sk−1(i− 1) + (0 < k < 159)

[sk(i− 1)sk+1(i− 1)

+COMP0ksk+1(i− 1) + COMP1ksk(i− 1)

Algorithm 2 CLOCK KG(MIXING, INPUT BIT)
//MICKEY-128 2.0
CONTROL BIT R = s54 + r106
CONTROL BIT S = s106 + r53
//MICKEY v1
CONTROL BIT R = s27 + r53
CONTROL BIT S = s53 + r26
//MICKEY-128
CONTROL BIT R = s43 + r85
CONTROL BIT S = s85 + r42
//MICKEY 2.0
CONTROL BIT R = s34 + r67
CONTROL BIT S = s67 + r33
if (MIXING == 1) then

//MICKEY-128 2.0
CLOCK R(INPUT BIT+s80, CONTROL BIT R).
//MICKEY v1
CLOCK R(INPUT BIT+s40, CONTROL BIT R).
//MICKEY-128
CLOCK R(INPUT BIT+s64, CONTROL BIT R).
//MICKEY 2.0
CLOCK R(INPUT BIT+s50, CONTROL BIT R).
CLOCK S(INPUT BIT, CONTROL BIT S).

else
CLOCK R(INPUT BIT, CONTROL BIT R).
CLOCK S(INPUT BIT, CONTROL BIT S).

end if

Algorithm 3 KeyStream()
keystream = r0 + s0
CLOCK KG(FALSE, 0)

+COMP0kCOMP1k] + s159(i− 1)FB0k

+s159s106(FB0k + FB1k)

+s159(i− 1)r53(i− 1)(FB0k + FB1k)

z(i) = r0(i) + s0(i)

2. MICKEY v1

rk(i) = (k > 0)rk−1(i− 1) + (k ∈ RTAPS).r79(i− 1)

+(s27(i− 1) + r53(i− 1)).rk(i− 1)

sk(i) = (k > 0)sk−1(i− 1) + (0 < k < 79)

[sk(i− 1)sk+1(i− 1)

+COMP0ksk+1(i− 1) + COMP1ksk(i− 1)

+COMP0kCOMP1k] + s79(i− 1)FB0k

+s79s53(FB0k + FB1k)

+s79(i− 1)r26(i− 1)(FB0k + FB1k)

z(i) = r0(i) + s0(i)

3. MICKEY-128

rk(i) = (k > 0)rk−1(i− 1) + (k ∈ RTAPS)r127(i− 1)

+(s43(i− 1) + r85(i− 1))rk(i− 1)

sk(i) = (k > 0)sk−1(i− 1) + (0 < k < 127)

[sk(i− 1)sk+1(i− 1)
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+COMP0ksk+1(i− 1) + COMP1ksk(i− 1)

+COMP0kCOMP1k] + s127(i− 1)FB0k

+s127s85(FB0k + FB1k)

+s127(i− 1)r42(i− 1)(FB0k + FB1k)

z(i) = r0(i) + s0(i)

4. MICKEY 2.0

rk(i) = (k > 0)rk−1(i− 1) + (k ∈ RTAPS)r99(i− 1)

+(s34(i− 1) + r67(i− 1))rk(i− 1)

sk(i) = (k > 0)sk−1(i− 1) + (0 < k < 99)

[sk(i− 1)sk+1(i− 1)

+COMP0ksk+1(i− 1) + COMP1ksk(i− 1)

+COMP0kCOMP1k] + s99(i− 1)FB0k

+s99s67(FB0k + FB1k)

+s99(i− 1)r33(i− 1)(FB0k + FB1k)

z(i) = r0(i) + s0(i)

III. DIFFERENTIAL FAULT ATTACK MODEL

In this section, we describe the fault analysis model assumed
in our attack.

Our fault model is same as used in most of the fault attacks
against stream ciphers ([8], [13], [14], [15], [16]). Hence, the
fault is a bit-flip and it occurs in the internal state registers.
Single bit faults are injected and the difference of the faulty
and fault-free keystreams are exploited to analyze the system.
We assume the following controllability in order to perform
this attack.

1) The attacker is able to inject faults at random positions
of the internal state bits of the MICKEY implementation
(hardware or software). Hence, exact fault position is not
needed to be known beforehand.

2) The fault affects exactly one bit of the internal register
at any cycle of operation. So, the fault flips exactly
one bit of the internal register of MICKEY-128 2.0
implementation. Although, flipping exactly one bit of
the internal register seems a strong assumption, but can
be achieved practically by triggering laser shots through
the I/O signal for hardware implementations ([17], [18]).

3) A fault to an internal register bit can be reproduced at
any cycle of operation, once, it is created.

4) The attacker is able to determine and control the cycles
of operation of the implementation, i.e., the timing of the
implementation is under control of the attacker. This is
easy for externally clocked systems.

5) The attacker can reset the implementation to its original
state.

In other words, a key is embedded into the system. Adversary
induces single bit faults at random positions. The adversary
first detects position of the fault. Then determines equations
involving internal states from faulty and fault-free keystreams.
If necessary the adversary reproduces the fault at the same
location possibly at different clock cycles. The current cycle
of operation is known to the attacker and can be controlled.

IV. FAULT ANALYSIS OF MICKEY
In this section, we present our proposed fault attack on

MICKEY. The attack is described fully for MICKEY-128 2.0.
It has been shown that how the same attack is applied to other
versions of MICKEY like MICKEY v1, MICKEY 2.0 and
MICKEY-128 with changing parameters and relevant modi-
fications. The actual attack is discussed in two subsections
namely the determination of internal state of the cipher (i) R
register and (ii) the S register. In both the cases attacks are
mounted in the following two phases:
• Determine position of the fault.
• Obtain and Solve equations involving internal state bits.
In the first phase, we consider single bit random faults.

Then, we use related single bit faults to determine faults at
certain locations. Related single bit fault is different from
multiple faults in the sense that two single bit faults are
induced in different cycles at two fixed locations of two
different internal states instead of inducing two faults in one
cycle.

In the second phase, we retain our focus on linear equations
only. The required number of equations can therefore be easily
reduced by including higher degree equations. It is seen that
the linear equations obtained are in single variable in a number
of equations, thus are directly solvable. Obtained equations
involve state bits at different iterations like r0(t) at tth cycle,
r0(t + 10) etc. Following state update operation in MICKEY,
we are able to obtain state bits of the cipher at a base point,
say, at T th clock cycle. Once, the state of the cipher at T is
known we are able to predict keystream of the cipher at any
iteration t > T , thus breaking the system. Note that the attack
is performed after the initialization phase.

A. Approach

In this attack, we consider single bit faults only, either
random or related single faults. Let, ∆(X) denote the dif-
ference between faulty (Xf ) and fault-free(X) values of
X , (which can be a register bit or the keystream bit), i.e.,
∆(X) = X + Xf . Hence, the standard difference rules are
applicable, i.e., for a fault at X ,
• ∆(X) = 1,
• ∆(Y ) = 0, Y is independent of X ,
• ∆(Y + Z) = ∆(Y ) + ∆(Z),
• ∆(Y Z) = ∆(Y )Z + Y ∆(Z).

Throughout the paper we have used this terminology with
corresponding fault locations mentioned in context.

We rewrite in closed form the update function of the state
bits of R and S register of MICKEY-128 2.0. The kth bit of
the R register, the kth bit of the S register (0 ≤ k ≤ 159)
and the output bit z at iteration i are given by,

rk(i) = (k > 0)rk−1(i− 1) + (k ∈ RTAPS)r159(i− 1)

+(s54(i− 1) + r106(i− 1))rk(i− 1) (1)
sk(i) = (k > 0)sk−1(i− 1)

+(0 < k < 159)[sk(i− 1)sk+1(i− 1)

+COMP0ksk+1(i− 1) + COMP1ksk(i− 1)

+COMP0kCOMP1k] + s159(i− 1)FB0k
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+s159s106(FB0k + FB1k)

+s159(i− 1)r53(i− 1)(FB0k + FB1k) (2)
z(i) = r0(i) + s0(i) (3)

First of all, let’s note that the faults at rk and sk, ∆(rk(i))
and ∆(sk(i)) are determined by the following equations,

∆(rk(i)) = (k > 0)∆(rk−1(i− 1))

+(k ∈ RTAPS)∆(r159(i− 1)

+∆(s54(i− 1))).rk(i− 1)

+∆(r106(i− 1).rk(i− 1)

+(s54(i− 1) + r106(i− 1)).∆(rk(i− 1)) (4)
∆(sk(i)) = (k > 0)∆(sk−1(i− 1))

+(0 < k < 159)[∆(sk(i− 1)).sk+1(i− 1)

+∆(sk+1(i− 1)sk(i− 1)

+COMP0i∆(sk+1(i− 1))

+COMP1i∆(sk(i− 1))]

+∆(s159(i− 1)FB0i

+(FB0i + FB1i).∆(s159(i− 1))s106(i− 1)

+(FB0i + FB1i).s159(i− 1)∆(s106(i− 1))

+(FB0i + FB1i).∆(s159(i− 1))r53(i− 1)

+(FB0i + FB1i)

.∆(r53(i− 1))s159(i− 1) (5)
∆(z(i)) = ∆(r0(i)) + ∆(s0(i)) (6)

Our target is to obtain linear equations involving R and
S bits from the above set of equations. Since, ∆(z(i)) =
∆(r0(i)) + ∆(s0(i)) (equation 6) and we are considering
single bit faults, ∆(r0(i)) and ∆(s0(i)) should be considered
separately.
• ∆(r0(i)): Equations 4 and 5 imply, faults at s54, r106,

r0 and (s54 or r106) can produce linear equations, with
values of, r0, r0, (s54(i − 1) + r106) and r0 found
out respectively at appropriate cycles. Faults at other
locations will lead to non-linear equations.

• ∆(s0(i)): In this case, equations 4 and 5 imply, faults at
sk, sk+1, s159, s106 and r53 can lead to linear equations.
However, faults at sk or sk+1 is not immediately reflected
in ∆(z), hence, faults at s159 and (s106 or r53) are only
useful. Fault at s159 will provide the value of, (s106+r53),
while, fault at (s106 or r53) will provide the value of s159
at appropriate cycles. Faults at other locations will involve
equations with non-linear terms.

With these noted fault locations and target equations, we
proceed to derive values of R and S. This procedures are
discussed in the following sections.

Note that due to the similarity of the update equations
analogus observations can be made for MICKEY v1, MICKEY-
128 and MICKEY 2.0.

B. Determining R Register

In this subsection, we describe the methodology to deter-
mine register bits of R at iteration T , following initialization.

We discuss the two phases of the attack with relevant algo-
rithms and experimental results in the following two sections.
We first determine the position of the fault. Then obtain
information about the internal state bits of the cipher analyzing
the output differences of the keystreams. Then, we solve the
obtained linear equations to infer state bits of R register of
the cipher at a base point T . Finally, we count the number of
faults required to determine entire R register.

1) Determining Position of the Fault: The determination
of fault-locations is done during a preprocessing phase. The
output bit is dependent on r0 and s0. When a fault is induced
in R register, through the presence of rk−1(i− 1) term in the
update of rk(i) (equation 1) it propagates to the next bit in R
register during the following cycle and so on. Hence, it follows
that after (160−f) iterations we will get a faulty keystream if
and only if position f was originally faulted for f > 106, for
obvious reasons, this explains table I. Note that this is because
r0(i) is dependent on r159(i − 1) (equation 1). However, the
fault-difference may not be a constant i.e. bit-flip, due to the
presence of (s54(i−1)+r106(i−1))rk(i−1) term (equations
1, 4).

Note that it is possible to determine fault locations deter-
minable by single (unrelated) fault, F s

s by observing equations
4 and 6. It turns out that we need only use fault at location
r0 for our subsequent use, hence, from equations 4 and 6, it
follows that for a fault at r0, immediately (i.e., at cycle 0),
a output bit-flip is obtained. However, this may be due to a
fault at s0 also. The distinguisher (distinguishing beween r0
and s0 as fault location) is reported in algorithm 5. Note that
this means that our preprocessing phase is very short in terms
of time required.

A similar argument applies to faults at locations f > 106
in R register. Following equations 4 and 6, the obtained
equations of the output-difference can be obtained. Other terms
of equation 4 becomes 0, only (s54(i−1)+r106(i−1)) remain
for faults at rk(i− 1). It is tabulated in table I.
Faults at bit r106 or s54: For our analysis, equation 4 shows
that faults in locations r106 or s54 need to be determined.
However, we are not able to determine faults at r106 or s54
using single random faults. We apply two related faults; first
fault at r0 and then at (r106 or s54. Note that this follows the
fault model. We induce a random fault and determine if it is
in location r0 or s0 (algorithm 4). If r0 or s0 can once be
faulted, it may be reproduced later. Then we fault randomly
again in the faulty or normal state register (following no fault
and a fault at (r0 or s0)). Then we check if the fault was in
(r106 or s54) following an algorithm devised later (algorithm
5).

Fault propagations in R and S are determined by equations
4 and 5, respectively. Hence, ∆(z) = 1 at cycle 0 following a
fault induction at cycle 0, holds if and only if fault is induced
in r0 or s0. The fault propagation at r0 and s0 are respectively
given by (from equations 4 and 5),

∆(r0(i)) = ∆(r159(i− 1) + ∆(s54).r0(i− 1)

+∆(r106(i− 1).r0(i− 1)

+(s54(i− 1) + r106(i− 1))

.∆(r0(i− 1)) (7)
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TABLE I
FAULT LOCATION VS. ∆(z) = 1 VS. EQUATION LHS

Location Cycle for ∆(z) = 1 Output Equation LHS
(Fr) (next cycle)
r160−i i (i¿106) (s54(i)+r106(i))
s0 0 (s1(0))

∆(s0(i)) = ∆(s159(i− 1)) (8)

So, following fault at r0 or s0, the fault propagation to next
cycle is determined by (∆(r0(i)) = 1, other differentials being
0),

∆∆(r0(i + 1)) = ∆(s54(i) + r106(i))

∆∆(s0(i + 1)) = 0

This gives us a way to distinguish between faults at r0
and s0. A fault at r0 and (r106 or s54) in cycle 0 will
definitely yield ∆∆(z(1)) = 1, while a fault at s0 and any
other location will set ∆∆(z(1)) to 0. Therefore, following
this methodology we are able to determine single fault at r0
and related faults at r0 and r106 or s54. The methodology
is described in algorithms 4 and 5. This preprocessing phase
requires 160+159=319 faults on average.

Algorithm 4 Location-R0orS0()
Induce single bit fault in the registers.
//z(0) is fault-free output at cycle=0.
//zf (0) is faulty output at cycle=0
if z(0) + zf (0) = 1 then
r0 or s0 is faulty.

end if

Algorithm 5 Locations-R106orS54()
Fault r0 or s0 following algorithm 4.
//By assumption, we can reproduce faults at any location.
Compute ∆(z(1)) = z(1) + zf (1).
Fault r0 or s0.
Fault any other location.
Compute ∆(zfr(1)) = z(1) + zfr(1).
if ∆(z(1)) + ∆(zfr(1)) = 1 then

r0 and (r106 or s54) is faulty.
end if

In a similar fashion we need to obtain fault-positions r0/s0
and s27 or r53 for MICKEY v1, r0/s0 and s43 or r85 for
MICKEY-128 and r0/s0 and s34 or r67 for MICKEY-2.0.
Clearly algorithms similar to 4 and 5 can be devised to
determine those positions of faults at those locations.

2) Obtain and Solve Equations to Determine internal R
state bits: The second phase of the attack targets obtaining
equations from the identifiable fault locations. Suppose, faults
at rk is identifiable using table I. We can form a fault trace
table for faults at location rk and running the cipher for c
cycles following the fault induction. If the fault creates a
linear (degree 1 involving rk and sk bits) fault at ∆(z) at any

cycle c′, we have one equation for solving the internal state
bits of the cipher. The only relations involved in state bits of
MICKEY-128 2.0 determinable from random single faults are
listed in table I.

Now we explore the single fault induction at different
cycles. From table I, evidently from faults at rk we find LHS
(left hand side) of the form (s54(i)+r106(i)), which can be
obtained by inducing faults at cycle (i-1) at location r0. That
is one fault at r0 (identifiable through algorithms 1 and 2) at
cycle (i-1) will give the adversary the value of,

(s54(i) + r106(i))

for all values of i. This process requires 1 fault.
Now, we make use of faults at location r106 or s54.

Following algorithm 5, we are able to induce and determine
faults at (r106 or s54). Now, from equation 7, a single bit fault
at (r106 or s54) at cycle (i− 1) yields (∆(r159(i− 1)=0),

∆(z(i)) = r0(i− 1)

This gives the attacker the exact value stored in r0 at cycle
(i− 1) by observing difference between fault-free and faulty
keystreams at cycle i. That is, r0(i) is known from this
procedure, by a single fault.

Now, let’s look at the update relation of rk given in equation
1. For k = 0, this becomes,

r0(i) = r159(i− 1)

+(s54(i− 1) + r106(i− 1))r0(i− 1)

or, r159(i− 1) = r0(i)

+(s54(i− 1) + r106(i− 1))r0(i− 1)

(9)

Since, (s54(i − 1) + r106(i − 1)) and r0(i − 1), r0(i) can be
obtained as described earlier, r159(i−1) becomes known from
above equation. It requires 2 extra faults once r0(i) is known.

For all other values of k > 0, first it can be noted that as
(s54(i− 1) + r106(i− 1)) (say, a) and r159(i− 1) are known,
(say, b),

rk(i) = (k > 0)rk−1(i− 1)

+(k ∈ RTAPS).b

+a.rk(i− 1)

or, rk−1(i− 1) = rk(i) + (k ∈ RTAPS).b

+a.rk(i− 1)

Now going backwards from r159 to r1, we see from the above
equation that as r159(i) can be obtained for all i, r158(i) can be
found out for all i (requiring 2 faults to determine r159(i−1)),
from which r157(i) can be obtained and so on till r1(i) at each
step 2 extra faults are required. Hence, the values of rest of
the register bits of R can be determined.

Again in a similar manner the above described process may
be adapted to other versions of MICKEY, requiring propor-
tionate number of faults and solution of similar equations.
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3) Number of Faults Required: The required number of
faults in order to determine values of all register bits of R is
320. The number is counted as follows. To determine r0(i) we
need a single fault at (r106(i) or s54(i)). To obtain the value of
r159(i) we need values of r0(i) and r0(i+ 1), which requires
another extra fault at (r106(i + 1) or s54(i + 1)). Through
a fault at r0(i − 1) we get value of (r106(i − 1) + s54(i −
1)). So, r159(i) becomes known for two extra faults. r158(i)
requires values of r159(i) and r159(i − 1). r159(i) is known
and obtaining r159(i−1) requires two extra faults. So, r158(i)
can be found out with two more faults. Similarly, to obtain
rk(i) we need values of r(k+1)%160(i), r(k+1)%160(i+ 1) and
r159(i). A similar argument shows that for each k and i two
extra faults are required. Table II tabulates this requirement.

Similarly, MICKEY v1 requires 160 faults, MICKEY-128
requires 256 faults and MICKEY-2.0 requires 200 faults to
determine all register bits of R. The whole process is sum-
murized for all versions of MICKEY in table II.

C. Determining S Register

In this section, we determine values of the S register
bits. Note that at this point we have known r0(i), therefore,
observing z(i), we directly obtain s0(i) = z(i)+r0(i). Hence,
values not known at this point are, s1(i), . . . , s159(i). The
update of S register is given by equation 2. It directly gives,
s0(i) = s159(i − 1) as, FB00 = 1 and FB10 = 1. Hence,
s159(i) is obtained from the value of s0(i+1), which requires
a fault at (r106(i + 1) or s54(i + 1)).

For s159, equation 2 becomes,

s159(i) = s158(i− 1) + s159(i− 1)(FB0159

+(s106(i− 1) + r53(i− 1))

(FB0159 + FB1159))

= s158(i− 1) + s159(i− 1)

(1 + (s106(i− 1) + r53(i− 1)))

As (s106(i − 1) + r53(i − 1)) is not known we are not
able to proceed further. We need to introduce faults in S
register to determine that value. We describe the process of
determining rest of the values of S register in the following
two subsections.

1) Determining Fault Location: This is a preprocessing
phase. We start by looking at the equations propagating faults
to r0 and s0. These are given by,

∆(r0(i)) = ∆(r159(i− 1) + ∆(s54).r0(i− 1)

+∆(r106(i− 1).r0(i− 1)

+(s54(i− 1) + r106(i− 1))

.∆(r0(i− 1))

∆(s0(i)) = ∆(s159(i− 1))

As, ∆(z(i)) = ∆(r0(i)) + ∆(s0(i)), ∆(z(i)) = 1 if and
only if, r159(i− 1) or s159(i− 1) is faulted (as an identity). It
can be noted that at this point we can find out, r0(i), r159(i),
s0(i) and s159(i) for all i. Hence, it can be easily found out,
which register-bit is faulted by observing these values and the

output bit z(i). That is the adversary is able to fault s159(i)
using algorithm 6. This preprocessing phase requires 160 faults
on an average.

Algorithm 6 Location-S159()
Induce single bit fault in the registers.
//z(i) is fault-free output at cycle=i.
//zf (i) is faulty output at cycle=i.
if z(1) + zf (1) = 1 then
r159(0) or s159(0) is faulty.
Check if r159(0) is faulted.
Find value of c = rf0 (1) in this faulty system,
through method described earlier.
Find value of d = r0(1) in the fault-free system,
using values known earlier of R register.
if c == d then

s159 is faulted.
end if

end if

We will not need no other locations for faults to deduce S
register-bits.

Similarly we need only know positions of faults at s79,
s127 and s99 for MICKEY v1, MICKEY-128 and MICKEY-
2.0 respectively. Algorithms similar to algorithm 6 may be
devised to this end.

The method of retrieving values of rest of the bits is
described in the following section.

2) Obtain and Solve Equations to Determine internal S
state bits: The S register-bit s159(i) is updated as,

s159(i) = s158(i− 1) + s159(i− 1)

(1 + (s106(i− 1) + r53(i− 1)))

Therefore, it follows following a bit-flip at s159 at cycle, i−1,

∆(z0(i + 1)) = ∆(s0(i + 1))

= ∆(s159(i))

= (1 + (s106(i− 1) + r53(i− 1)))

Hence, a fault at s159(i − 1) at cycle (i-1) gives the value
of (1 + (s106(i− 1) + r53(i− 1))) = ∆(z(i + 1)). Similarly,
for other versions analogous linear equations may be obtained.
Therefore, (s106(i−1)+r53(i−1)) can be found out for all i.
To sum up, at this point we are able to find s0(i), s159(i) and
(s106(i − 1) + r53(i − 1)) for all i. Hence, s158(i) is known
using one extra fault at s159(i− 1),

s158(i− 1) = s159(i) + s159(i− 1)

(1 + (s106(i− 1) + r53(i− 1)))

For other values of k, sk(i) is given in equation 2. Beginning
with k = 158 and going backwards till k = 1, we see equation
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TABLE II
FAULTS REQUIRED TO DETERMINE R REGISTER BITS

Register Required Known Unknown #Faults/
Bit Values Loc.

MICKEY-128 2.0
r0(i) - - - 1 / (r106 or s54)
r159(i) r0(i + 1), r0(i) r0(i + 1), 2/

r0(i), s54(i) + r106(i) (r106 or s54)
s54(i) + r106(i) , r0

rk(i) rk+1(i + 1), rk+1(i), rk+1(i + 1) 2
rk+1(i), r159(i), (k = 158, . . . , 1)
r159(i), s54(i) + r106(i) / r0,

s54(i) + r106(i) (r106 or s54)
MICKEY v1

r0(i) - - - 1, s27orr53
r79(i) r0(i + 1), r0(i) r0(i + 1), 2

r0(i), s27(i) + r53(i) /r0,
s27(i) + r53(i) s27 or r53

rk(i) rk+1(i + 1), rk+1(i), rk+1(i + 1) 2
rk+1(i), r79(i), (k = 78, . . . , 1)
r79(i), s27(i) + r53(i) /r0,

s27(i) + r53(i) s27 or r53
MICKEY-128

r0(i) - - - 1/s43 or r85
r127(i) r0(i + 1), r0(i) r0(i + 1), 2

r0(i), s43(i) + r85(i) /r0,
s43(i) + r85(i) s27 or r53

rk(i) rk+1(i + 1), rk+1(i), rk+1(i + 1) 2
rk+1(i), r127(i), (k = 126, . . . , 1)
r127(i), s43(i) + r85(i) /r0,

s43(i) + r85(i) s43 or r85
MICKEY 2.0

r0(i) - - - 1/s34(i) + r67(i)
r99(i) r0(i + 1), r0(i) r0(i + 1), 2

r0(i), s34(i) + r67(i) /r0,
s34(i) + r67(i) s34 or r67

rk(i) rk+1(i + 1), rk+1(i), rk+1(i + 1) 2
rk+1(i), r99(i), (k = 99, . . . , 1)
r99(i), s34(i) + r67(i) /r0,

s34(i) + r67(i) s34 or r67

2 can be rewritten as,

sk−1(i− 1) = sk(i) + [sk(i− 1)sk+1(i− 1)

+COMP0ksk+1(i− 1)

+COMP1ksk(i− 1)

+COMP0kCOMP1k]

+s159(i− 1)(FB0k

+(s106(i− 1)

+r53(i− 1))(FB0k + FB1k))

It can be noted that all values on the RHS (Right Hand Side)
of the relation can be obtained by methods described earlier in
the range (0 < k < 159) in a recursive manner, with (s106(i−
1) + r53(i − 1)) being known for all i; in a similar manner
as the R register. It follows, all the bits of S register can
be known. This process requires one extra fault to determine
sk(i) recursively.

An analogous recursive equation gives values of S registers
for MICKEY v1, MICKEY-128 and MICKEY-2.0.

3) Number of Faults Required: The total number of faults
required to get all bits of the S register is 159. s0 and s159
were known without any faults. To determine s158(i− 1) we
needed a fault in s159(i). For s157(i − 1), s158(i) needs to
be known. This requires one fault at s159(i + 1). Similarly,

for k = 156, . . . , 1, one extra fault is needed for each
k. Thus the total number of faults required comes to be,
158. Similarly, MICKEY v1 requires 80 faults, MICKEY-
128 requires 128 faults and MICKEY 2.0 requires 100 faults
approximately. Table III tabulates this requirement. This table
also summurizes the process of fault-attack on other vesrions
of MICKEY.

D. Performance

In summary, about 480 faults and 480 faulty and fault-free
keystream pairs are required to break MICKEY-128 2.0, 240
faults and that many faulty and fault-free key streams are
required for MICKEY v1, 384 faults and that many faulty
and fault-free key streams are required for MICKEY-128, 300
faults and that many faulty and fault-free key streams are
required for MICKEY-2.0. It is seen that faults are to be
induced in very few of the register-bits. This localization of
faults implies small preprocessing overhead in determining
fault locations, only algorithms 4, 5 and 6 or similar ones
need to be executed in preprocessing phase of determining
fault locations. However, faults need to be induced at a wide-
span of cycles of operation of the cipher. Hence, the adversary
will heavily use the controllability of clocking of the system.
Altogether, the system may be broken in few hours for a given
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TABLE III
FAULTS REQUIRED TO DETERMINE S REGISTER BITS

Register Required Known Unknown #Faults/
Bit Values Loc.

MICKEY-128 2.0
s0(i) - - - 0
s159(i) - - - 1/r0
s158(i) s159(i + 1), s159(i + 1), (s106(i− 1) 1

s159(i), s159(i) +r53(i− 1)) /s159
(s106(i− 1) + r53(i− 1))

sk(i) sk+2(i + 1), sk+1(i), sk+2(i + 1) 1
sk+1(i), sk(i), (k = 157, . . . , 1) /s159
sk(i), s159(i),
s159(i), (s106(i− 1) + r53(i− 1))

(s106(i− 1) + r53(i− 1))
MICKEY v1

s0(i) - - - -
s79(i) - - - 1 /r0
s78(i) s79(i + 1), s79(i + 1), (s53(i− 1) 1

s79(i), s79(i) +r27(i− 1)) /s79
(s53(i− 1) + r27(i− 1))

sk(i) sk+2(i + 1), sk+1(i), sk+2(i + 1) 1
sk+1(i), sk(i), (k = 77, . . . , 1) /s79
sk(i), s79(i),
s79(i), (s53(i− 1) + r27(i− 1))

(s53(i− 1) + r27(i− 1))
MICKEY-128

s0(i) - - - -
s127(i) - - - 1/r0
s126(i) s127(i + 1), s127(i + 1), (s85(i− 1) 1

s127(i), s127(i) +r42(i− 1)) /s127
(s85(i− 1) + r42(i− 1))

sk(i) sk+2(i + 1), sk+1(i), sk+2(i + 1) 1
sk+1(i), sk(i), (k = 125, . . . , 1) /s127
sk(i), s79(i),
s127(i), (s85(i− 1) + r42(i− 1))

(s85(i− 1) + r42(i− 1))
MICKEY 2.0

s0(i) - - - -
s99(i) - - - 1/r0
s98(i) s99(i + 1), s99(i + 1), (s67(i− 1) 1

s99(i), s99(i) +r33(i− 1)) /s99
(s85(i− 1) + r42(i− 1))

sk(i) sk+2(i + 1), sk+1(i), sk+2(i + 1) 1
sk+1(i), sk(i), (k = 97, . . . , 1) /s99
sk(i), s99(i),
s99(i), (s67(i− 1) + r33(i− 1))

(s67(i− 1) + r33(i− 1))

implementation when our analysis model is usable.
In table IV we compare known fault attacks against

MICKEY with the present work. It can be seen that present
work improves on the number of faults required against the
earlier work [20] with comparable key size, while it is much
efficient than [21] with lower state and/or key size. The paper
[21], uses random faults and not reproduction of those faults
at same location. It requires huge number of faults, 216.7 or
about 100000 faults.

V. MODEL RELAXATION

The fault model required to mount the attack on MICKEY
ciphers needs,

• Reproduction of faults at specific locations once a fault
can be created at that location.

• Fault/Bit-flip is created at exactly one register bit of the
cipher.

Although the above requirements can be implemented, we
investigate whether it can be improved further. Hence, we
proceed to relax our fault model by removing the above
assumptions, then the method can easily be implemented and
the model is at per with [21]. It will be seen that the first
requirement is extremely important for reducing complexity
of our attack, while the second requirement turns out not to
be much of an obstruction.

A. Relaxing Reproduction of Faults

We assume that faults may be created in any location of
the 320 bit register of MICKEY-128 2.0. Faults are created at
random locations. Locations of the faults are not known be-
forehand. The created faults amounts to bit-flip at the location
of the fault. We do not require the fault to be reproduced
later. In this case faults are random in the 320 positions,
with a specific location being faulted has probability 1/320.
Faults are distributed at the 320 locations with replacement
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TABLE IV
COMPARISON OF FAULT ATTACKS AGAINST MICKEY

Attack Version Fault State #Faults #Key-
Model Size stream

[20] MICKEY-128 Similar 256 640 960
[21] MICKEY 2.0 Different 200 216.7 217.7

This Work MICKEY-128 2.0 - 320 480 960
This Work MICKEY v1 - 160 240 480
This Work MICKEY-128 - 256 384 768
This Work MICKEY 2.0 - 200 300 600

and independently, meaning that a location faulted may be
faulted with same probability at any following cycle in the
fault induction process.

We have described our attack in the previous sections. In
order to perform our attack we needed faults at r0, (r106 or
s54) and s159 in 160 different cycles. If faults can not be
reproduced, let us calculate the expected number of faults
required per cycle to fault r0. Here, success probability is
p = 1/320, hence, failure probability is, q = 1 − 1/320.
The probability of success after n trials is, pqn−1. Hence, the
distribution is Geometric and the expected number of trials for
fault at r0 is, Σnpqn−1=1/p = 320. Similar is the argument
for faults at r106, s54 and s159. That is, expected number of
faults required per round is, 3 ∗ 320 = 960. Therefore, the
attack requires 160 × 960 or about 160000 faults and that
many pairs of faulty and fault-free keystreams. This number
even though large is still implementable. Also note that it is
slightly better than [21] since for MICKEY 2.0 the required
number of faults come as, 3 ∗ 200 ∗ 100 = 60000.

Clearly the number of faults required to break the system
is extremely large. It is about 1000/3 times the fault required
in the model which needed fault reproduction. It follows that
fault reproduction is very important in fault attack in terms of
complexity of the attack.

B. Relaxing Single Bit-flip

We now allow a single fault affecting multiple bits. Note
that we allow reproduction of faults in this scenario. A
straightforward calculation of expected number of faults as
described in the earlier subsection gives an estimate of number
of faults required without reproduction.

For the attack to succeed we needed to identify faults at
locations, r0, (r106 or s54) and s159. Let’s see how identifying
this positions are affected by multiple-bit faults. Ideally a fault
will affect consecutive bits of the state register of the system,
say, 16 bits. We will see how this helps in our attack in a few
lines.
• r0: If multiple bits are faulted (bit-flipped) and r0 is

among the faulted bits, we have, ∆(z0) = 1. Even if
other locations are faulted the effect does not propagate to
∆(z0). However, this is true even if s0 is faulted. In case
both r0 and s0 are faulted, ∆(z0) = 0. So, if and only if,
multiple bits are faulted and either r0 or s0 is among the
faulted bits, ∆(z0) = 1. Hence, we need to distinguish
between faults at r0 and s0. Earlier we distinguished by
related faults at r106 or s54. We see if this still works for
multiple bit faults. After a fault at r0 at cycle i− 1, the

output difference is given by,
∆(z1) = ∆(r106 + s54)
Therefore, the identity ∆(z1) = 1 is attained if and only
if location r106 or s54 is faulted. Clearly, faults at other
locations does not affect it, as ∆(z1) does not depend
on other bits. Therefore the method described earlier for
single-bit faults, applies here unchanged.

• r106 or s54: Above step depicts how to determine fault at
location r0. It also describes how to determine faults at
location r106 or s54. This follows from algorithms 4 and
5.

• s159: Following a single multi-bit fault at the internal
state, the output difference, ∆(z1) = ∆(s159) = 1 if and
only if s159 or r159 is faulted. Again due to independence
of other variables fault at this location can be determined
by the method described earlier(algorithm 6). Multiple bit
faults does not affect the algorithm as well.

The fault locations being identified, during determination
of state bits, same method as before applies with certain
restrictions.

• When r0 and other locations are faulted, (r106 and s54)
should not be faulted. As following equation 4, if only
r0 (with other bits) and not (r106 and s54) is faulted
we in a straightforward manner get the value of (r106
+ s54). From equation 4 it also becomes evident that
rk and rk−1 should not be faulted while determining
value of rk−1. Hence, we require algorithm to determine
if rk is faulted. The algorithm for distinguishing these
locations is simple. The register bits form R, which
affects the output bit z are, r53 and r106. Hence, a
fault from rk to any of those two bits when propagated
should give a different in value faulty keystream. So, let
m = minpositive{53 − k, 106 − k, 160 − k}, where
minpositive is the minimum positive value among set
elements. Then after m cycle of operation following fault
induction there should be faulty keystream. However, for
a large number of different IVs it will show a difference
with very high probability for faults at rk. Therefore this
process will require resetting the device applying different
IV and reproducing the faults. We use this method to
determine fault locations rk. Note that it is still possible
that rk is not faulted even if mth cycle shows a different
faulty keystream. But if there is a fault at rk in i th cycle
there will be a difference in m th cycle. The process is
described in algorithm 7.

• When r106 or s54 are faulted (and not both, among other
faults), r0 and r159 should not be faulted. Then form
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Algorithm 7 Location-Rk()
Induce single multiple bit fault in the registers.
m = minpositive{53− k, 106− k}.
//z(i) is fault-free output at cycle=i.
//zf (i) is faulty output at cycle=i.
if z(m) + zf (m) = 1 then
rk or sk is faulty.

end if
Try this condition for large number of times.

equation 4 again we get the value of rk(i − 1). Even if
r159 is faulted we get an affine equation. From equation
4 it also becomes evident that rk and rk−1 should not be
faulted while determining value of rk−1.

• When s159 is faulted (among other bits), s106 and r53
should not be faulted. As from equation 5, the dependence
shows that this gives us the value of (s106 + r53). From
equation 5 it becomes evident that sk−1, sk and sk+1

should not be faulted, while determining value of sk−1.
Hence, we need to determine faults at those locations by
some algorithm. A similar algorithm as 7 can be devised
for this purpose.

Note that r0, r106, s54 and s159 being non-consecutive up to
16 bits, it is not hard to assume the exclusiveness of faults
while for others the process is easy to test. Note that we don’t
need the exact values of faulty keystreams when there is fault
at rk or sk. Thus the procedures described above applies.

Therefore multiple bits does not affect our algorithms.
Hence, total number of multi-bit faults required to determine
the full internal state of MICKEY-128 2.0 remains 480.
However there is an overhead of multiple resetting and IV-ing
of the device. This is clearly an advantage on much relaxed
fault model. Clearly, other ciphers of MICKEY family adapts
to this relaxation. It follows that the design of MICKEY
ciphers is very vulnerable to multi-bit fault attack. The reason
is that very few register bits are involved in faults and their
exploitation only gives equations to determine internal state.

VI. CONCLUSION

In this paper, we have performed a fault analysis of the
MICKEY family of stream ciphers. The attack can be mounted
practically with small number of faults. Finally, this paper
gives a demonstration of the process of analyzing ciphers
through related faults, which can possibly be used against other
stream/block ciphers to simplify or mount fault attacks.
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APPENDIX

In the appendix we describe the CLOCK R and CLOCK S
algorithms for different versions of the MICKEY cipher.
• MICKEY v1: The CLOCK R and CLOCK S algorithms

are described in algorithms, algorithm 8, algorithm 9.
• MICKEY 2.0: The CLOCK R and CLOCK S algorithms

are described in algorithms, algorithm 10, algorithm 11.
• MICKEY-128: The CLOCK R and CLOCK S algo-

rithms are described in algorithms, algorithm 12, algo-
rithm 13.

• MICKEY-128 2.0: The CLOCK R and CLOCK S algo-
rithms are described in algorithms, algorithm 14, algo-
rithm 15.

FB0i, FB1i, COMP0i, COMP1i, RTAPS are constant
Boolean values, the exact values of these constants for differ-
ent i can be found in [5] (MICKEY v1), [6] (MICKEY 2.0),
[7] (MICKEY-128) and [19](MICKEY-128 2.0).
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Algorithm 8 CLOCK R(INPUT BIT R, CON-
TROL BIT R)

Let, r0, . . . , r79 denote states of R register.
FEEDBACK BIT = r79 + INPUT BIT R.
//FEEDBACK BIT = r79 during key generation.
for (i = 1 to 79) do

r′i = ri−1
//r′i = (i > 0)ri−1

end for
r′0 = 0.
for (i=0 to 79) do

if (i ∈ RTAPS) then
r′i = r′i + FEEDBACK BIT
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r79

end if
end for
for (i=0 to 79) do

if (CONTROL BIT R == 1) then
r′i = r′i + ri
//CONTROL BIT R=s27 + r53
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r79 + (s27 +
r53).ri

end if
end for
r′0, . . . , r

′
79 represents updated R register.

Algorithm 9 CLOCK S(INPUT BIT S, CONTROL BIT S)
Let, s0, . . . , s79 denote states of S register.
FEEDBACK BIT = s79 + INPUT BIT S.
//FEEDBACK BIT = s79 during key generation.
for (i = 1 to 78) do
s′i = si−1 + ((si + COMP0i)(si+1 + COMP1i))

end for
s′0 = 0.
s′79 = s78.
//s′i = (i > 0)si−1 + (0 < i < 79)((si +
COMP0i)(si+1 + COMP1i))
for (i=0 to 79) do

if (CONTROL BIT S == 1) then
//CONTROL BIT S=s53 + r26 during key genera-
tion.
s′′i = s′i + (FB0i.FEEDBACK BIT )

else
s′′i = s′i + (FB1i.FEEDBACK BIT )

end if
end for
//s′′i = (i > 0)si−1 + (0 < i < 79)((si +
COMP0i)(si+1 + COMP1i))
//+(s53 + r26 + 1).FB0i.s79 + (s53 + r26).FB1i.s79
s′′0 , . . . , s

′′
79 represents updated S register.

Algorithm 10 CLOCK R(INPUT BIT R, CON-
TROL BIT R)

Let, r0, . . . , r99 denote states of R register.
FEEDBACK BIT = r99 + INPUT BIT R.
//FEEDBACK BIT = r99 during key generation.
for (i = 1 to 99) do
r′i = ri−1
//r′i = (i > 0)ri−1

end for
r′0 = 0.
for (i=0 to 99) do

if (i ∈ RTAPS) then
r′i = r′i + FEEDBACK BIT
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r99

end if
end for
for (i=0 to 99) do

if (CONTROL BIT R == 1) then
r′i = r′i + ri
//CONTROL BIT R=s34 + r67
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r99 + (s34 +
r67).ri

end if
end for
r′0, . . . , r

′
99 represents updated R register.

Algorithm 11 CLOCK S(INPUT BIT S, CON-
TROL BIT S)

Let, s0, . . . , s99 denote states of S register.
FEEDBACK BIT = s99 + INPUT BIT S.
//FEEDBACK BIT = s99 during key generation.
for (i = 1 to 98) do
s′i = si−1 + ((si + COMP0i)(si+1 + COMP1i))

end for
s′0 = 0.
s′99 = s98.
//s′i = (i > 0)si−1 + (0 < i < 99)((si +
COMP0i)(si+1 + COMP1i))
for (i=0 to 99) do

if (CONTROL BIT S == 1) then
//CONTROL BIT S=s67 + r33 during key genera-
tion.
s′′i = s′i + (FB0i.FEEDBACK BIT )

else
s′′i = s′i + (FB1i.FEEDBACK BIT )

end if
end for
//s′′i = (i > 0)si−1 + (0 < i < 99)((si +
COMP0i)(si+1 + COMP1i))
//+(s67 + r33 + 1).FB0i.s127 + (s67 + r33).FB1i.s127
s′′0 , . . . , s

′′
99 represents updated S register.
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Algorithm 12 CLOCK R(INPUT BIT R, CON-
TROL BIT R)

Let, r0, . . . , r127 denote states of R register.
FEEDBACK BIT = r127 + INPUT BIT R.
//FEEDBACK BIT = r127 during key generation.
for (i = 1 to 127) do
r′i = ri−1
//r′i = (i > 0)ri−1

end for
r′0 = 0.
for (i=0 to 127) do

if (i ∈ RTAPS) then
r′i = r′i + FEEDBACK BIT
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r79

end if
end for
for (i=0 to 127) do

if (CONTROL BIT R == 1) then
r′i = r′i + ri
//CONTROL BIT R=s43 + r85
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r127 + (s43 +
r85).ri

end if
end for
r′0, . . . , r

′
127 represents updated R register.

Algorithm 13 CLOCK S(INPUT BIT S, CON-
TROL BIT S)

Let, s0, . . . , s127 denote states of S register.
FEEDBACK BIT = s127 + INPUT BIT S.
//FEEDBACK BIT = s127 during key generation.
for (i = 1 to 126) do
s′i = si−1 + ((si + COMP0i)(si+1 + COMP1i))

end for
s′0 = 0.
s′127 = s126.
//s′i = (i > 0)si−1 + (0 < i < 127)((si +
COMP0i)(si+1 + COMP1i))
for (i=0 to 127) do

if (CONTROL BIT S == 1) then
//CONTROL BIT S=s85 + r42 during key genera-
tion.
s′′i = s′i + (FB0i.FEEDBACK BIT )

else
s′′i = s′i + (FB1i.FEEDBACK BIT )

end if
end for
//s′′i = (i > 0)si−1 + (0 < i < 127)((si +
COMP0i)(si+1 + COMP1i))
//+(s85 + r42 + 1).FB0i.s127 + (s85 + r42).FB1i.s127
s′′0 , . . . , s

′′
127 represents updated S register.

Algorithm 14 CLOCK R(INPUT BIT R, CON-
TROL BIT R)

Let, r0, . . . , r159 denote states of R register.
FEEDBACK BIT = r159 + INPUT BIT R.
//FEEDBACK BIT = r159 during key generation.
for (i = 1 to 159) do
r′i = ri−1
//r′i = (i > 0)ri−1

end for
r′0 = 0.
for (i=0 to 159) do

if (i ∈ RTAPS) then
r′i = r′i + FEEDBACK BIT
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r159

end if
end for
for (i=0 to 159) do

if (CONTROL BIT R == 1) then
r′i = r′i + ri
//CONTROL BIT R=s54 + r106
//r′i = (i > 0)ri−1 + (i ∈ RTAPS).r159 + (s54 +
r106).ri

end if
end for
r′0, . . . , r

′
159 represents updated R register.

Algorithm 15 CLOCK S(INPUT BIT S, CON-
TROL BIT S)

Let, s0, . . . , s159 denote states of S register.
FEEDBACK BIT = s159 + INPUT BIT S.
//FEEDBACK BIT = s159 during key generation.
for (i = 1 to 158) do
s′i = si−1 + ((si + COMP0i)(si+1 + COMP1i))

end for
s′0 = 0.
s′159 = s158.
//s′i = (i > 0)si−1 + (0 < i < 159)((si +
COMP0i)(si+1 + COMP1i))
for (i=0 to 159) do

if (CONTROL BIT S == 1) then
//CONTROL BIT S=s106 + r53 during key genera-
tion.
s′′i = s′i + (FB0i.FEEDBACK BIT )

else
s′′i = s′i + (FB1i.FEEDBACK BIT )

end if
end for
//s′′i = (i > 0)si−1 + (0 < i < 159)((si +
COMP0i)(si+1 + COMP1i))
//+(s106 + r53 + 1).FB0i.s159 + (s106 + r53).FB1i.s159
s′′0 , . . . , s

′′
159 represents updated S register.


