
Continuous After-the-fact Leakage-Resilient Key

Exchange

(full version)

Janaka Alawatugoda1 Colin Boyd3 Douglas Stebila1,2

1 School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
2 Mathematical Sciences School, Queensland University of Technology, Brisbane, Australia

janaka.alawatugoda@qut.edu.au, stebila@qut.edu.au
3 Department of Telematics, Norwegian University of Science and Technology, Trondheim, Norway

colin.boyd@item.ntnu.no

Abstract

Security models for two-party authenticated key exchange (AKE) protocols have developed over time
to provide security even when the adversary learns certain secret keys. In this work, we advance the
modelling of AKE protocols by considering more granular, continuous leakage of long-term secrets of
protocol participants: the adversary can adaptively request arbitrary leakage of long-term secrets even
after the test session is activated, with limits on the amount of leakage per query but no bounds on the
total leakage. We present a security model supporting continuous leakage even when the adversary learns
certain ephemeral secrets or session keys, and give a generic construction of a two-pass leakage-resilient
key exchange protocol that is secure in the model; our protocol achieves continuous, after-the-fact leakage
resilience with not much more cost than a previous protocol with only bounded, non-after-the-fact leakage.

Keywords: leakage resilience, key exchange, continuous leakage, after-the-fact, security models

This is the full version of a paper published in the Proceedings of the 19th Australasian Conference on Information Security
and Privacy (ACISP 2014) [2], in Wollongong, Australia, July 7-9, 2014, organized by the University of Wollongong, Australia.

1

mailto:janaka.alawatugoda@qut.edu.au
mailto:stebila@qut.edu.au
mailto:colin.boyd@item.ntnu.no

Contents

1 Introduction 3
1.1 Leakage Models . 3
1.2 Our Contribution . 5

2 Background 6
2.1 CCLA2-Secure Public-Key Cryptosystems . 6
2.2 Key Derivation Functions . 6
2.3 Decision Diffie-Hellman Problem . 7

3 Continuous After-the-fact Leakage Model 7
3.1 Protocol Execution . 7
3.2 Modelling Leakage . 8
3.3 Defining Security . 9
3.4 Practical Interpretation of Security of CAFL Model. 11

4 Protocol π 11

5 Conclusion and Future Work 12

A Security Proof 14

2

1 Introduction

In order to capture leakage (side-channel) attacks, the notion of leakage resilience has been de-
veloped. Examples of information considered by leakage or side-channel attacks includes timing
information [6, 10, 19], electromagnetic radiation [16], and power consumption information [23].
Leakage may reveal information about the secret parameters which have been used for computa-
tions in cryptosystems. To abstractly model leakage attacks, cryptographers have proposed the
notion of leakage-resilient cryptography [1, 4, 9, 13, 14, 18, 17, 22], where the information that
leaks is not fixed, but instead chosen adversarially. As authenticated key exchange is one of the
most important cryptographic primitives in practice, it is important to construct key exchange
protocols in a leakage-resilient manner.

Earlier key exchange security models, such as the Bellare–Rogaway [5], Canetti–Krawczyk [11],
and extended Canetti–Krawczyk (eCK) [21] models, aim to capture security against an adversary
who can fully compromise some, but not all secret keys. For example, in the eCK model, a session
key should be secure even if the adversary has compromised either the long-term or ephemeral key
at the client, and either the long-term or ephemeral key at the server, but not all of the values at
one party. This is not a very granular form of leakage, and thus is not fully suitable for modelling
side-channel attacks.

This motivates the development of leakage-resilient key exchange security models and protocols.
Moriyama and Okamoto [25] and Alawatugoda, Stebila and Boyd [3] proposed key exchange secu-
rity models to analyze security of leakage-resilient key exchange protocols, using a variant of the
eCK model. There are two central limitations in the Moriyama–Okamoto model. First, the total
amount of leakage allowed in the Moriyama–Okamoto model is bounded. Second, the adversary
cannot obtain any leakage information after the “test” session is activated. The former restriction
is troublesome because, in practice, ongoing executions of a protocol may reveal a small amount
of leakage each time, and we would like to provide security against this “continuous” leakage. The
latter restriction is problematic because we would like to provide security of one session, even if
some leakage happens in subsequent sessions. Alawatugoda et al. [3] overcome the limitations of
the Moriyama-Okamoto model by proposing a generic key exchange security model (ASB model),
which can be instantiated using either continuous leakage model or bounded leakage, both instan-
tiations allowing leakage after the “test” session is activated. Moreover, they proposed a generic
construction of a protocol which can be proven secure in their generic model. However, concrete
construction of their generic protocol with available cryptographic primitives can only be proven
in the ASB bounded leakage model, because currently there exist no continuous leakage-resilient
public-key cryptosystems. In this paper, we aim to propose a generic protocol which provides
leakage resilience against continuous leakage, even after the “test” session is activated. In order
to prove the security of our protocol, we use a slightly weakened variant of the ASB continuous
leakage security model.

We now review few different approaches to modelling leakage. These leakage models generally
allow the adversary to adaptively choose the leakage function that is evaluated against the long-
term secret. The early leakage models generally did not allow leakage after a challenge had been
issued, thus prevents the adversary from using subsequent calls to the leakage function to trivially
solve the challenge. More recently, after-the-fact leakage schemes have been proposed to remove
that restriction. We will review these schemes, then describe our contributions.

1.1 Leakage Models

In this section we review few leakage models, which have been widely used to define leakage-resilient
security of cryptographic schemes.

Inspired by “cold boot” attacks, Akavia et al. [1] constructed a general framework to model
memory attacks for public-key cryptosystems. With the knowledge of the public-key, the adversary
can choose an efficiently computable arbitrary leakage function, f , and send it to the leakage oracle.
The leakage oracle gives f(sk) to the adversary where sk is the secret key. The only restriction
here is that the sum of output length of all the leakage functions that an adversary can obtain is

3

bounded by some parameter λ which is smaller than the size of sk. This model is widely known
as bounded leakage model.

In the work of Micali et al. [24], a general framework was introduced to model the leakage that
occurs during computation with secret parameters. This framework relies on the assumption that
only computation leaks information and that leakage only occurs from the secret memory portions
which are actively involved in a computation. The adversary is allowed to obtain leakage from
many computations. Therefore, the overall leakage amount is unbounded and in particular it can
be larger than the size of the secret key.

Brakerski et al. [9] proposed a leakage model in which it is not assumed that the information
is only leaked from the secret memory portions involved in computations. Instead it is assumed
that leakage happens from the entire secret memory, but the amount of leakage is bounded per
occurrence. In this model, number of leakage occurrences are allowed continuously. Therefore,
the overall leakage amount is arbitrarily large. This model is widely known as continuous leakage
model.

The above leakage models generally address the leakage which happens before the challenge is
given to the adversary. In security experiments for public-key cryptosystems, the challenge is to
distinguish the real plaintext corresponding to a particular ciphertext from a random plaintext,
whereas in key exchange security models, the challenge is to identify the real session key of a chosen
session from a random session key.

After-the-fact Leakage.

Leakage which happens after the challenge is given to the adversary can be considered as after-the-
fact leakage. In leakage models for public-key cryptosystems, after-the-fact leakage is the leakage
which happens after the challenge ciphertext is given whereas in leakage security models for key
exchange protocols, after-the-fact leakage is the leakage which happens after the test session is
activated.

For leakage-resilient public-key encryption there are three properties which may be important
differentiators for the different models. One is whether the model allows access to decryption of
chosen ciphertexts before (CCA1) or after (CCA2) the challenge is known. The second is whether
the leakage allowed to the adversary is continuous or bounded. The third is whether the leakage is
allowed only before the challenge ciphertext is known or also after the fact.

In earlier models, such as that of Naor et al. [26], it was expected that although the adversary
is given access to the decryption oracle (CCA2), the adversary cannot be allowed to obtain leakage
after the challenge ciphertext is given. This is because the adversary can encode the decryption
algorithm and challenge ciphertext with the leakage function and by revealing a few bits of the
decrypted value of the challenge ciphertext trivially win the challenge. Subsequently, Halevi et al.
[15] introduced chosen plaintext after-the-fact leakage-resilient security on public-key cryptosys-
tems. In their security experiment, the adversary is not allowed to access the decryption oracle.
Further, the total leakage amount is also bounded.

Dziembowski et al. [12] defined an adaptively chosen ciphertext attack (CCA2) security ex-
periment in which the adversary is allowed to obtain leakage information even after the challenge
ciphertext is given. Their security experiment defines adaptively chosen ciphertext after-the-fact
leakage (CCLA2) which can be considered as the strongest security notion of public-key cryptosys-
tems; it allows the adversary adaptive access to the decryption oracle and leakage information even
after the challenge ciphertext is given. Furthermore, they allow continuous leakage so the total
leakage amount is unbounded. This is achieved by keeping the secret key in a split state, an idea
earlier introduced by Kiltz et al. [18], using the reasonable assumption that leakage occurs only
when computation takes place, leakage is only bounded per invocation of the secret key while the
state is updated after each invocation.

Recall that in key exchange security models, the challenge to the adversary is to distinguish
the real session key of a chosen session from a random session key. In the Moriyama–Okamoto [25]
key exchange security model, the adversary is not allowed to obtain leakage after the test session

4

Security model SessionKey EphemeralKey Corrupt Combinations Leakage resilience

eCK [21] Yes Yes Yes 4/4 None
MO [25] Yes Yes Yes 4/4 Bounded, not after-the-fact
ASB [3] Yes Yes Yes 4/4 Bounded/Continuous, after-the-fact
CAFL (this paper) Yes Yes Yes 2/4 Continuous, after-the-fact

Table 1: Key exchange security models with reveal queries and leakage allowed

Protocol Initiator cost Responder cost Security model Proof model

NAXOS [21] 4 Exp 4 Exp eCK Random oracle
MO [25] 8 Exp 8 Exp MO Standard
ASB [3] 12 Exp 12 Exp ASB (Bounded) Standard
π instantiation 10 Exp 10 Exp CAFL Standard

Table 2: Security and efficiency comparison of key exchange protocols

is activated, whereas in the ASB model, the adversary is allowed to obtain leakage even after the
test session is activated.

In the literature there are no key exchange protocols available that are secure against continuous
leakage after the test session is activated. Alawatugoda et al. [3] proposed a generic construction
of a key exchange protocol which provides security against leakage after the test session is acti-
vated, but when instantiated with available cryptographic primitives it does not provide continuous
leakage resilience.

1.2 Our Contribution

Alawatugoda et al. [3] mentioned that constructing a continuous after-the-fact leakage-resilient
key exchange protocol in the ASB continuous leakage model is an open problem. In this paper, we
aim to construct a continuous after-the-fact leakage-resilient key exchange protocol using existing
leakage-resilient cryptographic primitives. In order to prove the security of our protocol, we use
a weaker variant of the generic ASB model’s continuous leakage instantiation. The meaning of
“weaker” is defined by means of the freshness condition. While weakening a model is generally
undesirable, introducing the restrictions allow us to actually achieve the security definition, whereas
no instantiation of the ASB continuous leakage-resilient key exchange protocol is known. Thus, we
begin by presenting the continuous after-the-fact leakage model (CAFL model).

Table 1 summarizes the adversarial powers of CAFL model in comparison with the adversarial
powers of CK model [11], eCK model [21] and Moriyama–Okamoto (MO) model [25] and the generic
Alawatugoda–Stebila–Boyd (ASB) [3] model. There are four Corrupt–EphemeralKeyReveal query
combinations which do not trivially expose the session key. In the column “Combinations” of Table
1, we mention how many of them are allowed in the corresponding security model. We discuss
more about query combinations in detail in Section 3.3.

We then construct a generic protocol π which can be proven secure in this model; the protocol
is a “key agreement”-style protocol, and it relies on a public-key cryptosystem that is secure
against adaptively chosen ciphertext attacks with after-the-fact leakage-resilience (abbreviated as
CCLA2). In Table 2, we compare an instantiation of the proposed generic protocol π, with the
NAXOS protocol [21], the Moriyama-Okamoto (MO) protocol [25] and the generic ASB protocol
instantiation, by means of computation cost, security model and the proof model. The protocol π
is instantiated using the CCLA2-secure public-key cryptosystem of Dziembowski et al. [12].

Table 2 shows that the instantiation of protocol π provides significant leakage resilience proper-
ties for practically achievable computation costs, and thus π is a viable framework for construction
of CAFL-secure protocols. The generic protocol π can be instantiated with any CCLA2-secure
public-key cryptosystem. Our proof shows that protocol π can achieve the same leakage tolerance

5

as the underlying public-key cryptosystem tolerates. Moreover, protocol π can be instantiated with
smaller computational cost by using cost effective CCLA2-secure public-key encryption schemes.

2 Background

In this section we review the formal definitions of the tools we will use to construct our protocol.

2.1 CCLA2-Secure Public-Key Cryptosystems

Dziembowski et al. [12] constructed an adaptively chosen ciphertext after-the-fact leakage-resilient
public-key cryptosystem which is secure against continuous leakage.

Definition 2.1 (Security Against Adaptively Chosen Ciphertext After-the-fact Leakage Attacks
(CCLA2)). Let k ∈ N be the security parameter. A public-key cryptosystem PKE = (KG,Enc,Dec)
is λ-CCLA2 secure if for any probabilistic polynomial time adversary D, the advantage of winning
the following distinguishing game is negligible.

1. (sk, pk)← KG(1k).

2. (m0,m1, state) ← DLeak(.),Dec(sk,.)(pk)
such that |m0| = |m1|

3. b← {0, 1}

4. C ← Enc(pk,mb)

5. b′ ← DLeak(.),Dec 6=C(sk,.)(C, state)

6. Output b′. D wins if b′ = b.

Decryption Oracle
Dec(sk, c)→ (sk′,m) where m is the correspond-
ing plaintext of the ciphertext c.
Update the secret state sk to sk′.
Leakage Oracle
For any adversary chosen efficiently computable
leakage function f , Leak(f) → f(sk) whenever
|f(sk)| ≤ λ. The Leakage Oracle is called
whenever the Decryption Oracle is called.

In the Dziembowski et al. [12] public-key cryptosystem, the secret key sk = (x1, x2) ∈ Z2
p is

split into two parts `sk, rsk such that `sk ← Z
n at random and rsk ← Z

n×2 holding `sk · rsk = sk,
where n is the statistical security parameter. They proved their public-key cryptosystem is CCLA2
secure for λ = 0.15 · n · log p − 1. So if we consider n = 80 and log p to be 1024, we can allow
λ = 12276 bits of leakage. Considering only the most expensive computations, the computation
cost of Enc and Dec is 5Exp where Exp is the computational cost of an exponentiation.

2.2 Key Derivation Functions

We review the definitions of key derivation functions proposed by Krawczyk [20]. Secure and
efficient key derivation functions are available in the literature, for example based on HMAC [20].

Definition 2.2 (Key Derivation Function). A key derivation function KDF is an efficient algorithm
that accepts as input four arguments: a value σ sampled from a source of keying material Σ, a
length value k and two additional arguments, a salt value r defined over a set of possible salt values
and a context variable c, both of which are optional i.e., can be set to a null. The KDF output is
a string of k bits.

Definition 2.3 (Source of Key Material). A source of keying material Σ is a two-valued (σ, κ)
probability distribution generated by an efficient probabilistic algorithm, where σ is the secret
source key material to be input to the KDF and κ is some public knowledge about σ or its
distribution.

Definition 2.4 (Security of key derivation function w.r.t a source of key material). A key derivation
function KDF is said to be secure with respect to a source of key material Σ if no feasible attacker
B can win the following distinguishing game with probability significantly better than 1/2:

6

1. (σ, κ)← Σ. (Both the probability distribution as well as the generating algorithm have been
referred by Σ)

2. A salt value r is chosen at random from the set of possible salt values defined by KDF (r may
be set to a constant or a null value if so defined by KDF).

3. The attacker B is provided with κ and r.

4. B chooses arbitrary value k and c.

5. A bit b ← {0, 1} is chosen at random. If b = 0, attacker B is provided with the output of
KDF(σ, r, k, c) else B is given a random string of k bits.

6. B outputs a bit b′ ← {0, 1}. B wins if b′ = b.

2.3 Decision Diffie-Hellman Problem

The decision Diffie-Hellman (DDH) problem is a computational hardness assumption based on
discrete logarithms in a cyclic group [7]. Consider a cyclic group G of order q, with a generator g.
For a, b, c ∈ Zp, the DDH problem is to distinguish the triple (ga, gb, gab) from the triple (ga, gb, gc).

3 Continuous After-the-fact Leakage Model

A key agreement protocol is an interactive protocol executed between two parties to establish a
shared secret key. In this section we introduce the continuous after-the-fact leakage model, (CAFL
model), for key exchange. In the CAFL model, the adversary is allowed to adaptively obtain partial
leakage on the long-term secret keys even after the test session is activated, as well as reveal session
keys, long-term keys, and ephemeral keys.

3.1 Protocol Execution

Parties and Long-term Keys.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui where i ∈ [1, NP] has a pair of

long-term public and secret keys, (pkUi , skUi).

Sessions.

Each party may run multiple instances of the protocol concurrently or sequentially; we use the term
principal to refer a party involved in a protocol instance, and the term session to identify a protocol
instance at a principal. The notation Πs

U,V represents the sth session at the owner principal U , with
intended partner principal V . The principal which sends the first protocol message of a session is
the initiator of the session, and the principal which responds to the first protocol message is the
responder of the session. A session Πs

U,V enters an accepted state when it computes a session key.
Note that a session may terminate without ever entering into the accepted state. The information
of whether a session has terminated with or without acceptance is public.

Adversary Interaction.

The adversary (a probabilistic algorithm) controls all interaction and communication between
parties. In particular, the adversary initiates sessions at parties and delivers protocol messages;
it can create, change, delete, or reorder messages. The adversary can also compromise certain
short-term and long-term secrets. Notably, whenever the party performs an operation using its
long-term key, the adversary obtains some leakage information about the long-term key.

The following query allows the adversary A to run the protocol, modelling normal communica-
tion.

7

• Send(U, V, s,m, f) query: The oracle Πs
U,V , computes the next protocol message according

to the protocol specification on receipt of m, and sends it to the adversary A, along with
the leakage f(skU) as described in Section 3.2. A can also use this query to activate a new
protocol instance as an initiator with blank m and f .

The following queries allow the adversary A to compromise certain session specific ephemeral
secrets and long-term secrets from the protocol principals.

• SessionKeyReveal(U, V, s) query: A is given the session key of the oracle Πs
U,V , if the oracle

Πs
U,V is in the accepted state.

• EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys of the oracle Πs
U,V .

• Corrupt(U) query: A is given the long-term secrets of the principal U . This query does not
reveal any session keys or ephemeral keys to A.

3.2 Modelling Leakage

In this key exchange security model we consider continuous leakage of the long-term secret keys
of protocol principals, because long-term secret keys are not one-time secrets, but they last for
multiple protocol sessions. Leakage of long-term secret key from one session affects to the security
of another session which uses the same long-term secret key. Considering side-channel attacks
which can be mounted against key exchange protocols, the most realistic way to obtain the leakage
information of long-term secret keys is from the protocol computations which use long-term secret
keys. Hence, following the premise “only computation leaks information” [24], we have modeled
the leakage to occur where computation takes place using secret keys. By issuing a Send query,
the adversary will get a protocol message which is computed according to the normal protocol
computations. Therefore, the instance of a Send query would be the appropriate instance to
address the leakage occurs due to a computation which uses a long-term secret key. Thus, sending
an adversary-chosen leakage function, f , with the Send query would reflect the premise “only
computation leaks information”.

Further, we assume that the amount of leakage of a secret key is bounded by a leakage pa-
rameter λ, per computation. The adversary is allowed to obtain leakage from many computations
continuously. Hence, the overall leakage amount is unbounded.

Remark 1 (Corrupt query vs Leakage queries). By issuing a Corrupt query, the adversary gets the
party’s entire long-term secret key. Separately, by issuing leakage queries (using leakage function
f embedded with the Send query) the adversary gets λ-bounded amount of leakage information
about the long-term secret key. It may seem paradoxical to consider Corrupt and Leakage queries
at the same time. But there are good reasons to consider both.

• A non-leakage version of CAFL model (Send query without f) addresses KCI attacks, because
the adversary is allowed to corrupt the owner of the test session before the activation of the
test session. In the CAFL model, we allow the adversary to obtain leakage from the partner
of the test session, in addition to allowing the adversary to corrupt the owner of the test
session.

• A non-leakage version of CAFL model (Send query without f) addresses partial weak forward
secrecy, because the adversary is allowed to corrupt either of the protocol principals, but not
both, after the test session is activated. In the CAFL model, we allow the adversary to obtain
leakage from the uncorrupted principal, in addition to allowing the adversary to corrupt one
of the protocol principals.

Hence, the CAFL model allows the adversary to obtain more information than a non-leakage
version of CAFL model.

8

3.3 Defining Security

In this section we give formal definitions for partner sessions, freshness of a session and security in
the CAFL model.

Definition 3.1 (Partner sessions in CAFL model). Two oracles Πs
U,V and Πs′

U ′,V ′ are said to be
partners if:

1. Πs
U,V and Πs′

U ′,V ′ have computed session keys and

2. Sent messages from Πs
U,V = Received messages to Πs′

U ′,V ′ and

3. Sent messages from Πs′

U ′,V ′ = Received messages to Πs
U,V and

4. U ′ = V and V ′ = U and

5. If U is the initiator then V is the responder, or vise versa.

A protocol is said to be correct if two partner oracles compute identical session keys in the
presence of a passive adversary. Once the oracle Πs

U,V has accepted a session key, asking the
following query the adversary A attempt to distinguish it from a random session key. The Test
query is used to formalize the notion of the semantic security of a key exchange protocol.

• Test(U, V, s) query: When A asks the Test query, the oracle Πs
U,V first chooses a random

bit b← {0, 1} and if b = 1 then the actual session key is returned to A, otherwise a random
string chosen from the same session key space is returned to A. This query is only allowed
to be asked once across all sessions.

We now define what it means for a session to be λ-CAFL-fresh in the CAFL model.

Definition 3.2 (λ-CAFL-freshness). Let λ be the leakage bound per occurrence. An oracle Πs
U,V

is said to be λ-CAFL-fresh if and only if:

1. The oracle Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a SessionKeyReveal.

2. If the partner Πs′

V,U exists, none of the following combinations have been asked:

(a) Corrupt(U) and Corrupt(V).

(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

(c) Corrupt(V) and EphemeralKeyReveal(V,U, s′).

(d) EphemeralKeyReveal(U, V, s) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′

V,U does not exist, none of the following combinations have been asked:

(a) Corrupt(V).

(b) EphemeralKeyReveal(U, V, s).

4. For each Send(·, U, ·, ·, f) query, the output of f is at most λ bits.

5. For each Send(·, V, ·, ·, f) query, the output of f is at most λ bits.

When the adversary asks EphemeralKeyReveal and Corrupt queries, there are two Corrupt–
EphemeralKeyReveal query combinations which trivially expose the session key of an oracle, in a
scenario that a partner to that particular oracle exists.

1. Corrupt(U) and EphemeralKeyReveal(U, V, s).

2. Corrupt(V) and EphemeralKeyReveal(V,U, s′).

9

As in the other models we have compared with [21, 25, 3] we do not allow above combinations in the

freshness condition, as they trivially expose the session key of oracles Πs
U,V and Πs′

V,U . Differently,
in the other models we have compared with, there are four Corrupt–EphemeralKeyReveal query
combinations which do not trivially expose the session key an oracle, in a scenario that a partner
to that particular oracle exists.

1. Corrupt(U) and Corrupt(V).

2. Corrupt(U) and EphemeralKeyReveal(V,U, s).

3. Corrupt(V) and EphemeralKeyReveal(U, V, s′).

4. EphemeralKeyReveal(V,U, s) and EphemeralKeyReveal(U, V, s′).

All the models we consider [21, 25, 3] allow above combinations in the freshness condition, whereas
our CAFL model does not allow the query combinations 1 and 4 in the freshness condition.

When the adversary asks EphemeralKeyReveal and Corrupt queries, there are two query com-
binations which trivially expose the session key of an oracle, in a scenario that a partner to that
particular oracle does not exist.

1. Corrupt(V).

2. Corrupt(U) and EphemeralKeyReveal(U, V, s).

As in the other models we have compared with [21, 25, 3] we do not allow above combinations

in the freshness condition, as they trivially expose the session key of oracles Πs
U,V and Πs′

V,U .
Weakening that condition, our model does not allow following two query combinations in the
freshness condition, when a partner to the test session does not exist.

1. Corrupt(V).

2. EphemeralKeyReveal(U, V, s). (instead of Corrupt(U) and EphemeralKeyReveal(U, V, s) as
in other models)

Therefore, as mentioned under two scenarios: partner to the test session exists and does not
exist, CAFL model is weaker than the ASB continuous leakage model.

Security of a key exchange protocol in the CAFL model is defined using the following secu-
rity game, which is played by a probabilistic polynomial time adversary A against the protocol
challenger.

• Stage 1: A may ask any of Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt
queries to any oracle at will.

• Stage 2: A chooses a λ-CAFL-fresh oracle and asks a Test query.

• Stage 3: Amay continue asking Send, SessionKeyReveal, EphemeralKeyReveal and Corrupt
queries. A may not ask a query that violates the λ-CAFL-freshness of the test session.

• Stage 4: Eventually, A outputs the bit b′ ← {0, 1} which is its guess of the value b on the
test session. A wins if b′ = b.

SuccA is the event that A wins the above security game. The definition of security follows.

Definition 3.3 (λ-CAFL-security). A protocol π is said to be λ-CAFL-secure if there is no prob-
abilistic polynomial time algorithm A that can win the above game with non-negligible advantage.
The advantage of an adversary A is defined as AdvCAFL

π (A) = |2 Pr(SuccA)− 1|.

10

3.4 Practical Interpretation of Security of CAFL Model.

We review the relationship between the CAFL model and real world attack scenarios.

• Active adversarial capabilities: Send queries address the powers of an active adversary
who can control the message flow over the network.

• Side-channel attacks: Leakage functions are embedded with the Send query. Thus, a wide
variety of side-channel attacks based on continuous leakage of long-term secrets are
addressed, assuming that the leakage happens when computations take place in principals.

• Cold-boot attacks: Corrupt queries address situations which reveal the long-term secret
keys of protocol principals like in cold-boot attacks.

• Malware attacks: EphemeralKeyReveal queries cover the malware attacks which steal
stored ephemeral keys, given that the long-term keys may be securely stored separately from
the ephemeral keys in places such as smart cards or hardware security modules. Separately,
Corrupt queries address malware attacks which steal the long-term secret keys of protocol
principals.

• Weak random number generators: After knowing a previous set of randomly gener-
ated ephemeral values the adversary may be able to identify the statistical pattern of the
random number generator and hence correctly guess the next value with a high probability.
EphemeralKeyReveal query addresses situations where the adversary can get the ephemeral
secrets.

• Known key attacks: SessionKeyReveal query covers the attacks which can be mounted
by knowing past session keys.

• Key compromise impersonation attacks: λ-CAFL-freshness allows the adversary to
corrupt the owner of the test session before the activation of the test session. Hence, the
CAFL model security protects against the key compromise impersonation attacks.

• Partial weak forward secrecy: λ-CAFL-freshness allows the adversary to corrupt either
of the protocol principals, but not both, after the test session is activated. Hence, the CAFL
model addresses partial weak forward secrecy.

Although our model is a weaker variant of the ASB continuous leakage model, it addresses all
the attack scenarios which are addressed by the ASB model, except weak forward secrecy. Instead,
our model addresses partial weak forward secrecy. Hence, our model is very similar to the generic
ASB model and interprets most of real world attack scenarios.

4 Protocol π

In Table 3 we show the generic construction of protocol π. Enc and Dec are the encryption
and decryption algorithms of the underlying adaptively chosen ciphertext after-the-fact leakage
(CCLA2) secure public-key cryptosystem, PKE. KDF is a secure key derivation function which
generates the session key of length k. The protocol π is a key agreement protocol, in which each
of the principals randomly chooses its ephemeral secret key, encrypts it with the public-key of the
intended partner principal using the encryption algorithm Enc, and sends the encrypted message
to the intended partner principal. After exchanging the ephemeral secrets both principals compute
the session key with ephemeral secrets and identities of the two principals, using the key derivation
function KDF. We underlined the computations which could leak information about secret keys.

Theorem 4.1. The protocol π is λ-CAFL-secure, whenever the underlying public-key cryptosystem
PKE is CCLA2 secure and the key derivation function KDF is secure with respect to a uniformly
random key material.

11

A (Initiator) B (Responder)

Initial Setup

skA, pkA ← KG(1k) skB , pkB ← KG(1k)

Protocol Execution

rA ← {0, 1}k rB ← {0, 1}k

CA ← Enc(pkB , rA)
A,CA−−−−→ (sk′B , rA)← Dec(skB , CA)

skB ← sk′B

(sk′A, rB)← Dec(skA, CB)
B,CB←−−−− CB ← Enc(pkA, rB)

skA ← sk′A
KAB ← KDF(A,B, rA, rB) KAB ← KDF(A,B, rA, rB)

KAB is the session key

Table 3: Protocol π. Underline denotes operations to which leakage functions apply.

In order to formally prove the CAFL-security of the protocol π we use the game hopping
technique [27]; define a sequence of games and relate the adversary’s advantage of distinguishing
each game from the previous game to the advantage of breaking one of the underlying cryptographic
primitive. The proof structure is similar to Boyd et al. [8]. The security proof of Theorem 4.1 is
available in Appendix A.

5 Conclusion and Future Work

We have proposed a key exchange protocol and a security model that improves the amount and type
of secret leakage. Our protocol is a generic key exchange protocol, that relies on a continuous after-
the-fact leakage-resilient public-key encryption scheme. Using such schemes from the literature,
our protocol can be instantiated without much more cost than previous schemes which tolerate
only bounded leakage. Our security model allows the adversary to fully compromise a variety of
long-term and short-term ephemeral values, as well as obtain partial, adaptive, continuous, after-
the-fact leakage of long-term secret keys. Our model captures a wide variety of practical attack
scenarios, including cold boot, key compromise impersonation, and side channel attacks.

The challenge is to achieve a secure protocol in the ASB continuous leakage model. The
ASB continuous leakage model is a continuous leakage variant of the eCK model. There are
two main techniques for constructing (non-leakage-resilient) eCK-secure protocols: use of the so-
called “NAXOS trick”, in which the long-term and ephemeral secret keys are hashed together
to derive the ephemeral Diffie–Hellman exponent, and MQV-style protocols, which algebraically
combine ephemeral and static Diffie–Hellman computations. Since the NAXOS trick involves a
calculation based on the secret key, adapting such a protocol requires the use of a continuous
leakage-resilient NAXOS trick. By using pair-generation-indistinguishable continuous-after-the-
fact-leakage-resilient public-key cryptosystems, it would be possible to obtain a continuous leakage-
resilient NAXOS trick as shown in Alawatugoda et al. [3]. A leakage-resilient protocol based on
MQV-style computations is also an interesting open question.

Acknowledgment

Authors would like to acknowledge Mohsen Toorani for his communication on an ephemeral KCI
attack on the proposed protocol, which leads to revise the freshness condition of the security model
and revise the security proof.

12

References

[1] A. Akavia, S. Goldwasser, and V. Vaikuntanathan. Simultaneous hardcore bits and cryptog-
raphy against memory attacks. In Theory of Cryptology Conference, pages 474–495, 2009.

[2] J. Alawatugoda, C. Boyd, and D. Stebila. Continuous after-the-fact leakage-resilient key
exchange. In ACISP, 2014.

[3] J. Alawatugoda, D. Stebila, and C. Boyd. Modelling after-the-fact leakage for key exchange
(full version). IACR Cryptology ePrint Archive, Report 2014/131, 2014.

[4] J. Alwen, Y. Dodis, and D. Wichs. Leakage-resilient public-key cryptography in the bounded-
retrieval model. In CRYPTO, pages 36–54, 2009.

[5] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO, pages
232–249, 1993.

[6] D. J. Bernstein. Cache-timing attacks on AES. Technical report, 2005.
http://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[7] D. Boneh. The decision Diffie-Hellman problem. In Algorithmic Number Theory Symposium,
pages 48–63, 1998.

[8] C. Boyd, Y. Cliff, J. M. G. Nieto, and K. G. Paterson. One-round key exchange in the standard
model. International Journal of Advanced Computer Technology, pages 181–199, 2009.

[9] Z. Brakerski, Y. T. Kalai, J. Katz, and V. Vaikuntanathan. Overcoming the hole in the
bucket: Public-key cryptography resilient to continual memory leakage. IACR Cryptology
ePrint Archive, Report 2010/278, 2010.

[10] D. Brumley and D. Boneh. Remote timing attacks are practical. In USENIX Security Sym-
posium, pages 1–14, 2003.

[11] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In EUROCRYPT, pages 453–474, 2001.

[12] S. Dziembowski and S. Faust. Leakage-resilient cryptography from the inner-product extractor.
In ASIACRYPT, pages 702–721, 2011.

[13] S. Dziembowski and K. Pietrzak. Leakage-resilient cryptography. In IEEE Symposium on
Foundations of Computer Science, pages 293–302, 2008.

[14] S. Faust, E. Kiltz, K. Pietrzak, and G. N. Rothblum. Leakage-resilient signatures. IACR
Cryptology ePrint Archive, Report 2009/282, 2009.

[15] S. Halevi and H. Lin. After-the-fact leakage in public-key encryption. In Theory of Cryptology
Conference, pages 107–124, 2011.

[16] M. Hutter, S. Mangard, and M. Feldhofer. Power and EM attacks on passive 13.56MHz RFID
devices. In CHES, pages 320–333, 2007.

[17] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In
ASIACRYPT, pages 703–720, 2009.

[18] E. Kiltz and K. Pietrzak. Leakage resilient elgamal encryption. In ASIACRYPT, pages 595–
612, 2010.

[19] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In CRYPTO, pages 104–113, 1996.

13

[20] H. Krawczyk. On extract-then-expand key derivation functions and an HMAC-based KDF.
http://webee.technion.ac.il/ hugo/kdf/kdf.pdf, 2008.

[21] B. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key exchange.
In ProvSec, pages 1–16, 2007.

[22] T. Malkin, I. Teranishi, Y. Vahlis, and M. Yung. Signatures resilient to continual leakage on
memory and computation. In Theory of Cryptology Conference, pages 89–106, 2011.

[23] T. Messerges, E. Dabbish, and R. Sloan. Examining smart-card security under the threat of
power analysis attacks. IEEE Transactions on Computers, pages 541–552, 2002.

[24] S. Micali and L. Reyzin. Physically observable cryptography (extended abstract). In Theory
of Cryptology Conference, pages 278–296, 2004.

[25] D. Moriyama and T. Okamoto. Leakage resilient eCK-secure key exchange protocol without
random oracles. In ASIACCS, pages 441–447, 2011.

[26] M. Naor and G. Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO, pages
18–35. 2009.

[27] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. IACR
Cryptology ePrint Archive, Report 2004/332, 2004.

A Security Proof

Proof. Assume that the adversary A can win the challenge against the protocol π challenger with
non negligible advantage AdvCAFL

π (A). We split the proof into two cases: partner to the test
session exists and partner to the test session does not exist.

Case 1: Partner to the test session exists

In this case we consider two sub cases as follows:

1. Adversary corrupts the owner of the test session.

2. Adversary does not corrupt the owner of the test session.

Case 1.1: Adversary corrupts the owner of the test session

In this case we consider the situation that A corrupts the owner of the test session but not the
partner.

Game 1:

This game is the original game. When the Test query is asked, the Game 1 challenger chooses
a random bit b ← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value
chosen from the same session key space is given.

Game 2:

Same as Game 1 with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, . . . , UNP

} are chosen and two random numbers s∗, t∗ ← {1, . . . , Ns} are chosen,
where NP is the number of protocol principals and NS is the number of sessions on a principal.
The oracle Πs∗

U∗,V ∗ is chosen as the target session and the oracle Πt∗

V ∗,U∗ is chosen as the partner

to the target session. If the test session is not the oracle Πs∗

U∗,V ∗ or the partner to the oracle is not

Πt∗

V ∗,U∗ , the Game 2 challenger aborts the game.

14

Game 3:

Same as Game 2 with the following exception: the Game 3 challenger chooses a random value
r′ ← {0, 1}k.

• If the test session is on the initiator, the challenger computes KU∗V ∗ ← KDF(U∗, V ∗, r′, rV ∗).

• If the test session is on the responder, the challenger computesKU∗V ∗ ← KDF(V ∗, U∗, rV ∗ , r
′).

Game 4:

Same as Game 3 with the following exception: the Game 4 challenger randomly chooses K ←
{0, 1}k and sends it to the adversary A as the answer to the Test query.

Differences between games

In this section the adversary’s advantage of distinguishing each game from the previous game is
investigated. SuccGame x(A) denotes the event that the adversary A wins Game x, AdvGame x(A)
denotes the advantage of the adversary A of winning Game x.

Game 1

is the original game. Hence,
AdvGame 1(A) = AdvCAFL

π (A). (1)

Game 1 and Game 2.

The probability of Game 2 to be halted due to incorrect choice of the test session is 1 − 1
N2

PN
2
s

.

Unless the incorrect choice happens, Game 2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
2N2

s

AdvGame 1(A). (2)

Game 2 and Game 3.

We introduce an algorithm D which is constructed using the adversary A. If A can distinguish
the difference between Game 2 and Game 3, then D can be used against the CCLA2 challenger
of underlying public-key cryptosystem, PKE. The algorithm D uses the public-key of the CCLA2
challenger as the public-key of the protocol principal V ∗ and generates public/secret key pairs for
all other protocol principals. D runs a copy of A and interacts with A, such that it is interacting
with either Game 2 or Game 3. D picks two random strings, r′0, r

′
1 ← {0, 1}k and passes them to

the CCLA2 challenger. From the CCLA2 challenger, D receives a challenge ciphertext C such that
C ← Enc(pkV ∗ , r

′) where r′ = r′0 or r′ = r′1. The following describes the procedure of answering
queries.

• Send(U, V, s,m, f) query: If U = U∗, V = V ∗ and s = s∗, then D sends the ciphertext C to
A with the leakage f(skU∗). Else if U 6= V ∗, then D randomly picks a value rU ← {0, 1}k,
encrypts it with the public-key of V and sends it to A with the leakage f(skU).

If U = V ∗, then D sends the ciphertexts which comes to the principal V ∗, to the PKE
challenger with the leakage function f . The PKE challenger decrypts the ciphertext and
sends the corresponding plaintext to D with the leakage, f(skV ∗). D randomly picks a value
rV ∗ ← {0, 1}k, encrypts it with the public-key of V and sends it to A with the leakage f(skV ∗).

15

• SessionKeyReveal(U, V, s) query: If U = V ∗ or V = V ∗, D uses the PKE challenger to
decrypt the ciphertext which is encrypted by the public-key of V ∗ and compute the session
key by KDF(V ∗, V, rV ∗ , rV) if V ∗ is the initiator or KDF(U, V ∗, rU , rV ∗) if V ∗ is the responder.
If U 6= V ∗ and V 6= V ∗, D can decrypt both ciphertexts from the both principals by its own,
hence recover rU and rV and compute the session key by KDF(U, V, rU , rV).

• EphemeralKeyReveal(U, V, s) query: For all legitimate EphemeralKeyReveal queries D will
answer with the ephemeral-key.

• Corrupt(U) query: Except for V ∗, algorithm D can answer all other Corrupt queries. In
this case we consider the situation in which the adversary not allowed to corrupt the partner
principal of the target session.

• Test(U, V, s) query: To compute the answer to the Test(U∗, V ∗, s∗) query, the algorithm D
uses r′1 as the decryption of the ciphertext C and computes KDF(U∗, V ∗, r′1, rV ∗), if U∗ is
the initiator or computes KDF(V ∗, U∗, rV ∗ , r

′
1), if V ∗ is the initiator.

If r′1 is the decryption of C coming from the owner of the test session, U∗, the simulation
constructed by D is identical to Game 2 whereas if r′0 is the decryption of C, the simulation
constructed by D is identical to Game 3. If A can distinguish the difference between Game 2 and
Game 3, then D can distinguish whether C ← Enc(pkV ∗ , r

′
0) or C ← Enc(pkV ∗ , r

′
1).

The algorithm D plays the CCLA2 game against the public-key cryptosystem PKE according
to the Definition 2.1 since D does not ask the decryption of the challenge ciphertext C. Hence,

|AdvGame 2(A)−AdvGame 3(A)| ≤ AdvPKE(D). (3)

Game 3 and Game 4.

We introduce an algorithm B which is constructed using the adversary A. If A can distinguish the
difference between Game 3 and Game 4, then B can be used to distinguish whether the value K
is computed using KDF or randomly chosen. B receives K from the KDF challenger, such that
K is computed using the KDF or randomly chosen from the session key space. If K is computed
using the KDF, the simulation constructed by B is identical to Game 3 whereas if K is randomly
chosen, the simulation constructed by B is identical to Game 4. If A can distinguish the difference
between Game 3 and Game 4, then B can distinguish whether the value K is computed using KDF
or randomly chosen. Hence,

|AdvGame 3(A)−AdvGame 4(A)| ≤ AdvKDF(B). (4)

Semantic security of the session key in Game 4.

Since the session key K of Πs∗

U∗,V ∗ is chosen randomly and independently from all other values, A
does not have any advantage in Game 4. Hence,

AdvGame 4(A) = 0. (5)

Using equations (1)–(5) we find,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
. (6)

Case 1.2: Adversary does not corrupt the owner of the test session.

In this case we consider the situation that A corrupts the partner of the test session but not the
owner. The proof structure and games are similar to the previous case. The only difference in this
case is that the algorithm D uses the public-key of the CCLA2 challenger as the public-key of the
protocol principal U∗ in Game 3′.

16

Game 1′:

This game is the original game. When the Test query is asked, the Game 1′ challenger chooses
a random bit b ← {0, 1}. If b = 1, the real session key is given to A, otherwise a random value
chosen from the same session key space is given.

Game 2′:

Same as Game 1′ with the following exception: before A begins, two distinct random principals
U∗, V ∗ ← {U1, . . . , UNP

} are chosen and two random numbers s∗, t∗ ← {1, . . . , Ns} are chosen.
The oracle Πs∗

U∗,V ∗ is chosen as the target session and the oracle Πt∗

V ∗,U∗ is chosen as the partner

to the target session. If the target session is not the oracle Πs∗

U∗,V ∗ or the partner to the oracle

Πt∗

V ∗,U∗ , the Game 2′ challenger aborts the game.

Game 3′:

Same as Game 2′ with the following exception: the Game 3′ challenger chooses a random value
r′ ← {0, 1}k.

• If the test session is the initiator, the challenger computes KU∗V ∗ ← KDF(U∗, V ∗, rU∗ , r
′).

• If the test session is the responder, the challenger computes KU∗V ∗ ← KDF(V ∗, U∗, r′, rU∗).

Game 4′:

Same as Game 3′ with the following exception: the Game 4′ challenger randomly chooses K ←
{0, 1}k and sends it to the adversary A as the answer to the Test query.

Differences between games

In this section the adversary’s advantage of distinguishing each game from the previous game is
investigated. SuccGame x(A) denotes the event that the adversary A wins Game x, AdvGame x(A)
denotes the advantage of the adversary A of winning Game x.

Game 1′

is the original game. Hence,
AdvGame 1′(A) = AdvCAFL

π (A). (7)

Game 1′ and Game 2′.

The probability of Game 2′ to be halted due to incorrect choice of the test session is 1 − 1
N2

PN
2
s

.

Unless the incorrect choice happens, Game 2′ is identical to Game 1′. Hence,

AdvGame 2′(A) =
1

NP
2N2

s

AdvGame 1′(A). (8)

Game 2′ and Game 3′.

We introduce an algorithm D which is constructed using the adversary A. If A can distinguish
the difference between Game 2′ and Game 3′, then D can be used against the CCLA2 challenger
of underlying public-key cryptosystem, PKE. The algorithm D uses the public-key of the CCLA2
challenger as the public-key of the protocol principal U∗ and generates public/secret key pairs for
all other protocol principals. D runs a copy of A and interacts with A, such that it is interacting

17

with either Game 2′ or Game 3′. D picks two random strings, r′0, r
′
1 ← {0, 1}k and passes them to

the CCLA2 challenger. From the CCLA2 challenger, D receives a challenge ciphertext C such that
C ← Enc(pkU∗ , r

′) where r′ = r′0 or r′ = r′1. The procedure of answering each query is similar to
the description in the “Game 2 and Game 3” in Case 1.

To compute the answer to the Test(U∗, V ∗, s∗) query, the algorithm D uses the r′1 as the de-
cryption of the ciphertext C and computes KDF(U∗, V ∗, r′1, rV ∗), if U∗ is the initiator or computes
KDF(V ∗, U∗, rV ∗ , r

′
1), if V ∗ is the initiator. If r′1 is the decryption of C coming to the owner of

the test session, U∗, the simulation constructed by D is identical to Game 2′ whereas if r′0 is the
decryption of C, the simulation constructed by D is identical to Game 3′. If A can distinguish the
difference between Game 2′ and Game 3′, then D can distinguish whether C ← Enc(pkU∗ , r

′
0) or

C ← Enc(pkU∗ , r
′
1).

The algorithm D plays the CCLA2 game against the public-key cryptosystem PKE according
to the Definition 2.1 since D does not ask the decryption of the challenge ciphertext C. Hence,

|AdvGame 2′(A)−AdvGame 3′(A)| ≤ AdvPKE(D) (9)

Game 3′ and Game 4′.

We introduce an algorithm B which is constructed using the adversary A. If A can distinguish the
difference between Game 3′ and Game 4′, then B can be used to distinguish whether the value K
is computed using KDF or randomly chosen. B receives K from the KDF challenger, such that
K is computed using the KDF or randomly chosen from the session key space. If K is computed
using the KDF, the simulation constructed by B is identical to Game 3′ whereas if K is randomly
chosen, the simulation constructed by B is identical to Game 4′. If A can distinguish the difference
between Game 3′ and Game 4′, then B can distinguish whether the value K is computed using
KDF or randomly chosen. Hence,

|AdvGame 3′(A)−AdvGame 4′(A)| ≤ AdvKDF(B) (10)

Semantic security of the session key in Game 4′.

Since the session key K of Πs∗

U∗,V ∗ is chosen randomly independently from all other values, A does

not have any advantage in Game 4′.
Hence,

AdvGame 4′(A) = 0 (11)

Using equations (7)–(11) we find,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
(12)

Case 1.3: Adversary corrupts neither the owner nor the partner of the test session

In this case we consider the situation that A corrupts neither the owner nor the partner of the
test session. The proof structure and games are similar to the previous case. We consider two sub
cases under this case as follows:

1. Adversary asks EphemeralKeyReveal(U∗, V ∗, s∗): simulation and analysis of this case is same
as the Case 1.2. Thus,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
(13)

2. Adversary asks EphemeralKeyReveal(V ∗, U∗, t∗): simulation and analysis of this case is same
as the Case 1.1. Thus,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
(14)

18

Case 2: Partner to the test session does not exist

In this case we consider two sub cases as follows:

1. Adversary corrupts the owner of the test session: simulation and analysis of this case is same
as the Case 1.1. Thus,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
(15)

2. Adversary does not corrupt the owner of the test session: simulation and analysis of this case
is same as the Case 1.1. Thus,

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
(16)

Combining Case 1 and Case 2

According to the analysis we can see the adversary A’s advantage of winning against the protocol
π challenger is

AdvCAFL
π (A) ≤ N2

PN
2
s

(
AdvPKE(D) +AdvKDF(B)

)
.

Hence, we conclude the proof of Theorem 4.1 saying that whenever the underlying public-key
cryptosystem is CCLA2 secure and the key derivation function is secure with respect to the source
of key material {0, 1}2k, the key exchange protocol π is CAFL-secure.

19

	Introduction
	Leakage Models
	Our Contribution

	Background
	CCLA2-Secure Public-Key Cryptosystems
	Key Derivation Functions
	Decision Diffie-Hellman Problem

	Continuous After-the-fact Leakage Model
	Protocol Execution
	Modelling Leakage
	Defining Security
	Practical Interpretation of Security of CAFL Model.

	Protocol
	Conclusion and Future Work
	Security Proof

