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Abstract. We introduce the notion of dual system groups.

– We show how to derive compact HIBE by instantiating the dual system framework in Waters (Crypto ’09) and
Lewko and Waters (TCC ’10) with dual system groups. Our construction provides a unified treatment of the
prior compact HIBE schemes from static assumptions.

– We show how to instantiate dual system groups under the decisional subgroup assumption in composite-order
groups and the decisional linear assumption (d-LIN) in prime-order groups. Along the way, we provide new
tools for simulating properties of composite-order bilinear groups in prime-order groups. In particular, we
present new randomization and parameter-hiding techniques in prime-order groups.

Combining the two, we obtain a number of new encryption schemes, notably

– a new construction of IBE in prime-order groups with shorter parameters;

– a new construction of compact HIBE in prime-order groups whose structure closely mirrors the selectively
secure HIBE scheme of Boneh, Boyen and Goh (Eurocrypt ’05);

– a new construction of compact spatial encryption in prime-order groups.
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1 Introduction

The current assumptions used for pairings-based functional encryption may be broadly classified into two
categories: those pertaining to prime-order groups and those pertaining to composite-order groups. From
a theoretical stand-point, it is often easier to design schemes in composite-order groups. However, from
the practical stand-point, prime-order groups are preferable as they admit more efficient and compact
instantiations. Since the elliptic curve group order must be infeasible to factor, it must be at least (say)
1024 bits. On the other hand, a 160-bit prime-order elliptic curve group provides an equivalent level of
security (per NIST recommendations in NIST SP 800-57). More generally, group operations and especially
pairing computations are substantially slower on composite-order curves for the same level of security.
To mitigate the gap between theoretical design and practical efficiency, a series of works demonstrated
general techniques for converting cryptosystems relying on composite-order groups to cryptosystems based
on prime-order groups [13, 14, 7, 10, 6].

However, there are still cases where these transformations do not cover, notably, the composite-order
HIBE with constant-size ciphertext in [11]. Naively applying previous transformations yield a prime-order
scheme with linear-size ciphertext, that is, they do not preserve the parameters (e.g. ciphertext size) of
the original composite-order scheme. We note that there is a more ad-hoc transformation given in [16]
which yields HIBE with constant-size ciphertext in prime-order groups. Our goal is to find more general
“parameter-preserving” tools for simulating composite-order bilinear groups in the prime order setting; such
tools would shed new theoretical insight into the design of efficient functional encryption schemes.

1.1 Our contributions

We introduce a novel notion of dual system groups. Our main results are as follows:

– a generic construction of compact HIBE from dual system groups similar to the Lewko-Waters scheme
over composite-order groups [11]; and

– instantiations of dual system groups under the d-LIN assumption in prime-order bilinear groups and the
subgroup decisional assumption in composite-order bilinear groups respectively.

Along the way, we provide new tools for simulating properties of composite-order bilinear groups in prime-
order groups. In particular, we present new randomization and parameter-hiding techniques in prime-order
groups.

Putting the two together, we obtain a new construction of compact HIBE in prime-order groups, as well
as new insights into the structural properties needed for Waters’ dual system encryption methodology [19].
We compare our schemes with prior constructions in Tables 1 and 2. In particular, our compact prime-order
HIBE improves upon the efficiency of the prior scheme in [16] by a factor of two in nearly all parameters,
and has an arguably much simpler description. We note that we even improve upon prior constructions of
IBE in prime-order groups.1

Dual system groups. Informally, dual system groups contains a triple of groups (G,H,GT ) and a non-
generate bilinear map e : G×H→ GT . For concreteness, we may think of (G,H,GT ) as composite-order
bilinear groups. Dual system groups take as input a parameter 1n (think of n as the depth of the HIBE) and
satisfy the following properties:

(subgroup indistinguishability.) There are two computationally indistinguishable ways to sample corre-
lated (n+1)-tuples from Gn+1: the “normal” distribution, and a higher-entropy distribution with “semi-
functional components”. An analogous statement holds for Hn+1.

1 A subsequent work [9] achieves incomparable efficiency guarantees.

1



Reference |MPK| |SK| |CT| TKeyGen TEnc TDec assumption

Wat05 [18] (λ+4)|G1| 2|G2| 2|G1|+ |GT | 2E2 2E1 +ET 2P DBDH

Wat09 [19] 13|G1|+ |GT | 8|G2|+ |Zp| 9|G1|+ |GT |+ |Zp| 8E2 14E1 +ET 9P +ET DLIN

Lew12 [10] 24|G1|+ |GT | 6|G2| 6|G1|+ |GT | 6E2 24E1 +ET 6P DLIN

RCS12 [17] 9|G1|+ |GT | 6|G2|+ |Zp| 7|G1|+ |GT |+ |Zp| 6E2 10E1 +ET 7P +ET XDH + DLIN

CLL+12 [6] 8|G1|+ |GT | 4|G2| 4|G1|+ |GT | 4E2 8E1 +ET 4P SXDH

JR13 [9] 5|G1|+ |GT | 5|G2| 3|G1|+ |GT |+ |Zp| 5E2 5E1 +ET 3P +2E2 SXDH

Ours 6|G1|+ |GT | 4|G2| 4|G1|+ |GT | 4E2 6E1 +ET 4P SXDH

(Sec 7) 18|G1|+2|GT | 6|G2| 6|G1|+ |GT | 6E2 18E1 +2ET 6P DLIN

Fig. 1. Comparison amongst IBE schemes based on asymmetric bilinear groups of prime order p with pairing e : G1 ×G2 → GT

and security parameter λ, where (E1, E2, ET , P ) denote G1-exponentiation, G2-exponentiation, GT -exponentiation and a pairing
respectively. For KeyGen, we assume that we store exponents instead of group elements in MSK. Here, we omitted the G2 terms in
MPK in our scheme, which are not needed for the correctness of the scheme.

Reference |CT| TKeyGen TEnc TDec assumption

BBG05 [2] 2|G1|+ |GT | (n+ 1)E2 (n+ 2)E1 +ET 2P n-DBDHE

Wat09 [19] (n+ 8)|G1|+ |GT | (2n+ 7)E2 (3n+ 11)E1 +ET (2n+ 7)P +nET DLIN

LW10 [11] 2|GN |+ |GT | (n+ 1)EN (n+ 2)EN +ET 2P composite

OT10 [15] (7n+ 5)|G1|+ |GT | (7n+ 5)E2 (21n+ 15)E1 +ET (7n+ 5)P DLIN

OT11 [16] 13|G1|+ |GT | (16n− 3)E2 (8n+ 13)E1 +ET 13P DLIN

CLL+12 [6] (4n+ 3)|G1|+ |GT | (4n+ 3)E2 (8n+ 6)E1 +ET (4n+ 3)P SXDH

Ours 4|G1|+ |GT | 2(n+ 1)E2 2(n+ 1)E1 +ET 4P SXDH

(Sec 7) 6|G1|+ |GT | 3(n+ 1)E2 6(n+ 1)E1 +2ET 6P DLIN

2(d+ 1)|G1|+ |GT | (d+ 1)(n+ 1)E2 d(d+ 1)(n+ 1)E1 + dET 2(d+ 1)P d-LIN

Fig. 2. Comparison between existing and our HIBE schemes, where n is the depth parameter; in addition, EN denotes GN -
exponentiation. In all of the prime-order constructions, |MPK| = O(n|G1| + n|G2| + |GT |) and |SK| = O(n|G2|). For TDec,
we omitted the overhead of O(n) exponentiations associated with delegating a key before decrypting. Apart from [2], all of the
schemes achieve full security.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0, h1, . . . , hn) ∈ Hn+1 drawn from the respective
normal distributions, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

(parameter-hiding.) Both normal distributions can be efficiently sampled given the public parameters; on
the other hand, given only the public parameters, the higher-entropy distributions contain n “units” of
information-theoretic entropy (in the semi-functional component), one unit for each of the n elements
in the (n+ 1)-tuple apart from the first.

The key novelty in the framework lies in identifying the role of associativity. Prior to this work, the
general consensus is that instantiating the dual system encryption methodology requires some form of
strong orthogonality, as indicated in the sequence of works on simulating properties of composite-order
groups in the prime-order setting via the framework of dual pairing vector spaces [14, 15, 10]. In
particular, constructions based on the latter framework implies that for all (g0, g1, . . . , gn) ∈ Gn+1 and all
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(h0, h1, . . . , hn) ∈ Hn+1 drawn from the respective normal distributions, we have that for all i = 1, . . . , n:

e(g0, hi) = e(gi, h0) = 1 and ∀j ̸= i, e(gj , hi) = e(gi, hj) = 1

along with additional analogous requirements amongst the semi-functional components. We note that our
framework does require an orthogonality property, but only in a weak sense.

HIBE from dual system groups. We construct a HIBE for depth n from dual system groups for parameter
n+ 1. The scheme is as follows, and shares a similar structure to those in [11, 2]:

CTx :=
(
g0, gn+1g

x1
1 · · · g

xℓ
ℓ , e(g0, MSK) ·M

)
.

SKy :=
(
h0, MSK · (hn+1h

y1
1 · · ·h

yℓ
ℓ ), hℓ+1, . . . , hn

)
.

where ℓ is the length of both x and y, MSK is uniformly sampled from H, (g0, g1, . . . , gn+1) ∈ Gn+2

and (h0, h1, . . . , hn+1) ∈ Hn+2 are drawn from the respective normal distributions. Note that correctness
follows from associativity. Our proof strategy relies on dual system encryption and follows that in [20],
which in turn builds upon that in [11, 19]. We also extend the construction to obtain a compact spatial
encryption scheme [1].

Simulating composite-order groups. We sketch our new tools for simulating composite-order groups in
the prime-order setting, which is implicit in our instantiation of dual system groups. For our exposition, it
is convenient to think of asymmetric composite-order groups (Ĝ, Ĝ∗, ĜT ) of order N = p1p2 which is the
product of two primes, endowed with an efficient bilinear map ê : Ĝ × Ĝ∗ → ĜT . Let ĝ1, ĝ2 ∈ Ĝ denote
random generators of Ĝ of orders p1, p2 respectively; define ĝ∗1, ĝ

∗
2 ∈ Ĝ∗ analogously. Observe that we have

the following orthogonality property:

ê(ĝ1, ĝ
∗
2) = ê(ĝ2, ĝ

∗
1) = 1.

A useful property of composite-order groups, especially in the context of dual system encryption [11, 12], is
that we can perform randomization by raising a group element to the power of a random exponent a←R ZN .
This operation satisfy the following useful properties:

(hiding.) given ĝa1 , (ĝ
∗
1)

a along with ĝ1, ĝ
∗
1, ĝ2, ĝ

∗
2 , the quantity a (mod p2) is completely hidden statisti-

cally;

(orthogonality.) for all a, we have ê(ĝa1 , ĝ
∗
2) = 1.

(associativity.) for all (ĥ, ĥ∗) ∈ Ĝ× Ĝ∗ and all a ∈ ZN , we have

ê(ĥa, ĥ∗) = ê(ĥ, (ĥ∗)a)

Indeed, previous works [14, 15, 10, 6] showed how to achieve all three properties; moreover, the correctness
of the ensuing IBE and functional encryption schemes relies on all three properties. The source of
inefficiency in prior works comes from orthogonality: roughly speaking, if we want to perform ℓ independent
randomizations in prime-order groups, then we require an ℓ-dimensional vector space. This means that to
simulate a single group element in a composite-order group, we will need a ℓ-tuple from a prime-order group.
We do not require orthogonality. We will construct our functional encryption schemes so that associativity
suffices for correctness. A side-benefit is that the structure of our encryption schemes are even more similar
to previous selectively-secure prime-order and fully-secure composite-order schemes.

Basic group structure. Following [14, 15, 10, 6], we will simulate (Ĝ, Ĝ∗, ĜT ) in a prime-order bilinear
group (G1, G2, GT ) as follows: pick a random B←R GLd+1(Zp) and define B∗ := (B⊤)−1 so that B⊤B∗
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|PP| |SP| G H GT ord(h∗)

Composite (n+ 3)|GN | (n+ 2)|GN | GN GN GT p2p3

SXDH 2(n+ 1)(|G1|+ |G2|) 2(n+ 1)(|G1|+ |G2|) G2
1 G2

2 GT p

DLIN 6(n+ 1)(|G1|+ |G2|) 3(n+ 1)(|G1|+ |G2|) G3
1 G3

2 GT p

d-LIN d(d+ 1)(n+ 1)(|G1|+ |G2|) (d+ 1)(n+ 1)(|G1|+ |G2|) Gd+1
1 Gd+1

2 GT p

Fig. 3. Parameters for dual system groups, where N = p1p2p3 and p is the order of G1 and G2.

is the identity matrix. Consider the following map:

(Ĝ, Ĝ∗, ĜT ) 7→ (Gd+1
1 , Gd+1

2 , GT )

(ĝ1, ĝ2, ĝ
∗
1, ĝ

∗
2) 7→ (g

πL(B)
1 , g

πR(B)
1 , g

πL(B
∗)

2 , g
πR(B∗)
2 )

where g1, g2 are the respective generators for G1 and G2; πL, πR denote the projection maps that map a
(d + 1) × (d + 1) matrix to the left d columns and right-most column respectively, along with the bilinear
map e : Gd+1

1 × Gd+1
2 → GT given by e(gx1 , g

y
2 ) := e(g1, g2)

x⊤y. Observe that we achieve orthogonality,
namely:

e(g
πL(B)
1 , g

πR(B∗)
2 )⊤ = e(g

πR(B)
1 , g

πL(B
∗)

2 ) = (1, . . . , 1)

Moreover, under the d-LIN assumption, the construction satisfies a computational subspace-hiding
assumption analogous to the subgroup indistinguishability assumption in composite-order groups.

Randomizing group elements. We achieve randomization as follows: pick a random A ←R Z(d+1)×(d+1)
p

and replace (B,B∗) with (BA,B∗A⊤). Observe that this transformation achieve the following properties:

(hiding.) given g
πL(BA)
1 , g

πL(B
∗A⊤)

2 along with g1, g2,B,B∗, the quantity e⊤d+1Aed+1 is completely
hidden statistically;

(associativity.) for all (B,B∗) and all A ∈ Z(d+1)×(d+1)
p , we have

e(gBA
1 , gB

∗
2 ) = e(gB1 , gB

∗A⊤
2 ) = e(g1, g2)

A⊤

Perspective. In developing the framework for dual system groups, we opted to identify the minimal
properties needed for the application to dual system encryption in the most basic setting of (H)IBE. An
alternative approach would have been to maximize the properties satisfied by both the composite-order
and prime-order instantiations, with the hope of capturing a larger range of applications. In choosing the
minimalist approach, we believe we can gain better insights into how and why dual system encryption
works, as well as guide potential lattice-based instantiations. In addition, we wanted the framework to be as
concise as possible and the instantiations to be as simple as possible. Nonetheless, the framework remains
fairly involved and we hope to see further simplifications in future work.

Subsequent work. In [5], we presented the first adaptively secure IBE where the security loss does not
depend on the number of secret key queries. We started with a construction in composite-order groups, and
extended the techniques in this work to obtain an instantiation in prime-order groups. We also extended the
dual system groups framework in this work to obtain a modular analysis.
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Organization. We give the definition and security model of HIBE in Section 2. We present dual system
groups in Section 3 and our HIBE scheme in Section 4. We present instantiations of dual system groups in
Sections 5 and 6. We present a self-contained description of our HIBE scheme in Section 7.

2 Preliminaries

Notation. We denote by s ←R S the fact that s is picked uniformly at random from a finite set S and
by x, y, z ←R S that all x, y, z are picked independently and uniformly at random from S. By PPT, we
denote a probabilistic polynomial-time algorithm. Throughout, we use 1λ as the security parameter. We
use · to denote multiplication (or group operation) as well as component-wise multiplication. We use lower
case boldface to denote (column) vectors over scalars or group elements and upper case boldface to denote
vectors of group elements as well as matrices. Given a group G, we use ord(G) to denote the smallest
positive integer c such that gc = 1 for all g ∈ G.

Hierarchical Identity-Based Encryption. An HIBE scheme [8] consists of five algorithms (Setup,Enc,
KeyGen,Dec,KeyDel):

Setup(1λ, 1n)→ (MPK, MSK). The setup algorithm takes in a security parameter 1λ, and a depth parameter
1n. It outputs public parameters MPK and a master secret key MSK.

Enc(MPK,x,m)→ CTx. The encryption algorithm takes in the public parameters MPK, an identity vector
x, and a message m. It outputs a ciphertext CTx.

KeyGen(MPK, MSK,y) → SKy. The key generation algorithm takes in the public parameters MPK, the
master secret key MSK, and an identity vector y. It outputs a secret key SKy.

Dec(MPK, SKy, CTx) → m. The decryption algorithm takes in the public parameters MPK, a secret key
SKy for an identity vector y, and a ciphertext CTx encrypted under a hierarchical identity vector x. It
outputs a message m if x = y.

KeyDel(MPK, SKy,y
′)→ SKy′ . The key delegation algorithm takes in the public parameters MPK, a secret

key SKy, and an identity vector y′, where y is a prefix of y′. It outputs a secret key SKy′ .

Correctness. For all (MPK, MSK) ← Setup(1λ, 1n), all identity vectors x, all messages m, all decryption
keys SKy, all x such that y is a prefix of x, we have

Pr[Dec(MPK, SKy,Enc(MPK,x,m)) = m] = 1.

Delegation. We require that delegation is independent of the path taken; that is, if y is a prefix of y′, then
the following distributions are identical:

{SKy,KeyDel(MPK, SKy,y
′)} and {SKy,KeyGen(MPK, MSK,y′)}

Security Model. We now give the notation of adaptive security for HIBE. The security game is defined by
the following experiment, played by a challenger and an adversary A.

Challenge Space. The adversary A gives the challenger the depth parameter 1n.

Setup. The challenger runs the setup algorithm to generate (MPK, MSK). It gives MPK to the adversary A.
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Phase 1. The adversary A adaptively requests keys for any identity vector y of its choice. The challenger
responds with the corresponding secret key SKy, which it generates by running KeyGen(MPK, MSK,y).
Because of our restriction on delegation, the returned SKy is independent of the path taken.

Challenge. The adversary submits two messages m0 and m1 of equal length and a challenge identity vector
x∗ with the restriction that no queried identity vector in Phase 1 is a prefix of it. The challenger picks
β ←R {0, 1}, and encrypts mβ under x∗ by running the encryption algorithm. It sends the ciphertext to
the adversary A.

Phase 2. A continues to issue key queries as in Phase 1 with the restriction that any queried identity vector
y must not be a prefix of x∗.

Guess. The adversary A must output a guess β′ for β.

The advantage AdvHIBE
A (λ) of an adversary A is defined to be |Pr[β′ = β]− 1/2|.

Definition 1. A HIBE scheme is adaptively secure if all PPT adversaries A, AdvHIBE
A (λ) is a negligible

function in λ.

3 Dual System Groups

3.1 Overview

Dual system groups contains a triple of groups (G,H,GT ) and a non-generate bilinear map e : G×H→ GT .
For concreteness, we may think of (G,H,GT ) as composite-order bilinear groups. Dual system groups take
as input a parameter 1n (think of n as the depth of the HIBE) and satisfy the following properties:

(subgroup indistinguishability.) There are two computationally indistinguishable ways to sample corre-
lated (n + 1)-tuples from Gn+1: the “normal” distribution, and a higher-entropy distribution with
“semi-functional components”. We sample the normal distribution using SampG and the semi-functional
components using ŜampG. An analogous property holds for Hn+1, with algorithms SampH and ŜampH
respectively, with an important distinction in the auxiliary input provided to the distinguisher. Note that
we separately sample the normal distribution and semi-functional components, which makes parameter-
hiding (defined in Section 3.2) easier to state.

(associativity.) For all (g0, g1, . . . , gn) ∈ Gn+1 and all (h0, h1, . . . , hn) ∈ Hn+1 drawn from the respective
normal distributions according to SampG and SampH, we have that for all i = 1, . . . , n,

e(g0, hi) = e(gi, h0).

We require this property for correctness.

(right subgroup H.) There is some distinguished element h∗ ∈ H, which generates the semi-functional
components in H. It is convenient to think of h∗ as being orthogonal to the normal distribution over G
(c.f. orthogonality and Remark 1). On the other hand, we require that h∗ is not orthogonal to the semi-
functional components in G (c.f. non-degeneracy), so that we get a random value when we decrypt a
semi-functional ciphertext with a semi-functional key.

(parameter-hiding.) Both normal distributions can be efficiently sampled given the public parameters; on
the other hand, given only the public parameters, the higher-entropy distributions contain n “units” of
information-theoretic entropy (in the semi-functional component), one unit for each of the n elements
in the (n + 1)-tuple apart from the first. In the formal statement, the hidden entropy is captured by n
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Property Where it is used Remark

projective correctness

Lemma 1 normal to semi-functional CT

associative correctness

orthogonality Lemma 6 final transition

non-degeneracy Lemma 4 pseudo-normal to pseudo-SF Keys

Lemma 6 final transition

H-subgroup key delegation

left subgroup indistinguishability Lemma 1 normal to semi-functional CT

right subgroup indistinguishability Lemma 2 normal to pseudo-normal keys

Lemma 5 pseudo-SF to semi-functional keys

parameter-hiding Lemma 4 pseudo-normal to pseudo-SF Keys

Fig. 4. Summary of dual system groups

random exponents (γ1, . . . , γn) shared across G and H. It is crucial here that we use the same γi in G
and in H, so that decryption succeeds with nominally semi-functional objects.

3.2 Definitions

Syntax. Dual system groups consist of six randomized algorithms given by (SampP,SampGT, SampG, SampH)

along with (ŜampG, ŜampH):

SampP(1λ, 1n): On input (1λ, 1n), output public and secret parameters (PP, SP), where:

– PP contains a triple of groups (G,H,GT ) and a non-generate bilinear map e : G×H→ GT , a linear
map µ defined on H, along with some additional parameters used by SampG, SampH;

– given PP, we know ord(H) and can uniformly sample from H;

– SP contains h∗ ∈ H (where h∗ ̸= 1), along with some additional parameters used by ŜampG;

SampGT : Im(µ)→ GT. (As a concrete example, suppose µ : H→ GT and Im(µ) = GT.)

SampG(PP): Output g ∈ Gn+1.

SampH(PP): Output h ∈ Hn+1.

ŜampG(PP, SP): Output ĝ ∈ Gn+1.

ŜampH(PP, SP): Output ĥ ∈ Hn+1.

The first four algorithms are used in the actual scheme, whereas the last two algorithms are used only in
the proof of security. We define SampG0 to denote the first group element in the output of SampG, and we
define ŜampG0, ŜampH0 analogously.
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Correctness. The requirements for correctness are as follows:

(projective.) For all h ∈ H and all coin tosses s, we have SampGT(µ(h); s) = e(SampG0(PP; s), h).

(associative.) For all (g0, g1, . . . , gn) ← SampG(PP) and (h0, h1, . . . , hn) ← SampH(PP) and for all i =
1, . . . , n, we have e(g0, hi) = e(gi, h0).

(H-subgroup.) The output distribution of SampH(PP) is the uniform distribution over a subgroup of Hn+1.

Security. The requirements for security are as follows (we defer a discussion to the end of this section):

(orthogonality.) µ(h∗) = 1.

(non-degeneracy.) For all ĥ0 ← ŜampH0(PP, SP), h∗ lies in the group generated by ĥ0. For all ĝ0 ←
ŜampG0(PP, SP), we have e(ĝ0, h∗)α is identically distributed to the uniform distribution over GT , where
α←R Zord(H).

(left subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvLS
A (λ) :=

∣∣Pr[ A(PP, g ) = 1 ]− Pr[ A(PP, g · ĝ ) = 1 ]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g← SampG(PP); ĝ← ŜampG(PP, SP).

(right subgroup indistinguishability.) For any adversary A, we define the advantage function:

AdvRS
A (λ) :=

∣∣Pr[ A(PP, h∗,g · ĝ, h ) = 1 ]− Pr[ A(PP, h∗,g · ĝ, h · ĥ ) = 1 ]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g← SampG(PP); ĝ← ŜampG(PP, SP);

h← SampH(PP); ĥ← ŜampH(PP, SP).

(parameter-hiding.) The following distributions are identically distributed

{PP, h∗, ĝ, ĥ } and {PP, h∗, ĝ · ĝ′, ĥ · ĥ′ }

where

(PP, SP)← SampP(1λ, 1n);

ĝ = (ĝ0, . . .)← ŜampG(PP, SP);

ĥ = (ĥ0, . . .)← ŜampH(PP, SP);

γ1, . . . , γn ←R Zord(H);

ĝ′ := (1, ĝγ10 , . . . , ĝγn0 ) ∈ Gn+1;

ĥ′ := (1, ĥγ10 , . . . , ĥγn0 ) ∈ Hn+1.

Discussion. We provide a brief justification and discussion on the preceding security properties.
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Remark 1 (orthogonality). We may deduce from µ(h∗) = 1 that e(g0, h∗) = 1 for all g0 = SampG0(PP; s):
for all γ ∈ {0, 1},

e(g0, (h
∗)γ) = SampGT(µ((h∗)γ); s) (by projective)

= SampGT(µ(h∗)γ ; s) (by linearity of µ)

= SampGT(1; s) (by orthogonality)

Thus, we have e(g0, h
∗) = e(g0, 1) = 1. For the instantiation from composite-order groups in Section 5, h∗

is orthogonal to each element in the output of SampG, that is,

e(g0, h
∗) = e(g1, h

∗) = · · · = e(gn, h
∗) = 1

for all (g0, g1, . . . , gn) ← SampG(PP). On the other hand, for the instantiation from prime-order groups in
Section 6, h∗ is in general not orthogonal to g1, . . . , gn.

Remark 2 (non-degeneracy). We rely on non-degeneracy to information-theoretically hide the message in
the final transition, where all the keys and ciphertexts are semi-functional.

Remark 3 (H-subgroup). We rely on H-subgroup to re-randomize secret keys in HIBE key delegation.

Remark 4 (indistinguishability). We stress that left subgroup and right subgroup indistinguishability are
not symmetric (the distinguisher receives additional auxiliary input for the latter); this clarifies why the
instantiation in symmetric composite-order groups uses two primes in the ciphertext space and three in
the secret key space. In left subgroup indistinguishability, the distinguisher does not get h∗; otherwise, it
is possible to distinguish between the two distributions using orthogonality. On the other hand, in right
subgroup indistinguishability, the distinguisher does get h∗, along with a sample g · ĝ from the high entropy
distribution over Gn+1. In the proof, we use g · ĝ to compute the semi-functional challenge ciphertext, and
h∗ to sample MSK together with a semi-functional MSK in Lemma 2 and 5.

Remark 5 (associative). We may deduce the following “extended” associative relations from the basic
associative property along with left and right subgroup indistinguishability:

e(ĝ0, hi) = e(ĝi, h0) and e(g0, ĥi) = e(gi, ĥ0) and e(ĝ0, ĥi) = e(ĝi, ĥ0).

for all

(g0, g1, . . . , gn)← SampG(PP) and (ĝ0, ĝ1, . . . , ĝn)← ŜampG(PP, SP),

(h0, h1, . . . , hn)← SampH(PP) and (ĥ0, ĥ1, . . . , ĥn)← ŜampH(PP, SP).

More concretely, we have:

(1) e(g0 · ĝ0, hi) = e(gi · ĝi, h0) (left subgroup indistinguishability and associative)

(2) e(g0, hi · ĥi) = e(gi, h0 · ĥ0) (right subgroup indistinguishability and associative)

(3) (g0 · ĝ0, hi · ĥi) = e(gi · ĝi, h0 · ĥ0) (right subgroup indistinguishability and (1))

Combining the three equalities above together with the basic associative relation, we obtain the extended
relations.

Remark 6 (parameter hiding). Here, γi corresponds to the value that is hidden in the public parameters, i.e.
the information-theoretically hidden entropy in the semi-functional component, corresponding for instance,
to the Gp2-components in composite-order groups. It is crucial here that we have the same γi over G and
over H, which guarantees that a nominally-SF key can decrypt a semi-functional ciphertext.
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Remark 7. Using the Lewko’s framework [10]:

– if we generate n different constant-dimension bases, then we do not satisfy associative.
– if we generate a O(n)-dimensional basis, then each element in G or H has length Ω(n).

4 Compact HIBE from Dual System Groups

We provide a construction of a compact HIBE scheme from dual system groups where the ciphertext
comprises two group elements in G and one in GT . The correctness of the scheme relies on generic
properties of dual system groups; however, security requires an additional assumption, namely that ord(H)
is prime, which is indeed satisfied by our instantiation of dual system groups in the prime-order setting.
Later on, we describe how to relax this requirement (see Remark 11).

Overview. We begin with an informal overview of the scheme. Fix a bilinear group with a pairing e :
G × G → GT . The starting point of our scheme is the Boneh-Boyen-Goh HIBE [2] with hierarchical
identity space Zn

ord(H):

MPK := (g, u1, . . . , un, un+1, e(g, g)
α)

CTx := (gs, (un+1 ·
ℓ∏

k=1

uxk
k )s, e(g, g)αs ·m)

SKy := (gr, MSK · (un+1 ·
ℓ∏

k=1

uykk )r, urk+1, . . . , u
r
n)

Note that MPK contains n + 2 group elements in G, which we will generate using SampP(1λ, 1n+1 ).
We will use SampG(PP) to generate the terms (gs, us1, . . . , u

s
n, u

s
n+1) in the ciphertext, and SampH(PP) to

generate the terms (gr, ur1, . . . , u
r
n, u

r
n+1) in the secret key.

4.1 Construction

Setup(1λ, 1n): On input (1λ, 1n), first sample

(PP, SP)← SampP(1λ, 1n+1).

Pick MSK ←R H and output the master public and secret key pair

MPK := ( PP, µ(MSK) ) and MSK.

Enc(MPK,x,m): On input an identity vector x := (x1, . . . , xℓ) ∈ Zℓ
ord(H) and m ∈ GT , sample

(g0, g1, . . . , gn, gn+1)← SampG(PP; s), g′T ← SampGT(µ(MSK); s)

and output

CTx :=
(
C0 := g0, C1 := gn+1 · gx1

1 · · · g
xℓ
ℓ , C2 := g′T ·m

)
∈ G×G×GT .

KeyGen(MPK, MSK,y): On input an identity vector y := (y1, . . . , yℓ) ∈ Zℓ
ord(H), sample

(h0, h1, . . . , hn, hn+1)← SampH(PP)

and output

SKy :=
(
K0 := h0, K1 := MSK · hn+1 · hy11 · · ·h

yℓ
ℓ , Kℓ+1 := hℓ+1, . . . , Kn := hn

)
∈ (H)n−ℓ+2.
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Dec(MPK, SKy, CTx): If y is a prefix of x, run

SKx := (K0,K1, . . .)← KeyDel(MPK, SKy,x).

Compute

e(g0, MSK)← e(C0,K1)/e(C1,K0),

and recover the message as

m← C2 · e(g0, MSK)−1 ∈ GT .

KeyDel(MPK, SKy,y
′): On input a secret key SKy := (K0,K1,Kℓ+1, . . . ,Kn) and an identity vector

y′ := (y1, . . . , yℓ′) ∈ Zℓ′

ord(H), compute

S̃Ky′ :=
(
K0, K1 ·K

yℓ+1

ℓ+1 · · ·K
yℓ′
ℓ′ , Kℓ′+1, . . . , Kn

)
,

and sample SK′ ← KeyGen(MPK, 1,y′). Output

SKy′ := S̃Ky′ · SK′

where · denotes entry-wise multiplication.

Delegation. Fix y and y′ such that y is a prefix of y′. Let S̃Ky′ and SK′ be the values computed by
KeyDel(MPK, SKy,y

′). It is easy to see that SK′ lies in the support of KeyGen(MPK, MSK,y′). By linearity
of KeyGen and the H-subgroup property, multiplying by SK′ re-randomizes the key and yields independence
of the path taken (c.f. Section 2).

Correctness. It suffices to establish correctness for x = y using the delegation property. Observe that for
CTx, SKx,

e(C0,K1)/e(C1,K0) = e
(
g0, MSK · (hn+1 · hx1

1 · · ·h
xℓ
ℓ )
)
· e
(
gn+1 · gx1

1 · · · g
xℓ
ℓ , h0

)−1

= e(g0, MSK) ·
(
e(g0, hn+1) · e(g0, h1)x1 · · · e(g0, hℓ)xℓ

)
·
(
e(gn+1, h0) · e(g1, h0)x1 · · · e(gℓ, h0)xℓ

)−1

= e(g0, MSK)

where the last equality relies on associative, namely e(g0, hi) = e(gi, h0) and e(gn+1, h0) = e(g0, hn+1).
Finally, by projective, g′T = e(g0, MSK). Correctness follows readily.

4.2 Proof of Security

We prove the following theorem:

Theorem 1. Under the left and right subgroup indistinguishability (described in Section 3) and the
additional requirement that ord(H) is prime, our HIBE scheme in Section 4.1 is adaptively secure (in the
sense of Definition 1). More precisely, for any adversary A that makes at most q key queries against the
HIBE scheme, there exist adversaries B1,B2,B3 such that:

AdvA(λ)
HIBE(λ) ≤ AdvLS

B1
(λ) + q · AdvRS

B2
(λ) + q · AdvRS

B3
(λ),

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n),
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where poly(λ, n) is independent of Time(A).

The proof follows via a series of games, analogous to that in [20] (which are in turn different from that
in [11]) and summarized in Fig. 5. To describe the games, we must first define semi-functional keys
and ciphertexts. Following [20], we first define two auxiliary algorithms, and define the semi-functional
distributions via these auxiliary algorithms.

Auxiliary algorithms. We consider the following algorithms:

Ênc(PP,x,m; MSK, t): On input x := (x1, . . . , xℓ) ∈ Zℓ
ord(H), m ∈ GT , and t := (T0, T1, . . . , Tn, Tn+1) ∈

Gn+2, output

CTx :=

(
T0, Tn+1 ·

ℓ∏
k=1

T xk
k , e(T0, MSK) ·m

)

K̂eyGen(PP, MSK′,y; t): On input MSK′ ∈ H, y := (y1, . . . , yℓ) ∈ Zℓ
ord(H), and t := (T0, T1, . . . , Tn, Tn+1) ∈

Hn+2, output

SKy :=

(
T0, MSK′ · Tn+1 ·

ℓ∏
k=1

T yk
k , Tℓ+1, . . . , Tn

)
.

Auxiliary distributions.

Semi-functional master secret key.

M̂SK := MSK · (h∗)α,

where α←R Zord(H) .

Semi-functional ciphertext.

Ênc(PP,x,m; MSK, g · ĝ ),

where g← SampG(PP) and ĝ← ŜampG(PP, SP) ; we can also write this distribution more explicitly as

(
g0 · ĝ0, (gn+1 · ĝn+1) ·

ℓ∏
k=1

(gk · ĝk)xk , e(g0 · ĝ0, MSK) ·m
)
,

where (g0, g1, . . . , gn, gn+1)← SampG(PP) and (ĝ0, ĝ1, . . . , ĝn, ĝn+1)← ŜampG(PP, SP).

Pseudo-normal secret key.

K̂eyGen(PP, MSK,y; h · ĥ ),

where fresh h← SampH(PP) and ĥ← ŜampH(PP, SP) are chosen for each secret key; we can also write
this distribution more explicitly as(

h0 · ĥ0, MSK · (hn+1 · ĥn+1) ·
ℓ∏

k=1

(hk · ĥk)yk , hℓ+1 · ĥℓ+1, . . . , hn · ĥn
)

where (h0, h1, . . . , hn, hn+1)← SampH(PP) and (ĥ0, ĥ1, . . . , ĥn, ĥn+1)← ŜampH(PP, SP).
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Game Ciphertext CTx∗ Secret Key SKy

0 : Enc(MPK,x∗,mβ) KeyGen(MPK, MSK,y)

real game (g0, gn+1

∏
g
xk
k , e(g0, MSK) ·mβ) (h0, MSK · hn+1

∏
h
yk
k , · · · )

1 : Ênc(PP,x∗,mβ ; MSK, g · ĝ ) K̂eyGen(PP, MSK,y;h)

semi-functional CT

via left subgroup
(g0ĝ0, (gn+1ĝn+1) ·

∏
(gkĝk)

xk , e(g0ĝ0, MSK) ·mβ) (—,—,—)

2.i.1 : Ênc(PP,x∗,mβ ; MSK,g · ĝ) K̂eyGen(PP, MSK,y; h · ĥ )

pseudo-normal SK

via right subgroup
(—,—,—) (h0ĥ0, MSK · hn+1ĥn+1

∏
(hkĥk)

yk , · · · ))

2.i.2 : Ênc(PP,x∗,mβ ; MSK,g · ĝ) K̂eyGen(PP, M̂SK ,y;h · ĥ)
pseudo-SF SK

via parameter-hiding
(—,—,—) (—, M̂SK · hn+1ĥn+1

∏
(hkĥk)

yk ,—)

2.i.3 : Ênc(PP,x∗,mβ ; MSK,g · ĝ) K̂eyGen(PP, M̂SK,y; h )

semi-functional SK

via right group
(—,—,—) (h0, M̂SK · hn+1

∏
h
yk
k , · · · )

3 : Ênc(PP,x∗, random ; MSK,g · ĝ) K̂eyGen(PP, M̂SK,y;h)

final game (—,—, e(g0ĝ0, MSK) · random) (—,—,—)

Fig. 5. Sequence of games, where we drew a box to highlight the differences between each game and the preceding one, omitted
the delegation terms in the explicit expression of SKy, a dash (—) means the same as in the previous game, and Games 2.i.x refers
to the i’th secret key. Here, the product Π denotes Πℓ

k=1.

Pseudo-SF secret key.

K̂eyGen(PP, M̂SK ,y;h · ĥ),

where fresh h ← SampH(PP) and ĥ ← ŜampH(PP, SP) are chosen for each secret key; we can also write
this distribution more explicitly as(

h0 · ĥ0, M̂SK · (hn+1 · ĥn+1) ·
ℓ∏

k=1

(hk · ĥk)yk , hℓ+1 · ĥℓ+1, . . . , hn · ĥn
)

where (h0, h1, . . . , hn, hn+1)← SampH(PP) and (ĥ0, ĥ1, . . . , ĥn, ĥn+1)← ŜampH(PP, SP).

Semi-functional secret key.

K̂eyGen(PP, M̂SK,y; h ),

where a fresh h← SampH(PP) is chosen for each secret key; we can also write this distribution more
explicitly as (

h0, M̂SK · hn+1 ·
ℓ∏

k=1

hykk , hℓ+1, . . . , hn

)
where (h0, h1, . . . , hn, hn+1)← SampH(PP). We note that the semi-functional key generation algorithm is
identical to the normal key generation except that it replaces MSK with M̂SK as input.

Remark 8 (semi-functional keys). We note that semi-functional secret keys in our proof are the same as
that in [20] and different from those in [11, 10, 16, 6]. Specifically, only the term associated with MSK of
our semi-functional key has a SF-component (namely, the semi-functional key is identical to a normal key
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except that MSK is replaced with M̂SK) whereas each term of a semi-functional key in [11, 10, 16, 6] has
independently random SF-components.

Remark 9 (decryption capabilities). Fix identities x∗,y such that x∗ is a prefix of y. Then,

– all types of secret key SKy can decrypt a normal ciphertext CTx∗ ;
– a normal or pseudo-normal secret key SKy can decrypt a semi-functional ciphertext CTx∗ ;
– when using a pseudo-SF or semi-functional secret key SKy to decrypt a semi-functional ciphertext CTx∗ ,

the message is masked by an additional term e(ĝ0, h
∗)α, which is non-zero with high probability.

Game sequence. We present a series of games. We write Advxxx(λ) to denote the advantage of A in
Gamexxx.

– Game0: is the real security game (c.f. Section 2).
– Game1: is the same as Game0 except that the challenge ciphertext is semi-functional.
– Game2,i,1 for i from 1 to q, Game2,i,1 is the same as Game1 except that the first i − 1 keys are semi-

functional, the last q − i keys are normal while the i’th key is pseudo-normal.
– Game2,i,2 for i from 1 to q, Game2,i,2 is the same as Game1 except that the first i − 1 keys are semi-

functional, the last q − i keys are normal while the i’th key is pseudo-SF.
– Game2,i,3 for i from 1 to q, Game2,i,3 is the same as Game1 except that the first i keys are semi-

functional, the last q − i keys are normal.
– Game3: is the same as Game2,q,3, except that the challenge ciphertext is a semi-functional encryption of

a random message in GT .

In Game3, the view of the adversary is statistically independent of the challenge bit β. Hence, Adv3(λ) = 0.
We complete the proof by establishing the following sequence of lemmas.

Remark 10 (relation to functionality). The game sequence in our proof of security is fairly generic in the
sense that it does not exploit the HIBE functionality except in the transition from pseudo-normal to pseudo-
SF keys in Lemma 4. This means that when we extend our result to spatial encryption in Section 8, it suffices
to just modify a single lemma.

4.3 Normal to Semi-Functional Ciphertext

Lemma 1 (Game0 to Game1). For any adversary A that makes at most q key queries, there exists an
adversary B1 such that

|Adv0(λ)− Adv1(λ)| ≤ AdvLS
B1
(λ),

and Time(B1) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The adversary B1 gets as input

(PP, t),

where t is either g or g · ĝ and

g← SampG(PP), ĝ← ŜampG(PP, SP),

and proceeds as follows:

Setup. Pick MSK ←R H and output

MPK := ( PP, µ(MSK) ) .
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Key Queries. On input the j’th secret key query y, output

SKy ← K̂eyGen(PP, MSK,y; SampH(PP)).

Ciphertext. Upon receiving a challenge identity x∗ and two equal length messages m0,m1, pick β ←R

{0, 1} and output

CTx∗ ← Ênc(PP,x∗,mβ; MSK, t).

Guess. When A halts with output β′, B1 outputs 1 if β = β′ and 0 otherwise.

Observe that when t = g, CTx∗ is properly distributed as Enc(MPK,x∗,mβ) from projective, the output is
identical to that in Game0; and when t = g · ĝ, the output is identical to that in Game1. We may therefore
conclude that: |Adv0(λ)− Adv1(λ)| ≤ AdvLS

B1
(λ). ⊓⊔

4.4 Normal to Pseudo-Normal Keys

Lemma 2 (Game2,i−1,3 to Game2,i,1). For i = 1, . . . , q, for any adversary A that makes at most q key
queries, there exists an adversary B2 such that

|Adv2,i−1,3(λ)− Adv2,i,1(λ)| ≤ AdvRS
B2
(λ),

and Time(B2) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A). (We note that
Game2,0,3 is identical to Game1.)

Proof. The adversary B2 gets as input

(PP, h∗,g · ĝ, t),

where t is either h or h · ĥ and

h← SampH(PP), ĥ← ŜampH(PP, SP),

and proceeds as follows:

Setup. Pick MSK ←R H, α←R Zord(H) and set M̂SK := MSK · (h∗)α. Output

MPK := ( PP, µ(MSK) ) .

Key Queries. On input the j’th secret key query y, output

SKy ←


K̂eyGen(PP, M̂SK,y; SampH(PP)) if j < i

K̂eyGen(PP, MSK,y; t) if j = i

K̂eyGen(PP, MSK,y; SampH(PP)) if j > i

.

Ciphertext. Upon receiving a challenge identity x∗ and two equal length messages m0,m1, pick β ←R

{0, 1} and output

CTx∗ ← Ênc(PP,x∗,mβ; MSK,g · ĝ).

Guess. When A halts with output β′, B2 outputs 1 if β = β′ and 0 otherwise.

Observe that when t = h, the output is identical to that in Game2,i−1,3; and when t = h · ĥ, the output is
identical to that in Game2,i,1. We may therefore conclude that: |Adv2,i−1,3(λ)− Adv2,i,1(λ)| ≤ AdvRS

B2
(λ).
⊓⊔
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4.5 Pseudo-Normal to Pseudo-SF Keys

First, we recall the following statistical lemma implicit in [11].

Lemma 3 (implicit in [11]). For any prime p, for all x := (x1, . . . , xℓ∗) ∈ Zℓ∗
p and y := (y1, . . . , yℓ) ∈ Zℓ

p,
where y is not a prefix of x, the following distribution is identically distributed to the uniform distribution
over Zn−ℓ+2

p :

{γ1x1 + · · ·+ γℓ∗xℓ∗ + γn+1, γ1y1 + · · ·+ γℓyℓ + γn+1, γℓ+1, . . . , γn} ,

where γ1, . . . , γn, γn+1 ←R Zp.

Lemma 4 (Game2,i,1 to Game2,i,2). For i = 1, . . . , q, we have

|Adv2,i,1(λ)− Adv2,i,2(λ)| = 0.

Proof. Observe that the only difference between Game2,i,1 and Game2,i,2 lies in that we replace MSK in
Game2,i,1 with M̂SK in Game2,i,2 as input for the i’th secret key query, where MSK ←R H, α ←R Zord(H)

and M̂SK := MSK · (h∗)α. Thus, it suffices to establish the following:

Claim. For all α, all x := (x1, . . . , xℓ∗) ∈ Zℓ∗

ord(H) and y := (y1, . . . , yℓ) ∈ Zℓ
ord(H), where y is not

a prefix of x, the following distributions are identically distributed:

{PP, MSK, (h∗)α, Ênc(PP,x,mβ; MSK,g · ĝ), K̂eyGen(PP, MSK ,y;h · ĥ)} and

{PP, MSK, (h∗)α, Ênc(PP,x,mβ; MSK,g · ĝ), K̂eyGen(PP, MSK · (h∗)α ,y;h · ĥ)}.

We defer the proof of the claim for now, and first explain how the lemma follows from the claim. Given
(PP, MSK, (h∗)α), we can output MPK := (PP, µ(MSK)) and generate the first i − 1 semi-functional secret
keys, and the remaining q − i normal secret keys using

K̂eyGen(PP, MSK · (h∗)α,y; SampH(PP)) and K̂eyGen(PP, MSK,y; SampH(PP))

respectively.
This would in turn imply that Game2,i,1 and Game2,i,2 are statistically indistinguishable. We note that

this holds even if the adversary chooses y adaptively after seeing the challenge ciphertext CTx∗ , or if the
challenge x∗ is chosen after the adversary sees SKy. ⊓⊔

Proof (of claim). By linearity, we have:

Ênc(PP,x,mβ; MSK,g · ĝ) = Ênc(PP,x,mβ; MSK,g) · Ênc(PP,x, 1; MSK, ĝ)

K̂eyGen(PP, MSK,y;h · ĥ) = K̂eyGen(PP, MSK,y;h) · K̂eyGen(PP, 1,y; ĥ)

K̂eyGen(PP, MSK · (h∗)α,y;h · ĥ) = K̂eyGen(PP, MSK,y;h) · K̂eyGen(PP, (h∗)α,y; ĥ)

Therefore, it suffices to show that:

{PP, MSK, (h∗)α, Ênc(PP,x, 1; MSK, ĝ), K̂eyGen(PP, 1 ,y; ĥ)} and

{PP, MSK, (h∗)α, Ênc(PP,x, 1; MSK, ĝ), K̂eyGen(PP, (h∗)α ,y; ĥ)}

are identically distributed. By parameter-hiding, we may replace (PP, h∗, ĝ, ĥ ) with (PP, h∗, ĝ · ĝ′, ĥ · ĥ′ ),
which means it suffices to show that:

{PP, MSK, (h∗)α, Ênc(PP,x, 1; MSK, ĝ · ĝ′), K̂eyGen(PP, 1 ,y; ĥ · ĥ′)} and

{PP, MSK, (h∗)α, Ênc(PP,x, 1; MSK, ĝ · ĝ′), K̂eyGen(PP, (h∗)α ,y; ĥ · ĥ′)}
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are identically distributed. At this point, we expand the expressions for Ênc and K̂eyGen:

Ênc(PP,x, 1; MSK, ĝ · ĝ′) = (ĝ0, ĝn+1 · ĝx1
1 · · · ĝ

xℓ∗
ℓ∗ · ĝ

γn+1+x1γ1+···+xℓ∗γℓ∗
0 , e(ĝ0, MSK))

K̂eyGen(PP, 1,y; ĥ · ĥ′) = (ĥ0, ĥn+1 · ĥy11 · · · ĥ
yℓ
ℓ · ĥ

γn+1+y1γ1+···+yℓγℓ
0 , ĥℓ+1 · ĥ

γℓ+1

0 , . . . , ĥn · ĥγn0 )

K̂eyGen(PP, (h∗)α,y; ĥ · ĥ′) = (ĥ0, (h
∗)α · ĥn+1 · ĥy11 · · · ĥ

yℓ
ℓ · ĥ

γn+1+y1γ1+···+yℓγℓ
0 , ĥℓ+1 · ĥ

γℓ+1

0 , . . . , ĥn · ĥγn0 )

Since h∗ lies in the group generated by ĥ0, we may replace (h∗)α by (ĥ0)
α′

and “for all α” by “for all
α′” and obtain a stronger claim. Now, by focusing on the exponents of the terms involving ĝ0 and ĥ0, it
suffices to show that for all α′:

{γn+1 + x1γ1 + · · ·+ xℓ∗γℓ∗ , γn+1 + y1γ1 + · · ·+ yℓγℓ, γℓ+1, . . . , γn} and

{γn+1 + x1γ1 + · · ·+ xℓ∗γℓ∗ , α
′ + γn+1 + y1γ1 + · · ·+ yℓγℓ, γℓ+1, . . . , γn}

are identically distributed. The last statement follows readily from Lemma 3. ⊓⊔

4.6 Pseudo-SF to Semi-Functional Keys

Lemma 5 (Game2,i,2 to Game2,i,3). For i = 1, . . . , q, for any adversaryA that makes at most q key queries,
there exists an adversary B3 such that

|Adv2,i,2(λ)− Adv2,i,3(λ)| ≤ AdvRS
B3
(λ),

and Time(B3) ≈ Time(A) + q · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The proof is completely analogous to Lemma 2, except we use M̂SK instead of MSK to generate the
i’th key query. That is, B3 is exactly the same as B2, with the following change:

Key Queries. On input the j’th secret key query y, output

SKy ←


K̂eyGen(PP, M̂SK,y; SampH(PP)) if j < i

K̂eyGen(PP, M̂SK ,y; t) if j = i

K̂eyGen(PP, MSK,y; SampH(PP)) if j > i

.

Observe that when t = h, the output is identical to that in Game2,i,3; and when t = h · ĥ, the output is
identical to that in Game2,i,2. We may therefore conclude that: |Adv2,i,2(λ)−Adv2,i,3(λ)| ≤ AdvRS

B3
(λ). ⊓⊔

4.7 Final Transition

Lemma 6 (Game2,q,3 to Game3). For any adversary A, we have

|Adv2,q,3(λ)− Adv3(λ)| = 0.

Proof. First, we sample (MSK, M̂SK) in both games as follows: pick M̂SK ←R H, α ←R Zord(H) and set
MSK := M̂SK · (h∗)α. We may then simulate key set-up and answer key queries given just (PP, M̂SK) as
follows:

Setup. Observe that

µ(MSK) = µ(M̂SK) · µ((h∗)α) = µ(M̂SK)

where in the last equality, we use orthogonality µ(h∗) = 1. Output

MPK :=
(

PP, µ(M̂SK)
)
.
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Key Queries. On input the j’th secret key query y, output

SKy ← K̂eyGen(PP, M̂SK,y; SampH(PP)).

Now, observe that the challenge ciphertext in Game2,q,3 is given by:

Ênc(PP,x∗,mβ; MSK,g · ĝ) = (C0, C1, C
′
2 ·mβ),

where (C0, C1) depend only on g · ĝ = (g0 · ĝ0, . . .), and C ′
2 is given by:

C ′
2 = e(g0 · ĝ0, MSK) = e(g0 · ĝ0, M̂SK · (h∗)α) = e(g0 · ĝ0, M̂SK) · e(ĝ0, h∗)α ,

where in the last equality, we use linearity and the fact that e(g0, (h∗)α) = 1 (see Remark 1). Recall that
(PP, M̂SK,g · ĝ) are all statistically independent of α←R Zord(H). Then, by non-degeneracy, given M̂SK, all
of the secret keys, along with (C0, C1) in the challenge ciphertext, the quantity

e(ĝ0, h
∗)α

is uniformly distributed over GT . This implies the challenge ciphertext is identically distributed to a semi-
functional encryption of a random message in GT , as in Game3. We may then conclude that: |Adv2,q,3(λ)−
Adv3(λ)| = 0. ⊓⊔

Remark 11. In our composite-order instantiation, we only have the weaker guarantee that e(ĝ0, h∗)α has
at least 2λ bits of min-entropy, instead of being uniform over GT . We will modify the HIBE scheme as
follows: the message space is now {0, 1}λ, and we replace the term g′T ·m in the ciphertext with:

H(g′T )⊕m,

where H : GT → {0, 1}λ is a pairwise independent hash function. By the left-over hash lemma, we still
have |Adv2,q,3(λ)−Adv3(λ)| ≤ 2−Ω(λ). We will also require a composite-order analogue of Lemma 3 again
implicit in [11], where we quantify over prefixes x,y such that y (mod pi) is not a prefix of x (mod pi) for
every prime divisor pi of N . This restriction is essentially WLOG, since we may otherwise find a non-trivial
factor of N from the adversary’s key queries.

5 Instantiations in composite-order groups

In this section, we present an instantiation of dual system groups from subgroup decisional assumption in
composite-order bilinear groups. The construction is implicit in [11].

5.1 Composite-Order Bilinear Groups

A generator G takes as input a security parameter λ and outputs a description (GN , GT , e), where N is
product of distinct primes of Θ(λ) bits, GN and GT are cyclic groups of order N (specified using their
respective generators), and e : GN ×GN → GT is a non-degenerate bilinear map. We require that the group
operations in GN and GT as well the bilinear map e are computable in deterministic polynomial time with
respect to λ. We consider groups G whose orders are products of three distinct primes p1, p2, p3 (that is,
N = p1p2p3). For every divisor n of N , we denote by Gn the subgroup of GN of order n. We use g1, g2, g3
to denote random generators of the subgroups Gp1 , Gp2 , Gp3 of order p1, p2, and p3 respectively.

Assumption 1 For any adversary A, we define the advantage function:

AdvDS1
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣
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where

(N,GN , GT , g1, g2, g3, e)← G(1λ);
h123 ←R GN ;

D := ((N,GN , GT , e); g1, g3, h123);

T0 ←R Gp1 , T1 ←R Gp1p2 .

Assumption 2 For any adversary A, we define the advantage function:

AdvDS2
A (λ) :=

∣∣Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]
∣∣

where

(N,GN , GT , g1, g2, g3, e)← G(1λ);
h123 ←R GN , h23 ←R Gp2p3 , g12 ←R Gp1p2 ;

D := ((N,GN , GT , e); g1, g3, h123, h23, g12);

T0 ←R Gp1p3 , T1 ←R GN .

5.2 Construction

SampP(1λ, 1n): On input (1λ, 1n), do:

– run (N,GN , GT , g1, g2, g3, e) ← G(1λ), where G(1λ) is a symmetric composite-order group
generator;

– define (G,H,GT , e) := (GN , GN , GT , e);

– define µ : GN → GT by µ(h) := e(g1, h);

– sample w ←R Zn
N , h123 ←R GN , h∗ ←R Gp2p3 (we assume that h123 is a generator of GN and h∗

is a generator of Gp2p3 ; these occur with overwhelming probability);

Output

PP := ( (N,G,H,GT , e); g1, g
w
1 , g3, h123 ) and SP := ( h∗, g2, g

w
2 ) .

Note that ord(H) = N and ord(h∗) = p2p3.

SampGT(gT ): Pick s←R ZN and output gsT ∈ GT .

SampG(PP): Pick s←R ZN and output (gs1, g
sw
1 ) ∈ Gn+1

p1 .

SampH(PP): Pick r ←R ZN , X3 ←R Gn
p3 and output (gr1 · gr3, grw1 ·X3) ∈ Gn+1

p1p3 .

ŜampG(PP, SP): Pick ŝ←R Z∗
N and output (gŝ2, g

ŝw
2 ) ∈ Gn+1

p2 .

ŜampH(PP, SP): Pick r̂ ←R Z∗
N , X3 ←R Gn

p3 and output (gr̂2 · gr̂3, gr̂w2 ·X3) ∈ Gn+1
p2p3 .

Correctness. We check correctness properties as follows:

(projective.) For all h ∈ GN and s ∈ ZN , we have

SampGT(µ(h); s) = SampGT(e(g1, h); s) = e(g1, h)
s = e(gs1, h) = e(SampG0(PP; s), h).
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(associative.) We may write w := (w1, . . . , wn), then for all

(gs1, g
sw1
1 , . . . , gswn

1 )← SampG(PP) and (gr1 · gr3, g
rw1
1 ·X3,1, . . . , g

rwn
1 ·X3,n)← SampH(PP)

and for all i = 1, . . . , n, we have

e(gs1, g
rwi
1 ·X3,i) = e(g1, g1)

srwi = e(gswi
1 , gr1 · gr3).

(H-subgroup.) This follows readily from the fact that ZN is an additive group.

Security. We check security properties as follows:

(orthogonality.) This follows readily from the fact that g1 and h∗ lie in orthogonal subgroups Gp1 and
Gp2p3 .

(non-degeneracy.) For all gŝ2 ← ŜampG0(PP, SP; ŝ), we have

e(gŝ2, h
∗) = e(g2, h

∗)ŝ ̸= 1 (i.e., ord(e(gŝ2, h
∗)) = p2)

where the final inequality follows from the fact that h∗ is a generator of Gp2p3 and ŝ ∈ Z∗
N ; thus,

e(gŝ2, h
∗)α has at least log p2 bits of min-entropy, where α ←R ZN . Moreover, for all gr̂2 · gr̂3 ←

ŜampH0(PP, SP; r̂), gr̂2 ·gr̂3 is a generator of Gp2p3 since r̂ ∈ Z∗
N . Non-degeneracy for h∗ follows readily.

We establish left subgroup indistinguishability, right subgroup indistinguishability, and parameter-hiding in
next three subsections. The left and right subgroup indistinguishability relies on computational assumptions
in composite-order groups, whereas parameter-hiding is unconditional.

5.3 Left Subgroup Indistinguishability

We may rewrite the corresponding advantage function as:

AdvLS
A (λ) :=

∣∣Pr[ A(PP,g) = 1 ]− Pr[ A(PP,g · ĝ) = 1 ]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g := (gs1, g
sw
1 ), s←R ZN ;

ĝ := (gŝ2, g
ŝw
2 ), ŝ←R Z∗

N .

Lemma 7 (DS1 to LS). For any adversary A, there exists an adversary B such that:

AdvLS
A (λ) ≤ AdvDS1

B (λ) + 1/p1 + 2/p2 + 1/p3.

and Time(B) ≈ Time(A) + poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The adversary B gets as input

( (N,GN , GT , e); g1, g3, h123, T ) ,

where either T ←R Gp1 or T ←R Gp1p2 , and proceeds as follows:

Simulating PP. Pick w←R Zn
N and output

PP := ( (N,G,H,GT , e); g1, g
w
1 , h123, g3 ) .

Observe that PP is properly distributed as long as h123 is a generator of GN ; this occurs with probability
at least 1− 1/p1 − 1/p2 − 1/p3.
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Simulating the challenge. Output (T, Tw).

Observe that when T ←R Gp1 , the output is identical to (PP,g); and when T ←R Gp1p2 and the Gp2-
component of T is not the identity, which occurs with probability at least 1− 1/p2, the output is identical to
(PP,g · ĝ). The lemma then follows readily. ⊓⊔

5.4 Right Subgroup Indistinguishability

We may rewrite the corresponding advantage function as:

AdvRS
A (λ) :=

∣∣Pr[ A(PP, h∗,g · ĝ,h) = 1 ]− Pr[ A(PP, h∗,g · ĝ,h · ĥ) = 1 ]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g := (gs1, g
sw
1 ), s←R ZN ;

ĝ := (gŝ2, g
ŝw
2 ), ŝ←R Z∗

N ;

h := (gr1 · gr2, grw1 ·X3), r ←R ZN , X3 ←R Gn
p3 ;

ĥ := (gr̂2 · gr̂3, gr̂w2 ·Y3), r̂ ←R Z∗
N , Y3 ←R Gn

p3 .

Lemma 8 (DS2 to RS). For any adversary A, there exists an adversary B such that:

AdvRS
A (λ) ≤ AdvDS2

B (λ) + 1/p2 + 4/p2 + 2/p3.

and Time(B) ≈ Time(A) + poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. The adversary B gets as input

( (N,GN , GT , e); g1, g3, h123, h23, g12, T ) ,

where either T ←R Gp1p3 or T ←R GN , and proceeds as follows:

Simulating auxiliary input PP, h∗,g · ĝ. Pick w←R Zn
N and output

PP := ( (N,G,H,GT , e); g1, g
w
1 , g3, h123 ) and h∗ := h23 and g · ĝ := (g12, g

w
12).

Observe that PP, h∗,g · ĝ are properly distributed as long as h123 is a generator of GN , h23 is a generator
of Gp2p3 , and the Gp2-component of g12 is not the identity; these occur with probability at least 1 −
1/p1 − 3/p2 − 2/p3.

Simulating the challenge. Pick X′
3 ←R Gn

p3 and output (T, Tw ·X′
3).

Observe that when T ←R Gp1p3 , the output is identical to (PP, h∗,g · ĝ,h); and when T ←R GN and
the Gp2-component of T is not the identity, which occurs with probability at least 1 − 1/p2, the output is
identical to (PP, h∗,g · ĝ,h · ĥ). The lemma then follows readily. ⊓⊔

5.5 Parameter-Hiding

We may rewrite the corresponding parameter-hiding as:

Lemma 9 (parameter-hiding). The following distributions are identically distributed{
PP, h∗, (gŝ2, g

ŝw
2 ), (gr̂2 · gr̂3, gr̂w2 ·X3)

}
and

{
PP, h∗, (gŝ2, g

ŝ(w+w′)
2 ), (gr̂2 · gr̂3, g

r̂(w+w′)
2 ·X3)

}
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where

(PP, SP)← SampP(1λ, 1n); ŝ, r̂ ←R Z∗
N ; X3 ←R Gn

p3 ; w
′ ←R Zn

N .

Proof. Observe that h∗ is a generator of Gp2p3 and PP has the form ((N,G,H,GT , e); g1, g
w
1 , g3, h123),

which depend only on w modulo p1 since

gw1 = g
w ( mod p1 )
1 .

The lemma follows readily from the Chinese Remainder Theorem, namely, w modulo p1 and modulo p2 are
uncorrelated. ⊓⊔

6 Instantiations from d-LIN in prime-order groups

We provide an instantiation of dual system groups from d-LIN in asymmetric prime-order bilinear groups.
The starting point of our construction uses ideas from dual vector pairing spaces [13, 14], but the final
construction is fairly different.

Combined with our HIBE scheme in Section 4 and instantiation from d-LIN in Appendix 6, we obtain a
depth n HIBE based on d-LIN with the following parameters:

|MPK| = d(d+ 1)(n+ 2)|G1|+ d(d+ 1)(n+ 2)|G2|+ d|GT | and

|SK| = (d+ 1)(n+ 1)|G2| and |CT| = 2(d+ 1)|G1|+ |GT |

A self-contained description of our HIBE scheme is given in Appendix 7.

6.1 Prime-Order Bilinear Groups

A generator G takes as input a security parameter λ and outputs a description (p,G1, G2, GT , g1, g2, e),
where p is a prime of Θ(λ) bits; G1, G2 and GT are cyclic groups of order p; g1, g2 are generators of G1

and G2 respectively; and e : G1 ×G2 → GT is a non-degenerate bilinear map.

Assumption 3 (d-LIN: the d-linear assumption in G1) For any adversary A, we define the advantage
function:

Advd-LIN
A (λ) := |Pr[A(D,T0)− Pr[A(D,T1)]|

where

(p,G1, G2, GT , g1, g2, e)← G(1λ);
s1, . . . , sd ←R Zp; a1, . . . , ad, sd+1 ←R Z∗

p;

D := ((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , ga1s11 , . . . , gadsd1 );

T0 := g
ad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+sd+1

1 .

Remark 12. Typically, we sample a1, . . . , ad, sd+1 ←R Zp; this yields a (d + 1)/p negligible difference in
the advantage.

Matrix-in-the-exponent. Given two vectors x = (x1, . . . , xn),y = (y1, . . . , yn) over scalars, we use ⟨x,y⟩
to denote the standard dot product x⊤y. Given a group element g, we write gx to denote (gx1 , . . . , gxn);
we define gA where A is a matrix in an analogous way. Note that given a matrix of group elements gA,
and a matrix B of “exponents”, one can efficiently compute gAB; we will also denote this computation
by (gA)B. On the other hand, if G1,G2,GT are three groups endowed with an efficient bilinear map e :

G1 × G2 → GT , then given gA1 , gB2 for g1 ∈ G1, g2 ∈ G2, one can efficiently compute e(g1, g2)
A⊤B via

(e(g1, g2)
A⊤B)ij =

∏
k e(g

Ak,i

1 , g
Bk,j

2 ). We will use e(gA1 , gB2 ) = e(g1, g2)
A⊤B to denote this operation.
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6.2 Construction

Let πL, πR be the projection maps that map a (d+ 1)× (d+ 1) matrix to the left d columns and right-most
column respectively.

SampP(1λ, 1n): On input (1λ, 1n), do:

– run (p,G1, G2, GT , g1, g2, e)← G(1λ), where G(1λ) is an asymmetric prime-order group generator;

– define (G,H,GT , e) := (Gd+1
1 , Gd+1

2 , GT , e);

– sample B ←R GLd+1(Zp) and set B∗ := (B−1)⊤; pick A1, . . . ,An ←R Z(d+1)×(d+1)
p and a

random full-rank diagonal matrix R in Z(d+1)×(d+1)
p whose bottom-right entry is 1; define

D := πL(B), f := πR(B), Di := πL(BAi), fi := πR(BAi)

D∗ := πL(B
∗R), f∗ := πR(B

∗R), D∗
i := πL(B

∗A⊤
iR), f∗i := πR(B

∗A⊤
iR)

– define µ : Gd+1
2 → Gd

T by µ(gk2 ) = e(gD1 , gk2 ) for all k ∈ Zd+1
p .

– Set h∗ := gf
∗

2 ;

Output

PP :=

 (p,G,H,GT , e);
gD1 , gD1

1 , . . . , gDn
1

gD
∗

2 , g
D∗

1
2 , . . . , g

D∗
n

2

 and SP :=

 gf1, gf11 , . . . , gfn1

gf
∗

2 , g
f∗1
2 , . . . , g

f∗n
2

 .

Note that ord(H) = p and ord(h∗) = p.

SampGT(gpT ): Pick s←R Zd
p and output gs

⊤p
T ∈ GT .

SampG(PP): Pick s←R Zd
p and output (gDs

1 , gD1s
1 , . . . , gDns

1 ) ∈ (Gd+1
1 )n+1.

SampH(PP): Pick r←R Zd
p and output (gD

∗r
2 , g

D∗
1r

2 , . . . , g
D∗

nr
2 ) ∈ (Gd+1

2 )n+1.

ŜampG(PP, SP): Pick ŝ←R Z∗
p and output (gŝf1 , gŝf11 , . . . , gŝfn1 ) ∈ (Gd+1

1 )n+1.

ŜampH(PP, SP): Pick r̂ ←R Z∗
p and output (gr̂f

∗
2 , g

r̂f∗1
2 , . . . , g

r̂f∗n
2 ) ∈ (Gd+1

2 )n+1.

Correctness. We check correctness properties as follows:

(projective.) For all k ∈ Zd+1
p and all coin tosses s ∈ Zd

p, we have µ(gk2 ) = e(g1, g2)
D⊤k and

SampGT(µ(gk2 ); s) = e(g1, g2)
s⊤(D⊤k) = e(gDs

1 , gk2 ) = e(SampG0(PP; s), gk2 ),

where in the second equality, we use the fact that s⊤(D⊤k) = (Ds)⊤k.

(associative.) We need to show that for all

(gDs
1 , gD1s

1 , . . . , gDns
1 )← SampG(PP) and (gD

∗r
2 , g

D∗
1r

2 , . . . , g
D∗

nr
2 )← SampH(PP)

and for all i = 1, . . . , n, we have

e(gDs
1 , g

D∗
i r

2 ) = e(gDis
1 , gD

∗r
2 ).
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Observe that for all i,

B⊤(B∗A⊤
iR) = (B⊤B∗)A⊤

iR = A⊤
iR = A⊤

i (B
⊤B∗)R = (BAi)

⊤(B∗R).

This implies

[D∥f ]⊤[D∗
i ∥f∗i ] = [Di∥fi]⊤[D∗∥f∗]

and thus D⊤D∗
i = D⊤

iD
∗. Associative follows readily.

(H-subgroup.) This follows readily from the fact that Zd
p is an additive group.

Security. We check security properties as follows:

(orthogonality.) For gD1 and gf
∗

2 , we have

µ(gf
∗

2 ) = e(gD1 , gf
∗

2 ) = (1, . . . , 1)⊤,

where in the equality, we use the fact that

D⊤f∗ = πL(B)⊤πR(B
∗R) = πL(B)⊤πR(B

∗) = (0, . . . , 0)⊤.

(non-degeneracy.) For all gDs
1 ← SampG0(PP; s) and gf ŝ1 ← ŜampG0(PP, SP; ŝ), we have

e(gDs
1 · gŝf1 , gf

∗
2 ) = e(gŝf1 , gf

∗
2 ) = e(g1, g2)

ŝ ̸= 1, since ŝ ∈ Z∗
p;

thus, e(gDs
1 · gŝf1 , gf

∗
2 )α is identically distributed to the uniform distribution over GT , where α ←R Zp.

Moreover, for all gr̂f
∗

2 ← ŜampH0(PP, SP; r̂), it is clear that gf
∗

2 lies in the group generated by gr̂f
∗

2 since
r̂ ∈ Z∗

p.

We establish left subgroup indistinguishability, right subgroup indistinguishability, and parameter-hiding in
next three subsections. The left and right subgroup indistinguishability relies on the d-LIN assumption in
prime-order groups, whereas parameter-hiding is unconditional.

6.3 Left Subgroup Indistinguishability

We may rewrite the corresponding advantage function as:

AdvLS
A (λ) :=

∣∣Pr[ A(PP,g) = 1 ]− Pr[ A(PP,g · ĝ) = 1 ]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g := (gDs
1 , gD1s

1 , . . . , gDns
1 ), s←R Zd

p;

ĝ := (gŝf1 , gŝf11 , . . . , gŝfn1 ), ŝ←R Z∗
p.

Lemma 10 (d-LIN to LS). For any adversary A, there exists an adversary B such that:

AdvLS
A (λ) ≤ Advd-LIN

B (λ).

and Time(B) ≈ Time(A) + d2 · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We may write (PP,g,g · ĝ) in term of B,B∗,A1, . . . ,An,R as follows:

PP :=

 (p,G,H,GT , e);
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

g
πL(B

∗R)
2 , g

πL(B
∗A⊤

1R)
2 , . . . , g

πL(B
∗A⊤

nR)
2

 ,
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and

g := (g
B(s0)
1 , g

BA1(s0)
1 , . . . , g

BAn(s0)
1 ),

g · ĝ := (g
B(sŝ)
1 , g

BA1(sŝ)
1 , . . . , g

BAn(sŝ)
1 ),

where s←R Zd
p and ŝ←R Z∗

p (and thus
(
s
0

)
,
(
s
ŝ

)
∈ Zd+1

p ).
The adversary B gets as input(

(p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , ga1s11 , . . . , gadsd1 , g
ad+1(s1+...+sd)+sd+1

1

)
,

where either sd+1 = 0 or sd+1 ←R Z∗
p, and proceeds as follows:

Programming s, ŝ. B implicitly sets

s := (s1, . . . , sd)
⊤ and ŝ := sd+1

where (s1, . . . , sd, sd+1) are as defined in its input. Later on, B will output g if ŝ = sd+1 = 0, and g · ĝ
if ŝ = sd+1 ←R Z∗

p.

Programming B,B∗,A1, . . . ,An,R. We define

W :=



a1

a2
. . .

ad

ad+1 ad+1 · · · ad+1 1


and W∗ :=



a−1
1 −a−1

1 ad+1

a−1
2 −a−1

2 ad+1

. . .
...

a−1
d −a

−1
d ad+1

1


.

Observe that W⊤W∗ = Id+1. It follows immediately that

g
W(sŝ)
1 =


ga1s11

...

gadsd1

g
ad+1(s1+···+sd)+sd+1

1



Next, B samples B̃←R GLd+1(Zp), along with Ã1, . . . , Ãn ←R Z(d+1)×(d+1)
p , and implicitly sets:

B̃∗ := (B̃−1)⊤;

(B,B∗) := (B̃W, B̃∗W∗);

Ai := W−1ÃiW.

It is clear that (B,B∗) and A1, . . . ,An are properly distributed. Note that we have:

BAi = (B̃W)(W−1ÃiW) = B̃ÃiW and B∗A⊤
i = (B̃∗W∗)(W⊤Ã⊤

i (W
−1)⊤) = B̃∗Ã⊤

iW
∗.
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Finally, B picks r̃1, . . . , r̃d ←R Z∗
p and implicitly sets

R :=



a1r̃1

a2r̃2
. . .

adr̃d

1


Observe that R is properly distributed since a1, . . . , ad ̸= 0.

Simulating PP. Observe that for all i = 1, . . . , n, B can compute

g
πL(B)
1 = g

πL(B̃W)
1 and g

πL(BAi)
1 = g

πL(B̃ÃiW)
1

g
πL(B

∗R)
2 = g

πL(B̃
∗W∗R)

2 = g
B̃∗πL(W

∗R)
2 and

g
πL(B

∗A⊤
i R)

2 = g
πL(B̃

∗Ã⊤
i W

∗R)
2 = g

B̃∗Ã⊤
i πL(W

∗R)
2

since it knows (B̃, B̃∗, Ã1, . . . , Ãn), g
W
1 as well as πL(W∗R). Here, we use the fact that

πL(W
∗R) =



r̃1

r̃2
. . .

r̃d

0 0 · · · 0


Simulating the challenge. B outputs the challenge as

g
B(sŝ)
1 = g

B̃W(sŝ)
1 = g

B̃



a1s1
...

adsd

ad+1(s1 + · · ·+ sd) + sd+1


1

along with

g
BAi(sŝ)
1 = g

B̃ÃiW(sŝ)
1 = g

B̃Ãi



a1s1
...

adsd

ad+1(s1 + · · ·+ sd) + sd+1


1 i = 1, . . . , n

Observe that if ŝ = sd+1 = 0, then the output challenge equals g and if ŝ = sd+1 ←R Z∗
p, then the

output challenge equals g · ĝ.

The lemma then follows readily. ⊓⊔
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6.4 Right Subgroup Indistinguishability

We may rewrite the corresponding advantage function as:

AdvRS
A (λ) :=

∣∣Pr[ A(PP, h∗,g · ĝ,h) = 1 ]− Pr[ A(PP, h∗,g · ĝ,h · ĥ) = 1 ]
∣∣

where

(PP, SP)← SampP(1λ, 1n);

g := (gDs
1 , gD1s

1 , . . . , gDns
1 ), s←R Zd

p;

ĝ := (gŝf1 , gŝf11 , . . . , gŝfn1 ), ŝ←R Z∗
p;

h := (gD
∗r

2 , g
D∗

1r
2 , . . . , g

D∗
nr

2 ), r←R Zd
p;

ĥ := (gr̂f
∗

2 , g
r̂f∗1
2 , . . . , g

r̂f∗n
2 ), r̂ ←R Z∗

p.

Lemma 11 (d-LIN to RS). For any adversary A, there exists an adversary B such that:

AdvRS
A (λ) ≤ Advd-LIN

B (λ) + 1/p.

and Time(B) ≈ Time(A) + d2 · poly(λ, n) where poly(λ, n) is independent of Time(A).

Proof. We may write (PP, h∗,g · ĝ,h,h · ĥ) in term of B,B∗,A1, . . . ,An,R as follows:

PP :=

 (p,G,H,GT , e);
g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

g
πL(B

∗R)
2 , g

πL(B
∗A⊤

1R)
2 , . . . , g

πL(B
∗A⊤

nR)
2

 , h∗ := g
πR(B∗R)
2 ,

and

g := (g
B(s0)
1 , g

BA1(s0)
1 , . . . , g

BAn(s0)
1 ),

g · ĝ := (g
B(sŝ)
1 , g

BA1(sŝ)
1 , . . . , g

BAn(sŝ)
1 ),

h := (g
B∗R(r0)
2 , g

B∗A⊤
1R(

r
0)

2 , . . . , g
B∗A⊤

nR(
r
0)

2 ),

h · ĥ := (g
B∗R(rr̂)
2 , g

B∗A⊤
1R(

r
r̂)

2 , . . . , g
B∗A⊤

nR(
r
r̂)

2 ),

where s, r←R Zd
p and ŝ, r̂ ←R Z∗

p (and thus
(
s
0

)
,
(
s
ŝ

)(
r
0

)
,
(
r
r̂

)
∈ Zd+1

p ).
The adversary B gets as input(

(p,G1, G2, GT , e); g1, g2, g
a1
2 , . . . , gad2 , g

ad+1

2 , ga1r12 , . . . , gadrd2 , g
ad+1(r1+...+rd)+rd+1

2

)
,

where either rd+1 = 0 or rd+1 ←R Z∗
p, and proceeds as follows:

Programming r, r̂,R. B picks r̃1, . . . , r̃d ←R Z∗
p and implicitly sets

R :=



a1r̃1

a2r̃2
. . .

adr̃d

1


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and

r := (r̃−1
1 r1, . . . , r̃

−1
d rd)

⊤ and r̂ := rd+1,

where (r1, . . . , rd, rd+1) are as defined in its input. Later on, B will output h if r̂ = rd+1 = 0, and
h · ĥ if r̂ = rd+1 ←R Z∗

p. Observe that R, r, and r̂ are independent and properly distributed as long as
a1, . . . , ad ̸= 0.

Programming B,B∗,A1, . . . ,An. We define

W :=



1 −a−1
1 ad+1

1 −a−1
2 ad+1

. . .
...

1 −a−1
d ad+1

1


and W∗ :=



1

1

. . .

1

a−1
1 ad+1 a

−1
2 ad+1 · · · a−1

d ad+1 1


,

Observe that W⊤W∗ = Id+1. It follows immediately that

g
W∗R(rr̂)
2 =


ga1r12

...

gadrd2

g
ad+1(r1+···+rd)+rd+1

2


Next, B samples B̃←R GLd+1(Zp), along with Ã1, . . . , Ãn ←R Z(d+1)×(d+1)

p , and implicitly sets:

B̃∗ := (B̃−1)⊤;

(B,B∗) := (B̃W, B̃∗W∗);

Ai := W−1ÃiW.

It is clear that (B,B∗) and A1, . . . ,An are properly distributed. Note that we have:

BAi = (B̃W)(W−1ÃiW) = B̃ÃiW and B∗A⊤
i = (B̃∗W∗)(W⊤Ã⊤

i (W
−1)⊤) = B̃∗Ã⊤

iW
∗.

Simulating PP. Observe that for all i = 1, . . . , n, B can compute

g
πL(B)
1 = g

B̃πL(W)
1 and g

πL(BAi)
1 = g

B̃ÃiπL(W)
1

g
πL(B

∗R)
2 = g

πL(B̃
∗W∗R)

2 and g
πL(B

∗A⊤
i R)

2 = g
πL(B̃

∗Ã⊤
i W

∗R)
2

since it knows (B̃, B̃∗, Ã1, . . . , Ãn), πL(W) as well as gW
∗R

2 . Here, we use the fact that

gW
∗R

2 =



(ga12 )r̃1

(ga22 )r̃2

. . .

(gad2 )r̃d

(g
ad+1

2 )r̃1 (g
ad+1

2 )r̃2 · · · (gad+1

2 )r̃d g2


.
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Simulating h∗. Observe that B can compute

h∗ = g
πR(B∗R)
2 = g

πR(B̃∗W∗R)
2 ,

since it knows B̃∗ as well as gW
∗R

2 .

Simulating auxiliary input g · ĝ. B picks s̃←R Zd+1
p and implicitly sets(

s

ŝ

)
:= W−1s̃

Observe that s and ŝ are properly distributed as long as ŝ ̸= 0, which occurs with probability 1 − 1/p.
Now, we can write g · ĝ as:

g
B(sŝ)
1 = g

(B̃W)(W−1s̃)
1 = gB̃s̃

1 and g
BAi(sŝ)
1 = g

(B̃ÃiW)(W−1s̃)
1 = gB̃Ãis̃

1 , i = 1, . . . , n

where (B̃, Ã1, . . . , Ãn, s̃) is known to B. Therefore, B can simulate auxiliary input g · ĝ.

Simulating the challenge. B outputs the challenge as

g
B∗R(rr̂)
2 = g

B̃∗W∗R(rr̂)
2 = g

B̃∗



a1r1
...

adrd

ad+1(r1 + · · ·+ rd) + rd+1


2

along with

g
B∗A⊤

i R(
r
r̂)

1 = g
B̃∗Ã⊤

i W
∗R(rr̂)

1 = g

B̃∗Ã⊤
i



a1r1
...

adrd

ad+1(r1 + · · ·+ rd) + rd+1


2 i = 1, . . . , n

Observe that if r̂ = rd+1 = 0, then the output challenge equals h and if r̂ = rd+1 ←R Z∗
p, then the

output challenge equals h · ĥ.

The lemma then follows readily. ⊓⊔

6.5 Parameter-Hiding

We may rewrite the corresponding parameter-hiding as:

Lemma 12 (parameter-hiding). The following distributions are identically distributedPP, gf
∗

2 ,
gŝf1 , gŝf11 , . . . , gŝfn1

gr̂f
∗

2 , g
r̂f∗1
2 , . . . , g

r̂f∗n
2

 and

PP, gf
∗

2 ,
gŝf1 , g

ŝ(f1+γ1f)
1 , . . . , g

ŝ(fn+γnf)
1

gr̂f
∗

2 , g
r̂(f∗1+γ1f∗)
2 , . . . , g

r̂(f∗n+γnf∗)
2


where (PP, SP)← SampP(1λ, 1n), ŝ, r̂ ←R Z∗

p and γ1, . . . , γn ←R Zp.
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Proof. Fix g1, g2, (B,B∗) and R (that is, we prove that the statement holds for all g1, g2,B,B∗,R).
Following SampP(1λ, 1n), we sample random A1, . . . ,An, set

D = πL(B), f = πR(B), Di = πL(BAi), fi = πR(BAi)

D∗ = πL(B
∗R), f∗ = πR(B

∗R), D∗
i = πL(B

∗A⊤
iR), f∗i = πR(B

∗A⊤
iR).

Next, let V := ed+1e
⊤
d+1 ∈ Z(d+1)×(d+1)

p , that is V is the zero matrix with the bottom-right entry replaced
with 1. Define matrices

A′
i := Ai + γiV, i = 1, . . . , n.

Now, consider the following probability experiment: we run SampP with (A′
1, . . . ,A

′
n) in place of

(A1, . . . ,An) to generate (PP, SP) and output

{PP, h∗, ŜampG(PP, SP), ŜampH(PP, SP)}

Observe that

BA′
i = BAi + γiBV = [ Di ∥ fi + γif ]

where in the second equality, we use the facts that (1) the maps πL and πR are linear; and (2) BV = fe⊤d+1

and thus πR(BV) = f . Similarly,

B∗(A′
i)

⊤R = B∗AiR+ γiB
∗V⊤R = [ D∗

i ∥ f∗i + γif
∗ ]

Here, we also use the fact that V⊤R = V, since R is a diagonal matrix with bottom-right entry 1. Observe
that:

– if γ1 = · · · = γn = 0, then we obtain the left distribution in the statement of the lemma;

– if γ1, . . . , γn ←R Zp, then we obtain the right distribution in the statement of the lemma;

– whether we use γ1 = · · · = γn = 0 or γ1, . . . , γn ←R Zp, we exactly obtain the same distribution for
A1, . . . ,An and A′

1, . . . ,A
′
n.

The lemma follows readily from combining the three observations. ⊓⊔

7 Concrete HIBE scheme from d-LIN in prime-order groups

In this section, we show how the concrete HIBE scheme from d-LIN works in prime-order groups. Recall
that πL : Z(d+1)×(d+1)

p → Z(d+1)×d
p is the projection map that maps a (d+ 1)× (d+ 1) matrix to the left d

columns.

Setup(1λ, 1n): On input (1λ, 1n), sample

B,B∗,R←R GLd+1(Zp), A1, . . . ,An+1 ←R Z(d+1)×(d+1)
p , k←R Zd+1

p

such that B⊤B∗ = I and R is a diagonal matrix whose bottom-right entry is 1, and output the master
public and secret key pair

MPK :=

 g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn+1)
1

g
πL(B

∗R)
2 , g

πL(B
∗A⊤

1R)
2 , . . . , g

πL(B
∗A⊤

n+1R)

2

; e(g1, g2)
k⊤πL(B)


∈ (G

(d+1)×d
1 )n+2 × (G

(d+1)×d
2 )n+2 ×Gd

T
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and

MSK := gk2 ∈ Gd+1
2 .

Enc(MPK,x,m): On input an identity vector x := (x1, . . . , xℓ) ∈ Zℓ
p and m ∈ GT , pick s ←R Zd

p and
output

CTx :=
(
C0 := g

πL(B)s
1 , C1 := g

πL(B(An+1+x1A1+···+xℓAℓ))s
1 , C2 := e(g1, g2)

k⊤πL(B)s ·m
)

∈ Gd+1
1 ×Gd+1

1 ×GT .

KeyGen(MPK, MSK,y): On input an identity vector y := (y1, . . . , yℓ) ∈ Zℓ
p, pick r←R Zd

p and output

SKy :=

 K0 := g
πL(B

∗R)r
2 , K1 := g

k+πL(B
∗(An+1+y1A1+···+yℓAℓ)

⊤R)r
2

Kℓ+1 := g
πL(B

∗A⊤
ℓ+1R)r

2 , . . . , Kn := g
πL(B

∗A⊤
nR)r

2

 ∈ (Gd+1
2 )n−ℓ+2.

Dec(MPK, SKy, CTx): If y is a prefix of x, run

SKx := (K0,K1, . . .)← KeyDel(MPK, SKy,x).

Compute

e(g1, g2)
k⊤πL(B)s ← e(C0,K1)/e(C1,K0),

and recover the message as

m← C2 · e(g1, g2)−k⊤πL(B)s ∈ GT .

KeyDel(MPK, SKy,y
′): On input a secret key SKy := (K0,K1,Kℓ+1, . . . ,Kn) and an identity vector

y′ := (y1, . . . , yℓ′) ∈ Zℓ′
p , first compute

S̃Ky′ :=
(
K0, K1 ·K

yℓ+1

ℓ+1 · · ·K
yℓ′
ℓ′ , Kℓ′+1, . . . , Kn

)
.

Then, pick r′ ←R Zd
p and compute

SK′ :=

(
g
πL(B

∗R)r′

2 , g
πL(B

∗(An+1+y1A1+···+yℓ′Aℓ′ )
⊤R)r′

2 , g
πL(B

∗A⊤
ℓ′+1

R)r′

2 , . . . , g
πL(B

∗A⊤
nR)r′

2

)
.

Finally, output

SKy′ := S̃Ky′ · SK′

where · denotes entry-wise multiplication.

8 Spatial Encryption from Dual System Groups

We provide a construction of a compact spatial encryption scheme from dual system groups where the
ciphertext comprises two group elements in G and one in GT .

8.1 Spatial Encryption

For any matrix Y ∈ Zn×ℓ
p , we use span(Y) to denote the linear space spanned by columns of Y. A spatial

encryption scheme consists of five algorithms (Setup,Enc,KeyGen,Dec,KeyDel):
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Setup(1λ, 1n) → (MPK, MSK). The setup algorithm takes in a security parameter 1λ, and a dimension
parameter 1n. It outputs public parameters MPK and a master secret key MSK.

Enc(MPK,x,m) → CTx. The encryption algorithm takes in the public parameters MPK, a vector x, and a
message m. It outputs a ciphertext CTx.

KeyGen(MPK, MSK,Y) → SKY. The key generation algorithm takes in the public parameters MPK, the
master secret key MSK, and a space Y. It outputs a secret key SKY.

Dec(MPK, SKY, CTx) → m. The decryption algorithm takes in the public parameters MPK, a secret key
SKY for a space Y, and a ciphertext CTx encrypted under a vector x. It outputs a message m if x ∈
span(Y).

KeyDel(MPK, SKY,Y′) → SKY′ . The key delegation algorithm takes in the public parameters MPK, a
secret key SKY, and a space Y′, where span(Y′) ⊆ span(Y). It outputs a secret key SKY′ .

Correctness. For all (MPK, MSK)← Setup(1λ, 1n), all vectors x, all messages m, all decryption keys SKY,
all x such that x ∈ span(Y), we have

Pr[Dec(MPK, SKY,Enc(MPK,x,m)) = m] = 1.

Delegation. We require that delegation is independent of the path taken; that is, if Y′ ⊆ Y, then the
following distributions are identical:

{SKY,KeyDel(MPK, SKY,Y′)} and {SKY,KeyGen(MPK, MSK,Y′)}

8.2 Security Model

We now give the notation of adaptive security for spatial encryption. The security game is defined by the
following experiment, played by a challenger and an adversary A.

Challenge Space. The adversary A gives the challenger the dimension parameter 1n.

Setup. The challenger runs the setup algorithm to generate (MPK, MSK). It gives MPK to the adversary A.

Phase 1. The adversary A adaptively requests keys for any space Y of its choice. The challenger responds
with the corresponding secret key SKY, which it generates by running KeyGen(MPK, MSK,Y). Because
of our restriction on delegation, the returned SKY is independent of the path taken.

Challenge. The adversary submits two messages m0 and m1 of equal length and a vector x∗ with the
restriction that it holds x∗ ̸∈ span(Y) for any query Y in Phase 1. The challenger picks β ←R {0, 1},
and encrypts mβ under x∗ by running the encryption algorithm. It sends the ciphertext to the adversary
A.

Phase 2. A continues to issue key queries as in Phase 1 with the restriction that it must hold x∗ ̸∈ span(Y)
for any query Y.

Guess. The adversary A must output a guess β′ for β.

The advantage AdvSE
A (λ) of an adversary A is defined to be |Pr[β′ = β]− 1/2|.

Definition 2. A spatial encryption scheme is adaptively secure if all PPT adversaries A, AdvSE
A (λ) is a

negligible function in λ.
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8.3 Construction

Setup(1λ, 1n): On input (1λ, 1n), first sample

(PP, SP)← SampP(1λ, 1n+1).

Pick MSK ←R H and output the master public and secret key pair

MPK := ( PP, µ(MSK) ) and MSK.

Enc(MPK,x,m): On input a vector x := (x1, . . . , xn)
⊤ ∈ Zn

ord(H) and m ∈ GT , sample

(g0, g1, . . . , gn, gn+1)← SampG(PP; s), g′T ← SampGT(µ(MSK); s)

and output

CTx :=

(
C0 := g0, C1 := gn+1 ·

n∏
i=1

gxi
i , C2 := g′T ·m

)
∈ G×G×GT .

KeyGen(MPK, MSK,Y): On input a space Y := (yi,j) ∈ Zn×ℓ
ord(H), sample

(h0, h1, . . . , hn, hn+1)← SampH(PP)

and output

SKY :=

(
K0 := h0, K1 := MSK · hn+1, K2 :=

n∏
i=1

h
yi,1
i , . . . , Kℓ+1 :=

n∏
i=1

h
yi,ℓ
i

)
∈ (H)ℓ+2.

Dec(MPK, SKY, CTx): If x ∈ span(Y), run

SKx := (K0,K1,K2)← KeyDel(MPK, SKY,x).

Compute

e(g0, MSK)← e(C0,K1 ·K2)/e(C1,K0),

and recover the message as

m← C2 · e(g0, MSK)−1 ∈ GT .

KeyDel(MPK, SKY,Y′): On input a secret key SKY := (K0,K1,K2, . . . ,Kℓ+1) and a space Y′ :=
(y′i,j) ∈ Zn×ℓ′

ord(H) where span(Y′) ⊆ span(Y), compute T := (tj,k) ∈ Zℓ×ℓ′

ord(H) such that Y′ = YT
and

S̃KY′ :=

 K0, K1,

ℓ∏
j=1

K
tj,1
j+1, . . . ,

ℓ∏
j=1

K
tj,ℓ′
j+1

 .

and sample SK′ ← KeyGen(MPK, 1,Y′). Output

SKy′ := S̃Ky′ · SK′

where · denotes entry-wise multiplication. Note that to generate or delegate a secret key for a vector x,
we delegate to span(x).
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Delegation. Fix Y and Y′ such that Y′ ⊆ Y. Let S̃KY′ and SK′ be the values computed by
KeyDel(MPK, SKY,Y′). It is straight-forward to verify that S̃KY′ lies in the support of KeyGen(MPK, MSK,Y′):

S̃KY′ =

 K0, K1,

ℓ∏
j=1

K
tj,1
j+1, . . . ,

ℓ∏
j=1

K
tj,ℓ′
j+1


=

 h0, MSK · hn+1,

ℓ∏
j=1

(

n∏
i=1

h
yi,j
i )tj,1 , . . . ,

ℓ∏
j=1

(

n∏
i=1

h
yi,j
i )tj,ℓ′


=

 h0, MSK · hn+1,

n∏
i=1

ℓ∏
j=1

h
yi,jtj,1
i , . . . ,

n∏
i=1

ℓ∏
j=1

h
yi,jtj,ℓ′
i


=

(
h0, MSK · hn+1,

n∏
i=1

h
y′i,1
i , . . . ,

n∏
i=1

h
y′
i,ℓ′

i

)
By linearity of KeyGen and the H-subgroup property, multiplying by SK′ re-randomizes the key and yields
independence of the path taken.

Correctness. It suffices to establish correctness for x = y, where y ∈ span(Y), using the delegation
property. Observe that for CTx, SKx,

e(C0,K1 ·K2)/e(C1,K0) = e
(
g0, MSK · (hn+1 ·

n∏
i=1

hxi
i )
)
· e
(
gn+1 ·

n∏
i=1

gxi
i , h0

)−1

= e(g0, MSK) ·
(
e(g0, hn+1) ·

n∏
i=1

e(g0, hi)
xi

)
·
(
e(gn+1, h0) ·

n∏
i=1

e(gi, h0)
xi

)−1

= e(g0, MSK)

where the last equality relies on associative, namely e(g0, hi) = e(gi, h0) and e(gn+1, h0) = e(g0, hn+1).
Finally, by projective, g′T = e(g0, MSK). Correctness follows readily.

8.4 Proof of Security

We prove the following theorem:

Theorem 2. Under the left and right subgroup indistinguishability (described in Section 3) and the
additional requirement that ord(H) is prime, our spatial encryption scheme in Appendix 8.3 is adaptively
secure (in the sense of Definition 2). More precisely, for any adversary A that makes at most q key queries
against the spatial encryption scheme, there exist adversaries B1,B2,B3 such that:

AdvA(λ)
SE(λ) ≤ AdvLS

B1
(λ) + q · AdvRS

B2
(λ) + q · AdvRS

B3
(λ),

and

max{Time(B1),Time(B2),Time(B3)} ≈ Time(A) + q · poly(λ, n),

where poly(λ, n) is independent of Time(A).

The proof follows via a series of games. To describe the games, we must first define semi-functional keys
and ciphertexts.
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Auxiliary algorithms. It is helpful to define the following algorithms:

Ênc(PP,x,m; MSK, t): On input x ∈ Zn
ord(H), m ∈ GT , and t := (T0, T1, . . . , Tn, Tn+1) ∈ Gn+1, output

CTx :=

(
C0 := T0, C1 := Tn+1 ·

n∏
i=1

T xi
i , C2 := e(T0, MSK) ·m

)
.

K̂eyGen(PP, h,Y; t): On input h ∈ H, Y := (yi,j) ∈ Zn×ℓ
ord(H), and t := (T0, T1, . . . , Tn, Tn+1) ∈ Hn+1,

output

SKy :=

(
K0 := T0, K1 := h · Tn+1, K2 :=

n∏
i=1

T
yi,1
i , . . . , Kℓ+1 :=

n∏
i=1

T
yi,ℓ
i

)
.

Auxiliary distributions. Auxiliary distributions and game sequence is defined exactly as the proof of our
HIBE scheme in Section 4.2, using the auxiliary algorithms as defined above.

8.5 Pseudo-Normal to Pseudo-SF Keys

We need the following statistical lemma for spatial encryption.

Lemma 13 (implicit in [11, 3]). For any prime p, for all x ∈ Zn
p and Y ∈ Zn×ℓ

p , where x ̸∈ span(Y), the
following distribution is identically distributed to the uniform distribution over Zℓ+1

p :

{u⊤x,u⊤Y}

where u←R Zn
p .

Lemma 14 (Game2,i,1 to Game2,i,2). For i = 1, . . . , q:

|Adv2,i,1(λ)− Adv2,i,2(λ)| = 0.

Proof. The proof starts out the same as that in Lemma 4, until the point where we expand the expressions
for Ênc and K̂eyGen. Here, we obtain:

Ênc(PP,x, 1; MSK, ĝ · ĝ′) = (ĝ0, ĝn+1 ·
n∏

i=1

ĝxi
i · (ĝ

γn+1+
∑n

i=1 xiγi
0 ), e(ĝ0, MSK))

K̂eyGen(PP, 1,x; ĥ · ĥ′) = (ĥ0, ĥn+1 · ĥγn+1

0 ,

n∏
i=1

ĝ
yi,1
i · (ĥ

∑n
i=1 yi,1γi

0 ), . . . ,

n∏
i=1

ĝ
yi,ℓ
i · (ĥ

∑n
i=1 yi,ℓγi

0 ))

K̂eyGen(PP, (h∗)α,Y; ĥ · ĥ′) = (ĥ0, ĥn+1 · (h∗)α · ĥγn+1

0 ,

n∏
i=1

ĝ
yi,1
i · (ĥ

∑n
i=1 yi,1γi

0 ), . . . ,

n∏
i=1

ĝ
yi,ℓ
i · (ĥ

∑n
i=1 yi,ℓγi

0 ))

Since h∗ lies in the group generated by ĥ0, we may replace (h∗)α by (ĥ0)
α′

and “for all α” by “for all α′”
and obtain a stronger claim. Now, by focusing on the exponents of the terms involving ĝ0 and ĥ0, it suffices
to show that for all α′:

{γn+1 +

n∑
i=1

xiγi, γn+1,

n∑
i=1

yi,1γi, . . . ,

n∑
i=1

yi,ℓγi} and

{γn+1 +
n∑

i=1

xiγi, α
′ + γn+1,

n∑
i=1

yi,1γi, . . . ,
n∑

i=1

yi,ℓγi}
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are identically distributed. The last statement follows readily from Lemma 13. ⊓⊔

Acknowledgments. We thank Allison Lewko for insightful discussions.
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