
Differential Fault Analysis on the families of
SIMON and SPECK ciphers

Harshal Tupsamudre ?, Shikha Bisht ??, Debdeep Mukhopadhyay ? ? ?

Indian Institute of Technology, Kharagpur

Abstract. In 2013, the US National Security Agency proposed two new
families of lightweight block ciphers: SIMON and SPECK. However, no
security analysis was provided for these ciphers. Currently, linear and dif-
ferential cryptanalytic results for SIMON are available in the literature,
but no fault attacks on these two cipher families have been reported so far.
In this paper, we present the first fault attack on the families of SIMON
and SPECK ciphers. The attack assumes a fault model that can flip only
one bit of the intermediate result. Using this attack, the n-bit last round
key used in SIMON can be recovered using (n/2) bit faults on an aver-
age while the n-bit last round key used in SPECK can be recovered using
(n/3) bit faults. Furthermore, we demonstrate a more practical attack on
SIMON that employs a random byte fault model. This attack retrieves
multiple bits of the key depending upon the Hamming weight of the byte
fault. The average number of byte faults required to retrieve all n bits of
the last round key is (n/8).

Keywords: Differential Fault Analysis, Fault Attack, Lightweight Block
Ciphers, SIMON, SPECK

1 Introduction

Simon and Speck are two families of lightweight block ciphers based upon Feistel
structure, designed to provide optimal performance on resource constrained de-
vices. While the Simon family provides the best performance in the hardware en-
vironments the Speck family is designed to work well in the software environments.
The design requirements and performance analysis of the Simon and Speck family
were published by the US National Security Agency in 2013, [1], but no security
assessments were provided. Initial results of linear and differential cryptanalysis
of the Simon family are available in [2], [3] and [4]. However, it is also important
to analyse the security of these block ciphers against the very well known family
of side channel attacks, which exploit the information leakage from the physical
implementation of the cipher.

In this paper, we present the first fault attack on SIMON and SPECK families
of cipher. We show that these ciphers are insecure against an adversary who can
flip one bit in the intermediate state of the cipher to produce erroneous ciphertexts.
In this case, we can retrieve the n-bit last round key of SIMON and SPECK using
(n/2) and (n/3) bit faults respectively. We refer to the fault model used in this
attack as the bit-flip fault model. We further show that the SIMON is vulnerable

? harshal.coep@gmail.com
?? s.bisht09@gmail.com

? ? ? debdeep.mukhopadhyay@gmail.com

against the fault attack that employs a random byte fault model. In this case,
multiple bits of the last round key can be deduced depending upon the Hamming
weight of the induced byte fault. The average number of byte faults required to
retrieve all n bits of the last round key is (n/8).

Notations. We have used the following notations for both SIMON and SPECK
families of cipher.
T : Total number of rounds in the cipher.
K : mn bit secret key used in the cipher.
(xi+1,yi+1) : The 2n bit output of ith round of the cipher, i ∈ {0, . . . , T − 1}.
Input to the cipher is denoted by (x0, y0).
(x(i+1)∗ ,y(i+1)∗) : The 2n bit faulty output of ith round of the cipher, i ∈
{0, . . . , T − 1}.
ki : The n bit round key used in the ith round of the cipher, i ∈ {0, . . . , T − 1}.
S−α(w) : Circular right rotation of a n bit word w by α bits.
Sβ(w) : Circular left rotation of a n bit word w by β bits.
Further, we denote a bitwise logical AND operation by &, a bitwise logical OR
operation by |, a bitwise logical NOT operation by ¬ and a bitwise logical XOR
operation by ⊕. Addition in modulo 2n is denoted by +. We represent the n bits
of a word w by wn−1wn−2 . . . w1w0, where w0 is the least significant bit and wn−1

is the most significant bit of a word w.

Organization. The rest of the paper is organized as follows. We first describe
a fault attack on SIMON cipher, that assumes a bit-flip fault model. Then we
demonstrate a more realistic attack on SIMON, which employs a random byte
fault model. Finally, we describe an attack on the SPECK cipher that also uses a
bit-flip fault model.

2 Fault Attack on SIMON

Before explaining the fault attack mechanism, we describe the characteristics of
the round function used in the SIMON that enables us to mount the attack.

2.1 Round Function of SIMON

Fig.1. shows a single round transformation of SIMON. A round in the SIMON is
a function Rk : GF (2n)×GF (2n)→ GF (2n)×GF (2n) defined as:

Rki(x
i, yi) = (xi+1, yi+1) = (yi ⊕ f(xi)⊕ ki, xi) (1)

where i ∈ {0, . . . , T − 1} and f(xi) = (S1(xi) & S8(xi))⊕ S2(xi).

The lth bit of f(xi) is computed using 3 distinct bits of xi.

f(xi)l = (xi(l−1)%n & xi(l−8)%n)⊕ xi(l−2)%n (2)

where, l ∈ {0 . . . n − 1}. Furthermore, the jth bit of xi affects 3 distinct bits
(j + 1)%n, (j + 2)%n and (j + 8)%n of f(xi) as follows:

f(xi)(j+1)%n = (xij & xi(j−7)%n)⊕ xi(j−1)%n

f(xi)(j+2)%n = (xi(j+1)%n & xi(j−6)%n)⊕ xij
f(xi)(j+8)%n = (xi(j+7)%n & xij)⊕ xi(j+6)%n

(3)

xi

yi+1xi+1

yi

⊕

⊕ ki

(S1(xi) & S8(xi))⊕ S2(xi)

Fig. 1. ith Round of SIMON

where j ∈ {0 . . . n − 1}. And since xi+1 = yi ⊕ f(xi) ⊕ ki, the same bit positions
of xi+1 are also affected by the jth bit of xi.

xi+1
(j+1)%n = yi(j+1)%n ⊕ f(xi)(j+1)%n ⊕ ki(j+1)%n

xi+1
(j+2)%n = yi(j+2)%n ⊕ f(xi)(j+2)%n ⊕ ki(j+2)%n

xi+1
(j+8)%n = yi(j+8)%n ⊕ f(xi)(j+8)%n ⊕ ki(j+8)%n

(4)

2.2 Equation of the Last Round Key

The output of SIMON is denoted as (xT , yT), where

xT = yT−1 ⊕ f(xT−1)⊕ kT−1

yT = xT−1
(5)

Therefore, we can express the last round key kT−1 as:

kT−1 = yT−1 ⊕ f(xT−1)⊕ xT (6)

Since yT = xT−1 and yT−1 = xT−2

kT−1 = xT−2 ⊕ f(yT)⊕ xT (7)

From the above equation, it can be seen that the last round key kT−1 can be
retrieved if the value of xT−2 is known. In the following discussion, we describe
fault attacks that target and retrieve xT−2 in order to recover kT−1.

2.3 Determining the Fault Position and Value

Suppose a fault e is induced in the intermediate result xT−2. Let the resulting
faulty ciphertext be (xT

∗
, yT

∗
). Since yi = xi−1, i ∈ {1, . . . , T} we can write:

xT ⊕ xT
∗

= yT−1 ⊕ f(xT−1)⊕ y(T−1)∗ ⊕ f(x(T−1)∗)

= yT−1 ⊕ f(yT)⊕ y(T−1)∗ ⊕ f(yT
∗
)

= x(T−2) ⊕ f(yT)⊕ x(T−2)∗ ⊕ f(yT
∗
)

= xT−2 ⊕ f(yT)⊕ xT−2 ⊕ e⊕ f(yT
∗
)

= f(yT)⊕ e⊕ f(yT
∗
)

∴ e = xT ⊕ xT
∗
⊕ f(yT)⊕ f(yT

∗
)

(8)

Since we know the output of correct and faulty computation, we can deduce the
value of fault e injected in xT−2 and hence, we can determine the bits that are
flipped in xT−2.

2.4 Bit-Flip Fault Attack on SIMON

The attack procedure is as follows:

1. Suppose a fault flips jth bit of the intermediate result xT−2 resulting in a
faulty ciphertext (x∗T , y

∗
T).

yT
∗

= xT−1 = yT−2 ⊕ f(x(T−2)∗)⊕ kT−2 (9)

The xor of correct and faulty computation of yT can be written as:

yT ⊕ yT
∗

= f(xT−2)⊕ f(x(T−2)∗) (10)

Since the jth bit of xT−2 affects 3 distinct bits of f(xT−2), the correct com-
putation of yT differs from its faulty computation in at most 3 positions:

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) & xT−2
(j−7)%n)

(yT ⊕ yT
∗
)(j+8)%n = (xT−2

(j+7)%n & xT−2
j)⊕ (xT−2

(j+7)%n & (xT−2
j ⊕ 1))

(yT ⊕ yT
∗
)(j+2)%n = xT−2

j ⊕ xT−2
j ⊕ 1 = 1

(11)

2. From Table 1 it can be seen that if the value of (yT ⊕ yT∗
)(j+1)%n is 0, then

irrespective of the bit value xT−2
j the value of the bit xT−2

(j−7)%n is 0, otherwise it

is 1. We can also deduce from Table 2 that if the value of bit (yT ⊕yT∗
)(j+8)%n

is 0 then the value of the bit xT−2
(j+7)%n is 0, otherwise it is 1.

xT−2
(j−7)%n = (yT ⊕ yT

∗
)(j+1)%n

xT−2
(j+7)%n = (yT ⊕ yT

∗
)(j+8)%n

(12)

3. Since we now know the values of the bits xT−2
(j−7)%n and xT−2

(j+7)%n, we can retrieve

the corresponding bits of kT−1 using equation (7):

kT−1
(j−7)%n = (xT−2

(j−7)%n ⊕ f(yT(j−7)%n)⊕ xT(j−7)%n)

kT−1
(j+7)%n = (xT−2

(j−7)%n ⊕ f(yT(j−7)%n)⊕ xT(j−7)%n)
(13)

Thus, using a bit fault in xT−2, we can recover 2 bits of kT−1. Consequently,
for retrieving the n bit key, we require n/2 faulty ciphertexts.

Table 1. Deducing the value of bit xT−2
(j−7)%n from (yT ⊕ yT

∗
)(j+1)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j−7)%n (yT ⊕ yT

∗
)(j+1)%n

0 1 0 0

1 0 0 0

0 1 1 1

1 0 1 1

Table 2. Deducing the value of bit xT−2
(j+7)%n from (yT ⊕ yT

∗
)(j+8)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j+7)%n (yT ⊕ yT

∗
)(j+8)%n

0 1 0 0

1 0 0 0

0 1 1 1

1 0 1 1

2.5 Random Byte Fault Attack on SIMON

In this section we describe a more practical fault attack, where we assume that the
attacker can affect a byte of xT−2 with a random fault. The working principle of
this attack is the same as that of the bit-flip fault attack except for the following
two cases:

1. Every flipped bit of xT−2 retrieves two key bits of kT−1. However if the least
and the most significant bits of the induced fault are 1 then each of these bits
can retrieve only one key bit.
Suppose a fault flips the bits xT−2

j and xT−2
j−7 . A flip in xT−2

j affects 3 bits of
yT so that we get:

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) &(xT−2
(j−7)%n ⊕ 1))

(yT ⊕ yT
∗
)(j+8)%n = (xT−2

(j+7)%n & xT−2
j)⊕ (xT−2

(j+7)%n & (xT−2
j ⊕ 1))

(yT ⊕ yT
∗
)(j+2)%n = xT−2

j ⊕ xT−2
j ⊕ 1 = 1

(14)

And a flip in xT−2
j−7 also affects 3 bits of yT , so that we have:

(yT ⊕ yT
∗
)(j−6)%n = (xT−2

(j−7)%n & xT−2
(j−14)%n)⊕ ((xT−2

(j−7)%n ⊕ 1) &xT−2
(j−14)%n)

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n) ⊕ ((xT−2

j ⊕ 1) & (xT−2
(j−7)%n ⊕ 1))

(yT ⊕ yT
∗
)(j−5)%n = xT−2

(j−7)%n ⊕ x
T−2
(j−7)%n ⊕ 1 = 1

(15)

Similar to the bit fault attack, we expect to retrieve the two bits xT−2
(j−7)%n

and xT−2
(j+7)%n from the equation set (14), and the two bits xT−2

(j−14)%n and xT−2
j

from the equation set (15), however one can see from Table 3 that using the
value of (yT ⊕ yT∗

)(j+1)%n, the jth and ((j − 7)%n)th bit cannot be retrieved.

We can only determine whether the bits xT−2
j and xT−2

(j−7)%n are complement

Table 3. Relation between the bits xT−2
(j)%n and xT−2

(j−7)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j−7)%n xT−2

(j−7)%n ⊕ 1 (yT ⊕ yT
∗
)(j+1)%n

0 1 1 0 0

1 0 0 1 0

0 1 0 1 1

1 0 1 0 1

of each other or they have the same value. The actual value of either xT−2
j or

xT−2
(j−7)%n cannot be known. Thus, in this case, only two bits: xT−2

(j+7)%n from

equation set (14) and xT−2
(j−14)%n from equation set (15) can be retrieved. In all

the other cases, the number of key bits that can be retrieved using a byte fault
is twice the Hamming weight of the fault, as every flipped bit reveals two bits
of the last round key.

2. The attack procedure also differs slightly when a byte fault flips two contiguous
bits xT−2

j and xT−2
j−1 . In this case, a flip in xT−2

j affects 3 bits of yT so that we
get:

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ xT−2

(j−1)%n

⊕ ((xT−2
j ⊕ 1) & xT−2

(j−7)%n)⊕ xT−2
(j−1)%n ⊕ 1

= (xT−2
j & xT−2

(j−7)%n)⊕ ((xT−2
j ⊕ 1) & xT−2

(j−7)%n)⊕ 1

(yT ⊕ yT
∗
)(j+8)%n = (xT−2

(j+7)%n & xT−2
j)⊕ (xT−2

(j+7)%n & (xT−2
j ⊕ 1))

(yT ⊕ yT
∗
)(j+2)%n = xT−2

j ⊕ xT−2
j ⊕ 1 = 1

(16)

And a flip in xT−2
j−1 also affects 3 bits of yT , so that we have:

(yT ⊕ yT
∗
)(j)%n = (xT−2

j−1 & xT−2
(j−8)%n)⊕ ((xT−2

j−1 ⊕ 1) & xT−2
(j−8)%n)

(yT ⊕ yT
∗
)(j+7)%n = (xT−2

(j+6)%n & xT−2
j−1)⊕ (xT−2

(j+6)%n & (xT−2
j−1 ⊕ 1))

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) & xT−2
(j−7)%n)⊕ 1

(17)

From Table 4 it can be seen that if the value of (yT ⊕ yT∗
)(j+1)%n is 0, then

irrespective of the bit value xT−2
j the value of the bit xT−2

(j−7)%n is 1, otherwise
it is 0.

xT−2
(j−7)%n = ¬(yT ⊕ yT

∗
)(j+1)%n (18)

The bit xT−2
(j+7)%n from equation set (16) and bits xT−2

(j−8)%n and xT−2
(j+6)%n from

equation set (17) are obtained in the same way as described previously in
bit-flip fault attack.

Table 4. Deducing the value of bit xT−2
(j−7)%n from (yT ⊕ yT

∗
)(j+1)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j−7)%n (yT ⊕ yT

∗
)(j+1)%n

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0

Attack Complexity. A byte fault of Hamming weight z in xT−2 retrieves 2z bits
of the last round key kT−1. The number of possible byte faults having Hamming
weight z is

(
8
z

)
. Therefore, the expected number of key bits that can be retrieved

by a random byte fault is:

8∑
z=1

z ∗ Pr[z] =

8∑
z=1

2z ∗
(

8

z

)
∗ 1

255
≈ 8 (19)

And hence the average number of byte faults required to recover all the n bits of
kT−1 is (n/8).

3 Fault Attack on SPECK

Similar to the attack description of SIMON, we begin by describing the charac-
teristics of the round function used in the SPECK which enable us to mount the
attack.

3.1 Round function of SPECK

Fig.2. shows a single round transformation of SPECK. A round in the SPECK is
a function Rk : GF (2n)×GF (2n)→ GF (2n)×GF (2n) defined as

Rki(x
i, yi) = (xi+1, yi+1) = (f(xi, yi)⊕ ki, Sβyi ⊕ f(xi, yi)⊕ ki) (20)

where i ∈ {0, . . . , T − 1} and f(xi, yi) = S−α(xi) + yi. The addition in function f
is performed modulo 2n. The jth bit of f(xi, yi) is computed as

f(xi, yi)j = xi(j+α)%n ⊕ y
i
j ⊕ cj (21)

where the carry bit cj = (xi(j−1+α)%n&yij−1) | (yij−1&cj−1) | (xi(j−1+α)%n&cj−1)

and j ∈ {0, . . . , n− 1} and c0 = 0.

3.2 Equation of the last round key

The output of SPECK is denoted by (xT , yT), where

xT = (S−α(xT−1) + yT−1)⊕ kT−1

yT = (S−α(xT−1) + yT−1)⊕ kT−1 ⊕ Sβ(yT−1)

= xT ⊕ Sβ(yT−1)

(22)

⊕ki

xi yi

S-α

Sβ

+

xi+1 yi+1

⊕

Fig. 2. ith Round of SPECK

We can express the last round key kT−1 as follows:

kT−1 = (S−α(xT−1) + yT−1)⊕ xT (23)

Since yT−1 = S−β(yT ⊕ xT),

∴ kT−1 = (S−α(xT−1) + S−β(yT ⊕ xT))⊕ xT (24)

Consider the jth bit of kT−1

kT−1
j = (xT−1

(j+α)%n ⊕ (yT ⊕ xT)(j+β)%n ⊕ cj)⊕ xTj (25)

From the above equation, it can be seen that the jth bit of last round key kT−1

can be retrieved if the value of bit xT−1
(j+α)%n and carry bit cj is known. In the

following discussion, we describe a fault attack that targets yT−1 and retrieves
xT−1 in order to recover kT−1.

3.3 Determining the Fault Position and Value

Suppose a fault e is induced in the intermediate result yT−1. Let the resulting
faulty ciphertext be (xT

∗
, yT

∗
).

yT ⊕ yT
∗

= xT ⊕ Sβ(yT−1)⊕ xT
∗
⊕ Sβ(y(T−1)∗)

∴ yT−1 ⊕ y(T−1)∗ = S−β(yT ⊕ yT
∗
⊕ xT ⊕ xT

∗
)

∴ e = S−β(yT ⊕ yT
∗
⊕ xT ⊕ xT

∗
)

(26)

Since we know the output of correct and faulty computation, we can deduce the
value of fault e injected in yT−1 and therefore, we can determine the bits that are
flipped in yT−1.

3.4 Bit-Flip Fault Attack on SPECK

Consider the jth bit of last round key,

kT−1
j = (xT−1

(j+α)%n ⊕ (yT ⊕ xT)(j+β)%n ⊕ cj)⊕ xTj (27)

In order to retrieve the jth bit of kT−1, we require the value of the bit xT−1
(j+α)%n

as well as the carry bit cj . Since we know that the initial carry c0 = 0, we flip
the bit of yT−1 starting from position 0. By doing so we get the value of xT−1

(0+α)%n

and hence the value of c1. Subsequently we flip the bit of yT−1 in position 1 and
retrieve next bit. In this way we start from the least significant bit of yT−1 and
proceed to the most significant bit until all bits of the last round key are recovered.
The attack procedure is as follows:

1. Flip the jth bit in the input of yT−1 so that it results in a faulty ciphertext
(x∗T , y

∗
T). Initially j = 0. The xor of correct and faulty computation of the

output xT can be written as:

xT ⊕ xT
∗

= (S−α(xT−1) + yT−1)⊕ (S−α(xT−1) + y(T−1)∗) (28)

We can write the jth bit of xor as:

(xT ⊕ xT
∗
)j = (xT−1

(j+α)%n ⊕ y
T−1
j ⊕ cj)⊕ (xT−1

(j+α)%n ⊕ (yT−1
j ⊕ 1)⊕ cj)

∴ (xT ⊕ xT
∗
)j = 1

(29)

It should be emphasized here, that a flip in the bit yT−1
j not only changes the

jth bit in the output of modular addition but can also affect the carry-out bit
cj+1. Let us denote the carry-out bit by c∗j+1 when the bit yT−1

j is flipped. If

cj+1 6= c∗j+1, then due to rippling effect of carry the next l bits in xT
∗

are also
affected. In general, we can write:

(xT ⊕ xT
∗
)m =

{
1, (m = j) or (m > j and cm 6= c∗m)

0, otherwise
(30)

where m ∈ {j, . . . , j + l}.

2. Now, based on this observation and the number of differences #1(xT ⊕xT∗
) in

the xor of xT and x∗T , we can derive the corresponding value of bit xT−1
(j+α)%n

as shown in Table 5. It can be observed that,

xT−1
(j+α)%n =

{
cj , #1(xT ⊕ xT∗

) = 1

¬cj , otherwise
(31)

Since the value of carry-in bit cj is known, the value of the bit xT−1
(j+α)%n can

be deduced. Now, as we know the values of cj , x
T−1
(j+α)%n and yT−1

j , the value

of carry-out bit cj+1 can be found which is used for retrieving xT−1
(j+1+α)%n in

Table 5. Deducing the value of bit xT−1
(j+α)%n and carry-in bit cj from #1(xT ⊕xT

∗
) and

bit yT−1
j .

#1(xT ⊕ xT
∗
) xT−1

(j+α)%n yT−1
j yT−1

j ⊕ 1 cj

1 0 0 1 0

1 0 1 0 0

1 1 0 1 1

1 1 1 0 1

>1 1 0 1 0

>1 1 1 0 0

>1 0 0 1 1

>1 0 1 0 1

the next iteration of the attack.
Also, if l > 1, we can write:

(xT ⊕ xT
∗
)p = 1

∴ (xT ⊕ xT
∗
)p = (xT−1

(p+α)%n ⊕ y
T−1
p ⊕ cp)⊕ (xT−1

(p+α)%n ⊕ y
T−1
p ⊕ cp)⊕ 1

∴ (xT ⊕ xT
∗
)p = (xT−1

(p+α)%n ⊕ y
T−1
p ⊕ cp)⊕ (xT−1

(p+α)%n ⊕ (yT−1
p ⊕ 1)⊕ cp)

(32)

where p ∈ {j + 1, . . . , j + l}. This equation is similar to equation (29) given in
step 1 of this attack procedure. Therefore, we can repeat the step 2 for l more
times and retrieve l more bits of xT−1 viz., xT−1

(j+1+α)%n to xT−1
(j+l+α)%n. Hence,

it is not required to perform the bit-flip fault attack on the next l bits of yT−1.

3. Now we can use equation (27) to retrieve the bits of last round key kT−1.
if (l = 0)

jth bit of kT−1 can be recovered
else

l + 1 bits kT−1
j to kT−1

j+l can be recovered

4. j = j + l
if(j = n) break
goto step 1

Attack Complexity. A single bit-flip in the intermediate state yT−1 reveals at
least one bit of xT−1 and therefore at least one bit of kT−1. However, as explained
above, more than one bit of xT−1 can be retrieved depending upon the number
of carry bits which are flipped due to the faulty bit. The probability of the carry
bit being flipped is (1/2) and therefore the probability of obtaining one more bit
of xT−1 is also (1/2). In general, the probability of obtaining l more bits of xT−1

is equal to the probability of l carry bits getting flipped due to a single bit flip in
yT−1. For lth carry bit to be flipped all the lower (l− 1) carry bits should also be
flipped. The probability of this event is 1/2l. Therefore the expected number of
bits of last round key that can be retrieved using a single bit-flip is:

1 +

l∑
z=1

z ∗ Pr[z] = 1 +

l∑
z=1

z ∗ 1

2z
≈ 3 (33)

Thus a bit-flip recovers three bits of last round key. Therefore the average number
of bit faults required to recover all the n bits of last round key kT−1 is (n/3).

4 Conclusion

In this paper, we have described the first fault attack on the families of SIMON
and SPECK ciphers. In SIMON, we have exploited the information leaked by the
AND operation used during the computation of xT−1 (which is equal to yT). We
observed that if a bit u is flipped in the input xT−2(which is equal to yT−1), then
the bit v of xT−2 which is ANDed with u, can be retrieved. Since the flipped bit
u is ANDed in two different positions in the computation of xT−1, we can deduce
two bits of xT−2, which are used to derive the corresponding bits of the last round
key kT−1. This principle is used to mount both the bit-flip and random byte fault
attack. The average number of bit faults to retrieve the n-bits of kT−1 is (n/2). If
a random byte fault model is used, the number of byte faults required is (n/8).

In SPECK, we have exploited the information leaked by the modular addition
used during the computation of xT . Here, we flip the bits of yT−1, beginning from
its least significant bit. We observed that if the faulty computation differs from
the correct computation in l bits, then we can deduce l bits of the last round key
kT−1. Therefore the average number of bit faults to retrieve the n-bits of kT−1 is
(n/3).

References

1. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The SI-
MON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive,
Report 2013/404, 2013. Available at http://eprint.iacr.org/

2. H. A. Alkhzaimi and M. M. Lauridsen. Cryptanalysis of the SIMON Family of
Block Ciphers. Cryptology ePrint Archive, Report 2013/543, 2013. Avaliable at
http://eprint.iacr.org/

3. F. Abed, E. List, S. Lucks, and J. Wenzel. Differential Cryptanalysis of Reduced-
Round Simon. Cryptology ePrint Archive, Report 2013/526, 2013. Available at
http://eprint.iacr.org/.

4. Javad Alizadeh, Nasour Bagheri, Praveen Gauravaram, Abhishek Kumar and Somitra
Kumar Sanadhya. Linear Cryptanalysis of Round Reduced SIMON. IACR Cryptology
eprint Archive, Report 2013/663, 2013. Available at http://eprint.iacr.org/2013/663

