
Differential Fault Analysis on the families of
SIMON and SPECK ciphers

Harshal Tupsamudre ?, Shikha Bisht ??, Debdeep Mukhopadhyay ? ? ?

Indian Institute of Technology, Kharagpur

Abstract. In 2013, the US National Security Agency proposed two new
families of lightweight block ciphers: SIMON and SPECK. Currently, lin-
ear and differential cryptanalytic results for SIMON are available in the
literature but no fault attacks have been reported so far on these two cipher
families. In this paper, we show that these families of ciphers are vulnerable
to differential fault attacks. Specifically, we demonstrate two fault attacks
on SIMON and one fault attack on SPECK. The first attack on SIMON
assumes a bit-flip fault model and recovers the n-bit last round key of
SIMON using n/2 bit faults. The second attack on SIMON uses a more
practical, random byte fault model and requires n/8 faults on average to
retrieve the last round key. The attack presented on SPECK also assumes a
bit-flip fault model and recovers the n-bit last round key of SPECK using
n/3 bit faults on average.

Keywords: Differential Fault Analysis, Fault Attack, Lightweight Block
Ciphers, SIMON, SPECK.

1 Introduction

SIMON and SPECK are two families of lightweight block ciphers based upon Feis-
tel structure, designed to provide optimal performance on resource constrained
devices. While the SIMON family provides the best performance in the hardware
environments, the SPECK family is designed to work optimally in the software
environments. In order to provide implementation on a wide range of devices,
both SIMON and SPECK support 5 block sizes of 32, 48, 64, 96 and 128 bits and
upto 3 key sizes for each block size. The design requirements and performance
analysis of the SIMON and SPECK family were published by the US National
Security Agency (NSA) in 2013 [1], but security assessment of these ciphers was
not provided. Though, the initial results of linear and differential cryptanalysis
of the SIMON family are now available in [2], [3] and [4], it is also important to
analyse the security of these block ciphers against the very well known family of
side channel attacks, which exploit the information leakage from the physical im-
plementation of the cipher.

Contribution. In this paper, we present the first fault attack on SIMON and
SPECK families of cipher. We show that these ciphers are insecure against an
adversary who can flip one bit in the intermediate state of the cipher to produce

? harshal.coep@gmail.com
?? s.bisht09@gmail.com

? ? ? debdeep.mukhopadhyay@gmail.com

erroneous ciphertexts. In this case, we can retrieve the n-bit last round key of
SIMON and SPECK using (n/2) and (n/3) bit faults respectively. We refer to
the fault model used in this attack as the bit-flip fault model. Further, we show
that SIMON is also vulnerable to a fault attack that employs a random byte fault
model. In this case, multiple bits of the last round key can be deduced depending
upon the Hamming weight of the induced byte fault. The average number of byte
faults required to retrieve all the n bits of the last round key is (n/8).

Notations. We have used the following notations for both SIMON and SPECK
families of cipher.
T : Total number of rounds in the cipher.
(xi+1,yi+1) : The 2n bit output of ith round of the cipher, i ∈ {0, . . . , T − 1}.
Input to the cipher is denoted by (x0, y0).
(x(i+1)∗ ,y(i+1)∗) : The 2n bit faulty output of ith round of the cipher, i ∈
{0, . . . , T − 1}.
ki : The n bit round key used in the ith round of the cipher, i ∈ {0, . . . , T − 1}.
S−α(w) : Circular right rotation of a n bit word w by α bits.
Sβ(w) : Circular left rotation of a n bit word w by β bits.
Further, we denote a bitwise logical AND operation by &, a bitwise logical OR
operation by |, a bitwise logical NOT operation by ¬ and a bitwise logical XOR
operation by ⊕. Addition in modulo 2n is denoted by +. We represent the n bits
of a word w by wn−1wn−2 . . . w1w0, where w0 is the least significant bit and wn−1

is the most significant bit of a word w.

Organization. The rest of the paper is organized as follows. First, we describe a
fault attack on SIMON, that assumes a bit-flip fault model. Then we demonstrate
a more realistic attack on SIMON, which employs a random byte fault model.
Finally, we describe an attack on SPECK that also uses a bit-flip fault model.

2 Fault Attack on SIMON

Before explaining the fault attack mechanism, we describe the characteristics of
the round function of SIMON that enables us to mount the attack.

2.1 Round Function of SIMON

Fig.1. shows a single round transformation of SIMON. A round in SIMON is a
function Rk : GF (2n)×GF (2n)→ GF (2n)×GF (2n) defined as:

Rki(x
i, yi) = (xi+1, yi+1)

= (yi ⊕ f(xi)⊕ ki, xi)
(1)

where i ∈ {0, . . . , T − 1} and f(xi) = (S1(xi) & S8(xi))⊕ S2(xi).
It can be seen from the definition of f(xi) that its lth bit is computed using 3
distinct bits of xi.

f(xi)l = (xi(l−1)%n & xi(l−8)%n)⊕ xi(l−2)%n (2)

yi+1xi+1

yi

⊕

⊕ ki

xi

f(xi)

Fig. 1. ith Round of SIMON

where, l ∈ {0 . . . n − 1}. Furthermore, the jth bit of xi affects 3 distinct bits
(j + 1)%n, (j + 2)%n and (j + 8)%n of f(xi).

f(xi)(j+1)%n = (xij & xi(j−7)%n)⊕ xi(j−1)%n

f(xi)(j+2)%n = (xi(j+1)%n & xi(j−6)%n)⊕ xij
f(xi)(j+8)%n = (xi(j+7)%n & xij)⊕ xi(j+6)%n

(3)

where j ∈ {0 . . . n − 1}. And since xi+1 = yi ⊕ f(xi) ⊕ ki, the same bit positions
of xi+1 are also affected by the jth bit of xi.

xi+1
(j+1)%n = yi(j+1)%n ⊕ f(xi)(j+1)%n ⊕ ki(j+1)%n

xi+1
(j+2)%n = yi(j+2)%n ⊕ f(xi)(j+2)%n ⊕ ki(j+2)%n

xi+1
(j+8)%n = yi(j+8)%n ⊕ f(xi)(j+8)%n ⊕ ki(j+8)%n

(4)

The fault attacks that we describe later, exploit the information leaked by the
AND operation used in the computation of a round function.
In the following discussion, we show that the secrecy of the last round key kT−1

relies completely upon the secrecy of the left half input xT−2 of the penultimate
round.

2.2 Equation of the Last Round Key

The output of SIMON is denoted as (xT , yT), where

xT = yT−1 ⊕ f(xT−1)⊕ kT−1

yT = xT−1
(5)

Therefore, we can express the last round key kT−1 as:

kT−1 = yT−1 ⊕ f(xT−1)⊕ xT (6)

Since yT = xT−1 and yT−1 = xT−2

kT−1 = xT−2 ⊕ f(yT)⊕ xT (7)

From the above equation, it can be seen that the last round key kT−1 can be
retrieved if the value of xT−2 is known. In the following discussions, we describe
the fault attacks that target and retrieve xT−2 in order to recover kT−1.

2.3 Determining the Fault Position and Value

Suppose a fault e is induced in the intermediate result xT−2. Let the resulting
faulty ciphertext be (xT

∗
, yT

∗
). Since yi+1 = xi, i ∈ {0, . . . , T − 1} we can write:

xT ⊕ xT
∗

= yT−1 ⊕ f(xT−1)⊕ y(T−1)∗ ⊕ f(x(T−1)∗)

= yT−1 ⊕ f(yT)⊕ y(T−1)∗ ⊕ f(yT
∗
)

= x(T−2) ⊕ f(yT)⊕ x(T−2)∗ ⊕ f(yT
∗
)

= xT−2 ⊕ f(yT)⊕ xT−2 ⊕ e⊕ f(yT
∗
)

= f(yT)⊕ e⊕ f(yT
∗
)

∴ e = xT ⊕ xT
∗
⊕ f(yT)⊕ f(yT

∗
)

(8)

Since we know the output of correct and faulty computation, we can deduce the
value and position of the fault e injected in xT−2 and hence, we can determine the
bits that are flipped in xT−2.

2.4 Bit-Flip Fault Attack on SIMON

In the attack, we exploit the information leaked from the use of AND operation in
the computation of f(xT−2). We observe that if one of the input bits of the AND
operation is 0 then flipping the other input bit does not affect the output bit of
yT . Therefore, we can deduce the bit of xT−2 and consequently retrieve the bit of
kT−1 using equation (7). The attack details are given below:

1. Suppose a fault flips jth bit of the intermediate result xT−2 resulting in a
faulty ciphertext (x∗T , y

∗
T).

yT
∗

= xT−1∗ = yT−2 ⊕ f(x(T−2)∗)⊕ kT−2 (9)

The xor of correct and faulty computation of yT can be written as:

yT ⊕ yT
∗

= f(xT−2)⊕ f(x(T−2)∗) (10)

Since the jth bit of xT−2 affects 3 distinct bits of f(xT−2), the correct com-
putation of yT differs from its faulty computation in at most 3 positions:

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) & xT−2
(j−7)%n)

(yT ⊕ yT
∗
)(j+8)%n = (xT−2

(j+7)%n & xT−2
j)⊕ (xT−2

(j+7)%n & (xT−2
j ⊕ 1))

(yT ⊕ yT
∗
)(j+2)%n = xT−2

j ⊕ xT−2
j ⊕ 1 = 1

(11)

2. From Table 1 it can be seen that if the value of (yT ⊕ yT∗
)(j+1)%n is 0, then

irrespective of the bit value xT−2
j the value of the bit xT−2

(j−7)%n is 0, otherwise it

is 1. We can also deduce from Table 2 that if the value of bit (yT ⊕yT∗
)(j+8)%n

is 0 then the value of the bit xT−2
(j+7)%n is 0, otherwise it is 1.

xT−2
(j−7)%n = (yT ⊕ yT

∗
)(j+1)%n

xT−2
(j+7)%n = (yT ⊕ yT

∗
)(j+8)%n

(12)

Table 1. Deducing the value of bit xT−2
(j−7)%n from (yT ⊕ yT

∗
)(j+1)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j−7)%n (yT ⊕ yT

∗
)(j+1)%n

0 1 0 0

1 0 0 0

0 1 1 1

1 0 1 1

Table 2. Deducing the value of bit xT−2
(j+7)%n from (yT ⊕ yT

∗
)(j+8)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j+7)%n (yT ⊕ yT

∗
)(j+8)%n

0 1 0 0

1 0 0 0

0 1 1 1

1 0 1 1

3. Since we now know the values of the bits xT−2
(j−7)%n and xT−2

(j+7)%n, we can retrieve

the corresponding bits of kT−1 using equation (7):

kT−1
(j−7)%n = (xT−2

(j−7)%n ⊕ f(yT)(j−7)%n ⊕ xT(j−7)%n)

kT−1
(j+7)%n = (xT−2

(j+7)%n ⊕ f(yT)(j+7)%n ⊕ xT(j+7)%n)
(13)

Thus, using a bit fault in xT−2, we can recover 2 bits of kT−1. Consequently, for
retrieving the n-bit key, we require n/2 faulty ciphertexts.

2.5 Simulation Results

Using C, we simulated the bit-flip fault attack on different members of the SIMON
family. We assumed that the attacker is able to identify and target the left half
input xT−2 of the penultimate round using a side-channel, but has no control over
the fault position. However, the attacker can deduce the value and position of
the induced fault using equation (8) and retrieve the bits of the last round key
kT−1 as described in the attack. In the experiment, we obtained faulty encryptions
until all the n bits of kT−1 are retrieved. For every value of n, we repeated the

experiment 1000 times and obtained the average number of faulty encryptions
required to recover kT−1. Table 3 shows the number of faulty encryptions required
to recover the n-bit last round key kT−1. Since no control over the bit-flip position
is assumed, the faults can affect the same bit position more than once. Hence, the
number of faulty encryptions required to obtain kT−1 is more than n/2. However,
if a precise control over the fault position is assumed then the number of faulty
encryptions required is close to the estimated value n/2.

Table 3. Bit-flip Fault Attack on SIMON Assuming no Control Over the Fault Position

n bits kT−1 Avg. No. of Faulty Encryptions

16 0xfa 0x24 25

24 0x26 0x53 0xaf 43

32 0x87 0x46 0x09 0x1a 62

48 0x22 0x4d 0xe9 0xcf 0x51 0xdd 104

64 0x19 0x26 0x5a 0xc7 0x4f 0xf2 0x90 0x01 150

2.6 Random Byte Fault Attack on SIMON

In this section, we describe a more practical fault attack, where we assume that
the attacker can affect a byte of xT−2 with a random fault. The working principle
of this attack is the same as that of the bit-flip fault attack except for the following
two cases:

1. Every flipped bit of xT−2 retrieves two key bits of kT−1. However if the least
and the most significant bits of the induced byte fault are 1 then each of these
bits can retrieve only one key bit as shown below: Suppose, a fault flips the
bits xT−2

j and xT−2
j−7 . A flip in xT−2

j affects 3 bits of yT :

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) &(xT−2
(j−7)%n ⊕ 1))

(yT ⊕ yT
∗
)(j+8)%n = (xT−2

(j+7)%n & xT−2
j)⊕ (xT−2

(j+7)%n & (xT−2
j ⊕ 1))

(yT ⊕ yT
∗
)(j+2)%n = xT−2

j ⊕ xT−2
j ⊕ 1 = 1

(14)

A flip in xT−2
j−7 also affects 3 bits of yT :

(yT ⊕ yT
∗
)(j−6)%n = (xT−2

(j−7)%n & xT−2
(j−14)%n)⊕ ((xT−2

(j−7)%n ⊕ 1) & xT−2
(j−14)%n)

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) & (xT−2
(j−7)%n ⊕ 1))

(yT ⊕ yT
∗
)(j−5)%n = xT−2

(j−7)%n ⊕ x
T−2
(j−7)%n ⊕ 1 = 1

(15)

Similar to the bit fault attack, we expect to retrieve the two bits xT−2
(j−7)%n

and xT−2
(j+7)%n from the equation set (14), and the two bits xT−2

(j−14)%n and xT−2
j

from the equation set (15). However, one can see from Table 4 that using the

value of (yT ⊕yT∗
)(j+1)%n, the jth and ((j−7)%n)th bits cannot be retrieved.

This is because in this case, both the input bits xT−2
j and xT−2

(j−7)%n of the

AND operation used in the computation of yT
∗

(j+1)%n are flipped. We can only

determine whether the bits xT−2
j and xT−2

(j−7)%n are complement of each other or

they have the same value. The actual value of either xT−2
j or xT−2

(j−7)%n cannot

be known. Thus in this case, only two bits: xT−2
(j+7)%n from equation set (14)

and xT−2
(j−14)%n from equation set (15) can be retrieved. In all the other cases,

the number of key bits that can be retrieved using a byte fault is twice the
Hamming weight of the fault, as every flipped bit of xT−2 reveals two bits of
the last round key.

Table 4. Relation between the bits xT−2
(j)%n and xT−2

(j−7)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j−7)%n xT−2

(j−7)%n ⊕ 1 (yT ⊕ yT
∗
)(j+1)%n

0 1 1 0 0

1 0 0 1 0

0 1 0 1 1

1 0 1 0 1

2. The attack procedure also differs slightly when a byte fault flips two contiguous
bits xT−2

j and xT−2
j−1 . In this case, a flip in xT−2

j affects 3 bits of yT :

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) & xT−2
(j−7)%n)⊕ 1

(yT ⊕ yT
∗
)(j+8)%n = (xT−2

(j+7)%n & xT−2
j)⊕ (xT−2

(j+7)%n & (xT−2
j ⊕ 1))

(yT ⊕ yT
∗
)(j+2)%n = xT−2

j ⊕ xT−2
j ⊕ 1 = 1

(16)

And, a flip in xT−2
j−1 also affects 3 bits of yT :

(yT ⊕ yT
∗
)(j)%n = (xT−2

j−1 & xT−2
(j−8)%n)⊕ ((xT−2

j−1 ⊕ 1) & xT−2
(j−8)%n)

(yT ⊕ yT
∗
)(j+7)%n = (xT−2

(j+6)%n & xT−2
j−1)⊕ (xT−2

(j+6)%n & (xT−2
j−1 ⊕ 1))

(yT ⊕ yT
∗
)(j+1)%n = (xT−2

j & xT−2
(j−7)%n)⊕ ((xT−2

j ⊕ 1) & xT−2
(j−7)%n)⊕ 1

(17)

Table 5. Deducing the value of bit xT−2
(j−7)%n from (yT ⊕ yT

∗
)(j+1)%n

xT−2
j xT−2

j ⊕ 1 xT−2
(j−7)%n (yT ⊕ yT

∗
)(j+1)%n

0 1 0 1

1 0 0 1

0 1 1 0

1 0 1 0

From Table 5 it can be seen that, if the value of (yT ⊕ yT
∗
)(j+1)%n is 0, then

irrespective of the bit value xT−2
j the value of the bit xT−2

(j−7)%n is 1, otherwise it

is 0. This is because in this case, the input bit xT−2
(j−1)%n of the xor operation used

in the computation of yT
∗

(j+1)%n is also flipped.

xT−2
(j−7)%n = ¬(yT ⊕ yT

∗
)(j+1)%n (18)

The bit xT−2
(j+7)%n from equation set (16) and bits xT−2

(j−8)%n and xT−2
(j+6)%n from

equation set (17) are obtained in the same way as described previously in the
bit-flip fault attack.

2.7 Attack Complexity

A byte fault of Hamming weight z in xT−2 retrieves 2z bits of the last round key
kT−1 except for the case where the most and the least significant bits of the byte
fault are 1. In this case, 2z−2 bits of the last round key are retrieved. The number
of possible byte faults having Hamming weight z is

(
8
z

)
and there are 64 byte faults

where the least and the most significant bits are 1. If we assume that every byte
fault of Hamming weight z retrieves 2z bits then the expected number of key bits
that can be retrieved by a random byte fault is:

8∑
z=1

2z ∗ Pr[z] =
1

255
∗
(8∑
z=1

2z ∗
(

8

z

))
But, if the least and most significant bits of the byte fault having Hamming weight
z are 1, then 2z−2 key bits are retrieved. Since there are 64 such faults, we subtract
2*64 from the above expression to obtain:

1

255
∗
((8∑

z=1

2z ∗
(

8

z

))
− 128

)
≈ 8 (19)

Hence, the average number of byte faults required to recover all the n bits of kT−1

is (n/8).

2.8 Simulation Results

We also simulated the random byte fault attack on different members of the SI-
MON family. As done in the previous simulation, we assumed that the attacker
is able to identify and target the left half input xT−2 of the penultimate round
using a side-channel, but has no control over the fault position. However, the at-
tacker can deduce the value and position of the induced fault using equation (8)
and retrieve the bits of the last round key kT−1 as described in the attack. In
the experiment, we obtained faulty encryptions until all the n bits of kT−1 are
retrieved. For every value of n, we repeated the experiment 1000 times and ob-
tained the average number of faulty encryptions required to recover kT−1. Table
6 shows the number of faulty encryptions required to recover the n-bit last round
key kT−1. Since no control over the fault position is assumed, the faults can affect
the same bit position more than once. Hence, the number of faulty encryptions
is more than n/8. However, if a precise control over the fault position is assumed
then the number of faulty encryptions required is close to the estimated value n/8.

Table 6. Random Byte Fault Attack on SIMON Assuming no Control Over the Fault
Position

n bits kT−1 Avg. No. of Faulty Encryptions

16 0xfa 0x24 6

24 0x26 0x53 0xaf 9

32 0x87 0x46 0x09 0x1a 13

48 0x22 0x4d 0xe9 0xcf 0x51 0xdd 21

64 0x19 0x26 0x5a 0xc7 0x4f 0xf2 0x90 0x01 30

3 Fault Attack on SPECK

Similar to the attack description of SIMON, we begin by describing the character-
istics of the round function of SPECK which enable us to mount the attack.

3.1 Round function of SPECK

Fig.2. shows a single round transformation of SPECK. A round in SPECK is a

⊕ki

xi yi

S-α

Sβ

+

xi+1 yi+1

⊕

Fig. 2. ith Round of SPECK

function Rk : GF (2n)×GF (2n)→ GF (2n)×GF (2n) defined as

Rki(x
i, yi) = (xi+1, yi+1)

= (f(xi, yi)⊕ ki, Sβ(yi)⊕ f(xi, yi)⊕ ki)
(20)

where i ∈ {0, . . . , T − 1} and f(xi, yi) = S−α(xi) + yi. The addition in function f
is performed modulo 2n. The jth bit of f(xi, yi) is computed as

f(xi, yi)j = xi(j+α)%n ⊕ y
i
j ⊕ cj (21)

where the carry bit cj = (xi(j−1+α)%n & yij−1) |(yij−1 & cj−1) | (xi(j−1+α)%n & cj−1),

c0 = 0 and j ∈ {0, . . . , n− 1}.
The fault attack that we describe later, exploits the information leaked by the
modular addition operation used in the computation of a round function.
In the following discussion, we show that the secrecy of the last round key relies
completely upon the secrecy of the left half input xT−1 of the final round.

3.2 Equation of the last round key

The output of SPECK is denoted by (xT , yT), where

xT = (S−α(xT−1) + yT−1)⊕ kT−1

yT = (S−α(xT−1) + yT−1)⊕ kT−1 ⊕ Sβ(yT−1)

= xT ⊕ Sβ(yT−1)

(22)

We can express the last round key kT−1 as follows:

kT−1 = (S−α(xT−1) + yT−1)⊕ xT (23)

Since yT−1 = S−β(yT ⊕ xT),

∴ kT−1 = (S−α(xT−1) + S−β(yT ⊕ xT))⊕ xT (24)

Consider the jth bit of kT−1

kT−1
j = (xT−1

(j+α)%n ⊕ (yT ⊕ xT)(j+β)%n ⊕ cj)⊕ xTj (25)

From the above equation, it can be seen that the jth bit of last round key kT−1

can be retrieved if the value of bit xT−1
(j+α)%n and carry bit cj is known. In the

following discussion, we describe a fault attack that targets yT−1 and retrieves
xT−1 in order to recover kT−1.

3.3 Determining the Fault Position and Value

Suppose a fault e is induced in the intermediate result yT−1. Let the resulting
faulty ciphertext be (xT

∗
, yT

∗
).

∵ yT ⊕ yT
∗

= xT ⊕ Sβ(yT−1)⊕ xT
∗
⊕ Sβ(yT−1∗)

yT−1 ⊕ y(T−1)∗ = S−β(yT ⊕ yT
∗
⊕ xT ⊕ xT

∗
)

∴ e = S−β(yT ⊕ yT
∗
⊕ xT ⊕ xT

∗
)

(26)

Since we know the output of correct and faulty computation, we can deduce the
value and position of the fault e injected in yT−1 and therefore, we can determine
the bits that are flipped in yT−1.

3.4 Bit-Flip Fault Attack on SPECK

Consider the jth bit of last round key,

kT−1
j = (xT−1

(j+α)%n ⊕ (yT ⊕ xT)(j+β)%n ⊕ cj)⊕ xTj

From the above equation it can be seen that the key bit kT−1
j can be recovered

if the values of the bit xT−1
(j+α)%n and carry bit cj are known. Since the value of

initial carry c0 = 0 is known, we show that a flip in the bit of yT−1 at position 0
reveals the value of xT−1

(0+α)%n and therefore the bit kT−1
0 can be retrieved. Now,

as we have the value of bits xT−1
(0+α)%n, c0 and yT−1

0 , we can also deduce the value

of carry-out c1. Subsequently, we flip the next bit of yT−1, i.e. yT−1
1 , to retrieve

the key bit kT−1
1 and repeat this process, until all bits of the last round key are

recovered. The attack details are given below:

1. Flip the jth bit in the input of yT−1 so that it results in a faulty ciphertext
(x∗T , y

∗
T). Initially j = 0. The xor of correct and faulty computation of the

output xT can be written as:

xT ⊕ xT
∗

= (S−α(xT−1) + yT−1)⊕ (S−α(xT−1) + y(T−1)∗) (27)

We can write the jth bit of xor as:

(xT ⊕ xT
∗
)j = (xT−1

(j+α)%n ⊕ y
T−1
j ⊕ cj)⊕ (xT−1

(j+α)%n ⊕ (yT−1
j ⊕ 1)⊕ cj)

∴ (xT ⊕ xT
∗
)j = 1

(28)

It should be emphasized here, that a flip in the bit yT−1
j not only changes the

jth bit in the output of modular addition but can also affect the carry-out bit
cj+1. Let us denote the carry-out bit by c∗j+1 when the bit yT−1

j is flipped. If

cj+1 6= c∗j+1, then due to the rippling effect of carry the next l bits in xT
∗

are
also affected. In general, we can write:

(xT ⊕ xT
∗
)m =

{
1, (m = j) or (m > j , cm 6= c∗m)

0, otherwise
(29)

where m ∈ {j, . . . , j + l} and 0 ≤ l < n.

2. Now, based on the number of differences #1(xT ⊕ xT∗
) in the xor of xT and

x∗T , we can derive the corresponding value of bit xT−1
(j+α)%n from Table 7.

There are two cases which can be observed from this table:
(a) If #1(xT ⊕ xT∗

) = 1, it implies that the carry- out bit is not flipped, i.e.
cj+1 = c∗j+1. In this case, irrespective of the value of bit yT−1

j , xT−1
j+α = cj .

(b) If #1(xT ⊕ xT∗
) > 1, it implies that the carry-out bit is also flipped, i.e.

cj+1 6= c∗j+1. In this case, irrespective of the value of bit yT−1
j , xT−1

j+α = ¬cj .
Therefore, we can write:

xT−1
(j+α)%n =

{
cj , #1(xT ⊕ xT∗

) = 1

¬cj , otherwise
(30)

Table 7. Deducing the value of bit xT−1
(j+α)%n and carry-in bit cj from #1(xT ⊕xT

∗
) and

bit yT−1
j .

yT−1
j yT−1

j ⊕ 1 #1(xT ⊕ xT
∗
) cj xT−1

(j+α)%n

0 1 1 0 0

1 0 1 0 0

0 1 1 1 1

1 0 1 1 1

0 1 > 1 0 1

1 0 > 1 0 1

0 1 > 1 1 0

1 0 > 1 1 0

Since the value of carry-in bit cj is known, the value of the bit xT−1
(j+α)%n can

be deduced. Now, as we know the values of cj , x
T−1
(j+α)%n and yT−1

j , the value

of carry-out bit cj+1 can be found which is used for retrieving xT−1
(j+1+α)%n in

the next iteration of the attack.
Also, if l > 0, we can write:

(xT ⊕ xT
∗
)p = 1

∴ (xT ⊕ xT
∗
)p = (xT−1

(p+α)%n ⊕ y
T−1
p ⊕ cp)⊕ (xT−1

(p+α)%n ⊕ y
T−1
p ⊕ cp)⊕ 1

∴ (xT ⊕ xT
∗
)p = (xT−1

(p+α)%n ⊕ y
T−1
p ⊕ cp)⊕ (xT−1

(p+α)%n ⊕ (yT−1
p ⊕ 1)⊕ cp)

(31)

where p ∈ {j + 1, . . . , j + l}. This equation is similar to equation (28) given in
step 1 of this attack procedure. Therefore, we can repeat the step 2 for l more
times and retrieve l more bits of xT−1 viz., xT−1

(j+1+α)%n to xT−1
(j+l+α)%n. Hence,

it is not required to perform the bit-flip fault attack on the next l bits of yT−1.

3. Now we can use equation (25) to retrieve the bits of last round key kT−1.
if (l = 0)

jth bit of kT−1 can be recovered
else

l + 1 bits kT−1
j to kT−1

j+l can be recovered

4. j = j + l + 1
if(j = n) break
goto step 1

3.5 Attack Complexity

A single bit-flip in the intermediate state yT−1 reveals at least one bit of xT−1 and
therefore at least one bit of kT−1. However, as explained above, more than one
bit of xT−1 can be retrieved depending upon the number of carry bits which are
flipped due to the faulty bit. The probability of the carry bit being flipped is (1/2)
and therefore the probability of obtaining one more bit of xT−1 is also (1/2). In

general, the probability of obtaining l more bits of xT−1 is equal to the probability
of l carry bits getting flipped due to a single bit flip in yT−1. For lth carry bit to
be flipped, all the lower (l − 1) carry bits should also be flipped. The probability
of this event is 1/2l. Therefore, the expected number of bits of last round key that
can be retrieved using a single bit-flip is:

1 +

l∑
z=1

z ∗ Pr[z] = 1 +

l∑
z=1

z ∗ 1

2z
≈ 3 (32)

Thus, a bit-flip recovers three bits of the last round key. Therefore, the average
number of bit faults required to recover all the n bits of last round key kT−1 is
(n/3).

3.6 Simulation Results

We simulated the bit-flip fault attack on different members of the SPECK family
using C. We assumed that the attacker is able to identify and target the right
half input yT−1 of the final round using a side-channel, but has no control over
the fault position. However, the attacker can deduce the value and position of the
induced fault using equation (26).

In the attack described above, we observed that using the carry-in bit c0 = 0,
a flip in the least significant bit of yT−1 can be used to obtain the bit of xα and
subsequently the higher bits of yT−1 can be flipped in a sequential manner. But in
the experiment, we assumed no control over the bit flip position and therefore, we
continued to obtain the faulty encryptions until all the n bits of kT−1 are retrieved.
For every value of n, we repeated the experiment 1000 times and obtained the
average number of faulty encryptions required to recover kT−1. Table 8 shows the
number of faulty encryptions required to recover the n-bit last round key kT−1.
Since no control over the bit-flip position is assumed, the faults can affect the same
bit-position more than once. Hence, the number of faulty encryptions required to
obtain kT−1 is more than n/3. However, if a precise control over the fault position
is assumed then the number of faulty encryptions required is close to the estimated
value n/3.

Table 8. Bit-flip Fault Attack on SPECK Assuming no Control Over the Fault Position

n bits kT−1 Avg. No. of Faulty Encryptions

16 0xfa 0x24 18

24 0x26 0x53 0xaf 25

32 0x87 0x46 0x09 0x1a 44

48 0x22 0x4d 0xe9 0xcf 0x51 0xdd 85

64 0x19 0x26 0x5a 0xc7 0x4f 0xf2 0x90 0x01 114

4 Conclusion

In this paper, we have described the first fault attack on the families of SIMON
and SPECK ciphers. In SIMON, we have exploited the information leaked by the

AND operation used during the computation of f(xT−2). This information can
be observed through the right half yT of the final output. We observed that if a
bit u is flipped in the input xT−2, then the bit v of xT−2 which is ANDed with
u, can be retrieved. Since the flipped bit u is ANDed in two different positions in
the computation of xT−1, we can deduce two bits of xT−2, which are then used
to derive the corresponding bits of the last round key kT−1. This principle is used
to mount both the bit-flip and random byte fault attack. The average number of
bit faults required to retrieve the n bits of kT−1 is (n/2). If a random byte fault
is induced, then the number of key bits which are retrieved, depends upon the
Hamming weight of the induced fault. In this case, the average number of byte
faults required to retrieve the n-bit last round key is (n/8).

In SPECK, we have exploited the information leaked by the modular addition
used during the computation of xT . Here, we flip the bits of yT−1, beginning from
its least significant bit, since we require the value of carry-in bit. We observed that
if the faulty output xT

∗
differs from the correct output xT in l bits, then we can

deduce l bits of the last round key kT−1. Therefore, the average number of bit
faults to retrieve the n bits of kT−1 is (n/3).

References

1. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers,
“The SIMON and SPECK Families of Lightweight Block Ciphers.” Cryptology ePrint
Archive, Report 2013/404, 2013. http://eprint.iacr.org/.

2. H. A. Alkhzaimi and M. M. Lauridsen, “Cryptanalysis of the SIMON Family of Block
Ciphers.” Cryptology ePrint Archive, Report 2013/543, 2013. http://eprint.iacr.org/.

3. F. Abed, E. List, S. Lucks, and J. Wenzel, “Differential and Linear Cryptanaly-
sis of Reduced-Round SIMON.” Cryptology ePrint Archive, Report 2013/526, 2013.
http://eprint.iacr.org/.

4. J. Alizadeh, N. Bagheri, P. Gauravaram, A. Kumar, and S. K. Sanadhya, “Lin-
ear Cryptanalysis of Round Reduced SIMON.” Cryptology ePrint Archive, Report
2013/663, 2013. http://eprint.iacr.org/.

