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A low complexity bit-parallel Montgomery
multiplier based on squaring for trinomials

Yin Li,Yiyang Chen

Abstract—In this paper, we present a new bit-parallel Montgomery multiplier for GF (2m) generated with irreducible
trinomials. A newly proposed divide-and-conquer approach is applied to simplify the polynomial multiplication while
the Montgomery squaring is induced to simplify the modular reduction. Meanwhile, this design effectively exploits the
overlapped elements in squaring and reduction operation to reduce the space complexity. As a result, the proposed
multiplier has about 25% reduced space complexity compared with previous multipliers, with a slight increase of time
complexity. Among five binary fields recommended by NIST for the ECDSA (Elliptic Curve Digital Signature Algorithm),
there exist two fields, i.e., GF (2409), GF (2233), defined by trinomials. For these two fields, we show that our proposal
outperforms the previous best known results if the space and time complexities are both considered.

Index Terms—Montgomery multiplication, squaring, bit-parallel, trinomials.
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1 INTRODUCTION

Efficient hardware implementation of multi-
plication over GF (2m) is very important in
many areas such as coding theory, computer
algebra and public key cryptosystems [1], [2].
Nowadays, more and more circuit gates can be
located on a single chip which makes the bit-
parallel architectures possible and reasonable.
During recent years, a number of bit-parallel
GF (2m) multiplier schemes and architectures
have been proposed to achieve the higher com-
putation speed or lower area complexity. They
have covered extensive cases with respect to
different bases representation [4], [5] and gen-
erating polynomials [6], [7], [8].

Montgomery multiplication is an important
algorithm which was originally used for fast
modular integer multiplication [9] and then
extended to field multiplication over GF (2m)
[10] and GF (pm) with p > 2 [11]. In [10], Koç
and Acar have introduced a class of algorithm
for software implementation of Montgomery
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multiplication. They argued that Montgomery
multiplication can be implemented efficiently if
the Montgomery factor is chosen properly. The
hardware implementation of the Montgomery
multiplication is investigated in [12], [13]. The
Montgomery factor among these literatures is
selected as xm. In [14], Wu has proposed a
new bit-parallel Montgomery multiplier for ir-
reducible trinomials using different factor. His
scheme is based on the a slightly generalized
method in [10] and showed that the Mont-
gomery factor is chosen as the middle term of
the trinomial xm + xk + 1 can result in efficient
bit-parallel multiplier and squarer which are
at least as good as previous proposals. Hariri
and Reyhani-Masoleh [15] have further im-
proved Wu’s proposal. Besides new choice of
the Montgomery factors, fast bit-serial and bit-
parallel multiplier architectures for irreducible
trinomials and pentanomials are also given. It
is argued that their scheme matches the best
known result reported in the literatures.

Hariri and Reyhani-Masolehs architecture is
really fast, but the space complexity of their
multiplier costs about O(m2) circuit gates. Our
work is devoted to reduce the space complexity
of Montgomery multiplier so as to perform the
scalar multiplication of Elliptic Curve Cryptog-
raphy (ECC) in some constraint devices. We
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achieve this goal by inducing a new divide-
and-conquer algorithm which is proposed by
Park et al. [16]. Other than the frequently used
Karatsuba algorithm which partition polyno-
mials into two halves, Park et al. approach,
referred as PCHS algorithm, splits a polyno-
mial A =

∑m−1
i=0 aix

i, ai ∈ F2 according to the
parity of x’s exponent and utilized the squaring
operation. This algorithm is originally applied
in the multiplier for irreducible pentanomials,
in this paper we will show such approach
can also be applied in Montgomery multi-
plier for trinomials. Combining with PCHS
algorithm and Montgomery squaring, a new
bit-parallel Montgomery multiplication archi-
tecture is proposed. Explicit formulae about
complexity analysis are given. As a result, the
space complexity our proposal is about 25%
less than any other Montgomery or Mastrovito
multipliers for irreducible trinomials, with the
time complexity is slightly higher than the best
known results.

The remainder of this paper is organized as
follows: In Section 2, we briefly review the
Montgomery multiplication over GF (2m) and
the PCHS algorithm. Then a new bit-parallel
Montgomery multiplier based on PCHS algo-
rithm is described in Section 3. In Section 4,
we further analyze its complexity and present
a comparison between our proposal and some
others. Finally, some conclusions are drawn.

2 PRELIMINARY

In this section, we briefly introduce some con-
cepts about the Montgomery multiplication
over GF (2m) and the PCHS algorithm.

2.1 Montgomery multiplication in GF (2m)

Let f(x) be an irreducible polynomials which
defines the finite field GF (2m) and r(x) be a
fixed polynomial with deg(r(x)) ≤ m. It is clear
that gcd(f(x), r(x)) = 1, therefore, there exist
f̃(x) and r̃(x) such that

r(x)r̃(x) + f(x)f̃(x) = 1. (1)

Obviously, r̃(x) = r−1(x) is the inverse of
r(x) modulo f(x). Given two field elements

a(x), b(x) ∈ GF (2m), the Montgomery multipli-
cation over GF (2m) is given by:

c(x) = a(x)b(x)r−1(x) mod f(x).

The fixed polynomial r(x) is denoted as Mont-
gomery factor and can be chosen according
to f(x) to construct efficient multiplier archi-
tecture. In [10], r(x) is chosen as xm, because
the modular operation and a final division
regarding to xm are very simple. The former
can ignore the terms whose powers of x are
great than or equal to m and the latter requires
m-bit shift of its operand. Hariri and Reyhani-
Masoleh [15] have proved that r(x) = xm−1

is more suitable for efficient bit-serial Mont-
gomery multiplier. When f(x) is an irreducible
trinomial or pentanomial, the bit-parallel Mont-
gomery multiplier architecture is investigated
in [15], [14]. In this case, r(x) is chosen as xk or
xk−1 for efficient reason.

2.2 The PCHS algorithm
Let A =

∑m−1
i=0 αxi and B =

∑m−1
i=0 βxi be two

elements in GF (2m) using polynomial basis.
Assume that m is an odd integer. We can
partition A,B into

A = A2
1 + xA2

2 and B = x−1B2
1 +B2

2

respectively, where A1 =
∑(m−1)/2

i=0 α2ix
i, A2 =∑(m−3)/2

i=0 α2i+1x
i, B1 =

∑(m−1)/2
i=0 β2i−1x

i, and
B2 =

∑(m−1)/2
i=0 β2ix

i. Then we have

AB = (A2
1 + xA2

2)(x
−1B2

1+B2
2)

= x−1(A1B1)
2+x(A2B2)

2+(A1B2)
2+(A2B1)

2

= x−1(A1B1)
2+x(A2B2)

2+(A1B1)
2+(A2B2)

2

+ [(A1+A2)(B1+B2)]
2 .

(2)
Analogous with Karatsuba algorithm, Equa-
tion (2) modified the m-term polynomial multi-
plication into three m+1

2
(or m−1

2
)-term polyno-

mial multiplications at the cost of three extra
additions. Please note that this formula also
utilize squaring operation, thus the PCHS algo-
rithm should be combined with efficient squar-
ing operation together to construct efficient
multiplication. In the following section, we will
describe a new bit-parallel multiplier based on
Park et al. algorithm and Montgomery squar-
ing operation for irreducible trinomials.
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3 NEW FIELD MULTIPLICATION USING
MONTGOMERY SQUARING OPERATION

In this section, we present a new Montgomery
multiplication formula for irreducible trinomi-
als using the PCHS algorithm. Suppose that the
finite field GF (2m) is defined by an irreducible
trinomial f(x) = xm + xk + 1 with a root x,
and the field elements are represented using
polynomial basis {1, x, · · · , xm−1}. From now
on, we only take account of f(x) = xm + xk +1
where 1 ≤ k ≤ m/2 and m is odd, because
there always exist irreducible trinomial f(x) =
xm + xm−k + 1 by the reciprocal property [3]
and this type of trinomial is practically used in
cryptography [21].

Assume that A,B ∈ GF (2m) are two arbi-
trary elements in polynomial basis representa-
tion:
A = am−1x

m−1 + am−2x
m−2 + · · ·+ a1x+ a0,

B = bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x+ b0,

where ai, bi ∈ F2. We use xu (1 ≤ u < m) as the
Montgomery factor, consider the Montgomery
multiplication over GF (2m):

C = A ·B · x−u mod f(x). (3)

According to the PCHS approach, we split A,B
into two parts as follows:

A = A2
1 + xA2

2, B = x−1B2
1 +B2

2 ,

where{
A1 =

∑m−1
2

i=0 a2ix
i, A2 =

∑m−3
2

i=0 a2i+1x
i,

B1 =
∑m−1

2
i=1 b2i−1x

i, B2 =
∑m−1

2
i=0 b2ix

i.

Then the Montgomery multiplication can be
rewritten as

ABx−u =
[
(A2

1 + xA2
2)(x

−1B2
1 +B2

2)
]
x−u

= [x−1(A1B1)
2 + x(A2B2)

2 + (A1B2)
2

+ (A2B1)
2]x−u

= [x−1(A1B1)
2 + x(A2B2)

2 + (A1B1)
2

+ (A2B2)
2 + (CD)2]x−u

= (A1B1)
2x−u(1+x−1) + (CD)2x−u

+ (A2B2)
2x−u(1 + x)

where C = A1 + A2, D = B1 +B2.
Form the above expression, it is clear that

the Montgomery multiplication is transferred
into the Montgomery squaring in terms of

A1B1, A2B2, CD. Please note that the choice of
the Montgomery factor xu could highly in-
fluence these squaring operations. Hariri and
Reyhani-Masoleh [15] have proposed the opti-
mal xu which can be summarized in following
lemma:

Lemma 1 Let f(x) = xm + xk + 1 be an irre-
ducible trinomial over F2 and x be the root of f(x).
Then, the Montgomery factor xu is obtained from
following in order to construct the simplest modular
reduction.

u =

{
1, k = 1,

k or k − 1, k > 1.
(4)

Proof See section 5 in [15]. �
Hence, in this paper we use the same Mont-

gomery factor as Wu’s argument, where xu =
xk. Note that the degrees of A1B1, A2B2 and CD
are at most m− 1. From now on, the following
notions are used:

A1B1 =
m−1∑
i=0

cix
i, A2B2 =

m−1∑
i=0

dix
i, CD =

m−1∑
i=0

eix
i,

S1 = (A1B1)
2x−k(1 + x−1) mod f(x) =

m−1∑
i=0

six
i,

S2 = (A2B2)
2x−k(1 + x) mod f(x) =

m−1∑
i=0

tix
i,

S3 = (CD)2x−k mod f(x) =

m−1∑
i=0

rix
i.

Here, notice that c0 = 0 and dm−1 = 0. Then the
Montgomery multiplication can be expressed
as

ABx−k mod f(x) = S1 + S2 + S3.

We then consider the detailed computation of
S1, S2 and S3, respectively.

3.1 The complexities of A1B1, A2B2

We first briefly analyze the complexities of
the products A1B1 and A2B2 which will be
used in the computation of S1, S2. According
to previous description, the coefficients cis of
A1B1 =

∑m−1
i=0 cix

i are given by
ci =
0, i = 0,∑i

j=0 a2jb2(i−j)−1, 1 ≤ i ≤ m−1
2

,∑m−1
2

j=i−m−1
2

a2jb2(i−j)−1,
m+1
2

≤ i ≤ m− 1.

(5)
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TABLE 1
The computation complexity of ci.

ci #AND #XOR Delay

c0 = 0 0 0 -

c1 = a0b1 1 0 TA

c2 = a0b3 + a2b1 2 1 TA + TX

...
...

...
...

cm−1
2

= a0bm−2 + · · ·+ am−3b1
m−1

2
m−3

2
TA + (⌈log2(m−1

2
)⌉)TX

cm+1
2

= a2bm−2 + · · ·+ am−1b1
m−1

2
m−3

2
TA + (⌈log2(m−1

2
)⌉)TX

...
...

...
...

cm−1 = am−1bm−2 1 0 TA

Total m2−1
4

m2−4m+3
4

TA + ⌈log2
(
m−1

2

)
⌉TX

As an example, the gate count and time
delay for implementation of each ci in (5) are
presented in Table 1. It is easy to see that the
computation of cis for 0 ≤ i < m cost (m2−1)

4

AND and m2−4m+3
4

XOR gates with path delay
TA + ⌈log2

(
m−1
2

)
⌉TX .

Similarly, we can easily obtain the space and
time complexity related to A2B2 in following
formulae:

#AND:
m2 − 1

4
,

#XOR:
m2 − 4m+ 3

4
,

Delay: TA +

⌈
log2

(
m− 1

2

)⌉
TX .

3.2 The computation of S1, S2

According to previous description, we know
that the critical computation regarding to S1, S2

is the Montgomery squaring operation in
GF (2m). This operation has been fully studied
through the explicit formulation proposed by
Wu [14]. Based on his work, we know that
the Montgomery squaring formulae are varied
according to the range of m and k. Hence, we
consider four cases:

• m is odd, k is odd, 1 ≤ k ≤ m−3
2

,
• m is odd, k is odd, k = m−1

2
,

• m is odd, k is even, 1 ≤ k ≤ m−3
2

,
• m is odd, k is even, k = m−1

2
.

Using different formulae as above, the result
of S1, S2 is expressed differently. For exam-

ple, suppose that m and k satisfy case 1, de-
note

∑m−1
i=0 zix

i as the Montgomery squaring
(A1B1)

2x−k, we have following expression:
zi =

c i
2
+ cm+k+i

2
, i = 0, 2, · · · , k − 1;

cm+k+i
2

, i = k + 1, k + 3, · · · ,m− k − 2;

c k−m+i
2

, i = m− k,m− k + 2 · · · ,m− 1;

c k+i
2
, i = 1, 3, · · · , k − 2;

c k+i
2

+ cm+i
2

, i = k, k + 2, · · · ,m− 2.

(6)

Since xm+xk = 1, we have x−1 = xm−1+xk−1.
It follows that:

S1 =
m−1∑
i=0

zix
i(1 + x−1) mod f(x)

=
m−2∑

i=0,i̸=k−1

(zi + zi+1)x
i

+ (zk−1 + zk + z0)x
k−1 + (zm−1 + z0)x

m−1

Then we substitute zi with the above expres-
sions in (6). Note that c0 = 0, the coefficients of
S1 are given by:
si =

c i
2
+ cm+k+i

2
+ c k+i+1

2
, i = 0, 2, · · · , k − 1;

cm+k+i
2

+ c k+i+1
2

+ cm+i+1
2

, i = k + 1, k + 3,

· · · ,m− k − 2;
c k−m+i

2
+ c k+i+1

2
+ cm+i+1

2
, i = m− k,m− k + 2,

· · · ,m− 3;
c k−1

2
+ cm+k

2
, i = m− 1;

c k+i
2

+ c i+1
2

+ cm+k+i+1
2

, i = 1, 3, · · · , k − 2;

c k+i
2

+ cm+i
2

+ cm+k+i+1
2

, i = k, k + 2,

· · · ,m− k − 3;
c k+i

2
+ cm+i

2
+ c k−m+i+1

2
, i = m− k − 1,m− k + 1,

· · · ,m− 2;
(7)
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Obviously, we can utilize the similar strategy
to obtain the explicit expression of S2. Let∑m−1

i=0 z′ix
i denote the Montgomery squaring

respect to A2B2, then we have:

S2 =

m−1∑
i=0

z′ix
i(1 + x) mod f(x)

=
m−1∑

i=1,i ̸=k

(z′i + z′i−1)x
i

+ (z′k + z′k−1 + z′m−1)x
k + (z′m−1 + z′0).

The explicit formulae for the coefficients of S2

are given in (8). It follows that each coefficient
of S1 + S2 consists of at most six terms which
can be implemented with the gate delay at
most 3TX in parallel.

ti =

d i
2
+ dm+k+i

2
+ d k+i−1

2
, i = 0, 2, · · · , k − 1;

dm+k+i
2

+ d k+i+1
2

+ dm+i+1
2

, i = k + 1, k + 3,

· · · ,m− k − 2;
d k−m+i

2
+ d k+i−1

2
+ dm+i−1

2
, i = m− k,m− k + 2,

· · · ,m− 1;
d k+i

2
+ d i−1

2
+ dm+k+i−1

2
, i = 1, 3, · · · , k − 2;

dk + dm+k
2

+ dm+2k−1
2

i = k;

d k+i
2

+ dm+i
2

+ dm+k+i−1
2

, i = k + 2, k + 4,

· · · ,m− k − 3;
d k+i

2
+ dm+i

2
+ d k−m+i−1

2
, i = m− k − 1,m− k + 1,

· · · ,m− 2;
(8)

For simplicity, we do not present detailed com-
putational procedures of S1+S2 for other cases.
The detailed results of other cases can be found
in the appendix.

3.3 Computation of S3

Since the computation of C = A1 + A2 and
D = B1 + B2 require one extra TX gate delay,
in order to keep pace with the computation of
S1+S2, we use different computational strategy
which combines the polynomial multiplication
with Montgomery squaring.

Let
∑m−1

2
i=0 ui = A1+A2 and

∑m−1
2

i=0 vi = B1+B2,
then

ei =

{∑i
j=0 ujvi−j 0 ≤ i ≤ m−1

2
,∑m−1

2

j=i−m−1
2

ujvi−j
m+1
2

≤ i ≤ m− 1.
(9)

and

ri =



e i
2
+ em+k+i

2
, i = 0, 2, · · · , k − 1;

em+k+i
2

, i = k + 1, k + 3, · · · ,m− k − 2;

e k−m+i
2

, i = m− k,m− k + 2 · · · ,m− 1;

e k+i
2
, i = 1, 3, · · · , k − 2;

e k+i
2

+ em+i
2

, i = k, k + 2, · · · ,m− 2.

(10)
By substituting (9) into (10), we can obtain the
explicit expression of ris. Particularly, it only
need (m+1)2

4
AND gates to computed all the

uivj for i, j = 0, 1, · · · , m−1
2

, we only present the
number of XOR gates required by each ri which
are summarized in Table 2.

Generally, the computation of ri presented
in Table 2 consists of multiplying ui with vj
and adding up all these products using a bi-
nary XOR tree. However, note that there exist
certain overlapped terms among some ris, we
will show that the number of required XOR
gates can be further reduced by reusing the
intermediated results in these binary trees.

For example, one can check that r0 = e0 +
em+k

2
contains a same part em+k

2
with rk =

ek + em+k
2

. According to (9), it follows that

em+k
2

=
∑m−1

2

j= k+1
2

ujvm+k
2

−j which consists of m−k
2

terms. Provided that m−k
2

is odd and then r0, rk
are calculated using a binary XOR tree. The de-
tailed computation of r0 and rk are performed
as follows:

r0 =[u k+1
2
vm−1

2
+ u k+3

2
vm−3

2
] + [u k+5

2
vm−5

2

+ u k+7
2
vm−7

2
] + · · ·+ [um−5

2
v k+5

2
+ um−3

2
v k+3

2
]

+ [um−1
2
v k+1

2
+ u0v0],

rk =[u k+1
2
vm−1

2
+ u k+3

2
vm−3

2
] + [u k+5

2
vm−5

2

+ u k+7
2
vm−7

2
] + · · ·+ [um−5

2
v k+5

2
+ um−3

2
v k+3

2
]

+ [um−1
2
v k+1

2
+ u0vk] + [u1vk−1 + u2vk−2]

+ · · ·+ [uk−1v1 + ukv0].
(11)

In (11), the terms uivj represent the XOR tree
nodes in depth 0 and the additions in the brack-
ets are computed simultaneously. The results of
the brackets correspond to the XOR tree nodes
in depth 1. We then follow the same line to add
the nodes pairwisely and repeat those steps



6

TABLE 2
The computation complexity of ri.

i ri #XOR i ri #XOR

0 u0v0+
∑m−1

2

j= k+1
2

ujvm+k
2

−j
m−k
2

1
∑ k+1

2
j=0 ujv k+1

2
−j

k+1
2

2 u0v1+u1v0+
∑m−1

2

j= k+3
2

ujvm+k
2

+1−j
m−k
2

3
∑ k+3

2
j=0 ujv k+1

2
+1−j

k+3
2

...
...

...
...

...
...

k−1
∑ k−1

2
j=0 ujv k−1

2
−j
+
∑m−1

2
j=k ujvm−1

2
+k−j

m−k
2

k−2
∑k−1

j=0 ujvk−1−j k−1

k+1
∑m−1

2
j=k+1 ujvm−1

2
+k+1−j

m−1
2

−k k
∑k

j=0 ujvk−j+
∑m−1

2

j= k+1
2

ujvm+k
2

−j
m+k
2

k+3
∑m−1

2
j=k+2 ujvm−1

2
+k+2−j

m−3
2

−k k+2
∑k+1

j=0 ujvk+1−j+
∑m−1

2

j= k+3
2

ujvm+k
2

+1−j
m+k
2

...
...

...
...

...
...

m−k−2 um−1
2

vm−1
2

0 m−k−1
∑m−1

2
j=0 ujvm−1

2
−j
+
∑m−1

2

j=m−k
2

ujvm−k+1
2

−j
m+k
2

m−k u0v0 0 m−k+1
∑m−1

2
j=1 ujvm+1

2
−j+

∑m−1
2

j=m−k+2
2

ujvm−k−1
2

−j
m+k
2

−2

m−k+2 u0v1+u1v0 1
...

...
...

...
...

... m−2
∑m−1

2

j= k−1
2

ujvm+k
2

−1−j+um−1
2

vm−1
2

m−k
2

+1

m−1
∑ k−1

2
j=0 ujv k−1

2
−j

k−1
2

until adding up all those terms together. This
procedure can be depicted in Fig 1 and 2.

Fig. 1. The binary XOR tree (a) related to r0

Due to parallelism, each layer of the XOR
trees related to r0 and rk cost a gate delay TX .
Meanwhile, note that the first ⌊m−k

4
⌋ brackets

of the two expressions in (11) have the same
results, hence we only need to compute these
results in tree (a) and ⌊m−k

4
⌋ XOR gates will be

saved in tree (b). Similarly, it follows that ⌊m−k
8

⌋
XOR gates can be saved at depth 2 and ⌊m−k

2t+1 ⌋
XOR gates saved at depth t in tree (b). Denote
⌊log2(m−k

2
)⌋ = h, then from depth 0 to depth

Fig. 2. The binary XOR tree (b) related to rk

h− 1, the number of saving XOR gates is⌊
m− k

4

⌋
+

⌊
m− k

8

⌋
+ · · ·+

⌊
m− k

2h+1

⌋
. (12)

Moreover, (12) can be simplified even further
according to following proposition.

Proposition 1 Let W (i) be the hamming weight
of an integer i, then i can always be written as i =
2n1 +2n2 + · · ·+2nt where n1 > n2 > · · · > nt ≥ 0.
Note that ⌊log2 i⌋ = n1, then⌊

i

2

⌋
+

⌊
i

4

⌋
+ · · ·+

⌊
i

2n1

⌋
= i−W (i)
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Proof Firstly, it is clear that⌊
i

2

⌋
= 2n1−1 + 2n2−1 + · · ·+ 2nt−1,⌊

i

4

⌋
= 2n1−2 + 2n2−2 + · · ·+ 2nt−2,

...⌊
i

2nt

⌋
= 2n1−nt + 2n2−nt + · · ·+ 2nt−1−nt + 20,

...⌊
i

2n1

⌋
= 1.

Then we rearrange these terms of previous
expression and add them up:

2n1−1 + 2n1−2 + · · ·+ 1 = 2n1 − 1,
2n2−1 + 2n2−2 + · · ·+ 1 = 2n2 − 1,

...
2nt−1 + 2nt−2 + · · ·+ 1 = 2nt − 1.

Obviously,

2n1 − 1 + 2n2 − 1 + · · ·+ 2nt − 1 = i−W (i),

which conclude the proposition. �

Based on proposition 1, (12) can be rewritten
as

m− k

2
−W

(
m− k

2

)
.

Consequently, the explicit number of XOR
gates for overlapped ris are given in Table 3.

In Table 3, the second column j represent the
index of the rj which overlap with ri. Notice
that it requires 1 TX to calculate C = A1 + A2

and D = B1+B2 in parallel. As a result, we can
directly obtain the space the time complexity
related to S3 based on Table 2 and Table 3:

#AND :
(m+ 1)2

4
,

#XOR :
(m− 1)2

4
+

k+1
2∑

i=1

W (i) +

m−k
2∑

i=1

W (i),

Delay : TA +

(
1 +

⌈
log2

m+ k + 2

2

⌉)
TX .

3.4 The computation sequence

Ultimately, we add up S1, S2 and S3 to ob-
tain the final result. Particularly, note that the
computation of S3 requires at least one more
TX gate delay than that of A1B1 and A2B2.
During this time, we can perform one addition
between the coefficients of S1 + S2 in parallel,
namely,

si + ti =

[c i
2
+ cm+k+i

2
] + [c k+i+1

2
+ d i

2
] i = 0, 2, · · · , k − 3;

+[dm+k+i
2

+ d k+i−1
2

],

[c k−1
2

+ cm+2k−1
2

] + [ck + d k−1
2
] i = k − 1;

+[dm+2k−1
2

+ dk−1],

[cm+k+i
2

+ c k+i+1
2

] + [cm+i+1
2

i = k + 1, k + 3,

+dm+k+i
2

] + [d k+i+1
2

+ dm+i+1
2

], · · · ,m− k − 2;

[c k−m+i
2

+ c k+i+1
2

] + [cm+i+1
2

i = m−k,m−k+2,

+d k−m+i
2

] + [d k+i−1
2

+ dm+i−1
2

], · · · ,m− 3;

[c k−1
2

+ cm+k
2

] + [d k−1
2

+ d k+m−2
2

] i = m− 1;

[c k+i
2

+ c i+1
2
] + [cm+k+i+1

2
+ d k+i

2
] i = 1, 3, · · · , k − 2;

+[d i−1
2

+ dm+k+i−1
2

],

[ck + cm+k
2

] + [cm+2k+1
2

+ dk] i = k;

+[dm+k
2

+ dm+2k−1
2

],

[c k+i
2

+ cm+i
2

] + [cm+k+i+1
2

i = k + 2, k + 4,

+d k+i
2
] + [dm+i

2
+ dm+k+i−1

2
], · · · ,m− k − 3;

[c k+i
2

+ cm+i
2

] + [c k−m+i+1
2

i = m−k−1,m−k+1,

+d k+i
2
] + [dm+i

2
+ d k−m+i−1

2
], · · · ,m− 2.

(13)
Due to parallelism, terms in the square brack-
ets of (13) are computed concurrently. Conse-
quently, the computation sequence of the whole
algorithm is arranged as follows:


C, D︸ ︷︷ ︸

Delay: 1TX

(CD)2x−t︸ ︷︷ ︸
TA+⌈log2

m+k+2
2

⌉TX

[S1 + S2] + S3︸ ︷︷ ︸
2TX

A1B1, A2B2︸ ︷︷ ︸
Delay: TA+⌈log2

m−1
2

⌉TX

[S1 + S2]︸ ︷︷ ︸
1TX

The expression [S1 + S2] means computing one
addition in the square brackets of (13) simul-
taneously. After the parallel addition in (13),
the coefficients of S1 + S2 consist of 3 terms.
It follows that there are at most 4 terms con-
stituting to these coefficients plus ri which can
be performed in 2 TX in parallel. Therefore, the
total complexity of the proposed multiplier will
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TABLE 3
The computation complexity of ri after optimization.

i overlap with j #XOR delay for binary tree

0 m− k m−k
2

− (1−W (1)) ⌈log2 m−k
2

+ 1⌉
2 m− k + 2 m−k

2
− (2−W (2)) ⌈log2 m−k

2
+ 1⌉

...
...

...
...

k − 1 m− 1 m−k
2

− ( k+1
2

−W ( k+1
2

)) ⌈log2 m−k
2

+ 1⌉
k 0 m+k

2
− (m−k

2
−W (m−k

2
)) ⌈log2 m+k

2
+ 1⌉

k + 2 2 m+k
2

− (m−k
2

− 1−W (m−k
2

− 1)) ⌈log2 m+k
2

+ 1⌉
...

...
...

...

m− k − 1 m− 2k − 1 m+k
2

− ( k+1
2

−W ( k+1
2

)) ⌈log2 m+k
2

+ 1⌉
m− k + 1 m− 2k + 1 m+k

2
− 1− ( k−1

2
−W ( k−1

2
)) ⌈log2 m+k

2
⌉

m− 2 m− k − 2 m−k
2

+ 1− (1−W (1)) ⌈log2 m−k
2

+ 1⌉

be

#AND : 3m2+2m−1
4

,

#XOR : 3m2

4
+ 7m

2
+
∑ k+1

2
i=1 W (i)+

∑m−k
2

i=1 W (i)− 1
4
,

Delay : TA + (2 + ⌈log2(m+ k + 2)⌉)TX .
(14)

For simplicity, we do not present the detailed
computation for the other cases of m and k.
One can utilize the same strategy as above to
develop corresponding multipliers. The space
and time complexity of the multipliers with
respect to other cases are summarized in the
Table 4.

Particularly, notice that the time complexity
of our multiplier can be recognized as a func-
tion of m and k which is denoted as T (m, k).
According to (14) and Table 4, it follows that

T (m, k) ≤ TA + (3 + ⌈log2m⌉)TX .

4 COMPARISON AND DISCUSSION

In this section, we provide the comparison
between our proposal and several different bit-
parallel multipliers of the same category. It is
obvious that our scheme requires at most 3TX

than the fastest multiplier but saves about 25%
logic gates. Meanwhile, it costs less circuit gates
compared with other approaches with the same
or less time complexity.

Actually, there exist a number of m and k
satisfying

T (m, k) = TA + (2 + ⌈log2 m⌉)TX . (15)

For the range 100 < m ≤ 1023, there exist 786
trinomials with odd degrees. We have searched
all these trinomials and found that about 56%
trinomials where the time complexity is e-
qual to TA + (2+ ⌈log2m⌉)TX . Specially, among
the five irreducible polynomials suggested for
ECDSA (Elliptic Curve Digital Signature Al-
gorithm) by NIST [21], the two trinomials,
namely, x409 + x87 + 1 and x233 + x74 + 1, are
all satisfying the (15). At this time, the time
complexity of our proposal the same as some
Mastrovito multiplier [6], but requires roughly
25% fewer logic gates.

TABLE 6
Complexities of multiplier for trinomials

recommended by NIST

# AND # XOR Time delay
x233 + x74 + 1

[15] 54289 54288 TA + 9TX

[17] 48813 48886 TA + 10TX

This paper 40833 41863 TA + 10TX

x409 + x87 + 1
[15] 167281 167280 TA + 10TX

[17] 159712 159798 TA + 11TX

This paper 125665 127572 TA + 11TX

In [17], Cho et al. proposed a variant Karat-
suba algorithm and constructing an efficient
Karatsuba based bit-parallel multiplier. How-
ever, theirs approach speed up the Karatsuba
multiplier at the cost of increasing its space
complexity. Compared with their scheme, our
proposal requires even lower space complexity
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TABLE 4
Complexities of Montgomery multiplier for other cases

Case #AND #XOR Delay

m odd, k even

3m2+2m−1
4

3m2

4
+ 7m

2
+

∑ k
2
i=1 W (i) TA + (2 + ⌈log2(2m− 3k − 4)⌉)TX

0 < k ≤ m−1
3

m odd, k even
+

∑m−k−1
2

i=1 W (i)− 9
4

TA + (2 + ⌈log2(3k − 2)⌉)TXm−1
3

< k ≤ m−3
2

m odd, k even
3m2+2m−1

4

3m2

4
+ 7m

2
+

∑ k
2
i=1 W (i)

TA + (2 + ⌈log2(3k − 2)⌉)TX

k = m−1
2

+
∑m−k−1

2

i=m−2k+1
2

W (i)− 5
4

m odd, k odd
3m2+2m−1

4

3m2

4
+ 7m

2
+

∑ k+1
2

i=1 W (i)
TA + (2 + ⌈log2(m+ k + 2)⌉)TX

k = m−1
2

+
∑m−k

2

i=m−2k+1
2

W (i)− 9
4

TABLE 5
Comparison of Some bit-parallel Multipliers for xm + xk + 1(1 < k ≤ m−1

2
)

Multiplier # AND # XOR Time delay

[6] [7] [8] m2 m2 − 1 TA + (2 + ⌈log2 m⌉)TX

Elia [18] 3m2

4
3m2

4
+ 5m

2
+ k TA + (3 + ⌈log2(m− 1)⌉)TX

Fan [4] m2 m2 − 1 TA + ⌈log2(2m− k − 1)⌉TX

Hariri [15] m2 m2 − 1 TA + ⌈log2(2m− k − 1)⌉TX

Li [19] m2

2
+ (m− k)2 m2

2
+ (m− k)2 + 2k TA + (2 + ⌈log2(m− 1)⌉)TX

Petra [20] m2 m2 − 1 TA + (⌈log2(2m+ 2k − 3)⌉)TX

Cho [17] m2 − k2

m2 + k − k2 − 1(1 < k < m
3
)

≤ TA + (2 + ⌈log2 m⌉)TXm2 + 4k − k2 −m− 1(m
3
≤ k < m−1

2
)

m2 + 2k − k2(k = m−1
2

)

Proposed 3m2

4
+O(m) 3m2

4
+O(m) ≤ TA + (3 + ⌈log2 m⌉)TX

while maintains nearly the same time com-
plexity. In table 6, we give two examples to
illustrate the efficiency of our multiplier. To
facilitate description, we only compared our
proposal with two most efficient results pre-
sented in [15] and [17]. It is obvious that our
multiplier outperforms others if the space and
time complexities are both considered.

5 CONCLUSION

In this paper, we have proposed a new bit-
parallel Montgomery multiplier for a class of
trinomials based on squaring operations. We
show that the PCHS algorithm is not only ap-
plicable for pentanomials, but also applicable
for trinomials. Explicit formulae of the Mont-
gomery multipliers for the family of trinomials
are also induced. The theoretical complexity
analysis shows that our multipliers have the

significant lower space complexity, generally
about 25% reduced one, compared with other
best known multipliers for these types of tri-
nomials, but maintains a relatively low time
delay. Our work is especially interesting for
ECDSA as its efficiency over the two finite field
proposed by NIST.

6 APPENDIX

In the following, we give the explicit formulae
about S1+S2 in other cases. When both m and
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k are odd, k = m−1
2

, we have:

si + ti =

c i
2
+ cm+k+i

2
+ c k+i+1

2
+ d i

2
i = 0, 2, · · · , k − 1;

+dm+k+i
2

+ d k+i−1
2

,

c k−m+i
2

+ c k+i+1
2

+ cm+i+1
2

i = k + 1, k + 3,

+d k−m+i
2

+ d k+i−1
2

+ dm+i−1
2

, · · · ,m− 3;

c k−1
2

+ cm+k
2

+ d k−1
2

i = m− 1;

+d k+m−2
2

,

c k+i
2

+ c i+1
2

+ cm+k+i+1
2

i = 1, 3, · · · , k − 2;

+d k+i
2

+ d i−1
2

+ dm+k+i−1
2

,

ck + cm+k
2

+ dk + dm+k
2

, i = k;

c k+i
2

+ cm+i
2

+ c k−m+i+1
2

i = k + 2, k + 4,

+d k+i
2

+ dm+i
2

+ d k−m+i−1
2

, · · · ,m− 2.

When m is odd and k is even, 0 < k ≤ m−3
2

, we
have:
si + ti =

c i
2
+ cm+k+i

2
+ c k+i+1

2
i = 0, 2, · · · , k − 2;

+d i
2
+ dm+k+i

2
+ d k+i−1

2
,

c k+i
2

+ cm+k+i+1
2

+ cm+i+1
2

i = k, k + 2,

+d k+i
2

+ dm+k+i−1
2

+ dm+i−1
2

, · · · ,m− k − 3;

cm−1
2

+ cm− k
2
+ dm−1

2
+ dm− k

2−1, i = m− k − 1;

c k+i
2

+ c k−m+i+1
2

+ cm+i+1
2

i = m−k+1,m−k+3,

+d k+i
2

+ d k−m+i−1
2

+ dm+i−1
2

, · · · ,m− 3;

cm+k+i
2

+ c i+1
2

+ c k+i+1
2

i = 1, 3, · · · , k − 1;

+dm+k+i
2

+ d i−1
2

+ d k+i−1
2

,

cm+k+i
2

+ cm+i
2

+ c k+i+1
2

i = k + 1, k + 3,

+dm+k+i
2

+ dm+i
2

+ d k+i−1
2

, · · · ,m− k − 2;

c k−m+i
2

+ cm+i
2

+ c k+i+1
2

i = m− k,m−k+2,

+d k−m+i
2

+ dm+i
2

+ d k+i−1
2

, · · · ,m− 2;

cm+k−1
2

+ c k
2
+ dm+k+1

2
+ d k

2−1, i = m− 1.

When m is odd and k is even, k = m−1
2

, we
have:
si + ti =

c i
2
+ c k+i

2
+ cm+k+i+1

2
i = 0, 2, · · · , k − 2;

+d i
2
+ d k+i

2
+ dm+k+i−1

2
,

ck + cm+k+1
2

+ dk + dm+2k−1
2

i = k;

+dm+k−1
2

c k+i
2

+ c k−m+i+1
2

+ cm+i+1
2

i = k + 2, k + 4,

+d k+i
2

+ d k−m+i−1
2

+ dm+i−1
2

, · · · ,m− 3;

cm+k−1
2

+ c k
2
+ dm+k−1

2 −1 + d k
2−1, i = m− 1;

cm+k+i
2

+ c i+1
2

+ c k+i+1
2

i = 1, 3, · · · , k − 1;

+dm+k+i
2

+ d i−1
2

+ d k+i−1
2

,

c k−m+i
2

+ cm+i
2

+ c k+i+1
2

i = k + 1, k + 3,

+d k−m+i
2

+ dm+i
2

+ d k+i−1
2

, · · · ,m− 2.
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general irreducible polynomials,” IEEE Trans. Computers,
vol. 49, no. 5, pp. 503–518, May 2000.

[8] T. Zhang and K.K. Parhi, ”Systematic design of original
and modified mastrovito multipliers for general irreducible
polynomials,” Computers, IEEE Transactions on, vol. 50,
no. 7, pp. 734–749, Jul 2001.

[9] Peter L. Montgomery, ”Modular multiplication without
trial division,” Mathematics of Computation, vol. 44, no. 170,
pp. 519–521, 1985.
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