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New bit-parallel Montgomery multiplier for
trinomials using squaring operation

Yin Li,Yiyang Chen

Abstract—In this paper, a new bit-parallel Montgomery multiplier for GF (2m) is presented, where the field is generated
with an irreducible trinomial. We first present a slightly generalized version of a newly proposed divide and conquer
approach. Then, by combining this approach and a carefully chosen Montgomery factor, the Montgomery multiplication
can be transformed into a composition of small polynomial multiplications and Montgomery squarings, which are
simpler and more efficient. Explicit complexity formulae in terms of gate counts and time delay of our architecture are
investigated. As a result, the proposed multiplier has generally 25% lower space complexity than the fastest multipliers,
with time complexity as good as or better than previous Karatsuba-based multipliers for the same class of fields. Among
the five irreducible polynomials recommended by NIST for the ECDSA (Elliptic Curve Digital Signature Algorithm), there
are two trinomials which are available for our architecture. We show that our proposal outperforms the previous best
known results if the space and time complexity are both considered.

Index Terms—Montgomery multiplication, squaring, bit-parallel, trinomials.
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1 INTRODUCTION

Efficient hardware implementation of multi-
plication over GF (2m) is very important in
many areas such as coding theory, computer
algebra and public key cryptosystems [1], [2].
Nowadays, more and more circuit gates can be
located on a single chip which make the bit-
parallel architectures possible and reasonable.
During recent years, a number of bit-parallel
GF (2m) multiplier schemes and architectures
have been proposed to achieve the higher com-
putation speed or lower area complexity. They
have covered extensive cases with respect to
different bases representation [4], [5] and gen-
erating polynomials [6], [7], [8].

Montgomery multiplication is an important
algorithm which was originally used for fast
modular integer multiplication [9] and then ex-
tended to the field multiplication over GF (2m)
[10] and GF (pm) with p > 2 [11]. In [10], Koç
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and Acar have introduced a class of algorithms
for software implementation of Montgomery
multiplication. They argued that Montgomery
multiplication can be implemented efficiently
if the Montgomery factor is chosen properly.
The hardware implementation of the Mont-
gomery multiplication is investigated in [12],
[13]. The Montgomery factor in these literatures
are selected as xm. In [14], Wu has proposed
a new bit-parallel Montgomery multiplier for
irreducible trinomials using a different factor.
His scheme is based on the a slightly general-
ized method proposed in [10] and showed that
the Montgomery factor is chosen as the middle
term of the trinomial xm + xk + 1 can result
in efficient bit-parallel multiplier and squarer
which are at least as good as previous propos-
als. Also in the literatures, some systolic archi-
tectures are proposed for the Montgomery mul-
tiplication for trinomials, e.g., [15], [16], [17].
Hariri and Reyhani-Masoleh [18] have further
improved Wu’s proposal. Besides new recom-
mendation of the Montgomery factor, fast bit-
serial and bit-parallel multiplier architectures
are also given for irreducible trinomials and
pentanomials. It is argued that their scheme
matches the best known result reported in the
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literatures.
Hariri and Reyhani-Masolehs scheme is very

fast, but their architecture costs about 2m2 cir-
cuit gates. In this paper, our work is devoted
to designing a bit-parallel non-systolic Mont-
gomery multiplier for trinomials, which obtain-
s a trade-off between the space and time com-
plexity. We start describing a slightly extended
Park et al. algorithm [19], referred as PCHS
algorithm. Then, by combining this algorithm
with Montgomery squaring operations, new
bit-parallel multiplier architecture is proposed.
The main contributions of our work are as
follows:
• The space complexity of our proposal is

about 25% less than any other Mont-
gomery or Mastrovito multipliers for tri-
nomials, and matches the Karatsuba mul-
tiplier proposed by Elia [23].

• Besides, the time complexity of our pro-
posal is slightly higher than the fastest
multipliers, but no more than 2TX .

• For the range m ∈ [100, 1203] and k ≤ m/2,
there are 1405 irreducible trinomials. For
1061 trinomials, its time complexity is e-
qual to TA + (2 + dlog2me)TX , for other
trinomials, it is only 1TX more.

The remainder of this paper is organized as
follows: In Section 2, we briefly review the
PCHS algorithm and the Montgomery squaring
operation over GF (2m). Then we describe a
slightly extended PCHS algorithm. Based on
it, a new bit-parallel Montgomery multiplier
is developed in Section 3. In Section 4, we
further analyze its complexity and present a
comparison between our proposal and some
others. Finally, some conclusions are drawn.

2 PRELIMINARY

In this section, we briefly introduce the basic
ingredients used in our algorithm, including
the PCHS algorithm and Montgomery squaring
over GF (2m).

2.1 The PCHS Algorithm
Recently, Park et al. [19] proposed a new divide
and conquer approach for odd degree poly-
nomial multiplication. This approach is anal-
ogous to Karatsuba algorithm but divides a

polynomial according to exponent parity of the
indeterminate. Assume that A =

∑m−1
i=0 aix

i and
B =

∑m−1
i=0 bix

i be two polynomials over F2[x]
such that m is an odd integer. A,B can be
partitioned into:

A = A2
1 + xA2

2 and B = x−1B2
1 +B2

2

respectively, where

A1 =

(m−1)/2∑
i=0

a2ix
i, A2 =

(m−3)/2∑
i=0

a2i+1x
i,

B1 =

(m−1)/2∑
i=1

b2i−1x
i, B2 =

(m−1)/2∑
i=0

b2ix
i.

Then the polynomial multiplication can be
rewritten as:

AB = (A2
1 + xA2

2)(x
−1B2

1+B
2
2)

= x−1(A1B1)
2+x(A2B2)

2+(A1B2)
2+(A2B1)

2

= x−1(A1B1)
2+x(A2B2)

2+(A1B1)
2+(A2B2)

2

+ [(A1+A2)(B1+B2)]
2 . (1)

It is clear that Equation (1) converts the m-
term polynomial multiplication into three m+1

2
(or m−1

2
)-term polynomial multiplications and

squarings at the cost of three extra additions.
For finite field multiplications, this formula
can be combined with fast squaring operation
together to construct efficient multiplier.

The authors utilized the fast squaring for-
mulae for two types of special pentanomials.
However, their scheme is a little complicat-
ed as the related squaring is built on trans-
formations between weak dual basis (WDB)
and polynomial basis (PB) [20]. Actually, the
Montgomery squaring for trinomial is very
simple and efficient. In the following sections,
we will describe new bit-parallel multiplier for
irreducible trinomials based on the PCHS algo-
rithm and Montgomery squaring operation.

2.2 Montgomery Squaring over GF (2m)

The Montgomery squaring operation derives
from Montgomery multiplication and is de-
fined by A2(x)R−1(x) mod f(x), where f(x) is
an irreducible polynomial generating GF (2m),
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A(x), R(x) ∈ GF (2m) and R(x) is a fixed ele-
ment named as Montgomery factor. The gener-
al algorithm for Montgomery squaring is stud-
ied in [10] where f(x) is an arbitrary irreducible
polynomial and R(x) is selected as xm. An
optimized Montgomery squaring is proposed
by Wu [14] for irreducible trinomials xm+xk+1.
This squaring is designed using R(x) = xk and
the corresponding circuit delay is TX , whereas
the squaring in polynomial basis costs more
circuit gates and has a delay of as most 2TX .
The main reason is the factor R−1(x) = x−k

could simplify the modular reduction related
to xm + xk + 1. Similar trick is also applied in
some special types of irreducible pentanomial
in [22].

3 NEW FIELD MULTIPLICATION USING
MONTGOMERY SQUARING OPERATION

In this section, we present a new Montgomery
multiplication formula for irreducible trinomi-
als using a slightly generalized PCHS algorith-
m.

Suppose that the field GF (2m) is defined by
an irreducible trinomial f(x) = xm+xk+1 with
a root x, and the field elements are represented
using polynomial basis {1, x, · · · , xm−1}. From
now on, we only take account of f(x) = xm +
xk+1 where 1 ≤ k ≤ m/2, as there always exist
irreducible trinomial f(x) = xm + xm−k + 1 by
the reciprocal property [3]. Let A,B ∈ GF (2m)
be two arbitrary elements in polynomial basis
representation:

A = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0,
B = bm−1x

m−1 + bm−2x
m−2 + · · ·+ b1x+ b0,

where ai, bi ∈ F2.
Denoted by xh (1 ≤ h < m) the Montgomery

factor, the Montgomery multiplication (MM)
over GF (2m) is given by:

A ·B · x−h mod f(x). (2)

3.1 Extended PCHS Algorithm
According to the parity of m, we consider two
following cases.
m is odd. Let

A = A2
1 + xA2

2, B = x−1B2
1 +B2

2 ,

where{
A1 =

∑m−1
2

i=0 a2ix
i, A2 =

∑m−3
2

i=0 a2i+1x
i,

B1 =
∑m−1

2
i=1 b2i−1x

i, B2 =
∑m−1

2
i=0 b2ix

i.

Then (2) can be rewritten as

ABx−h =
[
(A2

1 + xA2
2)(x

−1B2
1 +B2

2)
]
x−h

= [x−1(A1B1)
2 + x(A2B2)

2 + (A1B2)
2

+ (A2B1)
2]x−h

= [x−1(A1B1)
2 + x(A2B2)

2 + (A1B1)
2

+ (A2B2)
2 + (CD)2]x−h

= (A1B1)
2x−h(1+x−1) + (CD)2x−h

+ (A2B2)
2x−h(1 + x),

where C = A1 + A2, D = B1 +B2.
m is even. This case is a little different from

the previous case. We partition A,B as follows:

A = A2
1 + xA2

2, B = B2
1 + xB2

2 ,

where{
A1 =

∑m
2
−1

i=0 a2ix
i, A2 =

∑m
2
−1

i=0 a2i+1x
i,

B1 =
∑m

2
−1

i=0 b2ix
i, B2 =

∑m
2
−1

i=0 b2i+1x
i.

In this case, (2) is written as

ABx−h =
[
(A2

1 + xA2
2)(B

2
1 + xB2

2)
]
x−h

=
[
(A2

1 + xA2
2)(x

−1B2
1 +B2

2)
]
x−h+1

= [x−1(A1B1)
2 + x(A2B2)

2 + (A1B2)
2

+ (A2B1)
2]x−h+1

= [x−1(A1B1)
2 + x(A2B2)

2 + (A1B1)
2

+ (A2B2)
2 + (CD)2]x−h+1

= (A1B1)
2x−h+1(1+x−1) + (CD)2x−h+1

+ (A2B2)
2x−h+1(1 + x),

where C = A1 + A2, D = B1 +B2.
The two expressions as above both transfor-

m Montgomery multiplication into the three
squaring operations. We can choose suitable
factor xh in order to obtain the simplest im-
plementation. It is argued that the squaring
V 2(x)x−k mod xm + xk + 1 and V 2(x)x−k+1 mod
xm + xk + 1 have the simplest modular reduc-
tion [14], [18]. Therefore, we choose the Mont-
gomery factor xh as follows:

h =

{
k, m is odd,
k + 1, m is even.

(3)
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As a result, the Montgomery multiplication
of two cases have the same transformation.

ABx−h = (A1B1)
2x−k(1 + x−1)

+ (A2B2)
2x−k(1 + x) + (CD)2x−k. (4)

Meanwhile, its Montgomery squarings have
one of the best factors. Note that the degrees
of A1B1, A2B2 and CD are at most m−1. From
now on, the following notations are used:

A1B1 =
m−1∑
i=0

cix
i, A2B2 =

m−1∑
i=0

dix
i, CD =

m−1∑
i=0

eix
i,

S1 = (A1B1)
2x−k(1 + x−1) mod f(x) =

m−1∑
i=0

rix
i,

S2 = (A2B2)
2x−k(1 + x) mod f(x) =

m−1∑
i=0

six
i,

S3 = (CD)2x−k mod f(x) =
m−1∑
i=0

tix
i.

Here, notice that if m is odd, c0 = 0 and dm−1 =
0, if m is even, we have cm−1 = dm−1 = 0.
The new Montgomery multiplication can be
summarized in following algorithm:

Algorithm 1 New Bit-parallel MM
Input: A,B ∈ GF (2m), f(x)
Output: ABx−h mod f(x)

1: Partition A,B according to (4)
2: Implement S1, S2, S3 in parallel
3: Compute S1 + S2 + S3 in parallel

We then consider the detailed computation
of S1, S2 and S3, respectively.

3.2 The Complexities of A1B1, A2B2

First we briefly analyze the complexities of
the products A1B1 and A2B2 which will be
used in the computation of S1, S2. According
to previous description, the coefficients cis of
A1B1 =

∑m−1
i=0 cix

i are given as follows:
m is odd.
ci =
0, i = 0,∑i−1

j=0 a2jb2(i−j)−1, 1 ≤ i ≤ m−1
2
,∑m−1

2

j=i−m−1
2

a2jb2(i−j)−1,
m+1
2
≤ i ≤ m− 1.

(5)

m is even.

ci ={∑i
j=0 a2jb2(i−j), 0 ≤ i ≤ m

2
− 1,∑m

2
−1

j=i−m
2
+1 a2jb2(i−j),

m
2
≤ i ≤ m− 2.

(6)

More explicitly, the gate count and time de-
lay for implementation of each ci in (5) are
presented in Table 1. It is easy to check that
the computation of cis totally cost m2−1

4
AND

and m2−4m+3
4

XOR gates with path delay TA +
dlog2

(
m−1
2

)
eTX .

When m is even, it requires m2

4
AND and

m2−4m+4
4

XOR gates with path delay TA +
dlog2

(
m
2

)
eTX .

Similarly, we can easily obtain the space and
time complexity related to A2B2 which are the
same as those of A1B1.

3.3 Different Cases

Then we consider the computations of S1, S2

and S3. According to previous description,
the key computation of S1, S2, S3 is the Mont-
gomery squaring related to A1B1, A2B2 and
CD. This operation has been fully studied
through the explicit formulations [14] which
are varied according to the range of m and k.
Hence, we consider six cases:

1) m is odd, k is odd, 1 ≤ k ≤ m−3
2

,
2) m is odd, k is odd, k = m−1

2
,

3) m is odd, k is even, 1 ≤ k ≤ m−3
2

,
4) m is odd, k is even, k = m−1

2
,

5) m is even, k is odd, m > 2k,
6) m is even, k is odd, m = 2k.

The above six cases correspond to different
squaring formulae, resulting different expres-
sion of S1, S2 and S3. For the sake of the length
of the paper, we only analyze two representa-
tive cases, i.e., case 1 and case 5.1

3.4 The Computation of S1, S2

Case 1: Denote
∑m−1

i=0 zix
i as the Montgomery

squaring (A1B1)
2x−k mod f(x), we have follow-

1. We can follow a similar line of approaches used in case 1
and case 5.
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TABLE 1
The computation complexity of ci

ci #AND #XOR Delay

c0 = 0 0 0 -

c1 = a0b1 1 0 TA

c2 = a0b3 + a2b1 2 1 TA + TX
...

...
...

...

cm−1
2

= a0bm−2 + · · ·+ am−3b1
m−1

2
m−3

2
TA + (dlog2(m−1

2
)e)TX

cm+1
2

= a2bm−2 + · · ·+ am−1b1
m−1

2
m−3

2
TA + (dlog2(m−1

2
)e)TX

...
...

...
...

cm−1 = am−1bm−2 1 0 TA

Total m2−1
4

m2−4m+3
4

TA + dlog2
(
m−1

2

)
eTX

ing expression using related formula in [14]:

zi =

c i
2
+ cm+k+i

2
, i = 0, 2, · · · , k − 1;

cm+k+i
2

, i = k + 1, k + 3, · · · ,m− k − 2;

c k−m+i
2

, i = m− k,m− k + 2 · · · ,m− 1;

c k+i
2
, i = 1, 3, · · · , k − 2;

c k+i
2

+ cm+i
2

, i = k, k + 2, · · · ,m− 2.

(7)

Since xm+xk = 1, we have x−1 = xm−1+xk−1.
It follows that:

S1 =

m−1∑
i=0

zix
i(1 + x−1) mod f(x)

=

m−2∑
i=0,i6=k−1

(zi + zi+1)x
i

+ (zk−1 + zk + z0)x
k−1 + (zm−1 + z0)x

m−1. (8)

Then we substitute zi with the expressions in
(7). Note that c0 = 0, the coefficients of S1 are
given by:

ri =

c i
2
+ cm+k+i

2
+ c k+i+1

2
, i = 0, 2, · · · , k − 1;

cm+k+i
2

+ c k+i+1
2

+ cm+i+1
2

, i = k + 1, k + 3,

· · · ,m− k − 2;
c k−m+i

2
+ c k+i+1

2
+ cm+i+1

2
, i = m− k,m− k + 2,

· · · ,m− 3;
c k−1

2
+ cm+k

2
, i = m− 1;

c k+i
2

+ c i+1
2

+ cm+k+i+1
2

, i = 1, 3, · · · , k − 2;

c k+i
2

+ cm+i
2

+ cm+k+i+1
2

, i = k, k + 2,

· · · ,m− k − 3;
c k+i

2
+ cm+i

2
+ c k−m+i+1

2
, i = m−k−1,m−k+1,

· · · ,m− 2.
(9)

Obviously, we can utilize the similar strategy
to obtain the explicit expression of S2. Let∑m−1

i=0 z′ix
i denote the Montgomery squaring

respect to A2B2, then we have:

S2 =

m−1∑
i=0

z′ix
i(1 + x) mod f(x)

=

m−1∑
i=1,i6=k

(z′i + z′i−1)x
i

+ (z′k + z′k−1 + z′m−1)x
k + (z′m−1 + z′0). (10)

The explicit formulae for the coefficients of S2

are given in (11).

si =

d i
2
+ dm+k+i

2
+ d k+i−1

2
, i = 0, 2, · · · , k − 1;

dm+k+i
2

+ d k+i−1
2

+ dm+i−1
2

, i = k + 1, k + 3,

· · · ,m− k − 2;
d k−m+i

2
+ d k+i−1

2
+ dm+i−1

2
, i = m− k,m− k + 2,

· · · ,m− 1;
d k+i

2
+ d i−1

2
+ dm+k+i−1

2
, i = 1, 3, · · · , k − 2;

d k+i
2

+ dm+i
2

+ dm+k+i−1
2

, i = k, k + 2,

· · · ,m− k − 1;
d k+i

2
+ dm+i

2
+ d k−m+i−1

2
, i = m−k+1,m−k+3,

· · · ,m− 2.
(11)

Case 5: In this case, it is easy to check that S1

and S2 have the same transformation as case 1
presented in (8) and (10), but the Montgomery
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squaring formula is different. We have

ri =

c i
2
+ cm+k+i+1

2
+ c k+i+1

2
, i = 0, 2, · · · , k − 3;

c0 + c k−1
2

+ cm+2k
2

+ ck, i = k − 1;

cm+i
2

+ c k+i+1
2

+ cm+k+i+1
2

, i = k + 1, k + 3,

· · · ,m−k−3;
cm+i

2
+ c k+i+1

2
+ c k−m+i+1

2
, i = m−k−1,m−k+1,

· · · ,m− 2;

c k−1
2

+ cm+k−1
2

+ c0, i = m− 1;

c k+i
2

+ cm+k+i
2

+ c i+1
2
, i = 1, 3, · · · , k − 2;

c k+i
2

+ cm+k+i
2

+ cm+k+i+1
2

, i = k, k + 2,

· · · ,m−k−2;
c k+i

2
+ c k−m+i

2
+ cm+i+1

2
, i = m−k,m−k+2,

· · · ,m− 3;
(12)

and

si =

d i
2
+ dm+k+i−1

2
+ d k+i−1

2
, i = 0, 2, · · · , k − 1;

dm+i
2

+ d k+i−1
2

+ dm+k+i−1
2

, i = k + 1, k + 3, · · · ,
m−k−1;

d k−m+i
2

+ d k+i−1
2

+ dm+i−1
2

, i = m−k+1,m−k+3,

· · · ,m− 2;

d k+i
2

+ dm+k+i
2

+ d i−1
2
, i = 1, 3, · · · , k − 2;

d k+i
2

+ dm+k+i
2

+ dm+i−1
2

, i = k, k + 2, · · · ,
m−k−2;

d k+i
2

+ d k−m+i
2

+ dm+i−1
2

, i = m−k,m−k+2,

· · · ,m− 1.
(13)

The explicit formulae about S1 + S2 of case
2-4 and case 6 can be found in the appendix A.

3.5 Computation of S3

Since the computation of C = A1 + A2 and
D = B1 + B2 require one extra TX gate delay,
in order to keep pace with the computations
of S1 and S2, we use a different computational
strategy for S3 that combines the polynomial
multiplication with Montgomery squaring.

Case 1: Let
∑m−1

2
i=0 uix

i = C and
∑m−1

2
i=0 vix

i =
D, then we have

ei =

{∑i
j=0 ujvi−j, 0 ≤ i ≤ m−1

2
,∑m−1

2

j=i−m−1
2

ujvi−j,
m+1
2
≤ i ≤ m− 1.

(14)

and

ti =



e i
2
+ em+k+i

2
, i = 0, 2, · · · , k − 1;

em+k+i
2

, i = k + 1, k + 3, · · · ,m− k − 2;

e k−m+i
2

, i = m− k,m− k + 2 · · · ,m− 1;

e k+i
2
, i = 1, 3, · · · , k − 2;

e k+i
2

+ em+i
2

, i = k, k + 2, · · · ,m− 2.

(15)
By substituting (14) into (15), we can obtain the
explicit expression of tis summarized in Table
2. Note that it only need (m+1)2

4
AND gates to

computed all the uivj for i, j = 0, 1, · · · , m−1
2

,
here, we only present the required number of
XOR gates.

XOR Gates Reuse trick: The computation of ti
consists of multiplying ui with vj and adding
up all these products using a binary XOR
tree. In (15), we note that there exist certain
overlapped terms among some tis, thus reusing
the intermediated results in binary XOR trees
could further reduce the number of required
XOR gates.

For example, t0 = e0+em+k
2

and tk = ek+em+k
2

contain the same part em+k
2

. According to (14), it

follows that em+k
2

=
∑m−1

2

j= k+1
2

ujvm+k
2
−j consisting

of m−k
2

terms. If m−k
2

is an odd number, t0 and
tk are computed in following way:

t0 =[u k+1
2
vm−1

2
+ u k+3

2
vm−3

2
] + [u k+5

2
vm−5

2

+u k+7
2
vm−7

2
] + · · ·+ [um−5

2
v k+5

2
+ um−3

2
v k+3

2
]

+ [um−1
2
v k+1

2
+ u0v0],

tk =[u k+1
2
vm−1

2
+ u k+3

2
vm−3

2
] + [u k+5

2
vm−5

2

+u k+7
2
vm−7

2
] + · · ·+ [um−5

2
v k+5

2
+ um−3

2
v k+3

2
]

+ [um−1
2
v k+1

2
+ u0vk] + [u1vk−1 + u2vk−2]

+ · · ·+ [uk−1v1 + ukv0].
(16)

In (16), the terms uivj correspond to the XOR
tree nodes in depth 0. We then add the nodes
pairwisely and repeat this step until adding up
all those terms together. This procedure can be
depicted in Fig. 1 and Fig. 2.

The black nodes in tree (a) and tree (b) rep-
resent the overlapping terms in t0 and tk. Due
to parallelism, the additions in the brackets are
performed simultaneously. Note that brackets
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TABLE 2
The computation complexity of ti before optimization

i ti #XOR i ti #XOR

0 u0v0+
∑m−1

2

j= k+1
2

ujvm+k
2
−j

m−k
2

1
∑ k+1

2
j=0 ujv k+1

2
−j

k+1
2

2 u0v1+u1v0+
∑m−1

2

j= k+3
2

ujvm+k
2

+1−j
m−k
2

3
∑ k+3

2
j=0 ujv k+1

2
+1−j

k+3
2

...
...

...
...

...
...

k−1
∑ k−1

2
j=0 ujv k−1

2
−j+

∑m−1
2

j=k ujvm−1
2

+k−j
m−k
2

k−2
∑k−1
j=0 ujvk−1−j k−1

k+1
∑m−1

2
j=k+1 ujvm−1

2
+k+1−j

m−1
2
−k−1 k

∑k
j=0 ujvk−j+

∑m−1
2

j= k+1
2

ujvm+k
2
−j

m+k
2
−1

k+3
∑m−1

2
j=k+2 ujvm−1

2
+k+2−j

m−1
2
−k−2 k+2

∑k+1
j=0 ujvk+1−j+

∑m−1
2

j= k+3
2

ujvm+k
2

+1−j
m+k
2
−1

...
...

...
...

...
...

m−k−2 um−1
2
vm−1

2
0 m−k−1

∑m−1
2

j=0 ujvm−1
2
−j+

∑m−1
2

j=m−k
2

ujvm−k+1
2
−j

m+k
2

m−k u0v0 0 m−k+1
∑m−1

2
j=1 ujvm+1

2
−j+

∑m−1
2

j=m−k
2

+1
ujvm−k−1

2
−j

m+k
2
−2

m−k+2 u0v1+u1v0 1 m−k+3
∑m−1

2
j=2 ujvm+3

2
−j+

∑m−1
2

j=m−k
2

+2
ujvm−k−3

2
−j

m+k
2
−4

...
...

...
...

...
...

m−1
∑ k−1

2
j=0 ujv k−1

2
−j

k−1
2

m−2
∑m−1

2

j= k−1
2

ujvm+k
2
−1−j+um−1

2
vm−1

2

m−k
2

+ 1

depth 0

depth 1

depth h

depth h-1

(m-k)/2 terms

Fig. 1. The binary XOR tree (a) related to t0

with underlines between the two expressions
contain the same values, we only need to com-
pute these values in tree (a) and reuse them
in tree (b). Therefore, bm−k

4
c XOR gates will

be saved in depth 0. Similarly, it follows that
bm−k

8
c XOR gates can be saved at depth 1,

bm−k
16
c XOR gates saved at depth 2, etc. Let

blog2(m−k2
)c = h, in depth h− 1, there exist two

nodes thus one XOR gates will be saved. Then
the total number of saved XOR gates is⌊

m− k
4

⌋
+

⌊
m− k

8

⌋
+ · · ·+

⌊
m− k
2h+1

⌋
. (17)

depth 0

depth 1

depth h

depth h-1

(m-k)/2 terms k+1 terms

depth 






 

2

2
log2

km

Fig. 2. The binary XOR tree (b) related to tk

Here, note that
⌊
m−k
2h+1

⌋
= 1. Moreover, above

expression can be further simplified to

m− k
2
−W

(
m− k

2

)
,

according to certain proposition.2
In Table 3, we present the explicit number

of XOR gates for all the tis overlapped with
others when we apply this trick. The second
column j represents the index of the tj which
overlaps with ti. Consequently, we can obtain

2. The proposition and its proof are presented in appendix
B.
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TABLE 3
The computation complexity of certain tis after optimization

i overlap with j #XOR delay for binary tree

0 m− k m−k
2
− (1−W (1)) dlog2 m−k

2
+ 1e

2 m− k + 2 m−k
2
− (2−W (2)) dlog2 m−k

2
+ 1e

...
...

...
...

k − 1 m− 1 m−k
2
− ( k+1

2
−W ( k+1

2
)) dlog2 m−k

2
+ 1e

k 0 m+k
2
− (m−k

2
−W (m−k

2
)) dlog2 m+k

2
+ 1e

k + 2 2 m+k
2
− (m−k

2
− 1−W (m−k

2
− 1)) dlog2 m+k

2
+ 1e

...
...

...
...

m− k − 1 m− 2k − 1 m+k
2
− ( k+1

2
−W ( k+1

2
)) dlog2 m+k

2
+ 1e

m− k + 1 m− 2k + 1 m+k
2
− 2− ( k−1

2
−W ( k−1

2
)) dlog2 m+k

2
e

...
...

...
...

m− 2 m− k − 2 m−k
2

+ 1− (1−W (1)) dlog2 m−k
2

+ 1e

the complexity related to S3 based on Table 2
and Table 3:

#AND :
(m+ 1)2

4
,

#XOR :
(m− 1)2

4
+

k+1
2∑

i=1

W (i) +

m−k
2∑

i=1

W (i),

Delay : TA + dlog2(m+ k + 2)eTX .

Case 5: Actually, the computation strategies
of other cases are nearly the same as that
presented in case 1, we can use the XOR gates
reuse trick to optimize its implementation. Note
that the degrees of C,D are at most m

2
− 1,

let
∑m

2
−1

i=0 uix
i = C and

∑m
2
−1

i=0 vix
i = D, then

the coefficients of CD and its Montgomery
squaring are:

ei =

{∑i
j=0 ujvi−j, 0 ≤ i ≤ m

2
− 1,∑m

2
−1

j=i−m
2
+1 ujvi−j,

m
2
≤ i ≤ m− 2.

(18)

and
ti =
e i

2
, i = 0, 2, · · · , k − 1;

em+i
2

, i = k + 1, k + 3, · · · ,m− 2;

e k+i
2

+ em+k+i
2

, i = 1, 3, · · · ,m− k − 2;

e k+i
2

+ e k−m+i
2

, i = m− k,m− k + 2, · · · ,m− 1.

(19)
We observed that when substitute Eq. (18) into
Eq. (19), each ti is the sum of at most m

2
terms.

Plus the delay of computing uivj , the circuit
delay for parallel implementation of Eq. (19) is
at most TA + dlog2(m2 )eTX . The space and time
complexity of S3 here are given by:

#AND :
m2

4
,

#XOR :
m2 − 4m+ 4

4
+

k+1
2∑

i=1

W (i) +

m−k−3
2∑

i=1

W (i),

Delay : TA + dlog2 meTX .

3.6 The Computation Sequence

Ultimately, we add S1, S2 and S3 together to
obtain the result. It is crucial to arrange the
computation sequence properly to obtain the
optical circuit delay. Particularly, note that the
computation of S3 requires at least one more TX
gate delay than that of A1B1 and A2B2. During
this extra XOR gate delay, we can perform one
bitwise addition between S1, S2 in parallel.

Case 1: The computation sequence is ar-
ranged as follows:

C, D︸ ︷︷ ︸
1TX

(CD)2x−t︸ ︷︷ ︸
TA+dlog2

m+k+2
2

eTX

A1B1, A2B2︸ ︷︷ ︸
TA+dlog2

m−1
2
eTX

[S1 + S2]︸ ︷︷ ︸
1TX

[S1 + S2]
∗ + S3︸ ︷︷ ︸

2TX

where [S1 + S2] denotes the parallel bitwise
additions in the square brackets indicated in
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following equation.

ri + si =

[c i
2
+ cm+k+i

2
] + [c k+i+1

2
+ d i

2
] i = 0, 2, · · · , k − 1;

+[dm+k+i
2

+ d k+i−1
2

],

[cm+k+i
2

+ c k+i+1
2

] + [cm+i+1
2

i = k + 1, k + 3,

+dm+k+i
2

] + [d k+i−1
2

+ dm+i−1
2

], · · · ,m− k − 2;

[c k−m+i
2

+ c k+i+1
2

] + [cm+i+1
2

i = m−k,m−k+2,

+d k−m+i
2

] + [d k+i−1
2

+ dm+i−1
2

], · · · ,m− 3;

[c k−1
2

+ cm+k
2

] + [d k−1
2

+ d k+m−2
2

] i = m− 1;

[c k+i
2

+ c i+1
2
] + [cm+k+i+1

2
+ d k+i

2
]

+[d i−1
2

+ dm+k+i−1
2

], i = 1, 3, · · · , k − 2;

[c k+i
2

+ cm+i
2

] + [cm+k+i+1
2

i = k, k + 2,

+d k+i
2
] + [dm+i

2
+ dm+k+i−1

2
], · · · ,m− k − 3;

[cm−1
2

+ c 2m−k−1
2

] + [dm−1
2

+d 2m−k−1
2

], i = m− k − 1;

[c k+i
2

+ cm+i
2

] + [c k−m+i+1
2

i = m− k + 1,

+d k+i
2
] + [dm+i

2
+ d k−m+i−1

2
], m−k+3, · · · ,m− 2.

(20)
After that, each coefficient of S1 + S2 consists
of at most 3 terms, we denote these results as
[S1 + S2]

∗. It follows that there are at most 4
terms constituting to these coefficients of [S1 +
S2]
∗ + S3 which can be implemented in 2TX in

parallel. Also note that m− 1 extra XOR gates
are needed for computation of C,D. Therefore,
the total complexity of the proposed multiplier
of case 1 will be

#AND : 3m2+2m−1
4

,

#XOR : 3m2

4
+ 9m

2
+
∑ k+1

2
i=1 W (i)+

∑m−k
2

i=1 W (i)− 29
4
,

Delay : TA + (2 + dlog2(m+ k + 2)e)TX .
(21)

Case 5: According to the coefficient expres-
sions of S1 in (12), the coefficient rk−1 consists
of four terms which would lead to one more
XOR delay for S1 + S2.

However, we observed that rk−1 contains the
term c0 that can be obtained with delay TA+TX .
It is possible to “insert” c0 to the binary XOR
tree related to tk−1 of S3. 3 Particularly, the k−1-
th coefficient of S3, i.e., ti = e k−1

2
consists of k+1

2

terms. The delay of the binary tree related to
tk−1+c0 is dlog2(k+1

2
+1)eTX . Note that here k <

m
2

, we have dlog2(k+1
2

+ 1)e < dlog2 m
2
e, which

indicates that S3 + c0 has the same delay with

3. All the nodes of the binary XOR trees related to ti can be
calculated with the same delay TA + TX .

that of S3. Therefore, the computation sequence
of case 5 is given by:

C, D︸ ︷︷ ︸
1TX

(CD)2x−t + {c0xk−1}︸ ︷︷ ︸
TA+dlog2 m

2
eTX

A1B1, A2B2︸ ︷︷ ︸
TA+dlog2 m

2
eTX

[S1 + S2]− {c0xk−1}︸ ︷︷ ︸
1TX

[S1 + S2]
∗ + S3︸ ︷︷ ︸

2TX

The total complexity of the proposed multiplier
of case 5 will be

#AND : 3m2

4
,

#XOR : 3m2

4
+5m+

∑ k+1
2

i=1 W (i)+
∑m−k−3

2
i=1 W (i),

Delay : TA + (2 + dlog2me)TX .
(22)

The computation sequences of other cases
are the same as those we presented in (21) and
(22). Finally, we summarize the space and time
complexity of these corresponding multipliers
in the Table 4.

4 COMPARISON AND DISCUSSION

Comments on space complexity: We note that the
expressions for number of XOR gates in Table
4 contain the sum of hamming weights relat-
ed to certain integer, denoted by

∑σ
i=1W (i).

This expression can be roughly written as
σ
2
log2 σ.4 Therefore, the number of XOR gates

required by our multiplier here is about: 3m2

4
+

O(m log2m).
Comments on time complexity: Denoted by

T (m, k) the time complexity of our multiplier,
according to (21), (22) and Table 4, one can
check that{

T (m, k) ≤ TA + (3 + dlog2me)TX , m odd,
T (m, k) = TA + (2 + dlog2me)TX , m even.

But for odd m, it is interesting only if T (m, k) =
TA + (2+ dlog2me)TX . This happens frequently
when m = 2n + c where c is smaller than 2n−1.
For the range 100 < m ≤ 1023, there exist 786
trinomials of odd degrees where k ≤ m−1

2
. We

have checked all these trinomials and found
that 442 trinomials satisfies the previous re-
quirement.

4. Note that bit length of σ is dlog2 σe, the average hamming
weight of the number from 1 to σ is about σ

2
, which directly

obtain the evaluation.
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TABLE 4
Complexities of Montgomery multiplier for other cases

Case #AND #XOR Delay

m odd, k even

3m2+2m−1
4

3m2

4
+ 9m

2
+
∑ k

2
i=1W (i) TA + (2 + dlog2(2m− 3k − 2)e)TX

0 < k ≤ m−1
3

m odd, k even
+
∑m−k−1

2
i=1 W (i)− 29

4
TA + (2 + dlog2 3ke)TXm−1

3
< k ≤ m−3

2

m odd, k even
3m2+2m−1

4

3m2

4
+ 9m

2
+
∑ k

2
i=1W (i)

TA + (2 + dlog2 3ke)TX
k = m−1

2
+
∑m−k−1

2
i=1 W (i)− 29

4

m odd, k odd
3m2+2m−1

4

3m2

4
+ 9m

2
+
∑ k+1

2
i=1 W (i)

TA + (2 + dlog2(m+ k + 2)e)TX
k = m−1

2
+
∑m−k

2
i=1 W (i)− 29

4

m even, k odd
3m2

4

3m2

4
+ 5m+

∑m+2
4

i=1 W (i)
TA + (2 + dlog2me)TX

k = m
2

+
∑m−6

4
i=1 W (i)− 1

TABLE 5
Comparison of Some Bit-Parallel Multipliers for Irreducible Trinomials

Multiplier # AND # XOR Time delay

xm + x+ 1

[6] [7] [8] m2 m2 − 1 TA + (1 + dlog2me)TX
Wu [14] m2 m2 − 1 TA + (2 + dlog2(m− 2)e)TX

[4] [18] [25] m2 m2 − 1 TA + dlog2(2m− 1)eTX
Cho [21] m2 − 1 m2 − 1 TA + (2 + dlog2(m− 4)e)TX
Proposed 3m2+2m−1

4
3m2

4
+O(m log2m) TA + (2 + dlog2(m+ 3)e)TX

xm + xk + 1 (1 < k < m
2
)

[6] [7] [8] [14] m2 m2 − 1 TA + (2 + dlog2me)TX
Petra [25] m2 m2 − 1 TA + (dlog2(2m+ 2k − 3)e)TX

Fan [4] m2 m2 − 1 TA + dlog2(2m− k − 1)eTX
Hariri [18] m2 m2 − 1 TA + dlog2(2m− k − 1)eTX

Elia [23]
3m2+2m−1

4
3m2

4
+ 4m+ k − 23

4
(m odd)

TA + (3 + dlog2(m− 1)e)TX
3m2

4
3m2

4
+ 5m

2
+ k − 4 (m even)

Li [24] m2

2
+ (m− k)2 m2

2
+ (m− k)2 + 2k TA + (2 + dlog2(m− 1)e)TX

Cho [21] m2 − k2
m2 + k − k2 − 1(1 < k < m

3
)

≤ TA + (2 + dlog2me)TXm2 + 4k − k2 −m− 1(m
3
≤ k < m−1

2
)

m2 + 2k − k2(k = m−1
2

)

Proposed
3m2+2m−1

4
3m2

4
+O(m log2m) (m odd) ≤ TA + (3 + dlog2me)TX

3m2

4
3m2

4
+O(m log2m) (m even) TA + (2 + dlog2me)TX
xm + x

m
2 + 1

[6] [7] [8] [14] m2 m2 − m
2

TA + (1 + dlog2(m− 1)e)TX
[4] [18] [25] m2 m2 − m

2
TA + dlog2 3m

2
eTX

Shen [26] 3m2

4
3m2

4
+m+ 1 TA + (1 + dlog2(m− 1)e)TX

Shou [27] 3m2

4
3m2

4
+m+ 1 TA + (3 + dlog2(m− 1)e)TX

Cho [21] 3m2

4
3m2

4
+m+ 1 TA + (1 + dlog2(m− 2)e)TX

Proposed 3m2

4
3m2

4
+O(m log2m) TA + (2 + dlog2me)TX
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In Table 5, we provide the comparison be-
tween our proposal and several different bit-
parallel multipliers of the same category. For
good fields, our proposal obtains the same time
complexity as the Mastrovito multiplier [6], [7],
[8] and the Montgomery multiplier [14], but
has a gain of roughly 25% space complexity. In
addition, even we compare the time complexity
presented in (21), (22) and Table 4 with those of
the fastest multipliers [4], [18], it is found that
our proposal is at most 2TX slower (see Ap-
pendix C). Comparing with other Karatsuba-
based multipliers [23], [24], it still maintains
relatively low space complexity with the same
or less time complexity.

In 2012, Cho et al. [21] proposed a variant
Karatsuba algorithm and constructed a fast bit-
parallel Karatsuba multiplier. They speeded up
their multiplier at the cost of increasing the s-
pace complexity. Compared with their scheme,
our proposal is slightly slower but has lower
space complexity. In fact, there are 1405 irre-
ducible trinomials with the degree m between
[100, 1023] and k ≤ m/2, we have checked all
these trinomials and found that about 25% tri-
nomials where our proposal has the same delay
as [21], otherwise our scheme has at most 2TX
extra circuit delay. Particularly, among the five
irreducible polynomials suggested for ECDSA
(Elliptic Curve Digital Signature Algorithm) by
NIST [28], there are two trinomials which are
available for our architecture. We found our
multipliers built on the two trinomials have
the same time complexity with [21] and only
one TX more than the fastest proposals [4] [18],
while the space complexity is as good as the
classic Karatsuba multiplier [23].

5 CONCLUSION
In this paper, we proposed a new bit-parallel
Montgomery multiplier architecture for a class
of irreducible trinomials. Our architecture is
based on the extended PCHS algorithm and
Montgomery squaring operations. It is argued
that the space complexity of our proposal is
about the same as those of the previous Karat-
suba multipliers, while time complexity can
match some Mastrovito multipliers and Mont-
gomery multipliers, which are developed with-
out any divide and conquer algorithm.

TABLE 6
Complexities of multiplier for trinomials

recommended by NIST

# AND # XOR Time delay
x233 + x74 + 1

[4] [18] 54289 54288 TA + 9TX

[23] 40833 41717 TA + 11TX

[21] 48813 48886 TA + 10TX

This paper 40833 42091 TA + 10TX

x409 + x87 + 1

[4] [18] 167281 167280 TA + 10TX

[23] 125665 127178 TA + 12TX

[21] 159712 159798 TA + 11TX

This paper 125665 127974 TA + 11TX

Since the PCHS algorithm usually relies on
efficient squaring operations, the possible fu-
ture work in this line should include Mont-
gomery multiplier for pentanomials based on
GPB squaring operations proposed by Xiong
and Fan [22].
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APPENDIX A

In the following, we give the explicit formulae
about S1 + S2 in other cases.

Case 2: When both m and k are odd, k = m−1
2

,
we have:

ri + si =

c i
2
+ cm+k+i

2
+ c k+i+1

2
+ d i

2
i = 0, 2, · · · , k − 1;

+dm+k+i
2

+ d k+i−1
2

,

c k−m+i
2

+ c k+i+1
2

+ cm+i+1
2

i = k + 1, k + 3,

+d k−m+i
2

+ d k+i−1
2

+ dm+i−1
2

, · · · ,m− 3;

c k−1
2

+ cm+k
2

+ d k−1
2

i = m− 1;

+d k+m−2
2

,

c k+i
2

+ c i+1
2

+ cm+k+i+1
2

+d k+i
2

+ d i−1
2

+ dm+k+i−1
2

, i = 1, 3, · · · , k − 2;

ck + cm+k
2

+ dk + dm+k
2

, i = k;

c k+i
2

+ cm+i
2

+ c k−m+i+1
2

i = k + 2, k + 4,

+d k+i
2

+ dm+i
2

+ d k−m+i−1
2

, · · · ,m− 2.
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Case 3: When m is odd and k is even, 0 <
k ≤ m−3

2
, we have:

ri + si =

c i
2
+ c k+i

2
+ cm+k+i+1

2
i = 0, 2, · · · , k − 2;

+d i
2
+ d k+i

2
+ dm+k+i−1

2
,

c k+i
2

+ cm+k+i+1
2

+ cm+i+1
2

i = k, k + 2,

+d k+i
2

+ dm+k+i−1
2

+ dm+i−1
2

, · · · ,m− k − 3;

cm−1
2

+ cm− k
2
+ dm−1

2
+ dm− k

2−1
, i = m− k − 1;

c k+i
2

+ c k−m+i+1
2

+ cm+i+1
2

i = m−k+1,m−k+3,

+d k+i
2

+ d k−m+i−1
2

+ dm+i−1
2

, · · · ,m− 3;

cm+k+i
2

+ c i+1
2

+ c k+i+1
2

+dm+k+i
2

+ d i−1
2

+ d k+i−1
2

, i = 1, 3, · · · , k − 1;

cm+k+i
2

+ cm+i
2

+ c k+i+1
2

i = k + 1, k + 3,

+dm+k+i
2

+ dm+i
2

+ d k+i−1
2

, · · · ,m− k − 2;

c k−m+i
2

+ cm+i
2

+ c k+i+1
2

i = m− k,m−k+2,

+d k−m+i
2

+ dm+i
2

+ d k+i−1
2

, · · · ,m− 2;

cm+k−1
2

+ c k
2
+ dm+k+1

2
+ d k

2−1
, i = m− 1.

Case 4: When m is odd and k is even, k =
m−1
2

, we have:
ri + si =

c i
2
+ c k+i

2
+ cm+k+i+1

2
i = 0, 2, · · · , k − 2;

+d i
2
+ d k+i

2
+ dm+k+i−1

2
,

ck + cm+k+1
2

+ dk + dm+k−1
2

i = k;

c k+i
2

+ c k−m+i+1
2

+ cm+i+1
2

i = k + 2, k + 4,

+d k+i
2

+ d k−m+i−1
2

+ dm+i−1
2

, · · · ,m− 3;

cm+k−1
2

+ c k
2
+ dm+k−1

2 −1 + d k
2−1

, i = m− 1;

cm+k+i
2

+ c i+1
2

+ c k+i+1
2

+dm+k+i
2

+ d i−1
2

+ d k+i−1
2

, i = 1, 3, · · · , k − 1;

c k−m+i
2

+ cm+i
2

+ c k+i+1
2

i = k + 1, k + 3,

+d k−m+i
2

+ dm+i
2

+ d k+i−1
2

, · · · ,m− 2.

Case 6: When m is even and k is odd, m = 2k

ri + si =

c i
2
+ c k+i+1

2
+ cm+k+i+1

2
+ d i

2
i = 0, 2, · · · , m

2 − 3;

+dm+k+i−1
2

+ d k+i−1
2

ck + c k−1
2

+ dk−1 + d k−1
2

i = m
2 − 1;

cm+i
2

+ c k+i+1
2

+ c k−m+i+1
2

i = k + 1, k + 3,

+dm+i
2

+ d k+i−1
2

+ d k−m+i−1
2

, · · · ,m− 2;

ck + cm+k+1
2

+ c0 + dk i = m
2 ;

+d0 + d k+m−1
2

c k+i
2

+ cm+k+i
2

+ c i+1
2

+d k+i
2

+ d k−m+i
2

+ dm+i−1
2

, i = 1, 3, · · · , m
2 − 2;

c k+i
2

+ c k−m+i
2

+ cm+i+1
2

i = m
2 + 2, k + 4,

+d k+i
2

+ d k−m+i
2

+ dm+i−1
2

, · · · ,m− 3;

c k−1
2

+ cm+k−1
2

+ dm
2
+ d k−1

2
, i = m− 1;

APPENDIX B
Proposition 1 Let W (i) be the hamming weight
of an integer i, then i can always be written as i =
2n1 +2n2 + · · ·+2nt where n1 > n2 > · · · > nt ≥ 0.
Note that blog2 ic = n1, then⌊

i

2

⌋
+

⌊
i

4

⌋
+ · · ·+

⌊
i

2n1

⌋
= i−W (i)

Proof: Firstly, it is clear that⌊
i

2

⌋
= 2n1−1 + 2n2−1 + · · ·+ 2nt−1,⌊

i

4

⌋
= 2n1−2 + 2n2−2 + · · ·+ 2nt−2,

...⌊
i

2nt

⌋
= 2n1−nt + 2n2−nt + · · ·+ 2nt−1−nt + 20,

...⌊
i

2n1

⌋
= 1.

When we rearrange these terms of previous
expressions and add them up, we have:

2n1−1 + 2n1−2 + · · ·+ 1 = 2n1 − 1,
2n2−1 + 2n2−2 + · · ·+ 1 = 2n2 − 1,

...
2nt−1 + 2nt−2 + · · ·+ 1 = 2nt − 1.

Obviously,

2n1 − 1 + 2n2 − 1 + · · ·+ 2nt − 1 = i−W (i),

which conclude the proposition.

APPENDIX C
Proposition 2 The time complexity of our multi-
plier is at most 2TX higher than those of Fan [4]
and Hariri [18] scheme.

Proof: According to Table 5, the time com-
plexity of [4] and [18] are the same, which is
equal to

TA + dlog2(2m− k − 1)eTX ,

if 0 < k ≤ m−1
2

, or

TA + dlog2(m+ k)eTX ,

if k = m
2

. When we compare it with the formu-
lae with respect to time delay presented in (21),
(22) and Table 4, we have:
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1) m odd, k odd, 1 ≤ k ≤ m−3
2

2m− k− 1− (m+ k+2) = m− 2k− 3 ≥ 0;

2) m odd, k odd, k = m−1
2

,
2m− k − 1− (m+ k + 2) = −2;

3) a) m odd, k even, 1 ≤ k ≤ m−1
3

,
2m−k−1−(2m−3k−2) = 2k−1 > 0;

b) m odd, k even, m−1
3

< k ≤ m−3
2

,
2m− k − 1− 3k = 2m− 4k − 1 > 0;

4) m odd, k even, k = m−1
2

,
2m− k − 1− 3k = 2m− 4k − 1 = 1 > 0;

5) m even, k odd, m > 2k,
2m− k − 1−m = m− k − 1 > 0;

6) m even, k odd, m = 2k,
m+ k −m = k > 0.

Therefore, except case 2, all the formulae relat-
ed to the time delay have at most 2 more TX
than those of Fan [4] and Hariri [18] scheme.

In addition, in case 2, we note that the d-
ifference between m + k + 2 and 2m − k − 1
is only 2. There is a high probability that
the formula dlog2(m + m−1

2
+ 2)e is equal to

dlog2(2m−m−1
2
−1)e. Only if m+m−1

2
+2 = 2`+1

or 2`+2, the two formulae are unequal, where
` > 0 is an integer. But we found that there is no
such irreducible trinomial for m ∈ [100, 2048]
for cryptography interests.

Therefore, in case 2, our multiplier is also
2TX slower than Fan [4] and Hariri [18] scheme,
which conclude the proposition.
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