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Abstract. In this paper, we show two new constructions of chosen ciphertext secure (CCA secure)
public key encryption (PKE) from general assumptions. The key ingredient in our constructions is an
obfuscator for point functions with multi-bit output (MBPF obfuscators, for short), that satisfies some
(average-case) indistinguishability-based security, which we call AIND security, in the presence of hard-
to-invert auxiliary input. Specifically, our first construction is based on a chosen plaintext secure PKE
scheme and an MBPF obfuscator satisfying the AIND security in the presence of computationally hard-
to-invert auxiliary input. Our second construction is based on a lossy encryption scheme and an MBPF
obfuscator satisfying the AIND security in the presence of statistically hard-to-invert auxiliary input. To
clarify the relative strength of AIND security, we show the relations among security notions for MBPF
obfuscators, and show that AIND security with computationally (resp. statistically) hard-to-invert
auxiliary input is implied by the average-case virtual black-box (resp. virtual grey-box) property with
the same type of auxiliary input. Finally, we show that a lossy encryption scheme can be constructed
from an obfuscator for point functions (point obfuscator) that satisfies re-randomizability and a weak
form of composability in the worst-case virtual grey-box sense. This result, combined with our second
generic construction and several previous results on point obfuscators and MBPF obfuscators, yields
a CCA secure PKE scheme that is constructed solely from a re-randomizable and composable point
obfuscator. We believe that our results make an interesting bridge that connects CCA secure PKE
and program obfuscators, two seemingly isolated but important cryptographic primitives in the area of
cryptography.
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1 Introduction

1.1 Background and Motivation

One of the fundamental research themes in cryptography is to clarify what the minimal assumptions
to realize various kinds of cryptographic primitives are, and up to now, a number of relationships
among primitives have been investigated and established. Clarifying these relationships gives us a
lot of insights for how to construct and/or prove the security of cryptographic primitives, enables
us to understand the considered primitives more deeply, and leads to systematizing the research
area in cryptography.

In this paper, we focus on the constructions of public key encryption (PKE) schemes secure
against chosen ciphertext attacks (CCA) [65, 35] from general cryptographic assumptions. CCA
secure PKE is one of the most important cryptographic primitives that has been intensively studied,
due to its resilience against practical attacks such as [10], and its implication to many useful security
notions, such as non-malleability [35] and universal composability [22].

The first successful result regarding this line of research is the construction by Dolev, Dwork, and
Naor [35] that uses a chosen plaintext secure (CPA secure) PKE scheme [45] and a non-interactive
zero-knowledge proof [11]. Since these two primitives can be constructed from (an enhanced variant
of) trapdoor permutations (TDP) [42], CCA secure PKE can be constructed solely from TDPs.
Canetti, Halevi, and Katz [24] showed that CCA secure PKE can be constructed from an identity-
based encryption (IBE) [69, 12]. It was later shown that in fact, a weaker primitive called tag-
based encryption suffices [58, 54]. Peikert and Waters [64] showed that CCA secure PKE can be
constructed from any lossy trapdoor function (TDF), and subsequent works showed that injective
TDFs with weaker properties suffice: injective TDFs secure for correlated inputs [66], slightly lossy
TDFs [60], adaptive one-way TDFs [55], and adaptive one-way trapdoor relations [71]. (CPA secure)
PKE schemes with additional security/functional properties have also turned out to be useful for
constructing CCA secure PKE: Hemenway and Ostrovsky [49] showed that we can construct CCA
secure PKE in several ways from homomorphic encryption with appropriate properties. The same
authors [50] also showed that CCA secure PKE can be constructed from a lossy encryption scheme
[6] if the plaintext space is larger than the randomness space. Hohenberger, Lewko, and Waters [51]
showed that if one has a PKE scheme which satisfies the notion called detectable CCA security,
which is somewhere between CCA1 and CCA2 security, then using it one can construct a CCA
secure PKE scheme. Myers and Shelat [61] showed how to construct a CCA secure PKE scheme that
can encrypt plaintexts with arbitrary length from a CCA secure one with 1-bit plaintext space.
Lin and Tessaro [56] showed how to amplify weak CCA security. Very recently, Dachman-Soled
[31] showed a construction of CCA secure PKE from PKE satisfying (standard model) plaintext-
awareness together with some additional simulatability property, and Matsuda and Hanaoka [59]
showed a construction from CPA secure PKE and a family of hash functions satisfying the security
notion called universal computational extractors (UCE security) [5].

The main purpose of this work is to show that a different kind of cryptographic primitives is
also useful for achieving CCA secure PKE. Specifically, we add new recipes for the construction of
CCA secure PKE, based on the techniques and results from (cryptographic) program obfuscation
[3] for the very simple classes of functions, point functions and point functions with multi-bit output.
Despite the tremendous efforts, it is not known whether it is possible to construct CCA secure PKE
only from CPA secure one (in fact, a partial negative result is known [40]). Clarifying new classes of
primitives that serve as building blocks is important for tackling this problem. In particular, it was
shown that there is no black-box construction of IBE and a TDF from (CCA secure) PKE [14, 41],
and thus to tackle the “CPA-to-CCA” problem, the attempts to construct IBE or the above TDF-
related primitives from a CPA secure PKE scheme seem hopeless (though there is a possibility
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that some non-black-box construction exists). Our new constructions based on (multi-bit) point
obfuscators do not seem to be covered by this negative result, and thus it could serve as a new
target for building CCA secure PKE.

1.2 Our Contributions

In this paper, we show two new constructions of CCA secure PKE schemes from general assump-
tions, using the techniques and results from program obfuscation [3]. We actually construct CCA
secure key encapsulation mechanisms (KEMs) [30], where a KEM is the “PKE”-part of hybrid en-
cryption that encrypts a random “session-key” for symmetric key encryption (SKE). By combining
a CCA secure KEM with a CCA secure SKE scheme, one obtains a CCA secure PKE scheme [30].
The key ingredient in our constructions is an obfuscator for point functions with multi-bit output
(MBPF obfuscators) [57, 23, 33, 44, 25, 7], that satisfies a kind of average-case indistinguishability-
based security in the presence of “hard-to-invert” auxiliary inputs. The formal definition of this
security notion will be given in Section 3. For brevity, we call it AIND security.

Our first construction in Section 4.1 is based on a CPA secure PKE scheme and an MBPF
obfuscator satisfying the above mentioned AIND security in the presence of computationally hard-
to-invert auxiliary input. Our second construction in Section 4.2 is based on a lossy encryption
scheme [6] and an MBPO satisfying the above mentioned AIND security in the presence of statisti-
cally hard-to-invert auxiliary input. Interestingly, the first and the second constructions are in fact
exactly the same, and we show two different security analyses from different assumptions on build-
ing blocks. These two constructions add new recipes into the current picture of the constructions
of CCA secure PKE schemes/KEMs from general assumptions.

In order to clarify where these AIND security definitions for MBPF obfuscators are placed,
in Section 5 we show that AIND security with computationally (resp. statistically) hard-to-invert
auxiliary inputs is implied by the (average-case) virtual black-box property [3] (resp. virtual grey-
box property [7]) in the presence of the same auxiliary inputs. Besides these, we show the relations
among several related worst-/average-case virtual black-/grey-box properties under several types
of auxiliary inputs, and summarize them in Fig. 2, which we believe is useful for further research
on this topic and might be of independent interest.

Finally, in Section 6, we show that a lossy encryption scheme can be constructed from an
obfuscator for point functions (point obfuscator) that satisfies re-randomizability [7] and a weak
form of composability [57, 23, 7] in the worst-case virtual grey-box sense. This result, combined with
our second generic construction and the results on composable point obfuscators with the virtual
grey-box property in [7], shows that a CCA secure PKE scheme can be constructed solely from a
point obfuscator which is re-randomizable and composable.

We believe that our results make an interesting bridge that connects CCA secure PKE and
program obfuscators,1 two seemingly isolated but important cryptographic primitives that have
been separately studied in the area of cryptography, and hope that our results motivate further
studies on them.

1.3 Overview of Techniques

Our proposed constructions of KEMs are based on the “witness-recovering” technique [64, 66, 61,
51] in which a part of randomness used to generate a ciphertext is somehow embedded into the
ciphertext itself, and is later recovered in the decryption process for checking the validity of the

1 Recently, Sahai and Waters [68] showed how to construct (among other primitives) CCA secure PKE using indis-
tinguishability obfuscation [3, 39]. We explain the difference with our results in Section 1.4.
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ciphertext by re-encryption. What we believe is novel in our constructions is how to implement
this mechanism of witness-recovering by using an MBPF obfuscator with an appropriate security
property.

Let Iα→β denote an MBPF such that Iα→β(x) = β if x = α and ⊥ otherwise, and let MBPO de-
notes an MBPF obfuscator which takes an MBPF Iα→β as input, and outputs an obfuscated circuit
DL for Iα→β. (“DL” stands for “digital locker,” the name due to [23].) Let Π = (PKG,Enc,Dec) be a
PKE scheme, where PKG, Enc, and Dec are the key generation, the encryption, and the decryption
algorithms of Π, respectively.

Below we give a high level idea behind our main proposed constructions in Section 4 (and in
Appendix E) by explaining how the “toy” version of our constructions Π ′ = (PKG′,Enc′,Dec′),
constructed using Π and MBPO, is proved CCA1 secure based on the assumptions that Π is CPA

secure and that MBPO satisfies the virtual black-box property with respect to dependent auxiliary
input [43]. (As mentioned earlier, in this paper we actually construct KEMs rather than PKE
schemes, but the intuition for our results are captured by the explanation here.) A public/secret
key pair (PK,SK) of Π ′ is of the form PK = (pk1, pk2), SK = (sk1, sk2), where each (pki, ski) is
an independently generated key pair by running PKG. To encrypt a plaintext m under PK, Enc′

first picks a random string α ∈ {0, 1}k (where k is the security parameter) and two randomness r1
and r2 for Enc, and computes a ciphertext C in the following way:

C = (c1, c2, DL) =
(
Enc(pk1, (m∥α); r1), Enc(pk2, (m∥α); r2), MBPO(Iα→(r1∥r2))

)
,

where “∥” denotes the concatenation of strings, and “Enc(pk,m; r)” means to encrypt the plaintext
m under the public key pk using the randomness r. To decrypt C, we first decrypt c1 by using sk1 to
obtain (m∥α), then run DL(α) to recover (r1∥r2). Finally, m is returned if ci = Enc(pki, (m∥α); ri)
holds for both i = 1, 2, and otherwise we reject C. Here, it should be noted that due to the
symmetric roles of pk1 and pk2 and the validity check by re-encryption performed in Dec′, we can
also decrypt C using sk2, so that the decryption result of C using sk1 and that using sk2 always
agree.

Now, recall the interface of a CCA1 adversary A = (A1,A2), where A1 and A2 represent an
adversary’s algorithm before and after the challenge, respectively. A1 is firstly given a public key
PK, and can start using the decryption oracle Dec′(SK, ·). After that, A1 terminates with output
two plaintexts (m0,m1) and some state information st that is passed to A2. A2 is given st and the
challenge ciphertext C∗ = (c∗1, c

∗
2, DL

∗) which is an encryption of mb (where b is the challenge bit),
and outputs a bit as its guess for b.

The key observation is that A2 can be seen as an adversary for the MBPF obfuscator MBPO,
by regarding (st, c∗1, c

∗
2) as an auxiliary input z about the obfuscated circuit DL∗ of the MBPF

Iα∗→(r∗1∥r∗2). Then, if MBPO satisfies the virtual black-box property with respect to dependent
auxiliary input [43], there exists a simulator S that takes only z = (st, c∗1, c

∗
2) as input, has oracle

access to Iα∗→(r∗1∥r∗2), and has the property that A’s success probability (in guessing b) is negligibly
close to the probability that S succeeds in guessing b. (For convenience, let us call the latter
probability “S’s success probability,” although S is not a CCA1 adversary and thus its task is not
to guess a challenge bit.) This means that if S’s success probability is close to 1/2, then so is A’s
success probability, which will prove the CCA1 security of Π ′.

To show that S’s success probability is close to 1/2, we consider the hypothetical experiment for
S in which the auxiliary input z is generated so that decryption queries from A1 are answered using
sk2, and both c∗1 and c∗2 are an encryption of a fixed value (say, 0|m0|+k). Since z does not contain any
information on b and α∗, in this hypothetical experiment S’s success probability is exactly 1/2 and
the probability that S makes the query α∗ (which is chosen randomly) is negligible. Next, we make
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the experiment closer to the actual S’s experiment, by changing c∗1 into an encryption of (mb∥α∗).
By the CPA security regarding pk1, S’s success probability as well as the probability of S making
the query α∗ is negligibly close to those in the hypothetical experiment. Then, we further modify
the previous experiment by changing c∗2 into an encryption of (mb∥α∗), but this time we use sk1
for answering A1’s queries. Notice that this is exactly the actual experiment for S. As mentioned
above, switching sk2 to/from sk1 for answering A1’s queries does not affect A1’s behavior, and
thus again by the CPA security regarding pk2, S’s success probability is negligibly close to 1/2 and
the probability that S makes the query α∗ is negligible. Then, by the virtual black-box property
of MBPO with auxiliary input, A’s original success probability is negligibly close to 1/2, meaning
that A has negligible advantage in breaking the CCA1 security of the scheme Π ′.

The above completes the proof sketch of how Π ′ is proved CCA1 secure. By encrypting a random
K, Π ′ can be considered as a CCA1 secure KEM. Our proposed CCA2 secure KEMs are obtained by
applying several optimizations and enhancement to this KEM:

– Firstly, we do not need the full virtual black-box property with auxiliary input of [43]. As
mentioned earlier, an indistinguishability-based definition in the presence of only “hard-to-
invert” auxiliary input is sufficient for a similar argument to work.

– Secondly, we need not include a plaintext into each of ci. Instead, we pick a randomness K ∈
{0, 1}k used as a plaintext of a KEM, and include this K into the output of the MBPF, i.e.
now we obfuscate the MBPF Iα→(r1∥r2∥K). This is the actual basic version of our construction
whose formal description and security proof are given in Appendix E.

– Lastly, note that the above construction cannot be proved to be CCA1 secure as it is. In par-
ticular, the obfuscated circuit DL could be malleable. To deal with this issue, instead of the
Naor-Yung-style double encryption [63], we employ the Dolev-Dwork-Naor-style multiple en-
cryption [35] together with the technique of the “unduplicatable set selection” [67]. Unlike
the classical method of using a one-time signature scheme, in our proposed construction we
employ a universal one-way hash function (UOWHF) [62], where a hash value of DL is used
as a “selector” of the public key components (for multiple encryption). Another issue is that
the second stage adversary A2 in the CCA2 experiment can also make decryption queries, and
thus the above explained idea of replacing A2 with a simulator S does not work. However, our
indistinguishability-based security definition for MBPF obfuscators enables us to work with an
original CCA2 adversary, and we can avoid considering how a simulator deal with the queries
from A2. For more details, see Section 4.

1.4 Related Work: Program Obfuscation

Roughly speaking, an obfuscator is an algorithm that takes a program (e.g. Turing machine or
circuit) as input, and outputs another program with the same functionality, but otherwise “unin-
telligible.”

After the impossibility of general-purpose program obfuscation satisfying the nowadays standard
security notion called virtual black-box property shown in the seminal work by Barak et. al. [3],
several subsequent works extended the impossibility in various other settings [43, 70, 46, 7]. The
other line of research pursues possibilities of obfuscating a specific class of functions. Before 2013,
most known positive results were about obfuscation for point functions and their variants, e.g. [57,
70, 23, 27, 7]. Relaxing the security requirements to “average-case” in which a program is sampled
according to some distribution, several more complex tasks have been shown to be obfuscatable,
such as proximity testing [34] and cryptographic tasks such as re-encryption [52, 28] and encrypted
signatures [47]. The goal of these works was obfuscation itself, while our work uses a positive result
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on obfuscation of (multi-bit) point functions as a tool to construct other cryptographic primitive.
One of the previous works which has the same spirit as ours is the work by Bitansky and Paneth [9]
who showed how to construct a three-round weak zero-knowledge protocol for NP, which is known
to be impossible via black-box simulation, using a point obfuscator and an MBPF obfuscator as a
part of building blocks. In fact, our work is partly inspired by their use of point obfuscation. We
note that the security required for obfuscators in our proposed construction is weaker than one
used in [9] to achieve their weak zero-knowledge protocol.

Since the first candidates of a cryptographic multilinear map have been proposed in 2013 [37, 29],
the research field of (cryptographic) obfuscation has drastically changed and accelerated. Brakerski
and Rothblum [17] showed how to construct an obfuscator for conjunctions from graded encoding
schemes [37, 29], and the same authors showed a further extension [18]. Most recently, they showed
a general-purpose obfuscator satisfying a virtual black-box property in an idealized model called
the generic graded encoded scheme model [19]. Barak et al. [2] studied obfuscation for a class of
functions called evasive functions which in particular includes point functions. A series of works [39,
68, 53, 38] (and many other recent works) have shown that a general-purpose obfuscator satisfying a
security notion weaker than the virtual black-box property, called indistinguishability obfuscator [3],
which seems to be too weak to be useful, is in fact surprisingly powerful and can be used as a building
block for constructing a various kinds of cryptographic primitives. Garg et al. [39] constructed the
first candidate of general-purpose indistinguishability obfuscation. A security notion stronger than
indistinguishability obfuscation, called differing-inputs obfuscation [3, 1] (and its closely related
notion of extractability obfuscation [15]), has also been shown to be quite powerful and useful [1,
15].

Among a number of recent fascinating results, especially relevant to our work is the work by
Sahai and Waters [68] who showed (among several other primitives) how to construct CCA secure
PKE and KEMs from an indistinguishability obfuscator (and a one-way function). Although our
work and [68] have the common property that both works build CCA secure PKE using techniques
and results from obfuscation, our use of obfuscators and that of [68] are quite different: We use
an obfuscator for a specific class of functions, point functions and MBPFs, while [68] uses an
obfuscator for all polynomial-sized circuits. Furthermore, the indistinguishability-based security
notion for MBPF obfuscators used in our main result is about randomly chosen MBPFs, while that
used in [68] is for the worst-case choice of circuits (that compute the same functions). We would
also like to stress that our work and [68] were done concurrently and independently.

1.5 Paper Organization

The rest of the paper is organized as follows: In Section 2 (and Appendix A) we review the basic
notations and definitions of primitives. In Section 3, we introduce the formal definitions of our new
indistinguishability-based security notions for MBPF obfuscators. In Section 4, we show our main
results: two CCA secure KEMs using an MBPF obfuscator. In Section 5, we investigate relations
between our new security notions and other notions for MBPF obfuscators. In Section 6, we show
how to construct a lossy encryption scheme from a point obfuscator with re-randomizability and
composability. In Section 7, we discuss some issues on the MBPF obfuscators that we use.

2 Preliminaries

In this section, we review the basic notation and the definitions for lossy encryption and (crypto-
graphic) obfuscation. The basic notation and the definitions for standard cryptographic primitives
that are not given in this section are given in Appendix A, which include PKE, KEMs, UOWHFs,
as well as other basic primitives.
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Basic Notation. N denotes the set of all natural numbers, and if n ∈ N then [n] = {1, . . . , n}.
“x← y” denotes that x is chosen uniformly at random from y if y is a finite set, x is output from y
if y is a function or an algorithm, or y is assigned to x otherwise. If x and y are strings, then “|x|”
denotes the bit-length of x, and “x∥y” denotes the concatenation x and y. “x

?
= y” is the operation

that returns 1 if x = y and returns 0 otherwise. “PPTA” stands for a probabilistic polynomial time
algorithm. If A is a probabilistic algorithm then y ← A(x; r) denotes that A computes y as output
by taking x as input and using r as randomness. AO denotes an algorithm A with oracle access to
O. A function ϵ(k) : N → [0, 1] is said to be negligible if for all positive polynomials p(k) and all
sufficiently large k ∈ N, we have ϵ(k) < 1/p(k). Throughout this paper, we use the character “k”
to denote a security parameter.

2.1 Lossy Encryption

Definition 1. A tuple of PPTAs Π = (PKG,Enc,Dec, LKG) is said to be an ϵ-lossy encryption
scheme2 if the following properties are satisfied:

– (Syntax) (PKG,Enc,Dec) constitutes a PKE scheme. The algorithm LKG is called a lossy key
generation algorithm, which takes 1k as input, and outputs a “lossy” public key pk.

– (Indistinguishability of ordinary/lossy keys) For all PPTAs A,
AdvKEYΠ,A(k) := 2 · |Pr[ExptKEYΠ,A(k) = 1] − 1/2| is negligible, where the experiment ExptKEYΠ,A(k) is
defined as follows:

ExptKEYΠ,A(k) : [ (pk0, sk)← PKG(1k); pk1 ← LKG(1k); b← {0, 1}; b′ ← A(pkb); Return (b′
?
= b) ].

– (Statistical lossiness) For all computationally unbounded algorithms A and for all sufficiently
large k ∈ N it holds that AdvLOS-CPAΠ,A (k) := 2 · |Pr[ExptLOS-CPAΠ,A (k) = 1] − 1/2| ≤ ϵ(k), where the

experiment ExptLOS-CPAΠ,A (k) is defined in the same way as the ordinary CPA experiment ExptCPAΠ,A(k)

except that the public key pk is generated as pk ← LKG(1k). We call ϵ lossiness.

2.2 Obfuscation for Circuits and Worst-Case Security Definitions

Here, we recall the definition of circuit obfuscations, following the definitions given in [3, 57, 43, 8].
In the following, by C we denote an ensemble {Ck}k∈N, where Ck is a collection of circuits whose
input length is k ∈ N and whose size is bounded by some polynomial of k.

Definition 2. We say that a PPTA Obf is an obfuscator for C if it satisfies the following:

– (Functionality) For every k ∈ N and every C ∈ Ck, a circuit output from Obf(C) computes
the same function as C.

– (Polynomial blowup) There exists a polynomial p = p(k) > 0 such that for every k ∈ N and
every C ∈ Ck, the size of a circuit output from Obf(C) is bounded by p(k).

Note that the above definition is only about the functionality requirements of obfuscators.
Next, we recal the security definitions for “worst-case” choice of circuits.: The virtual black-box

property is due to Barak et al. [3], the virtual black-box property with auxiliary input is due to
Goldwasser and Kalai [43], and virtual “grey”-box (with auxiliary input) is due to Bitansky and
Canetti [7].

2 In this paper, we consider the “exact security”-style definition for lossy encryption and CPA secure PKE. This is to
quantify the “hardness” of inverting auxiliary input functions used in the security definitions of MBPF obfuscators.
For details, see Section 3.
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Definition 3. We say that an obfuscator Obf for C satisfies:

– the worst-case virtual black-box property (WVB security, for short), if for every PPTA A (ad-
versary) and every positive polynomial q, there exists a PPTA S (simulator) such that for all
sufficiently large k ∈ N and all circuits C ∈ Ck, it holds that

|Pr[A(1k,Obf(C)) = 1]− Pr[SC(1k) = 1]| ≤ 1/q,

– the worst-case virtual black-box property w.r.t. auxiliary input (WVB-AI security, for short), if
for every PPTA A and every positive polynomials q and ℓ, there exists a PPTA S such that all
sufficiently large k ∈ N, all circuits C ∈ Ck, and all strings z ∈ {0, 1}ℓ(k), it holds that

|Pr[A(1k, z,Obf(C)) = 1]− Pr[SC(1k, z) = 1]| ≤ 1/q,

where the probabilities are over the randomness consumed by Obf, A, and S. Furthermore, we
define the worst-case virtual grey-box property (WVG security), and the worst-case virtual grey-box
property w.r.t. auxiliary input (WVG-AI security) of Obf, in the same way as the definitions for the
corresponding virtual black-box properties, except that we replace “a PPTA S” in each definition
with “a computationally unbounded algorithm S that makes only polynomially many queries.”

Note that in the above definitions, the simulator S can depend on the polynomial q which represents
the hardness of obfuscation. Wee [70] refers to the simulators of this type as a “weak simulator.”

We also define (t-)composability of obfuscations [57, 23, 7, 25]. Following [8], we only define the
composability in the grey-box (WVG) notion, using a computationally unbounded simulator, which
is sufficient for our purpose in this paper.

Definition 4. ([7]) Let t = t(k) > 0 be a polynomial. We say that an obfuscator Obf for C satisfies
t-composability, if for every PPTA A and a positive polynomial q, there exists a computationally
unbounded algorithm S that makes only polynomially many queries, such that for all sufficiently
large k ∈ N and for all circuits C1, . . . , Ct ∈ Ck, it holds that:

|Pr[A(1k,Obf(C1), . . . ,Obf(Ct)) = 1]− Pr[SC1,...,Ct(1k) = 1]| ≤ 1/q,

where the probabilities are over the randomness consumed by Obf, A, and S.

Notations for Point Obfuscators and MBPF Obfuscators. Let X be a finite set, t ∈ N, α ∈ X , and
β ∈ {0, 1}t. A point function Iα and a multi-bit point function (MBPF) Iα→β are functions defined
as follows:

Iα(x) =

{
⊤ if x = α

⊥ otherwise
and Iα→β(x) =

{
β if x = α

⊥ otherwise

We refer to α and β as the point address and the point value, respectively.
In this paper, we will only consider circuits for computing point functions/MBPFs with the

properties that (1) the description is given in some canonical form and thus there is a one-to-
one correspondence between a point address/value and the circuit for computing the point func-
tion/MBPF, and (2) the description of the circuits reveals the point address/value in the clear.
Hereafter, we will identify a point function and an MBPF with circuits that compute them (with
the above mentioned properties).

For an ensemble X = {Xk}k∈N, where each Xk is a set, we denote by PF(X ) the ensemble
of point functions {Iα}α∈Xk

. Similarly, for X and a polynomial t, we denote by MBPF(X , t) the
ensemble MBPFs {Iα→β}α∈Xk,β∈{0,1}t .

9



Hereafter, we refer to an obfuscator for point functions as a point obfuscator and will denote it
by PO. Furthermore, we refer to an obfuscator for MBPFs as an MBPF obfuscator and will denote
it by MBPO. Moreover, we call an ensemble X = {Xk}k∈N a “domain ensemble” (for point functions
and MBPFs) if (1) for all k ∈ N, each element of Xk is k-bit, (2) |Xk| is superpolynomially large in
k (and thus 1/|Xk| is negligible), and (3) we can efficiently sample an element from Xk uniformly
at random.

Concrete Instantiations of a Composable Point Obfuscator and an MBPF Obfuscator. In Ap-
pendix B, we recall the concrete construction of a point obfuscator due to the results [21, 7], which
is originally proposed by Canetti [21] as a perfectly one-way function and is later shown to be
t-composable under the t-strong vector Diffie-Hellman (t-SVDDH) assumption, which is a stronger
variant of the DDH assumption. There, we also recall the construction of an MBPF obfuscator
based on a composable point obfuscator [23, 7].

3 New Security Definitions for MBPF Obfuscators

In this section, we introduce and formalize the new security notions for MBPF obfuscators that
we call average-case indistinguishability w.r.t. (computationally/statistically) partially uninvertible
auxiliary input, which will play a central role in our proposed KEMs given in Section 4. This
security definition requires that obfuscated circuits of MBPFs hide the point values on average,
even in the presence of “dependent” auxiliary inputs [43, 33], as long as the auxiliary input has
some “hard-to-invert” property.

In the following, we formally define what we mean by “hard-to-invert” auxiliary input in Sec-
tion 3.1. Then, in Section 3.2, we define the new indistinguishability-based notions. (Looking ahead,
we will show the relations between the new security notions with the virtual black-/grey-box secu-
rity notions in Section 5.)

For notational convenience, in this section, X will always denote a domain ensemble {Xk}k∈N,
and t = t(k) > 0 be a polynomial that will be used for MBPF obfuscators for MBPF(X , t), and do
not introduce them in each definition.

3.1 Auxiliary Input Functions and Partial Uninvertibility

For MBPF obfuscators, we will consider the average-case security in the presence of “dependent”
auxiliary input [43] that depends on the description of an MBPF Iα→β being obfuscated. We
will capture this by a probabilistic function ai that takes as input the point address/value pair
(α, β) ∈ Xk × {0, 1}t. Furthermore, we consider the (average-case) “partial uninvertibility” of the
function ai. That is, given z output by ai(α, β) for a randomly chosen (α, β), it is hard to find α.
We consider computational and statistical partial uninvertibility.

Definition 5. Let δ : N → [0, 1], and let ai : Xk × {0, 1}t → {0, 1}∗ be a (possibly probabilistic)
two-input function. We say that ai is a δ-computationally (resp. δ-statistically) partially uninvert-
ible auxiliary input function (δ-cPUAI (resp. δ-sPUAI) function, for short) if (1) it is efficiently
computable, and (2) for all PPTAs (resp. computationally unbounded algorithms) F and for all
sufficiently large k ∈ N, it holds that AdvP-Invai,F (k) := Pr[ExptP-Invai,F (k) = 1] − 1/|Xk| ≤ δ(k),3 where

the experiment ExptP-Invai,F (k) is defined as follows:

ExptP-Invai,F (k) : [ α← Xk; β ← {0, 1}t; z ← ai(α, β); α′ ← F(1k, z); Return (α′
?
= α) ].

Furthermore, we say that ai is ℓ-bounded if the output length of ai is bounded by ℓ = ℓ(k).

3 Here, the subtraction of 1/|Xk| is to offset the trivial success probability by a random guess.
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3.2 Average-Case Indistinguishability of Point Values with Auxiliary Input

In our proposed KEM constructions, what we need for an MBPF obfuscator is that it hides the
point value “on average,” in the presence of auxiliary input that is simultaneously dependent on
the point address and the point value. This indistinguishability-based definition, formalized below,
enables us to avoid using simulator-based security notions, and helps to make the security analyses
of our proposed constructions simpler.

Definition 6. Let δ : N → [0, 1]. We say that an MBPF obfuscator MBPO satisfies average-case
indistinguishability w.r.t. δ-computationally (resp. δ-statistically) partially uninvertible auxiliary
input ( AIND-δ-cPUAI (resp. AIND-δ-sPUAI) secure, for short), if for all PPTAs A and all δ-cPUAI
(resp. δ-sPUAI) functions ai, AdvAIND-AIMBPO,ai,A(k) := 2 · |Pr[ExptAIND-AIMBPO,ai,A(k) = 1] − 1/2| is negligible,

where the experiment ExptAIND-AIMBPO,ai,A(k) is defined as follows:

ExptAIND-AIMBPO,ai,A(k) : [ α← Xk; β0, β1 ← {0, 1}t; z ← ai(α, β0); b← {0, 1};

DL← MBPO(Iα→βb
); b′ ← A(1k, z, DL); Return (b′

?
= b) ].

In the experiment, DL stands for a “digital locker” (the name is due to [23]).

The following is a simple fact that in order for the new definitions to be meaningful, δ has to
be a negligible function. (The proof is given in Appendix D.1.)

Lemma 1. Let δ : N → [0, 1]. If δ is non-negligible, then an MBPF obfuscator cannot be AIND-δ-
sPUAI secure (and hence it cannot be AIND-δ-cPUAI secure, either).

4 Chosen Ciphertext Security via MBPF Obfuscation

In this section, we show our main results: two constructions of CCA2 secure KEMs. The first and
the second constructions are given in Sections 4.1 and 4.2, respectively. We also explain several
extensions applicable to our proposed constructions in Section 4.3.

4.1 First Construction

Let Π = (PKG,Enc,Dec) be a PKE scheme with the plaintext space {0, 1}k, the public key length
ℓPK(k), the randomness length ℓR(k), and the ciphertext length ℓC(k) (where the definitions of these
are given in Appendix A. We define t(k) = k · ℓR(k) + k and t′(k) = k · ℓPK(k) + k · ℓC(k) + k. Let
X = {Xk}k∈N be a domain ensemble such that each element in Xk is of length k, and let MBPO
be an MBPF obfuscator for MBPF(X , t). Furthermore, let H = (HKG,H) be a UOWHF. Then we
construct a KEM Γ = (KKG,Encap,Decap) as in Fig. 1.

Useful Properties of Γ . To show the CCA2 security of the proposed KEM Γ , it is useful to note
the following two simple properties, which are both due to the validity check of a ciphertext by re-
encryption performed in the last step of Decap (and the correctness of the underlying PKE scheme
Π). The first property states that in order to generate a valid ciphertext, an obfuscated circuit DL
cannot be copied from other valid ciphertexts. (The formal proof is given in Appendix D.2.)

Lemma 2. Let (PK,SK) be a key pair output by KKG(1k), and C = (c1, . . . , ck, DL) be a ciphertext
output by Encap(PK). Then, for any ciphertext C ′ = (c′1, . . . , c

′
k, DL

′) satisfying DL′ = DL and
(c′1, . . . , c

′
k) ̸= (c1, . . . , ck), it holds that Decap(SK,C ′) = ⊥.
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KKG(1k) :
κ← HKG(1k)

(pk
(j)
i , sk

(j)
i )← PKG(1k)

for i ∈ [k] and j ∈ {0, 1}
PK ← ({pk(j)

i }i∈[k],j∈{0,1}, κ)

SK ← ({sk(j)
i }i∈[k],j∈{0,1}, κ)

Return (PK,SK)

Encap(PK) :

Parse PK as ({pk(j)
i }i∈[k],j∈{0,1}, κ)

α← Xk

β ← {0, 1}t
DL← MBPO(Iα→β)
h← Hκ(DL)

View h as (h1∥ . . . ∥hk) ∈ {0, 1}k
Parse β as (r1, . . . , rk,K)

∈ ({0, 1}ℓR)k × {0, 1}k

ci ← Enc(pk
(hi)
i , α; ri) for i ∈ [k]

C ← (c1, . . . , ck, DL)
Return (C,K)

Decap(SK,C) :

Parse SK as ({sk(j)
i }i∈[k],j∈{0,1}, κ)

Parse C as (c1, . . . , ck, DL)
h← Hκ(DL)

View h as (h1∥ . . . ∥hk) ∈ {0, 1}k

α← Dec(sk
(h1)
1 , c1)

If α = ⊥ then return ⊥
β ← DL(α)
If β = ⊥ then return ⊥
Parse β as (r1, . . . , rk,K)

∈ ({0, 1}ℓR)k × {0, 1}k

If ∀i ∈ [k] : Enc(pk
(hi)
i , α; ri) = ci

then return K else return ⊥

Fig. 1. The proposed CCA2 secure KEM Γ .

The second property is the existence of the “alternative” decapsulation algorithm AltDecap.
For a k-bit string h∗ = (h∗1∥ . . . ∥h∗k) ∈ {0, 1}k and a key pair (PK,SK) output by KKG(1k),

where SK = ({sk(j)i }i∈[k],j∈{0,1}, κ), we define the “alternative” secret key ŜKh∗ associated with

h∗ ∈ {0, 1}k by ŜKh∗ = (h∗, PK, {sk(1−h
∗
i )

i }i∈[k]), where h∗i is the i-th bit of h∗. AltDecap takes an

“alternative” secret key ŜKh∗ and a ciphertext C = (c1, . . . , ck, DL) as input, and runs as follows:

AltDecap(ŜKh∗ , C): First check if Hκ(DL) = h∗, and return ⊥ if this is the case. Otherwise, let
h = Hκ(DL) and let ℓ ∈ [k] be the smallest index such that hℓ = 1− h∗ℓ , where hℓ is the ℓ-th bit
of h. (Note that such ℓ must exist because h ̸= h∗ in this case.) Run in exactly the same way as

Decap(SK,C), except that it executes Dec(sk
(1−h∗

ℓ )

ℓ , cℓ) in the fifth step, instead of executing

Dec(sk
(h1)
1 , c1).

Regarding AltDecap, the following lemma is easy to see due to the symmetric role of each of sk
(j)
i

and the validity check of each ci by re-encryption performed at the last step. (The formal proof is
given in Appendix D.3.)

Lemma 3. Let h∗ ∈ {0, 1}k be a string, (PK,SK) be a key pair output by KKG(1k), and ŜKh∗

be an alternative secret key corresponding to h∗ and (PK,SK) as defined above. Then, for any
ciphertext C = (c1, . . . , ck, DL) (which could be outside the range of Encap(PK)) satisfying Hκ(DL) ̸=
h∗, it holds that Decap(SK,C) = AltDecap(ŜKh∗ , C).

CCA2 Security of Γ . The security of Γ is guaranteed by the following theorem.

Theorem 1. Assume that Π is ϵ-CPA secure with negligible ϵ, H is a UOWHF, and MBPO is
AIND-δ-cPUAI secure with δ(k) ≥ kϵ(k). Then, the KEM Γ constructed as in Fig. 1 is CCA2 secure.

Basic ideas for the proof of this theorem are explained in Section 1.3. Thus, we directly proceed to
the proof.

Proof of Theorem 1. We will show that for any PPTA adversary A attacking the CCA2 security of
the KEM Γ , there exist PPTAs Bh and Bo and a (kϵ)-cPUAI function aiΓ : Xk × {0, 1}t → {0, 1}t

′

such that

AdvCCA2Γ,A (k) ≤ 2 ·
(

q

|Xk|
+ AdvUOWH,Bh(k) + AdvAIND-AIMBPO,aiΓ ,Bo(k)

)
, (1)

where Πk is the k-repetition construction of the underlying PKE scheme Π (see Section C for the
explanation on it). Combined with our assumptions on the building blocks and Lemma 7 (stated
in Appendix C), this inequality implies that AdvCCA2Γ,A (k) is negligible, and proves the theorem.
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Fix arbitrarily a CCA2 adversary A = (A1,A2) against Γ that makes in total q decapsulation
queries. (Since A is a PPTA, q is some polynomial.) Consider the following sequence of games:
(Here, the values with asterisk (*) represent those related to the challenge ciphertext for A.)

Game 1: This is the experiment ExptCCA2Γ,A (k) itself. Without loss of generality, we generate the
challenge ciphertext C∗ = (c∗1, . . . , c

∗
k, DL

∗) and the challenge session-key K∗b for A, where b is
the challenge bit for A, before running A1. (Note that this does not affect A’s behavior.)

Game 2: Same as Game 1, except that all decapsulation queries C = (c1, . . . , ck, DL) satisfying
DL = DL∗ are answered with ⊥.

Game 3: Same as Game 2, except that all decapsulation queries C = (c1, . . . , ck, DL) satisfying
Hκ(DL) = h∗ = Hκ(DL

∗) are answered with ⊥.
Game 4: Same as Game 3, except that all decapsulation queries C are answered with

AltDecap(ŜKh∗ , C), where ŜKh∗ is the alternative secret key corresponding to (PK,SK) and
h∗ = Hκ(DL

∗) ∈ {0, 1}k.
Game 5: Same as Game 4, except that DL∗ is replaced with an obfuscation of the MBPF Iα∗→β′

with an independently chosen random value β′ ∈ {0, 1}t. That is, the step “DL∗ ← MBPO(Iα∗→β∗)”
in Game 4 is replaced with the steps “β′ ← {0, 1}t; DL∗ ← MBPO(Iα∗→β′).” (Note that each
r∗i and K∗1 are still generated from β∗.)

For i ∈ [5], let Succi be the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game i. Using the above notation, A’s CCA2 advantage can be calculated as follows:

AdvCCA2Γ,A (k) = 2 · |Pr[Succ1]−
1

2
| ≤ 2 ·

∑
i∈[4]

|Pr[Succi]− Pr[Succi+1]|+ 2 · |Pr[Succ5]−
1

2
|. (2)

In the following, we show the upperbounds of the terms that appear in the right hand side of the
above inequality.

Claim 1 |Pr[Succ1]− Pr[Succ2]| ≤ q/|Xk|.

Proof of Claim 1. For i ∈ {1, 2}, let DLColli be the event that A submits at least one decapsulation
query C = (c1, . . . , ck, DL) such that DL = DL∗ and Decap(SK,C) ̸= ⊥. The difference between Game
1 and Game 2 is how A’s decapsulation query C = (c1, . . . , ck, DL) satisfying DL = DL∗ is answered,
and these games proceed identically unless DLColl1 or DLColl2 occurs in the corresponding games.
Hence, we have

|Pr[Succ1]− Pr[Succ2]| ≤ Pr[DLColl1] = Pr[DLColl2]. (3)

Thus, it is sufficient to show the upperbound of Pr[DLColl1]. Moreover, recall that according to
the rule of the CCA2 experiment, A2’s queries C = (c1, . . . , ck, DL) must satisfy C ̸= C∗, and thus
if DL = DL∗, then it must be the case that (c1, . . . , ck) ̸= (c∗1, . . . , c

∗
k). Then, by Lemma 2, for any

decapsulation query C by A2 satisfying DL = DL∗, we must have Decap(SK,C) = ⊥. This means
that A2’s queries are answered identically in both Game 1 and Game 2.

Therefore, to show the upperbound of Pr[DLColl1], it is sufficient to show the upperbound of the
probability that A1 makes a query that causes the event DLColl1. Instead of directly considering
the event, we show the upperbound of the probability that A1 makes a decapsulation query that
contains DL∗. (Clearly, if A1 does not make such a query, then no query made by A1 causes DLColl1.)
However, it is easy to see that in Game 1, the probability that A1 makes a decapsulation query
that contains DL∗ is at most q/|Xk|. (This holds even if A1 is computationally unbounded.) This is
because in order for A1 to make such a query, it is at least necessary that A1 succeeds in guessing
the randomly chosen point value α∗ ∈ Xk, without seeing any information on α∗. (Note that if DL∗
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is an obfuscation of the MBPF Iα∗→β∗ for some α∗ and β∗, then DL∗ cannot be an obfuscation of
another MBPF Iα→β with α ̸= α∗.) Therefore, the probability (over the choice of α∗ ∈ Xk and
the choice of A’s internal randomness) that DL∗ is contained in one particular decapsulation query
made by A1 is exactly 1/|Xk|. By the union bound over all of A1’s possible q queries, the probability
that A1 makes a decapsulation query containing DL∗ is at most q/|Xk|.

In summary, we have seen that Pr[DLColl1] is upperbounded by q/|Xk|. Then, by the inequality
(3), we have |Pr[Succ1]− Pr[Succ2]| ≤ q/|Xk|. This completes the proof of Claim 1. ⊓⊔

Claim 2 There exists a PPTA Bh such that AdvUOWH,Bh(k) ≥ |Pr[Succ2]− Pr[Succ3]|.

Proof of Claim 3. For i ∈ {2, 3}, let HColli be the event that A submits at least one decapsulation
query C = (c1, . . . , ck, DL) satisfying Hκ(DL) = h∗ = Hκ(DL

∗), DL ̸= DL∗, and Decap(SK,C) ̸=
⊥. Note that the difference between Game 2 and Game 3 is how A’s decapsulation query C =
(c1, . . . , ck, DL) satisfying Hκ(DL) = Hκ(DL

∗) and DL ̸= DL∗ are answered. (Note that the queries
with DL = DL∗ are answered with ⊥ in both games.) These games proceed identically unless HColl2
or HColl3 occurs in the corresponding games, and hence we have

|Pr[Succ2]− Pr[Succ3]| ≤ Pr[HColl2] = Pr[HColl3]. (4)

We show how to construct a PPTA adversary Bh that attacks the universal one-wayness of H
with the advantage AdvUOWH,Bh(k) ≥ Pr[HColl3]. The description of Bh = (Bh1,Bh2) is as follows:

Bh1(1k): Bh1 picks α∗ ∈ Xk and β∗ = (r∗1∥ . . . ∥r∗k∥K∗1 ) ∈ {0, 1}t uniformly at random, and computes
DL∗ ← MBPO(Iα∗→β∗). Then Bh1 prepares the state information stB consisting of all information
known to Bh1, and terminates with output (DL∗, stB).

Bh2(stB, κ): Bh2 generates a key pair (PK,SK) in the same way as KKG(1k) does, except that
Bh2 uses the hash-key κ that it receives as a hash-key in (PK,SK). Bh2 next runs h∗ =

(h∗1∥ . . . ∥h∗k) ← Hκ(DL
∗) and c∗i ← Enc(pk

(h∗
i )

i , α∗; r∗i ) for all i ∈ [k], sets C∗ ← (c∗1, . . . , c
∗
k, DL

∗),
and also chooses b ∈ {0, 1} and K∗0 ∈ {0, 1}k uniformly at random. Then, Bh2 runs A1 and A2

as Game 3 runs (which is possible because Bh2 holds SK). When A2 terminates, Bh2 checks if
A1 or A2 made a decapsulation query C = (c1, . . . , ck, DL) satisfying Hκ(DL) = h∗ and DL ̸= DL∗.
If such query is found, then Bh2 terminates with output DL. Otherwise, Bh2 simply gives up and
aborts.

The above completes the description of Bh. It is easy to see that Bh does perfect simulation of
Game 3 for A, and whenever A makes a query that causes the event HColl3, Bh2 can find such a
query and output a colliding value DL satisfying Hκ(DL) = Hκ(DL

∗) and DL ̸= DL∗. Therefore, we have
AdvUOWH,Bh(k) ≥ Pr[HColl3]. Then, by the inequality (4), we have AdvUOWH,Bh(k) ≥ |Pr[Succ2]−Pr[Succ3]|.
This completes the proof of Claim 2. ⊓⊔

Claim 3 Pr[Succ3] = Pr[Succ4].

Proof of Claim 3. It is sufficient to show that the behavior of the oracle given to A in Game 3 and
that in Game 4 are identical. Let C = (c1, . . . , ck, DL) be a decapsulation query that A makes. If
Hκ(DL) = h∗ = Hκ(DL

∗), then the query is answered with ⊥ in Game 3 by definition, while the oracle

AltDecap(ŜKh∗ , C) that is given access to A in Game 4 also returns ⊥ by definition. Otherwise

(i.e. Hκ(DL) ̸= h∗), by Lemma 3, the result of Decap(SK,C) and that of AltDecap(ŜKh∗ , C) agree.
This completes the proof of Claim 3. ⊓⊔
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Next, we would like to show the upperbound of |Pr[Succ4] − Pr[Succ5]|. To this end, we
need to use the AIND-δ-cPUAI security of the MBPF obfuscator MBPO. We therefore first spec-
ify the auxiliary input function that we are going to consider. Define the probabilistic function
aiΓ : Xk × {0, 1}t → {0, 1}t′ that takes (α, β) ∈ Xk × {0, 1}t as input, and computes z =
({pki}i∈[k], c∗1, . . . , c∗k,K∗) ∈ {0, 1}t

′
in the following way:

aiΓ (α, β) : [ (pki, ski)← PKG(1k) for i ∈ [k]; Parse β as (r∗1, . . . , r
∗
k,K

∗) ∈ ({0, 1}ℓR)k × {0, 1}k;
c∗i ← Enc(pki, α; r

∗
i ) for i ∈ [k]; Return z ← ({pki}i∈[k], c∗1, . . . , c∗k,K∗) ],

where the randomness used by aiΓ is the randomness for executing PKG for k times. Note that
aiΓ is efficiently computable. The following claim guarantees that aiΓ is computationally partially
uninvertible.

Claim 4 aiΓ is a (kϵ)-cPUAI function.

Proof of Claim 4. As noted above, aiΓ is efficiently computable. We will show that for any PPTA
F which runs in the experiment ExptP-InvaiΓ ,F (k), there exists a PPTA adversary Bp that attacks the

k-repetition construction Πk with the advantage AdvCPAΠk,Bp(k) = AdvP-InvaiΓ ,F (k). Once this is shown,
by using the ϵ-CPA security of Π and Lemma 7 we have that for any PPTA F and for all sufficiently
large k ∈ N, it holds that AdvP-InvaiΓ ,F (k) ≤ kϵ, which implies that aiΓ is a (kϵ)-cPUAI function, as
claimed.

To show the above, fix an arbitrary PPTA F that runs in ExptP-InvaiΓ ,F (k). The description of the

CPA adversary Bp = (Bp1,Bp2) against the k-repetition construction Πk is as follows:

Bp1(PK ′ = (pk1, . . . , pkk)): Bp1 picks α ∈ Xk uniformly at random, and setsM0 ← α andM1 ← 0k.
Then Bp1 prepares the state information stB consisting of all information known to Bp1, and
terminates with output (M0,M1, stB).

Bp2(stB, C ′∗ = (c∗1, . . . , c
∗
k)): Bp2 picks K∗ ∈ {0, 1}k uniformly, sets z ← ({pki}i∈[k], c∗1, . . . , c∗k,K∗),

runs α′ ← F(1k, z), and terminates with output b′ ← (α′
?
= α).

The above completes the description of Bp. Let b be the challenge bit for Bp. Bp’s CPA advantage
can be estimated as follows:

AdvCPAΠk,Bp(k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[α′ = α|b = 0]− Pr[α′ = α|b = 1]|.

Consider the case when b = 0. It is easy to see that in this case, Bp perfectly simulates
ExptP-InvaiΓ ,F (k) for F . In particular, each c∗i is an encryption of M0 = α for a uniformly chosen
α, and the randomness r∗i used for generating c∗i is also chosen uniformly by Bp’s experiment (recall
that the experiment ExptP-InvaiΓ ,F (k) chooses β = (r∗1∥ . . . ∥r∗k∥K∗) ∈ {0, 1}t uniformly at random), as

is done in ExptP-InvaiΓ ,F (k). Under this situation, the probability that α′ = α occurs is exactly the same

as the probability that F outputs α in ExptP-InvaiΓ ,F (k), i.e., Pr[α
′ = α|b = 0] = AdvP-InvaiΓ ,F (k) + 1/|Xk|.

When b = 1, on the other hand, each c∗i in z is an encryption ofM1 = 0k, and thus z is completely
independent of α. Therefore, α is information-theoretically hidden from F . This must mean that in
this case, the probability of F outputting α is exactly 1/|Xk|. That is, Pr[α′ = α|b = 1] = 1/|Xk|.
(This holds even if F is computationally unbounded.)

In summary, we have AdvCPAΠk,Bp(k) = AdvP-InvaiΓ ,F (k). Since the choice of F was arbitrarily, the above

works for any PPTA F . Hence, aiΓ is (kϵ)-computationally partially uninvertible. This completes
the proof of Claim 4. ⊓⊔

Now, we turn to showing the upperbound of |Pr[Succ4]− Pr[Succ5]|.
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Claim 5 There exists a PPTA Bo such that AdvAIND-AIMBPO,aiΓ ,Bo(k) = |Pr[Succ4]− Pr[Succ5]|.

Proof of Claim 5. We show how to construct a PPTA adversary Bo with the claimed advantage.
Bo is given as input 1k, z ← aiΓ (α, β0), and DL∗ which is output from either MBPO(Iα→β0) or
MBPO(Iα→β1) (where α ∈ Xk and β0, β1 ∈ {0, 1}t are chosen uniformly at random), and runs as
follows:

Bo(1k, z, DL∗): Bo first parses z as ({pki}i∈[k], c∗1, . . . , c∗k,K∗), and runs κ ← HKG(1k) and h∗ ←
Hκ(DL

∗). Let h∗ = (h∗1∥ . . . ∥h∗k) ∈ {0, 1}k. For each i ∈ [k], Bo sets pk
(h∗

i )
i ← pki and runs

(pk
(1−h∗

i )
i , sk

(1−h∗
i )

i ) ← PKG(1k). Bo then picks γ ∈ {0, 1} and K∗0 ∈ {0, 1}k uniformly, and sets

PK ← ({pk(j)i }i∈[k],j∈{0,1}, κ), ŜKh∗ ← (h∗, PK, {sk(1−h
∗
i )

i }i∈[k]), C∗ ← (c∗1, . . . , c
∗
k, DL

∗), and

K∗1 ← K∗. Then, Bo runs st ← AAltDecap(ŜKh∗ ,·)
1 (PK) and γ′ ← AAltDecap(ŜKh∗ ,·)

2 (st, C∗,K∗γ),

and terminates with output b′ ← (γ′
?
= γ).

The above completes the description of Bo. Let b be the challenge bit for Bo. Bo’s AIND-AI advantage
is estimate as follows:

AdvAIND-AIMBPO,aiΓ ,Bo(k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[γ′ = γ|b = 0]− Pr[γ′ = γ|b = 1]|.

Consider the case when b = 0 (i.e. DL∗ is computed as DL∗ ← MBPO(Iα→β0)). Note that by the
definition of the experiment ExptAIND-AIMBPO,aiΓ ,Bo(k), if we regard α and β0 in ExptAIND-AIMBPO,aiΓ ,Bo(k) as α

∗

and β∗ in Game 4, respectively, then the values in z (i.e. {pki}i∈[k] which are used as {pk(h
∗
i )

i }i∈[k],
the ciphertexts {c∗i }i∈[k], and the value K∗ which is used as K∗1 ), are generated/chosen in exactly
same way as those in Game 4. Therefore, since γ is chosen randomly by Bo, the challenge ciphertext
C∗ = (c∗1, . . . , c

∗
k, DL

∗) and the challenge session-key K∗γ for A is distributed identically to those in
Game 4 in which the challenge bit for A is γ. Moreover, decapsulation queries from A are answered
by using AltDecap(ŜKh∗ , ·), as is done in Game 4. Hence, Bo simulates Game 4 perfectly for A
in which the challenge bit for A is γ. Under this situation, the probability that γ′ = γ occurs is
exactly the same as the probability that A succeeds in guessing the challenge bit in Game 4, i.e.
Pr[γ′ = γ|b = 0] = Pr[Succ4].

Next, consider the case when b = 1. In this case, DL∗ is computed as DL∗ ← MBPO(Iα→β1),
where β1 is also chosen uniformly at random from {0, 1}t, independently of β0. Under this situation,
if we regard α, β0, and β1 in ExptAIND-AIMBPO,aiΓ ,Bo(k) as α∗, β∗, and β′ in Game 5, respectively, then
A’s challenge ciphertext/session-key pair (C∗,K∗γ) is generated in such a way that it is distributed
identically to that in Game 5 in which the challenge bit for A is γ, and thus Bo simulates Game 5
perfectly for A in which the challenge bit is γ. Therefore, with a similar argument to the above, we
have Pr[γ′ = γ|b = 1] = Pr[Succ5].

In summary, we have AdvAIND-AIMBPO,aiΓ ,Bo(k) = |Pr[Succ4]− Pr[Succ5]|. This completes the proof of
Claim 5. ⊓⊔

Claim 6 Pr[Succ5] = 1/2.

Proof of Claim 6. This is obvious because K∗1 , which is contained in β∗, is independent of the
challenge ciphertext C∗, and the distribution of K∗1 and that of K∗0 are exactly the same in Game
5. Therefore, the distribution of the challenge ciphertext/session-key pair (C∗,K∗b ) as well as all
other values (public key PK and the responses to decapsulation queries) are identically distributed
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in both cases b = 0 and b = 1. This must mean that the probability that A succeeds in guessing
the challenge bit is exactly 1/2. This completes the proof of Claim 6. ⊓⊔

Claims 1 to 6 and the inequality (2) guarantee that there exist PPTAs Bh and Bo, and a (kϵ)-
cPUAI function aiΓ satisfying the inequality (1), as required. Recall that the choice of the PPTA
CCA2 adversary A was arbitrarily, and thus for any PPTA CCA2 adversary we can show its negligible
advantage. Hence, Γ is CCA2 secure. This completes the proof of Theorem 1. ⊓⊔

4.2 Second Construction

In the first construction shown in the previous subsection, we used an ordinary CPA secure PKE
scheme for Π. Now, we consider the construction of the KEM Γ in which Π is replaced with a
lossy encryption scheme. Π now has the lossy key generation algorithm LKG, and thus is of the
form Π = (PKG,Enc,Dec, LKG). (The lossy key generation algorithm LKG is actually not used in
the construction, and is used only in the security proof.) Because of this change, we can now relax
the requirement for the MBPF obfuscator MBPO to be secure in the presence of only statistically
partially uninvertible auxiliary input. This result is captured by the following theorem.

Theorem 2. Assume Π is an ϵ-lossy encryption scheme with negligible ϵ, H is a UOWHF, and
MBPO is AIND-δ-sPUAI secure with δ(k) ≥ kϵ(k). Then, the KEM Γ constructed as in Fig. 1 is
CCA2 secure.

The proof proceeds very similarly to that of Theorem 1, and the main difference is that we introduce
an additional game between Game 4 and Game 5 (in the proof of Theorem 1) for switching the

public keys {pk(h
∗
i )

i }i∈[k] (corresponding to A’s challenge ciphertext C∗) into lossy public keys.

Proof of Theorem 2. We will show that for any PPTA adversaryA attacking the CCA2 security of the
KEM Γ , there exist PPTAs Bh, Bℓ, and Bo, and a (kϵ)-sPUAI function ai′Γ : Xk × {0, 1}t → {0, 1}t

′

such that

AdvCCA2Γ,A (k) ≤ 2 ·
(

q

|Xk|
+ AdvUOWH,Bh(k) + AdvKEYΠk,Bℓ(k) + AdvAIND-AIMBPO,ai′Γ ,Bo(k)

)
, (5)

where Πk is the k-repetition construction of the underlying lossy encryption scheme Π (see Sec-
tion C). Combined with our assumptions on the building blocks and Lemma 8 (stated in Ap-
pendix C), this inequality implies that AdvCCA2Γ,A (k) is negligible, which proves the theorem.

Fix arbitrarily a CCA2 adversary A = (A1,A2) against Γ that make in total q decapsulation
queries. (Since A is a PPTA, q is some polynomial.) Consider the following sequence of games:
(Here, the values with asterisk (*) represent those related to the challenge ciphertext for A.)

Games 1, 2, 3, and 4: These games are exactly the same as those in the proof of Theorem 1.

Game 5: Same as Game 4, except that each of pk
(h∗

i )
i is generated by the lossy key generation

algorithm LKG, where h∗i is the i-th bit of h∗ = Hκ(DL
∗). Note that the corresponding secret

keys {sk(h
∗
i )

i }i∈[k] are not at all used in Game 5 (in fact they are already not required in Game
4), and thus this game is well-defined.

Game 6: Same as Game 5, except that DL∗ is replaced with an obfuscation of the MBPF Iα∗→β′

with an independently chosen random value β′ ∈ {0, 1}t. That is, the step “DL∗ ← MBPO(Iα∗→β∗)”
is replaced with the steps “β′ ← {0, 1}t; DL∗ ← MBPO(Iα∗→β′).” (Note that each r∗i and K∗1
are still generated from β∗.)
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For i ∈ [6], let Succi be the event that A succeeds in guessing the challenge bit (i.e. b′ = b
occurs) in Game i. Using the above notation, A’s CCA2 advantage can be calculated as follows:

AdvCCA2Γ,A (k) = 2 · |Pr[Succ1]−
1

2
| ≤ 2 ·

∑
i∈[5]

|Pr[Succi]− Pr[Succi+1|+ 2 · |Pr[Succ6]−
1

2
| (6)

In the following, we show the upperbounds of the terms that appear in the right hand side of the
above inequality.

Claim 7 |Pr[Succ1]− Pr[Succ2]| ≤ q/|Xk|.

Claim 8 There exists a PPTA Bh such that AdvUOWH,Bh ≥ |Pr[Succ2]− Pr[Succ3]|.

Claim 9 Pr[Succ3] = Pr[Succ4].

The proofs of these claims are identical to those of Claims 1, 2, and 3 in the proof of Theorem 1,
respectively, and thus omitted.

Claim 10 There exists a PPTA Bℓ such that AdvKEYΠk,Bℓ(k) = |Pr[Succ4]− Pr[Succ5]|.

Proof of Claim 10. We show how to construct a PPTA distinguisher Bℓ that has the claimed
advantage in distinguishing ordinary/lossy keys of the k-repetition lossy encryption scheme Πk. Bℓ
is given as input PK ′ which is output from either PKGk(1k) or LKGk(1k), and runs as follows:

Bℓ(PK ′ = (pk1, . . . , pkk)): Bℓ first picks α∗ ∈ {0, 1}k and β∗ = (r∗1∥ . . . ∥r∗k∥K∗1 ) ∈ {0, 1}t uniformly
at random, and runs DL∗ ← MBPO(Iα∗→β∗), κ ← HKG(1k), and h∗ ← Hκ(DL

∗). Let h∗ =

(h∗1∥ . . . ∥h∗k) ∈ {0, 1}k. For each i ∈ [k], Bℓ sets pk
(h∗

i )
i ← pki and runs (pk

(1−h∗
i )

i , sk
(1−h∗

i )
i ) ←

PKG(1k). Bℓ next picks K∗0 ∈ {0, 1}k and γ ∈ {0, 1} uniformly at random, and then runs

c∗i ← Enc(pk
(h∗

i )
i , α∗; r∗i ) for every i ∈ [k]. Then, Bℓ sets PK ← ({pk(j)i }i∈[k],j∈{0,1}, κ), ŜKh∗ ←

(h∗, PK, {sk(1−h
∗
i )

i }i∈[k]), and C∗ ← (c∗1, . . . , c
∗
k, DL

∗), and runs st ← AAltDecap(ŜKh∗ ,·)
1 (PK) and

γ′ ← AAltDecap(ŜKh∗ ,·)
2 (st, C∗,K∗γ). Finally, Bℓ terminates with output b′ ← (γ′

?
= γ).

The above completes the description of Bℓ. Let b be the challenge bit for Bℓ. Bℓ’s advantage in
distinguishing ordinary/lossy keys can be estimated as follows:

AdvKEYΠk,Bℓ(k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[γ′ = γ|b = 0]− Pr[γ′ = γ|b = 1]|

Consider the case when b = 0 (i.e. PK ′ given to Bℓ is generated from PKGk). Then it is easy
to see that Bℓ perfectly simulates Game 4 for A in which the challenge bit for A is γ. Under the
situation, the probability that γ′ = γ occurs is exactly the same as the probability that A2 succeeds
in guessing its challenge bit in Game 4, i.e. Pr[γ′ = γ|b = 0] = Pr[Succ4].

When b = 1 (i.e. PK ′ given to Bℓ is generated from LKGk), on the other hand, it is also easy to
see that Bℓ perfectly simulates Game 5 for A in which the challenge bit for A is γ. With a similar
argument to the above, we have Pr[γ′ = γ|b = 1] = Pr[Succ5].

In summary, we have AdvKEYΠk,Bℓ(k) = |Pr[Succ4] − Pr[Succ5]|. This completes the proof of
Claim 10. ⊓⊔
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Next, we would like to show the upperbound of |Pr[Succ5] − Pr[Succ6]|. To this end, we
need to use the AIND-δ-sPUAI security of the MBPF obfuscator MBPO. We therefore first spec-
ify the auxiliary input function that we are going to consider. Define a probabilistic function
ai′Γ : Xk × {0, 1}t → {0, 1}t′ that takes (α, β) ∈ Xk × {0, 1}t as input, and computes z =
({pki}i∈[k], c∗1, . . . , c∗k,K∗) ∈ {0, 1}t

′
in the following way:

ai′Γ (α, β) : [ pki ← LKG(1k) for i ∈ [k]; Parse β as (r∗1, . . . , r
∗
k,K

∗) ∈ ({0, 1}ℓR)k × {0, 1}k;
c∗i ← Enc(pki, α; r

∗
i ) for i ∈ [k]; Return z ← ({pki}i∈[k], c∗1, . . . , c∗k,K∗)],

where the randomness used by ai′Γ is the randomness for executing LKG for k times. Note that ai′Γ is
efficiently computable. The following claim guarantees that ai′Γ is statistically partially uninvertible.

Claim 11 ai′Γ is a (kϵ)-sPUAI function.

Proof of Claim 11. This claim is shown in essentially the same way as the proof of Claim 4, by con-
sidering not the ordinary CPA experiment but the LOS-CPA experiment regarding the k-repetition
lossy encryption scheme Πk. Namely, we can show that for any computationally unbounded al-
gorithm F that runs in the experiment ExptP-Invai′Γ ,F (k), there exists a computationally unbounded

algorithm Bp such that AdvLOS-CPAΠk,Bp (k) = AdvP-Invai′Γ ,F (k). (The description of Bp is exactly the same as

that of Bp that we used in the proof of Claim 4.) Here, due to Lemma 8 and the assumption that Π
is an ϵ-lossy encryption scheme, we have that AdvLOS-CPAΠk,Bp (k) ≤ kϵ(k) for all sufficiently large k ∈ N.
Therefore, for any computationally unbounded algorithm F and for all sufficiently large k ∈ N, we
have AdvP-Invai′Γ ,F (k) ≤ kϵ(k). That is, ai′Γ is (kϵ)-statistically partially uninvertible. This completes

the proof of Claim 11. ⊓⊔

The rest of the proof proceeds almost identically to that proof of Theorem 1. More specifically,
the following claims can be shown in exactly the same way as Claims 5 and 6, respectively, and
thus we omit the proofs. (The only difference is that the reduction algorithm Bo uses LKG, instead

of PKG, to generate {pk(h
∗
i )

i }i∈[k].)
Claim 12 There exists a PPTA Bo such that AdvAIND-AIMBPO,ai′Γ ,Bo(k) = |Pr[Succ5]− Pr[Succ6]|.

Claim 13 Pr[Succ6] = 1/2.

Claims 7 to 13 and the inequality (6) guarantee that there exist PPTAs Bh, Bℓ, and Bo, and a
(kδ)-sPUAI function ai′Γ : Xk × {0, 1}t → {0, 1}t

′
satisfying the inequality (5), as required. Recall

that the choice of the PPTA CCA2 adversary A was arbitrarily, and thus for any PPTA CCA2

adversary we can show its negligible advantage. Hence, Γ is CCA2 secure. This completes the proof
of Theorem 2. ⊓⊔

4.3 Extensions

A-priori Fixed Auxiliary Input Function. Note that for both of our constructions in Section 4, the
auxiliary input functions under which the building block MBPF obfuscator MBPO needs to be
secure, are dependent only on the building block PKE/lossy encryption scheme Π, which is fixed
when Π is fixed. In particular, MBPO is required to satisfy AIND-δ-cPUAI (resp. AIND-δ-sPUAI)
security only for t′-bounded δ-cPUAI (resp. δ-sPUAI) functions with t′(k) = k · ℓPK(k)+ k · ℓC(k)+ k.
(This t′ can be further shortened by using the technique of [36] to reduce the ciphertext size
of the Dolev-Dwork-Naor construction [35].) This a-priori bounded output length for auxiliary
input functions might make it easier to achieve AIND-δ-cPUAI (and AIND-δ-sPUAI) secure MBPF
obfuscators. We note that a similar observation on the possibility of weakening the requirement
regarding auxiliary input by bounding its length is also given in [9].
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Using MBPF Obfuscators with Short Point Values. In our constructions, the MBPF obfuscator
MBPO needs to obfuscate an MBPF Iα→β whose point value β is relatively long (which consists of
k randomness {ri}i∈[k] and a k-bit string K). For our first construction, however, we can shorten
the length of a point value of MBPFs that need to be obfuscated by utilizing a pseudorandom
generator (PRG). More specifically, let G : {0, 1}k → {0, 1}t be a PRG, where t(k) = k · ℓR(k) + k.
Then instead of picking {ri}i∈[k] and K ∈ {0, 1}k, these values can be generated from a short seed

s ∈ {0, 1}k by β = (r1∥ . . . ∥rk∥K) ← G(s), and now we only need to obfuscate Iα→s, instead of
Iα→β. However, this modification is at the cost of a stronger requirement for AIND-δ-cPUAI security
of MBPO. That is, now δ has to be large enough to incorporate the security of the used PRG.
Specifically, if the PRG is ϵg-secure, then it is required that δ ≥ kϵ+ ϵg (where a PRG is said to be
ϵ-secure if all PPTA adversaries have at most advantage ϵ = ϵ(k) in distinguishing a pseudorandom
value from a truly random value for all sufficiently large k ∈ N). We note that this idea of using a
PRG does not work for our second construction, because we cannot use a pseudorandom string as
a randomness in the encryption algorithm of a lossy encryption scheme. Using a pseudorandomness
violates the statistical lossiness property in general.

A Simpler Construction with CCA1 Security. In Appendix E, we show a simpler variant of the
proposed construction which employs the Naor-Yung construction-style double encryption [63] (in-
stead of the Dolev-Dwork-Naor-style multiple encryption), leads to a CCA1 secure KEM. (This is the
construction partly explained in Introduction.) Interestingly, unlike our CCA2 secure constructions,
in the proof of this CCA1 secure variant, we need to use an auxiliary input function that internally
runs (a part of) a CCA1 adversary, and thus its output length cannot be a-priori bounded. (Our
treatment of an adversary as a part of an auxiliary input function for an MBPF obfuscator might
be of independent interest.) For more details, see Appendix E.

5 Relations among Security Notions for MBPF Obfuscators

In this section, we investigate the relations between our new indistinguishability-based security
notions for MBPF obfuscators, AIND-δ-cPUAI/sPUAI, and the worst-/average-case virtual black-
/grey-box properties in the presence of auxiliary inputs. For the average-case virtual black-/grey-
box properties, we consider the auxiliary input functions defined in Section 3.1, and show that our
new security notions are implied by the average-case virtual black-/grey-box properties with the
same type of auxiliary inputs.

Average-Case Security Definitions. We first formally define the average-case virtual black-/grey-
box properties for MBPF obfuscators. As in the worst-case security definitions and AIND security,
for auxiliary input notions we consider the “dependent” auxiliary inputs that depend on the circuit
being obfuscated (i.e. the point address and the point value in the case of MBPF obfuscation).
For notational convenience, for an MBPF obfuscator MBPO, a probabilistic algorithm M whose
output is restricted to be a bit, and a two-input probabilistic function ai : Xk × {0, 1}t → {0, 1}∗,
we define the following three experiments:

ExptRealMBPO,ai,M(k) :

α← Xk

β ← {0, 1}t
z ← ai(α, β)
DL← MBPO(Iα→β)
Return b←M(1k, z, DL)

ExptSimai,M(k) :

α← Xk

β ← {0, 1}t
z ← ai(α, β)
Return b←MIα→β (1k, z)

Expts-Simai,M (k) :

α← Xk

β ← {0, 1}t
z ← ai(α, β)
Return b←M(1k, z)

(Note that in Expts-Simai,M (k), the algorithmM does not have access to any oracle.)
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Fig. 2. Relations among security notions for MBPF obfuscators defined in this paper. The arrow “X→ Y” indicates
that X-security implies Y-security. The dotted arrows indicate the implications that hold only for the non-uniform
setting in which an adversary (and a simulator) are non-uniform algorithms. In the figure, δ is a negligible function.

Definition 7. We say that an MBPF obfuscator MBPO satisfies

– the average-case virtual black-box property w.r.t. δ-computationally (resp. δ-statistically) par-
tially uninvertible auxiliary input (AVB-δ-cPUAI (resp. AVB-δ-sPUAI) security, for short), if for
every PPTA A and all positive polynomials q = q(k) and ℓ = ℓ(k), there exists a PPTA S such
that for every ℓ-bounded δ-cPUAI (resp. δ-sPUAI) function ai and all sufficiently large k ∈ N, it
holds that

AdvA-MBPO-AIMBPO,ai,A,S(k) := |Pr[ExptRealMBPO,ai,A(k) = 1]− Pr[ExptSimai,S(k) = 1]| ≤ 1/q.

– the strong average-case virtual black-box property w.r.t. δ-computationally (resp. δ-statistically)
partially uninvertible auxiliary input (SAVB-δ-cPUAI (resp. SAVB-δ-sPUAI) security, for short),
if for every PPTA A and all positive polynomials q = q(k) and ℓ = ℓ(k), there exists a PPTA
S such that for every ℓ-bounded δ-cPUAI (resp. δ-sPUAI) function ai and all sufficiently large
k ∈ N, it holds that

AdvSA-MBPO-AIMBPO,ai,A,S(k) := |Pr[ExptRealMBPO,ai,A(k) = 1]− Pr[Expts-Simai,S (k) = 1]| ≤ 1/q.

Furthermore, we define the (strong) average-case virtual grey-box property w.r.t. δ-computationally
(resp. δ-statistically) partially uninvertible auxiliary input ((S)AVG-δ-cPUAI (resp. (S)AVG-δ-sPUAI)
security for short) for an MBPF obfuscator MBPO, in the same way as the definitions for the
corresponding virtual black-box properties, except that we replace “a PPTA S” in each definition
with “a computationally unbounded algorithm S that makes only polynomially many queries.”

Relations among Security Notions. Now, we show the relations among security notions, which
are summarized in Fig. 2. Most of the relations are obvious. Namely, the virtual black-box prop-
erties always imply the virtual grey-box properties for the same class of auxiliary inputs. Fur-
thermore, WVB-AI security implies AVB-δ-cPUAI security for arbitrary (not necessarily negligible)
δ, and AVB-δ-cPUAI security implies AVB-δ-sPUAI security because the class of δ-sPUAI functions
are smaller than the class of δ-cPUAI functions for the same δ. Moreover, by definition, for both
X ∈ {δ-cPUAI, δ-sPUAI}, SAVB-X and SAVG-X imply AVB-X and AVG-X, respectively, because the for-
mer notions consider simulators that do not make any oracle queries and thus can also be used as
simulator for the latter.

In the following, we show the implications of the non-trivial directions. The following equivalence
is due to the result by Bitansky and Canetti [7]. (Note that the following results are only for non-
uniform PPTA adversaries, while our default notions in this paper are with respect to uniform
PPTA adversaries.)
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Lemma 4. ([7, Propositions 7.3 and A.3]) For MBPF obfuscators, WVB security for non-uniform
PPTA adversaries with non-uniform PPTA simulators, WVG security for non-uniform PPTA ad-
versaries, and WVG-AI security for PPTA non-uniform adversaries, are equivalent.

The next relation is useful for showing the implication to the AIND security notions that we will
show later. (The formal proof is given in Appendix D.4.)

Lemma 5. Let δ : N → [0, 1] be a negligible function. For MBPF obfuscators, for both X ∈
{δ-cPUAI, δ-sPUAI}, AVB-X security and SAVB-X security are equivalent. Furthermore, AVG-δ-sPUAI
security and SAVG-δ-sPUAI security are equivalent.

Intuition. For both cPUAI and sPUAI cases, the implication from the latter to the former is trivial
by definition. The implications of the opposite directions can be shown because the partial unin-
vertibility of an auxiliary input function guarantees that a simulator cannot find the point address
of the MBPF being obfuscated and thus having oracle access to an MBPF does not give much
advantage. The computational uninvertibility and statistical uninvertibility naturally correspond
to the uninvertibility of auxiliary input functions against a PPTA simulator and that against a
computationally unbounded simulator, respectively.

Finally, the following implications clarify that AIND notions introduced in Section 3.2 are indeed
implied by the average-case virtual black-box/grey-box properties. (The formal proof is given in
Appendix D.5.)

Lemma 6. Let δ : N → [0, 1] be a negligible function. For both X ∈ {δ-cPUAI, δ-sPUAI}, if an
MBPF obfuscator is SAVG-X secure, then it is AIND-X secure.

Intuition. This lemma is shown by considering a hybrid experiment in which a (computation-
ally unbounded) simulator S (due to SAVG-δ-cPUAI/sPUAI security) is given only an auxiliary input
ai(α, β) (for randomly chosen (α, β)) as input, and outputs a bit.; By the SAVG-δ-cPUAI/sPUAI secu-
rity, for both cases b ∈ {0, 1}, the probability that an adversary (attacking the AIND-δ-cPUAI/sPUAI
security) on input ai(α, β0) and MBPO(Iα→βb

) (for randomly chosen α, β0, β1) outputs 1 can be
shown to be negligibly close to the probability that the simulator S outputs 1 in the hybrid exper-
iment, which proves the lemma.

6 Lossy Encryption from Re-randomizable Point Obfuscation

In this section, we show that a re-randomizable point obfuscator yields a lossy encryption scheme.
We first recall the definition of re-randomizability [7].

Definition 8. ([7]) Let X = {Xk}k∈N be a domain ensemble and let PO be a point obfuscator for
PF(X ) whose randomness space is {0, 1}ℓ(k). We say that PO is re-randomizable if there exists a
PPTA ReRand (called the re-randomization algorithm) such that for all k ∈ N, all α ∈ Xk, and for
all r ∈ {0, 1}ℓ, the distribution of ReRand(PO(Iα; r)) and the distribution of PO(Iα) are identical.

We note that the point obfuscator based on the perfect one-way hash function by Canetti [21] is
re-randomizable. (We review the construction in Appendix B.)

Now, we formally describe our proposed lossy encryption scheme. Let X = {Xk}k∈N be a domain
ensemble, and let PO be a re-randomizable point obfuscator for PF(X ) with the re-randomization
algorithm ReRand, and let t = t(k) > 0 be a polynomial. Then we construct a lossy encryption
scheme Π = (PKG,Enc,Dec, LKG) whose plaintext space is {0, 1}t as in Fig. 3.

Our construction is inspired partly by the construction of a PKE scheme from a re-randomizable
point obfuscator due to Bitansky and Canetti [7], and partly by the construction of lossy encryption
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PKG(1k) :
α0 ← Xk

α1 ← Xk\{α0}
P̂i ← PO(Iαi)

for i ∈ {0, 1}
pk ← (P̂0, P̂1)
sk ← α0

Return (pk, sk)

LKG(1k) :
α← Xk

P̂i ← PO(Iα)
for i ∈ {0, 1}

pk ← (P̂0, P̂1)
Return pk

Enc(pk,m) :

Parse pk as (P̂0, P̂1)
View m as (m1∥ . . . ∥mt) ∈ {0, 1}t
Pi ← ReRand(P̂mi) for i ∈ [t]
c← (P1, . . . , Pt)
Return c

Dec(sk, c) :
Parse c as (P1, . . . , Pt)
For i ∈ [t]:

mi ←

{
0 if Pi(sk) = ⊤
1 otherwise

End For
m← (m1∥ . . . ∥mt)
Return m

Fig. 3. Lossy encryption from a re-randomizable point obfuscator.

from a re-randomizable encryption scheme due to Hemenway et al. [48]. The following theorem
guarantees that Π constructed as above is indeed a lossy encryption scheme. (The formal proof is
given in Appendix D.6.)

Theorem 3. If PO is re-randomizable and 2-composable, then Π constructed as in Fig. 3 is a
0-lossy encryption scheme.

Intuition. Theorem 3 is shown by using the equivalence of t-composability and t-distributional
indistinguishability for coordinate-wise well-spread (CWS) distributions, established by Bitansky
and Canetti [8]. The latter property roughly states that if a set of points (α1, . . . , αt) is chosen from
a distribution so that each point αi has high min-entropy (but αi’s could be arbitrarily correlated),
(PO(α1), . . . ,PO(αt)) is computationally indistinguishable from (PO(u1), . . . ,PO(ut)) where each
ui is chosen uniformly at random (see Appendix D.6 for the formal definition). This property can
be used to show the indistinguishability of keys, which is easy to see due to the design of PKG and
LKG. Moreover, note that a lossy key consists of a pair of obfuscated circuits of point functions
with a same point address. Therefore, due to the re-randomizability, an encryption of any plaintext
under a lossy key has identical distribution, which implies 0-statistical lossiness.

CCA2 Secure PKE/KEM Based Solely on Re-randomizable, Composable Point Obfuscators. Recall
that when considering non-uniform PPTA adversaries, WVB security (with non-uniform PPTA sim-
ulators), WVG security, and WVG-AI security for MBPF obfuscators are equivalent (see Lemma 4).
Therefore, the WVG secure MBPF obfuscator for t-bit point values due to [23, 7] based on a (t+ 1)-
composable point obfuscator can be used as an AIND-δ-sPUAI secure MBPF obfuscator (with any
negligible δ). Note that if we denote by ℓ the length of the randomness used by ReRand, then the ran-
domness length ℓR of the lossy encryption scheme Π for the k-bit plaintext space is ℓR(k) = k · ℓ(k).
Combining these results with our second generic construction, we obtain the following.

Theorem 4. Assume there exists a point obfuscator which is (1) re-randomizable where ReRand
uses ℓ(k)-bit randomness, and (2) (k2 ·ℓ(k)+k+1)-composable for non-uniform PPTA adversaries.
Then there exists a CCA2 secure PKE scheme/KEM.

7 Discussion

On Replacing MBPF Obfuscators with SKE. As has been clarified in several previous works [23, 33,
44, 25], there is a strong connection between MBPF obfuscators and SKE schemes. More specifically,
an MBPF obfuscator can always be used as a SKE scheme. In order for the opposite direction to
be true, among other things regarding security, it is necessary that a SKE scheme has the property
called the unique-key property [33, 44, 25]. (We recall the formal definition of this property in
Appendix A.) Therefore, a variant of our KEM Γ in Section 4 in which an MBPF obfuscator
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is replaced with a SKE scheme that has the unique-key property and satisfies the security that
we call AIND-δ-cPUAI (and AIND-δ-sPUAI) security (which is defined similarly to that for MBPF
obfuscator), can also be proved CCA2 secure.

Since the unique-key property is not satisfied by SKE schemes in general, it may be the case that
a SKE scheme is in general a weaker primitive than an MBPF obfuscator, and is potentially easier
to achieve. Motivated by this observation, we show another variant of the proposed KEM based on
a SKE scheme without the unique-key property. We discuss more about this in Appendix F.

On the Difficulty of Achieving AIND-δ-cPUAI Security. We have shown that AIND-δ-sPUAI security
is implied by the virtual grey-box properties (see Fig. 2), and thus by the results established by
[23, 7] we can construct an AIND-δ-sPUAI secure MBPF obfuscator (or SKE) from any composable
point obfuscator. Unfortunately, however, we could not come up with a natural assumption that is
sufficient to realize an AIND-δ-cPUAI secure MBPF obfuscator, and we would like to leave it as an
interesting open problem. In Appendix F.3, we show that constructing it is at least as difficult as
constructing a SKE scheme which is one-time chosen plaintext secure in the presence of hard-to-
invert leakage where leakage occurs only from a key. We note that if the random oracle model is
allowed, then the MBPF obfuscator by Lynn et al. [57] can be shown to be AIND-δ-cPUAI secure for
any negligible δ. This at least suggests that it can be achieved under a strong assumption. For more
details, see Appendix G. We conjecture that the MBPF obfuscator by Lynn et al. can be shown to
be AIND-δ-cPUAI secure for any negligible δ if we instantiate the random oracle as a family of hash
functions satisfying the notion of UCE recently introduced by Bellare et al. [5].

We see that the difficulty of achieving AIND-δ-cPUAI security is that it allows a leakage from a
random point address/value (α, β) (or a key/message pair in the context of SKE) that could be
arbitrarily correlated, as long as partial uninvertibility is satisfied. This definition allows β to be (a
part of) the source of the hardness of the partial uninvertibility. For example, we could consider an
auxiliary input function ai(α, β) that returns an encryption of the “plaintext” α under the “key”
β, using some SKE scheme, which will be a δ-cPUAI function under a reasonable assumption on
the SKE scheme. This situation is quite different from a usual indistinguishability-based security
definition (e.g. CPA security of a SKE scheme) in which a point value (or a message in SKE) is
chosen by an adversary, and thus cannot be a source of hardness. This is one of the reasons why we
cannot straightforwardly use the existing results on MBPF obfuscators/SKE [33, 25] (or a stronger
primitive of PKE secure under hard-to-invert leakage [32, 16]). We notice that the formulation of
AIND-δ-cPUAI security looks close to the security definition for deterministic encryption in the hard-
to-invert auxiliary input setting [20, 72, 73], which considers leakage from a plaintext (as opposed
to a key). This setting is in some sense a “dual” of the settings that consider leakage occurring only
from a key. We also notice the similarity to the notion called security under chosen distribution
attacks [4] that considers the security under a correlated leakage occurring from a message and
randomness simultaneously (this is a security notion for PKE but can be considered for SKE
as well), but this setting does not consider a leakage from a key or leakage with computational
uninvertibility. It would be worth clarifying further whether it is possible to leverage techniques
from these various kinds of “leakage resilient” cryptography for achieving AIND-δ-cPUAI/sPUAI
secure MBPF obfuscators/SKE schemes.
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A Basic Cryptographic Primitives

Public Key Encryption. A public key encryption (PKE) scheme Π consists of the three PPTAs
(PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:

(pk, sk)← PKG(1k) c← Enc(pk,m) m (or ⊥)← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a ciphertext
of a plaintext m under pk. We require for all k ∈ N, all (pk, sk) output by PKG(1k), and all m, it
holds that Dec(sk,Enc(pk,m)) = m.

We define the “public key length” ℓPK(k) as the length of pk output by PKG(1k). Moreover, if
Enc can encrypt k-bit plaintexts (for security parameter k), we define the “randomness length”
ℓR(k) and the “ciphertext length” ℓC(k), respectively, as the length of randomness used by Enc and
the length of ciphertexts output from Enc.

We say that a PKE scheme Π is ϵ-CPA secure4 if for all PPTAs A = (A1,A2) and for all
sufficiently large k ∈ N, it holds that AdvCPAΠ,A(k) := 2 · |Pr[ExptCPAΠ,A(k) = 1]− 1/2| ≤ ϵ(k), where the

CPA experiment ExptCPAΠ,A(k) is defined as follows:

ExptCPAΠ,A(k) : [ (pk, sk)← PKG(1k); (m0,m1, st)← A1(pk); b← {0, 1};

c∗ ← Enc(pk,mb); b′ ← A2(st, c
∗); Return (b′

?
= b) ],

where it is required that |m0| = |m1|.
4 See Footnote 2.
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Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) Γ consists of the three
PPTAs (KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:

(pk, sk)← KKG(1k) (c,K)← Encap(pk) K (or ⊥)← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a ciphertext
of a session-key K ∈ {0, 1}k under pk. We require for all k ∈ N, all (pk, sk) output by KKG(1k),
and all (c,K)← Encap(pk), it holds that Decap(sk, c) = K.

For ATK ∈ {CCA1, CCA2}, we say that a KEM Γ is ATK secure if for all PPTAs A = (A1,A2),
AdvATKΓ,A(k) := 2 · |Pr[ExptATKΓ,A(k) = 1]− 1/2| is negligible, where the CCA2 experiment ExptCCA2Γ,A (k) is
defined as follows:

ExptCCA2Γ,A (k) : [ (pk, sk)← KKG(1k); st← ADecap(sk,·)
1 (pk); (c∗,K∗1 )← Encap(pk);

K∗0 ← {0, 1}k; b← {0, 1}; b′ ← ADecap(sk,·)
2 (st, c∗,K∗b ); Return (b′

?
= b) ],

where A2 is not allowed to query c∗. The CCA1 experiment ExptCCA1Γ,A (k) is defined similarly to the
CCA2 experiment, except that A2 is not allowed to ask any query.

Tag-Based Key Encapsulation Mechanism. A tag-based key encapsulation mechanism (TBKEM) is
the KEM-analogue of tag-based encryption [58, 54], and consists of the three PPTAs (TKG,TEncap,
TDecap) with the following interface:

Key Generation: Encapsulation: Decapsulation:

(pk, sk)← TKG(1k) (c,K)← TEncap(pk, tag) K (or ⊥)← TDecap(sk, tag, c)

where TDecap is a deterministic algorithm, (pk, sk) is a public/secret key pair, and c is a ciphertext
of a session-key K ∈ {0, 1}k under pk and a “tag” tag. We require for all k ∈ N, all (pk, sk) output
by TKG(1k), all tags tag, and all (c,K)← TEncap(pk, tag), it holds that TDecap(sk, tag, c) = K.

We say that a TBKEM T is secure against selective-tag, weak chosen ciphertext attacks [54] (for
short, wCCA secure) if for all PPTAs A = (A0,A1,A2), Adv

wCCA
T ,A (k) := 2 · |Pr[ExptwCCAT ,A (k) = 1]− 1/2|

is negligible, where the wCCA experiment ExptwCCAT ,A (k) is defined as follows:

ExptwCCAT ,A (k) : [ (tag
∗, st)← A0(1

k); (pk, sk)← TKG(1k); st′ ← ATDecap(sk,·,·)
1 (st, pk); b← {0, 1};

(c∗,K∗1 )← TEncap(pk, tag∗); K∗0 ← {0, 1}k; b′ ← ATDecap(sk,·,·)
2 (st′, c∗,K∗b ); Return (b′

?
= b) ],

where A1 and A2 are not allowed to submit a tag/ciphertext pair (tag, c) satisfying tag = tag∗ to
the oracle.

Universal One-Way Hash Function. We say that a pair of PPTAs H = (HKG,H) is a univer-
sal one-way hash function (UOWHF) if the following two properties are satisfied: (1) On input
1k, HKG outputs a hash-key κ. For any hash-key κ output from HKG(1k), H defines an (effi-
ciently computable) function of the form Hκ : {0, 1}∗ → {0, 1}k. (2) For all PPTAs A = (A1,A2),
AdvUOWH,A(k) := Pr[ExptUOWH,A(k) = 1] is negligible, where the experiment is defined as follows:

ExptUOWH,A(k) : [ (m, st)← A1(1
k); κ← HKG(1k); m′ ← A2(st, κ);

Return 1 if and only if Hκ(m
′) = Hκ(m) ∧m′ ̸= m ].
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Symmetric Key Encryption. A symmetric key encryption (SKE) scheme E consists of the two
PPTAs (SEnc, SDec) with the following interface:

Encryption: Decryption:

c← SEnc(K,m) m (or ⊥)← SDec(K, c)

where SDec is a deterministic algorithm, c is a ciphertext of a plaintext m under a key K ∈ {0, 1}k,
and k ∈ N is a security parameter. We require for all k ∈ N, all K ∈ {0, 1}k, and all plaintexts m,
it holds that SDec(K, SEnc(K,m)) = m.

We say that a SKE scheme E satisfies indistinguishability under one-time encryption (OT se-
curity, for short) if for all PPTAs A = (A1,A2), Adv

OT
E,A(k) := 2 · |Pr[ExptOTE,A(k) = 1] − 1/2| is

negligible, where the OT experiment ExptOTE,A(k) is defined as follows:

ExptOTE,A(k) : [ K ← {0, 1}k; (m0,m1, st)← A1(1
k); b← {0, 1}; c∗ ← SEnc(K,mb);

b′ ← A2(st, c
∗); Return (b′

?
= b) ],

where it is required that |m0| = |m1|.
We say that a SKE scheme E has the unique-key property [33, 44, 25] if there exists a negligible

function ϵ such that for all keys K,K ′ ∈ {0, 1}k satisfying K ̸= K ′ and all plaintexts m (in the
plaintext space supported by E), it holds that

Pr[SDec(K ′,SEnc(K,m)) ̸= ⊥] ≤ ϵ(k),

where the probability is over the randomness consumed by SEnc.

B Concrete Instantiations of Point/MBPF Obfuscators

Composable Point Obfuscator. Here we recall the point obfuscator due to Canetti, which was
originally introduced as a perfectly one-way hash function [21]. Let G be a cyclic group with prime
order p (where the size of p is determined by the security parameter k). Then, consider the following
point obfuscator PO for PF(Zp):

PO(Iα): (where α ∈ Zp) Pick a group element r ← G uniformly at random, and outputs the circuit
Cr,rα(·) : Zp → {⊤,⊥}, where CA,B is the circuit which takes x ∈ Zp as input, and outputs ⊤ if
Ax = B and otherwise outputs ⊥.

Bitansky and Canetti [7] showed that the above point obfuscator is t-composable, under a
strong variant of the decisional Diffie-Hellman (DDH) assumption, called the t-strong vector DDH
(t-SVDDH) assumption (see (see [7] for a formal definition).

We remark that as mentioned in [7], the point obfuscator based on the t-SVDDH assumption
described here satisfies the re-randomizability in the sense of Definition 8. Specifically, we can just
re-randomize two group elements in an obfuscated circuit output from PO without changing the
point address.

WVG Secure MBPF Obfuscator from Composable Point Obfuscator. We recall the construction of
an MBPF obfuscator based on a composable point obfuscator, due to Canetti and Dakdouk [23]
and Bitansky and Canetti [7]. Let PO be a point obfuscator for PF(X ) and let t = t(k) > 0 be a
polynomial. Then an MBPF obfuscator MBPO for MBPF(X , t) is constructed as in Fig. 4.

Based on the result of [23], Bitansky and Canetti [7] showed that if PO is (t + 1)-composable,
then the MBPF obfuscator MBPO constructed as in Fig. 4 is WVG secure. By instantiating this
conversion with the above mentioned point obfuscator, we obtain a WVG secure t-bit-output MBPF
obfuscator under the (t+ 1)-SVDDH assumption.
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MBPO(Iα→β) :
P0 ← PO(Iα)
View β as (β1∥ . . . ∥βt) ∈ {0, 1}t
α′ ← Xk\{α}
For i ∈ [t]:

Pi ←

{
PO(Iα) if βi = 1

PO(Iα′) otherwise

End For
Return DL← CP0,...,Pt .

CP0,...,Pt(x) :
If P0(x) = ⊥ then return ⊥
For i ∈ [t]:

βi ←

{
1 if Pi(x) = ⊤
0 otherwise

End For
Return β ← (β1∥ . . . ∥βt).

Fig. 4. The construction of an MBPF obfuscator MBPO from a composable point obfuscator PO [23, 7]. MBPO takes
an MBPF Iα→β as input, and returns a circuit DL = CP0,...,Pt that is described in the right column.

PKGk(1k) :

(pki, ski)← PKG(1k)
for i ∈ [k]

PK ← {pki}i∈[k]

SK ← {ski}i∈[k]

Return (PK,SK)

LKGk(1k) :

pki ← LKG(1k)
for i ∈ [k]

PK ← {pki}i∈[k]

Return PK

Enck(PK,m) :
Parse PK as {pki}i∈[k]

ci ← Enc(pki,m) for i ∈ [k]
C ← {ci}i∈[k]

Return C

Deck(SK,C) :
Parse SK as {ski}i∈[k]

Parse C as {ci}i∈[k]

mi ← Dec(ski, ci) for i ∈ [k]
If m1 = · · · = mk

then return m1 else return ⊥

Fig. 5. The k-repetition construction Πk based on a PKE scheme/lossy encryption scheme Π. (In the former case,
we ignore the algorithms LKG and LKGk.)

C k-Repetition Construction of PKE/Lossy Encryption and Its Security

In our proposed constructions, we will use the k-repetition construction of a PKE scheme and lossy
encryption scheme, and thus we review them for self-containment of the paper.

Let Π = (PKG,Enc,Dec) be a PKE scheme. Then the k-repetition PKE construction Πk =
(PKGk,Enck,Deck) is as in Fig. 5. In case Π is a lossy encryption, we naturally define the lossy key
generation algorithm LKGk for Πk based on LKG of Π.

The security properties of the k-repetition construction are guaranteed by the following lemmas
(which can be proved by applying a standard hybrid argument, and thus omitted).

Lemma 7. If Π is a ϵ-CPA secure PKE scheme, then the k-repetition construction Πk based on Π
is (kϵ)-CPA secure.

Lemma 8. If Π is a ϵ-lossy encryption scheme, then the k-repetition construction Πk based on Π
is a (kϵ)-lossy encryption scheme.

D Postponed Proofs

D.1 Proof of Lemma 1

Let δ : N → [0, 1] be any non-negligible function and t = t(k) ≥ 1 be a polynomial. Let MBPO
be an MBPF obfuscator for MBPF(X , t) We show that for this δ and MBPO, there exist a PPTA
A and a δ-sPUAI function ai such that AdvAIND-AIMBPO,ai,A(k) ≥ δ(k)/2, which means that MBPO is not
AIND-δ-sPUAI secure, and hence will prove the lemma.

First, define the following probabilistic function ai:

ai(α, β) =

{
(α, β) with probability δ(k)

(⊥,⊥) with probability 1− δ(k)
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It is straightforward to see that ai is a δ-sPUAI function. In particular, given z ← ai(α, β) for a
randomly chosen (α, β), even a computationally unbounded adversary can output α with probability
at most δ + 1/|Xk|.

Next, consider the following adversary A that runs in the experiment ExptAIND-AIMBPO,ai,A(k):

A(1k, z = (α′, β′), DL): (where z ← ai(α, β0) and DL ← MBPO(Iα→βb
) and b is the challenge bit

for A) Firstly A checks whether z = (⊥,⊥). If this is the case, then A outputs a random bit
b′ ← {0, 1} and terminates. Otherwise ((α′, β′) = (α, β0)), A runs βb ← DL(α′). If β′ = βb, then
A sets b′ ← 0, otherwise sets b′ ← 1, and terminates with output b′.

Let Good be the event that z ̸= (⊥,⊥) occurs. Clearly, we have Pr[Good] = δ(k). By definition,
if Good does not occur, then A outputs a random bit, and thus we have Pr[b′ = b|Good] = 1/2.
Now consider the case when Good occurs. If b = 0, then A always outputs b′ = 0, while if b = 1,
A outputs 0 only when β0 = β1, which occurs with probability exactly 2−t. Therefore, we have
Pr[b′ = 0|Good ∧ b = 0] = 1 and Pr[b′ = 0|Good ∧ b = 1] = 2−t.

Using the above, A’s AIND-AI advantage can be calculated as follows:

AdvAIND-AIMBPO,ai,A(k) = 2 · |Pr[b′ = b]− 1

2
|

= 2 · |Pr[b′ = b|Good] · Pr[Good] + Pr[b′ = b|Good] · Pr[Good]− 1

2
|

= 2 · |Pr[b′ = b|Good] · δ(k) + 1

2
· (1− δ(k))− 1

2
|

= 2δ(k) · |Pr[b′ = b|Good]− 1

2
|

= δ(k) · |Pr[b′ = 0|Good ∧ b = 0]− Pr[b′ = 0|Good ∧ b = 1]|

= δ(k) · (1− 2−t) ≥ δ(k)

2
,

where the last inequality is due to t ≥ 1. This completes the proof of Lemma 1. ⊓⊔

D.2 Proof of Lemma 2

Let PK = ({pk(j)i }i∈[k],j∈{0,1}, κ) and SK = ({sk(j)i }i∈[k],j∈{0,1}, κ) be a key pair output by KKG(1k),
and let C = (c1, . . . , ck, DL) be a ciphertext output by Encap(PK). Let h = (h1∥ . . . ∥hk) = Hκ(DL).

Now, fix arbitrarily a ciphertext C ′ = (c′1, . . . , c
′
k, DL

′) satisfying DL′ = DL and (c′1, . . . , c
′
k) ̸=

(c1, . . . , ck). We show that for this C ′, it holds that Decap(SK,C ′) = ⊥. Let α = Dec(sk
(h1)
1 , c′1).

Consider the following two cases:

Case α ̸= ⊥ and DL(α) = β = (r1∥ . . . ∥rk∥K) ̸= ⊥: Since DL is an obfuscation of an MBPF, when
it is executed, the output value is not ⊥ if and only if the input is the point address. Thus, the
fact that DL(α) = β ̸= ⊥ must mean that DL is indeed an obfuscation of Iα→β. However, recall

that by the definition of Encap and the ciphertext C, we have that ci = Enc(pk
(hi)
i , α; ri) for

all i ∈ [k]. Furthermore, the second condition on C ′ implies that there exists at least one index

ℓ ∈ [k] such that c′ℓ ̸= cℓ. Therefore, under this index ℓ, we have c′ℓ ̸= Enc(pk
(hℓ)
ℓ , α; rℓ), and thus

the validity check by re-encryption performed at the last step of Decap cannot be satisfied, and
Decap(SK,C ′) outputs ⊥.

Otherwise (i.e. α = ⊥ or DL(α) = ⊥): In this case, Decap(SK,C ′) clearly outputs ⊥.

We have shown that Decap(SK,C ′) = ⊥ holds for both cases. This completes the proof of Lemma 2.
⊓⊔
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D.3 Proof of Lemma 3

Let h∗ = (h∗1∥ . . . ∥h∗k) ∈ {0, 1}k, PK, SK, and ŜKh∗ be as stated in the lemma. Fix arbi-
trarily a (possibly invalid) ciphertext C = (c1, . . . , ck, DL) satisfying Hκ(DL) = h ̸= h∗ and let
h = (h1∥ . . . ∥hk) ∈ {0, 1}k. Let ℓ ∈ [k] be the smallest index such that hℓ = 1− h∗ℓ . (Since h ̸= h∗,
there must exist ℓ ∈ [k] such that hℓ ̸= h∗ℓ , and hence hℓ = 1 − h∗ℓ .) For notational convenience,

let α1 = Dec(sk
(h1)
1 , c1) and αℓ = Dec(sk

(1−h∗
ℓ )

ℓ , cℓ)(= Dec(sk(hℓ), cℓ)). Let us consider the following
two cases:

Case α1 = αℓ: Both Decap and AltDecap proceed identically after the fifth step, and thus the
outputs from both algorithms must agree, regardless of the validity of C.

Case α1 ̸= αℓ: In this case, both Decap and AltDecap return ⊥. Specifically, α1 ̸= αℓ, hℓ = 1 −
h∗ℓ , and the correctness of the PKE scheme Π imply that there does not exist rℓ such that

Enc(pk
(hℓ)
ℓ , α1; rℓ) = cℓ, and thus Decap returns ⊥ when it performs the validity check of cℓ by

re-encryption at its last step at the latest (it could return ⊥ earlier if α1 = ⊥ or DL(α1) = ⊥).
Symmetrically, there does not exist r1 such that Enc(pk

(h1)
1 , αℓ; r1) = c1, and thus AltDecap

returns ⊥ in its last step at the latest (it could return ⊥ earlier as above).

We have seen that Decap(SK,C) = AltDecap(ŜKh∗ , C) holds for all ciphertexts C = (c1, . . . , ck, DL)
satisfying Hκ(DL) ̸= h∗. This completes the proof of Lemma 3. ⊓⊔

D.4 Proof of Lemma 5

As already mentioned, the implications from SAVB-X security to AVB-X security for both X ∈
{δ-cPUAI, δ-sPUAI}, and the implication from SAVG-δ-sPUAI security to AVG-δ-sPUAI security, are
trivial by definition. Therefore, in the following we consider the opposite directions.

Let MBPO be an MBPF obfuscator for MBPF(X , t) and let δ be a negligible function. We first
show the implication from AVB-δ-cPUAI security to SAVB-δ-cPUAI security. Assume that MBPO is
AVB-δ-cPUAI secure.

Now, fix any PPTA adversary A against MBPO in the sense of SAVB-δ-cPUAI security, and also
fix any positive polynomials q = q(k) and ℓ = ℓ(k). We will show that for these A, q and ℓ, there
exists a PPTA simulator S such that for all ℓ-bounded δ-cPUAI functions ai and for all sufficiently
large k ∈ N, it holds that AdvSA-MBPO-AIMBPO,ai,A,S(k) ≤ 1/q(k).

Note that A can be viewed as an adversary in the sense of the AVB-δ-cPUAI security as well.
Then, since MBPO is assumed to be AVB-δ-cPUAI secure, for this A and the polynomials 2q and
ℓ, there exists a PPTA simulator S ′ (corresponding to A, 2q, and ℓ) such that for any ℓ-bounded
δ-cPUAI function ai′ and for all sufficiently large k ∈ N, it holds that

AdvA-MBPO-AIMBPO,ai′,A,S′(k) = |Pr[Expt
Real
MBPO,ai′,A(k) = 1]− Pr[ExptSimai′,S′(k) = 1]| ≤ 1

2q(k)
. (7)

Now, using this S ′, we construct a PPTA simulator S (corresponding to the above A, q, and ℓ)
that does not use the oracle for the MBPF Iα→β, as follows.

S(1k, z): (where z ← ai(α, β) and ai is any δ-cPUAI function) S runs S ′(1k, z). S responds to all
oracle queries from S ′ (to Iα→β) with ⊥. When S ′ terminates with output a bit b, S outputs
this b and terminates.

Fix an arbitrary ℓ-bounded δ-cPUAI function ai. Let Bad be the event that S ′ makes a query α
in the experiment ExptSimai,S′(k). By definition, unless S ′ issues the query that causes the event Bad,

S perfectly simulates ExptSimai,S′(k) for S ′, and S uses the output of S ′. Therefore, we have

|Pr[Expts-Simai,S (k) = 1]− Pr[ExptSimai,S′(k) = 1]| ≤ Pr[Bad]. (8)
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We show the following claim.

Claim 14 Pr[Bad] is negligible.

Proof of Claim 14. Let Q = Q(k) > 0 be the number of queries made by S ′. (Since S ′ is a
PPTA, Q is some polynomial.) We first show that there exists a PPTA F such that AdvP-Invai,F (k) ≥
(1/Q(k)) · Pr[Bad]− 1/|Xk|. The description of F is as follows:

F(1k, z): (where z ← ai(α, β), and α and β are chosen uniformly at random) F runs S ′(1k, z). F
responds to all oracle queries from S ′(1k, z) (to Iα→β) with ⊥. When S ′ terminates, F picks one
of the queries made by S ′ uniformly at random, outputs it as its guess for α, and terminates.

The above completes the description of F . It is easy to see that F perfectly simulates the experiment
ExptSimai,S′(k) for S ′ until the point S ′ makes the query α. Therefore, the probability that S ′ makes
the query α is exactly Pr[Bad]. Furthermore, once S ′ makes the query α, it is picked by F with
probability at least 1/Q. Therefore, F ’s advantage can be calculated as follows:

AdvP-Invai,F (k) = Pr[ExptP-Invai,F (k) = 1]− 1

|Xk|
≥ 1

Q(k)
· Pr[Bad]− 1

|Xk|
.

Now, recall that ai is a δ-cPUAI function and δ is negligible. and thus for all sufficiently large
k ∈ N, we have Pr[Bad] ≤ Q(k)(δ(k)+1/|Xk|), and the right hand side is negligible. This completes
the proof of Claim 14. ⊓⊔

Let µ(k) be a negligible function such that µ(k) = Pr[Bad]. We have:

AdvSA-MBPO-AIMBPO,ai,A,S(k) = |Pr[ExptRealMBPO,ai,A(k) = 1]− Pr[Expts-Simai,S (k) = 1]|
≤ |Pr[ExptRealMBPO,ai,A(k) = 1]− Pr[ExptSimai,S′(k) = 1]|

+ |Pr[ExptSimai,S′(k) = 1]− Pr[Expts-Simai,S (k) = 1]|

≤ 1

2q(k)
+ µ(k)

≤ 1

q(k)
(9)

where the first inequality follows from the triangle inequality, the second inequality holds for all
sufficiently large k ∈ N due to the inequalities (7), (8) and Claim 14, and the last inequality holds
for all sufficiently large k ∈ N (because µ(k) ≤ 1

2q(k) holds for all sufficiently large k ∈ N). Recall
that the choice of ai was arbitrarily, and thus the inequality (9) holds for any ℓ-bounded δ-cPUAI
fuction ai.

Recall also that the choice of the PPTA adversary A and the positive polynomials q and ℓ was
also arbitrarily, and thus the above works for any PPTA A and any positive polynomials q and ℓ.
This means that MBPO is SAVB-δ-cPUAI secure.

The implication from AVB-δ-sPUAI security to SAVB-δ-sPUAI security can be proved identically
to the above.

The proof for showing the implication from AVG-δ-sPUAI security to SAVG-δ-sPUAI security also
proceeds in almost the same way, and thus we omit it. The difference is that the simulator S ′ due to
AVG-δ-sPUAI security is computationally unbounded (and makes only polynomially many queries).
Correspondingly, however, we only need to construct a computationally unbounded simulator S,
to show the SAVG-δ-sPUAI security. Furthermore, the proof that S can simulate the experiment
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ExptSimai,S′(k) for all δ-sPUAI secure functions follows from the fact that S ′ makes only polynomially
many queries and ai is statistically partially uninvertible, and thus we can similarly derive the up-
perbound of the probability Pr[Bad] to be negligible by constructing a computationally unbounded
inverter F for ai. The rest of the analysis is exactly the same. This completes the proof of Lemma 5.

⊓⊔

D.5 Proof of Lemma 6

Let δ be any negligible function, and let MBPO be an MBPF obfuscator for MBPF(X , t). Since
the proof is essentially the same for both δ-cPUAI and δ-sPUAI cases, below we only show that
SAVG-δ-cPUAI security implies AIND-δ-cPUAI security.

Fix arbitrarily a PPTA adversaryA and a δ-cPUAI function ai. We will show that AdvAIND-AIMBPO,ai,A(k)
is negligible, namely, for any positive polynomial q and for all sufficiently large k ∈ N, it holds that
AdvAIND-AIMBPO,ai,A(k) < 1/q(k). To this end, fix any positive polynomial q = q(k). Let ℓ = ℓ(k) be the
maximum length of the output of ai when it takes an input from Xk × {0, 1}t. Note that since
ai is efficiently computable, ℓ must be some polynomial. Consider the following slightly modified
probabilistic function ai′ : Xk × {0, 1}t → {0, 1}ℓ:

ai′(α, β): Pick β′ ∈ {0, 1}t uniformly at random, and return z ← ai(α, β′). (Here, ai′ ignores the
input β.)

Note that when α and β are chosen uniformly at random, the distribution of z output from ai(α, β)
and that from ai′(α, β) are identical. This directly implies that if ai is a δ-cPUAI function, then so is
ai′. (And if ai is a δ-sPUAI function, then so is ai′.) Furthermore, it also implies that for any (even
computationally unbounded) algorithmM, it holds that

Pr[Expts-Simai,M (k) = 1] = Pr[Expts-Simai′,M(k) = 1]. (10)

Note also that by definition, both ai and ai′ are ℓ-bounded.
Now, due to our assumption that MBPO is SAVG-δ-cPUAI secure, for the adversary A and the

polynomial 4q and the polynomial ℓ, there exists a computationally unbounded simulator S such
that for the ℓ-bounded δ-cPUAI functions ai and ai′, and for all sufficiently large k ∈ N, the following
two inequalities simultaneously hold:

AdvSA-MBPO-AIMBPO,ai,A,S(k) ≤
1

4q(k)
and AdvSA-MBPO-AIMBPO,ai′,A,S(k) ≤

1

4q(k)
.

Let ν(k) = Pr[Expts-Simai,S (k) = 1]. Then by the equation (10), ν(k) = Pr[Expts-Simai′,S (k) = 1] holds.
Using this, the above two inequalities can be rewritten as follows:

AdvSA-MBPO-AIMBPO,ai,A,S(k) = |Pr[ExptRealMBPO,ai,A(k) = 1]− Pr[Expts-Simai,S (k) = 1]|

= |Pr[A(1k, ai(α, β),MBPO(Iα→β)) = 1]− ν(k)| ≤ 1

4q(k)
(11)

AdvSA-MBPO-AIMBPO,ai′,A,S(k) = |Pr[Expt
Real
MBPO,ai′,A(k) = 1]− Pr[Expts-Simai′,S (k) = 1]|

= |Pr[A(1k, ai(α, β′),MBPO(Iα→β)) = 1]− ν(k)| ≤ 1

4q(k)
(12)

where the probabilities (in the right hand side of the above equalities) are over the choice of α, β,
and β′ uniformly at random and also over the choice of randomness consumed by Obf, ai, A, and
S.
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Now, we show that the adversary A’s AIND-AI advantage (with respect to the probabilistic
function ai) is smaller than 1/q(k). For all sufficiently large k ∈ N, it holds that

AdvAIND-AIMBPO,ai,A(k) = 2 · |Pr[ExptAIND-AIMBPO,ai,A(k) = 1]− 1/2|
= |Pr[A(1k, ai(α, β0),MBPO(Iα→β0)) = 1]− Pr[A(1k, ai(α, β0),MBPO(Iα→β1)) = 1]|
≤ |Pr[A(1k, ai(α, β0),MBPO(Iα→β0)) = 1]− ν(k)|

+ |ν(k)− Pr[A(1k, ai(α, β0),MBPO(Iα→β1)) = 1]|

≤ 1

4q(k)
+

1

4q(k)
<

1

q(k)
, (13)

where the probabilities are over the random choice of α, β0, β1 uniformly at random and also over
the choice of randomness consumed by MBPO, ai, and A. In the above, the first inequality is due
to the triangle inequality, and in the second inequality we used the inequality (11) (in which we
regard β as β0) and the inequality (12) (in which we regard β and β′ as β1 and β0, respectively).

Recall that the choice of the positive polynomial q was arbitrarily, and thus for all positive
polynomials q we can show the inequation (13), which implies that AdvAIND-AIMBPO,ai,A(k) is negligible.
Recall also that the choice of A and ai was also arbitrarily, and thus the above works for any PPTA
A and any δ-cPUAI function ai. This completes the proof of Lemma 6. ⊓⊔

D.6 Proof of Theorem 3

Theorem 3 is shown by using the equivalence of t-composability and t-distributional indistinguisha-
bility for coordinate-wise well-spread (CWS) distributions, established by Bitansky and Canetti [8].

First, we recall the notion of coordinate-wise well-spread distributions.

Definition 9. ([8]) Let t = t(k) > 0 be a polynomial. Let X = {Xk}k∈N be a domain ensemble,
and Φ = {Φk}k∈N be an ensemble of distributions, where each Φk is a distribution over (Xk)

t. We
say that Φ is t-coordinate-wise well-spread (CWS), if

max
a∈Xk

Pr
(α1,...,αt)←Φk

[∃i ∈ [t] : αi = a]

is negligible in k, where the probability is over the choice of (α1, . . . , αt) ∈ (Xk)
t according the

distribution Φk.

Then, we recall the definition of t-distributional indistinguishability for point obfuscators.

Definition 10. ([8]) Let t = t(k) > 0 be a polynomial. Let X = {Xk}k∈N be an ensemble of
domains, and let PO be a point obfuscator for PF(X ). We say that PO satisfies t-distributional
indistinguishability if for any t-CWS distribution ensemble Φ = {Φk}k∈N (over X ) and for all
PPTAs A, Advt-DIPO,Φ,A(k) := 2 · |Pr[Exptt-DIPO,Φ,A(k) = 1] − 1/2| is negligible, where the experiment

Exptt-DIPO,A(k) is defined as follows:

Exptt-DIPO,Φ,A(k) : [ (α
(1)
1 , . . . , α

(1)
t )← Φk; (α

(0)
1 , . . . , α

(0)
t )← (Xk)

t; b← {0, 1};

P∗i ← PO(I
α
(b)
i

) for i ∈ [t]; b′ ← A(1k, {P∗i }i∈[t]); Return (b′
?
= b) ].

Bitansky and Canetti [8] showed the following:

Lemma 9. ([8]) Let t = t(k) > 0 be a polynomial, let X = {Xk}k∈N be a domain ensemble, and
let PO be a point obfuscator for PF(X ). If PO is t-composable, then PO satisfies t-distributional
indistinguishability.
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Now, we are ready to prove Theorem 3.

Proof of Theorem 3. Let PO be the point obfuscator for PF(X ) used as a building block of Π.
We first show that an ordinary public key output by PKG(1k) and a lossy public key output by
LKG(1k) are indistinguishable.

Let A be any PPTA distinguisher that tries to distinguish an ordinary public key and a lossy

public key of the scheme Π. Define the following three distribution ensembles Φ(1) = {Φ(1)
k }k∈N,

Φ(2) = {Φ(2)
k }k∈N, and Φ(3) = {Φ(3)

k }k∈N:

Φ
(1)
k = {α0 ← Xk; α1 ← Xk\{α0} : (α0, α1) }

Φ
(2)
k = {α0 ← Xk; α1 ← Xk : (α0, α1) }

Φ
(3)
k = {α← Xk : (α, α) }

Note that Φ(3) is a 2-CWS distribution ensemble.

Using the above notation, we can estimate the advantage of A as follows:

AdvKEYΠ,A(k) = 2 · |Pr[ExptKEYΠ,A(k) = 1]− 1

2
|

= |Pr[ExptKEYΠ,A(k) = 1|b = 0]− Pr[ExptKEYΠ,A(k) = 1|b = 1]|
= |Pr[(pk, sk)← PKG(1k) : A(pk) = 1]− Pr[pk ← LKG(1k) : A(pk) = 1]|

= |Pr[(α0, α1)← Φ
(1)
k : A(PO(Iα0),PO(Iα1)) = 1]− Pr[(α0, α1)← Φ

(3)
k : A(PO(Iα0),PO(Iα1)) = 1]|

≤ |Pr[(α0, α1)← Φ
(1)
k : A(PO(Iα0),PO(Iα1)) = 1]− Pr[(α0, α1)← Φ

(2)
k : A(PO(Iα0),PO(Iα1)) = 1]|

+ |Pr[(α0, α1)← Φ
(2)
k : A(PO(Iα0),PO(Iα1)) = 1]− Pr[(α0, α1)← Φ

(3)
k : A(PO(Iα0),PO(Iα1)) = 1]|

(14)

(where the probabilities are also over the randomness consumed by PO and A.)
Note that the statistical distance between Φ

(1)
k and Φ

(2)
k is negligible, and thus the first term in

the inequality (14) is negligible. Furthermore, our assumption that PO is 2-composable, combined
with Lemma 9, implies that PO satisfies 2-distributional indistinguishability. This, combined with
fact that Φ(3) is 2-CWS, in turn implies that the second term in the inequality (14) is negligible.
(Otherwise, we can construct a PPTA distinguisher that violates 2-distributional indistinguishabil-
ity of PO with regard to Φ(3).) In summary, Π satisfies the indistinguishability of ordinary/lossy
public keys.

The fact that Π satisfies the statistical lossiness is straightforward to see. A lossy public key
output by LKG(1k) is of the form pk = (P̂0, P̂1) = (PO(Iα),PO(Iα)) for a randomly chosen α ∈ Xk,
and thus for any plaintext m ∈ {0, 1}t, its encryption is of the form C = (c1, . . . , ct) where every
ci is computed as ci ← ReRand(PO(Iα)), and thus the distribution of a ciphertext is identical
for all plaintexts. (This remains true even when the distribution of public keys is also taken into
account.) This implies that even a computationally unbounded adversary A has advantage zero in
the experiment ExptLOS-CPAΠ,A (k). This completes the proof of Theorem 3. ⊓⊔

E Non-adaptive Chosen Ciphertext Security via MBPF Obfuscation

In this section, we show a simpler CCA1 secure variant of our proposed KEMs that we showed
in Section 4. Interestingly, the relation between the KEM Γ ′ shown in this section and our first
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KKG′(1k) :

(pki, ski)← PKG(1k) for i ∈ [2]
PK ← (pk1, pk2)
SK ← (sk1, sk2)
Return (PK,SK)

Encap′(PK) :
Parse PK as (pk1, pk2)
α← Xk

β ← {0, 1}t
DL← MBPO(Iα→β)
Parse β as (r1, r2,K)

∈ ({0, 1}ℓR)2 × {0, 1}k
ci ← Enc(pki, α; ri) for i ∈ [2]
C ← (c1, c2, DL)
Return (C,K)

Decap′(SK,C) :
Parse SK as (sk1, sk2)
Parse C as (c1, c2, DL)
α← Dec(sk1, c1)
If α = ⊥ then reutrn ⊥
β ← DL(α)
If β = ⊥ then return ⊥
Parse β as (r1, r2,K)

∈ ({0, 1}ℓR)2 × {0, 1}k
If ∀i ∈ [2] : Enc(pki, α; ri) = ci

then return K else return ⊥

Fig. 6. The proposed CCA1 secure KEM Γ ′.

construction Γ in Section 4 is similar to the relation between the Naor-Yung PKE construction [63]
and the Dolev-Dwork-Naor PKE construction [35].

Let Π = (PKG,Enc,Dec) be a PKE scheme with the plaintext space {0, 1}k and the randomness
length ℓR(k). We define t(k) = 2ℓR(k) + k. Let X = {Xk}k∈N be a domain ensemble such that each
element in Xk is of length k, and let MBPO be an MBPF obfuscator for MBPF(X , t). Then we
construct a KEM Γ ′ = (KKG′,Encap′,Decap′) as in Fig. 6.

As in the case of the CCA2 secure KEM Γ given in Section 4, the following “alternative” decap-
sulation algorithm AltDecap′ is useful for showing the security of Γ ′: For a key pair (PK,SK =

(sk1, sk2)) output by KKG′(1k), we define the “alternative” secret key ŜK by ŜK = (PK, sk2).

AltDecap′ takes an alternative key ŜK and a ciphertext C = (c1, c2, DL) as input, and runs as
follows:

AltDecap′(ŜK,C): On input an alternative secret key ŜK = (PK, sk2) and a ciphertext C =
(c1, c2, DL), AltDecap

′ runs in exactly the same way as Decap′(SK,C), except that it executes
Dec(sk2, c2) in the third step, instead of Dec(sk1, c1).

Regarding AltDecap′, the following is easy to see due to the symmetric role of sk1 and sk2, and
the validity check of c1 and c2 performed at the last step. (The proof is essentially the same as that
of Lemma 3, and thus omitted.)

Lemma 10. Let (PK,SK = (sk1, sk2)) be a key pair output by KKG′(1k), and let ŜK = (PK, sk2)
be the alternative secret key as defined above. Then, for any ciphertext C (which could be outside

the range of Encap′(PK)), it holds that Decap′(SK,C) = AltDecap′(ŜK,C).

Now, we show the CCA1 security of Γ ′ as follows.

Theorem 5. Assume that Π is ϵ-CPA secure with negligible ϵ and MBPO is AIND-δ-cPUAI secure
with δ(k) ≥ 2ϵ(k). Then, the KEM Γ ′ constructed as in Fig. 6 is CCA1 secure.

Proof of Theorem 5. We will show that for any PPTA adverasry A attacking the CCA1 security
of the KEM Γ ′, there exist PPTA Bo and a (kϵ)-cPUAI function aiΓ ′ : Xk × {0, 1}t → {0, 1}∗ such
that

AdvCCA1Γ ′,A(k) ≤ 2 · AdvAIND-AIMBPO,aiΓ ′ ,Bo(k). (15)

This inequality, combined with our assumptions on the building blocks, implies that AdvCCA1Γ ′,A(k) is
negligible, and proves the theorem.

Fix arbitrarily a CCA1 adversary A = (A1,A2) against Γ ′. Consider the following sequence of
games: (Here, the values with asterisk (*) represent those related to the challenge ciphertext for
A.)
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Game 1: This is the experiment ExptCCA1Γ ′,A(k) itself. Without loss of generality, we generate/choose
the challenge ciphertext C∗ = (c∗1, c

∗
2, DL

∗) and the challenge session-key K∗b , where b is the
challenge bit for A, before running A1. (Note that this does not affect A’s behavior.)

Game 2: Same as Game 1, except that DL∗ is replaced with an obfuscation of the MBPF Iα∗→β′

with an independently chosen random value β′ ∈ {0, 1}t. That is, the step “DL∗ ← MBPO(Iα∗→β∗)”
is replaced with the steps “β′ ← {0, 1}t; DL∗ ← MBPO(Iα∗→β′).” (Note that r∗1, r

∗
2, and K∗1 are

still generated from β∗.)

For i ∈ [2], let Succi be the event that A succeeds in guessing the challenge bit (i.e. b′ = b occurs)
in Game i. Using the notation, A’s CCA1 advantage can be calculated as follows:

AdvCCA1Γ ′,A(k) = 2 · |Pr[Succ1]−
1

2
| ≤ 2 · |Pr[Succ1]− Pr[Succ2]|+ 2 · |Pr[Succ2]−

1

2
|. (16)

In the following, we show the upperbound of each term in the right hand side of the above
inequality.

Firstly, we would like to consider the upperbound of |Pr[Succ1] − Pr[Succ2]|. To this end, we
need to use the AIND-δ-cPUAI security of MBPO. We therefore specify the auxiliary input function
that we are going to consider. Define the probabilistic function aiΓ ′ : Xk × {0, 1}t → {0, 1}∗ that
takes (α, β) ∈ Xk×{0, 1}t as input, and computes z = (st, c∗1, c

∗
2,K

∗) ∈ {0, 1}∗ in the following way:

aiΓ ′(α, β) : [ (PK = (pk1, pk2), SK)← KKG′(1k); Parse β as (r∗1, r
∗
2,K

∗) ∈ ({0, 1}ℓR)2 × {0, 1}k;

c∗i ← Enc(pki, α; r
∗
i ) for i ∈ [2]; st← ADecap′(SK,·)

1 (PK); Return z ← (st, c∗1, c
∗
2,K

∗) ].

where the randomness used by aiΓ ′ is the randomness for executing KKG′ and that for executing A1.
Note that aiΓ ′ uses A1 as a subroutine and the output of aiΓ ′ contains the state information st that
is supposed to be passed to A2, and thus the output length of aiΓ ′ cannot be a-priori bounded, as
opposed to the case to our proposed construction Γ . Note also that aiΓ ′ is efficiently computable. In
particular, althoughA1 needs to be given access to the decapsulation oracle Decap′(SK, ·), the secret
key SK is generated during the process of computing aiΓ ′ , and once the oracle Decap′(SK, ·) is given,
A1 can be computed efficiently. In order to use aiΓ ′ as an auxiliary input function corresponding
to an AIND-AI adversary against the MBPF obfuscator MBPO, we state the following claim, which
will be proven in the end of the proof of this theorem.

Claim 15 aiΓ ′ is a (2ϵ)-cPUAI function.

We proceed to showing the upperbound of |Pr[Succ1]− Pr[Succ2]|.

Claim 16 There exists a PPTA Bo such that AdvAIND-AIMBPO,aiΓ ′ ,Bo(k) = |Pr[Succ1]− Pr[Succ2]|.

Proof of Claim 16. We show how to construct a PPTA Bo with the claimed advantage. Bo is given
as input 1k, z = (st, c∗1, c

∗
2,K

∗) ← aiΓ ′(α, β0), and DL∗ which is output from either MBPO(Iα→β0)
or MBPO(Iα→β1), where α ∈ Xk and β0, β1 ∈ {0, 1}t are chosen randomly, and runs as follows:

Bo(1k, z, DL∗): Bo first parses z as (st, c∗1, c
∗
2,K

∗). Then, Bo picks γ ∈ {0, 1} and K∗0 ∈ {0, 1}k
uniformly at random, sets C∗ ← (c∗1, c

∗
2, DL

∗) and K∗1 ← K∗, runs γ′ ← A2(st, C
∗,K∗γ), and

terminates with output b′ ← (γ′
?
= γ).

The above completes the description of Bo. Let b be the challenge bit for Bo. Bo’s AIND-AI advantage
can be estimated as follows:

AdvAIND-AIMBPO,aiΓ ′ ,Bo(k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[γ′ = γ|b = 0]− Pr[γ′ = γ|b = 1]|.
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Consider the case when b = 0, i.e. DL∗ is computed as DL∗ ← MBPO(Iα→β0). Note that
by the definition of the AIND-AI experiment and the function aiΓ ′ , if we regard α and β0 in
ExptAIND-AIMBPO,aiΓ ′ ,Bo(k) as α

∗ and β∗ in Game 1, respectively, then the values in z (i.e. A’s state infor-
mation st, the ciphertexts c∗1 and c∗2, and the value K∗ that is used as K∗1 ), are generated/chosen
in exactly the same way as those in Game 1. In particular, A1 is run during the calculation of
aiΓ ′ , but it is given a correctly generated public key PK = (pk1, pk2) as input, and A1’s decap-
sulation queries C are answered with Decap′(SK,C), as is done in Game 1, and thus the state
information st is generated in exactly the same way as that in Game 1. Furthermore, since γ is
chosen randomly by Bo, the challenge ciphertext C∗ = (c∗1, c

∗
2, DL

∗) and the challenge session-key
K∗γ that are input into A2 are also generated in exactly the same way as those in Game 1 in which
the challenge bit is γ. Since Bo inputs (st, C∗,K∗γ) to A2, Bo simulates Game 1 perfectly for A2

in which the challenge bit for A is γ. Under this situation, the probability that γ′ = γ occurs is
exactly the same as the probability that A succeeds in guessing its challenge bit in Game 1, i.e.
Pr[γ′ = γ|b = 0] = Pr[Succ1].

Next, consider the case when b = 1, i.e. DL∗ is computed as DL∗ ← MBPO(Iα→β1), where β1
is also chosen uniformly at random, independently of β0. Under this situation, if we regard α,
β0, and β1 in ExptAIND-AIMBPO,aiΓ ′ ,Bo(k) as α∗, β∗, and β′ in Game 2, respectively, then the challenge
ciphertext/session-key pair (C∗,K∗γ) is generated in such a way that it is distributed identically to
that in Game 2, and thus Bo simulates Game 2 perfectly for A in which the challenge bit for A is
γ. Therefore, with a similar argument to the above, we have Pr[γ′ = γ|b = 1] = Pr[Succ2].

In summary, we have AdvAIND-AIMBPO,aiΓ ′ ,Bo(k) = |Pr[Succ1]−Pr[Succ2]|. This completes the proof of
Claim 16. ⊓⊔

Claim 17 Pr[Succ2] = 1/2.

Proof of Claim 17. This is obvious because K∗1 , which is contained in β∗, is independent of the
challenge ciphertext C∗, and the distribution of K∗1 and that of K∗0 are exactly the same in Game
2. Therefore, the distribution of the challenge ciphertext/session-key pair (C∗,K∗b ) as well as all
other values (public key PK and the responses to decapsulation queries) are identically distributed
in both cases b = 0 and b = 1, which implies Pr[Succ2] = 1/2. This completes the proof of Claim 17.

⊓⊔

Claims 16 and 17, and the inequality (16) guarantee that there exist a PPTA Bo and a (2ϵ)-
cPUAI function aiΓ ′ satisfying the inequality (15), as required. Recall that the choice of the PPTA
CCA1 adversary A was arbitrarily, and thus this for any PPTA CCA1 adversary we can show its
negligible advantage. Hence, Γ ′ is CCA1 secure.

It remains to prove Claim 15.

Proof of Claim 15. As we have mentioned, aiΓ ′ is efficiently computable. Thus, in the following
we show that aiΓ ′ is (2ϵ)-computationally partially uninvertible.

Let F be an arbitrary PPTA adversary that runs in ExptP-InvaiΓ ′ ,F (k). For i ∈ [3], let aii : Xk ×
{0, 1}t → {0, 1}∗ be the probabilistic function defined as follows:

ai1: This is aiΓ ′ itself. (This is introduced for notational convenience.)
ai2: Same as ai1, except that c

∗
2 is generated as c∗2 ← Enc(pk2, 0

k; r∗2), instead of c∗2 ← Enc(pk2, α; r
∗
2).

ai3: Same as ai2, except that all decryption queries C from A1 are answered with AltDecap′(ŜK,C),

instead of Decap′(SK,C), where ŜK is the alternative secret key corresponding to the key pair
(PK,SK).
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For notational convenience, for i ∈ [3], let pi = Pr[ExptP-Invaii,F (k) = 1]. By the triangle inequality, we
have

AdvP-InvaiΓ ′ ,F (k) = p1 −
1

|Xk|
≤

∑
i∈[2]

|pi − pi+1|+ p3 −
1

|Xk|
. (17)

In the following we show the upperbound of the terms that appear in the right hand side of the
above inequality.

Subclaim 1 There exists a PPTA Bp such that AdvCPAΠ,Bp(k) = |p1 − p2|.

Proof of Subclaim 1. We show how to construct a PPTA CPA adversary Bp that attacks the PKE
scheme Π with the claimed advantage. The description of Bp = (Bp1,Bp2) is as follows:

Bp1(pk): Bp1 picks α ∈ Xk uniformly at random, and sets M0 ← α and M1 ← 0k. Then Bp1
prepares the state information stB consisting of all information known to Bp1, and terminates
with output (M0,M1, stB).

Bp2(stB, c∗): Bp,2 first runs (pk1, sk1) ← PKG(1k), sets pk2 ← pk, PK ← (pk1, pk2), and SK ←
(sk1,⊥). Bp2 also picks K∗ ∈ {0, 1}k uniformly at random, executes c∗1 ← Enc(pk1, α), and sets

c∗2 ← c∗. Bp2 then runs st← ADecap′(SK,·)
1 (PK). (Note that the knowledge of sk2 is not needed

to run Decap′(SK,C), and thus Bp2 can perform this step.) Then, Bp2 sets z ← (st, c∗1, c
∗
2,K

∗),

and runs α′ ← F(1k, z). Finally, Bp2 terminates with output b′ ← (α′
?
= α).

The above completes the description of Bp. Let b be the challenge bit for Bp. Bp’s CPA advantage
can be calculated as follows:

AdvCPAΠ,Bp(k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[α′ = α|b = 0]− Pr[α′ = α|b = 1]|.

Consider the case when b = 0, i.e. c∗ is an encryption of M0 = α. It is easy to see that in this
case, Bp simulates ExptP-Invai1,F (k) perfectly for F . In particular, in the real experiment ExptP-Invai1,F (k),
c∗1 and c∗2 are computed using randomness r∗1 and r∗2 that are contained in β ∈ {0, 1}t, which are
chosen uniformly at random, and c∗1 and c∗2 generated in Bp’s CPA experiment are also generated
by using the randomness which are identically distributed (the randomness for c∗1 is chosen by Bp
and the randomness for c∗2 is chosen by Bp’s CPA experiment). Under this situation, the probability
that α′ = α occurs is identical to the probability that F succeeds in outputting α in ExptP-Invai1,F (k),
i.e. Pr[α′ = α|b = 0] = p1.

On the other hand, it is also easy to see that when b = 1 (i.e. c∗ is an encryption of M1 = 0k),
Bp simulates ExptP-Invai2,F (k) perfectly for F . With a similar argument to the above, we have Pr[α′ =
α|b = 1] = p2.

In summary, we have AdvCPAΠ,Bp(k) = |p1 − p2|. This completes the proof of Subclaim 1. ⊓⊔

Subclaim 2 p2 = p3.

Proof of Subclaim 2. Note that the difference between the experiments ExptP-Invai2,F (k) and ExptP-Invai3,F (k)

is whether we use Decap′(SK, ·) or AltDecap′(ŜK, ·) for answering the decryption queries from A1,

where ŜK is the alternative secret key. However, Lemma 10 tells us that for any (possibly invalid)

ciphertext C, we have Decap′(SK,C) = AltDecap′(ŜK,C). Therefore, from the viewpoint of A1,

40



these two oracles behave identically, and hence the view of A1 is distributed identically in both
experiments. This means that the value z in both experiments is distributed identically, and thus
F outputs α with exactly the same probability. This completes the proof of Subclaim 2. ⊓⊔

Subclaim 3 There exists a PPTA B′p such that AdvCPAΠ,B′p(k) = p3 − 1/|Xk|.

Proof of Subclaim 3. We show how to construct a PPTA CPA adversary B′p that attacks the PKE
scheme Π with the claimed advantage. The description of B′p = (B′p1,B′p2) is as follows:

B′p1(pk): B′p1 picks α ∈ Xk uniformly at random, and sets M0 ← α and M1 ← 0k. Then B′p1
prepares the state information stB consisting of all information known to B′p1, and terminates
with output (M0,M1, stB).

B′p2(stB, c∗): B′p2 first runs (pk2, sk2) ← PKG(1k), sets pk1 ← pk, PK ← (pk1, pk2), and ŜK ←
(PK, sk2). B′p2 also picks K∗ ∈ {0, 1}k uniformly at random, executes c∗2 ← Enc(pk2, 0

k), and

sets c∗1 ← c∗. B′p2 then runs st ← AAltDecap′(ŜK,·)
1 (PK), sets z ← (st, c∗1, c

∗
2,K

∗), and runs

α′ ← F(1k, z). Finally, B′p2 terminates with output b′ ← (α′
?
= α).

The above completes the description of B′p. Let b be the challenge bit for B′p. B′p’s CPA advantage
can be calculated as follows:

AdvCPAΠ,B′p(k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[α′ = α|b = 0]− Pr[α′ = α|b = 1]|.

Consider the case when b = 0, i.e. c∗ is an encryption of M0 = α. It is easy to see that
in this case, B′p simulates ExptP-Invai3,F (k) perfectly for F . Under this situation, the probability that

α′ = α occurs is identical to the probability that F succeeds in outputting α in ExptP-Invai3,F (k), i.e.
Pr[α′ = α|b = 0] = p3.

On the other hand, note that when b = 1 (i.e. c∗ is an encryption of M1 = 0k), the value z does
not contain any information on α. (In particular, in this case both c∗1 and c∗2 are an encryption of
0k.) Therefore, the view of F is independent of α. This must mean that the probability that F
succeeds in outputting α is exactly 1/|Xk|. That is, we have Pr[α′ = α|b = 1] = 1/|Xk|.

In summary, we have AdvCPAΠ,B′p(k) = p3 − 1/|Xk|. (Here, without loss of generality we use p3 ≥
1/|Xk|.) This completes the proof of Subclaim 3. ⊓⊔

Subclaims 1 to 3 and the inequality (17) guarantee that there exist PPTAs Bp and B′p such that

AdvP-InvaiΓ ′ ,F (k) ≤ AdvCPAΠ,Bp(k) + AdvCPAΠ,B′p(k).

Here, since the PKE scheme Π is ϵ-CPA secure, for all sufficiently large k ∈ N, we have AdvCPAΠ,Bp(k) ≤
ϵ(k) and AdvCPAΠ,B′p(k) ≤ ϵ(k).

In summary, for all sufficiently large k ∈ N we have AdvP-InvaiΓ ′ ,F (k) ≤ 2ϵ(k). Recall that the

choice of F was arbitrarily, and thus for all PPTAs F we can show that AdvP-InvaiΓ ′ ,F (k) ≤ ϵ(k) holds
for all sufficiently large k ∈ N. Therefore, aiΓ ′ is (2ϵ)-computationally partially uninvertible. This
completes the proof of Claim 15. ⊓⊔

This completes the proof of Theorem 5. ⊓⊔
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F On Replacing MBPF Obfuscators with SKE

In this section, we discuss several issues on replacing an MBPF obfuscator with a SKE scheme in
our proposed constructions of KEMs.

Motivation. As has been clarified in several previous works [23, 33, 44, 25], there is a strong connec-
tion between MBPF obfuscators and SKE schemes. More specifically, an obfuscation of an MBPF
IK→m can be considered as an encryption of a plaintext m using a key K. In order for the con-
verse direction to hold, i.e. viewing an encryption of a plaintext m under a key K (together with
a decryption algorithm) as an obfuscation of the MBPF IK→m, the SKE scheme needs to satisfy
a property that the decryption algorithm using a key K outputs ⊥ when it is input a ciphertext
generated by using a different key K ′ ̸= K. This property is referred to as the unique-key property5

[33, 44, 25] (we recall the definition in Appendix A).
Given a SKE scheme that has the unique-key property and satisfies the security that we call

AIND-δ-cPUAI security and AIND-δ-sPUAI security, which are defined in essentially the same way as
those for MBPF obfuscators, then we can replace the MBPF obfuscator in our proposed KEM Γ
in Section 4 with the SKE scheme. (Interestingly, the unique-key property is not needed for our
CCA1 secure construction given in Appendix E, and thus we can replace the MBPF obfuscator with
a SKE without the unique-key property.)

Although it was shown in [25] how to convert any SKE scheme into one that supports the
unique-key property by using a family of pairwise-independent hash functions, we could not figure
out whether this conversion preserves AIND-δ-cPUAI security and AIND-δ-sPUAI security in general.
(We conjecture that it does not.)

Therefore, we think that in general AIND-δ-cPUAI secure (and AIND-δ-sPUAI secure) SKE schemes
without the unique-key property are potentially easier to construct than MBPF obfuscators with
the same security. This is the main reason why we focus on replacing an MBPF obfuscator with
a SKE scheme in our proposed constructions. In the following we will show that the unique-key
property is not a necessary property for constructing CCA2 secure KEMs by using a SKE scheme,
via a tag-based KEM (TBKEM for short, whose formal definition can be found in Appendix A)
together with the TBKEM-to-PKE/KEM transformation due to [54].

Organization of This Section. The rest of this section is organized as follows: In Appendix F.1,
we formalize the AIND-δ-cPUAI security and the AIND-δ-sPUAI security for SKE, and we also recall
the transformation of an MBPF obfuscator into a SKE scheme. In Appendix F.2, we show that
the proposed KEM using a SKE scheme can be modified to a wCCA secure TBKEM, and show
that the security of this TBKEM can be proved without relying on the unique-key property of the
used SKE scheme. Finally, in Appendix F.3, we show an evidence that achieving AIND-δ-cPUAI and
AIND-δ-sPUAI secure SKE schemes is not so trivial, by clarifying an implication of these security
definitions to a kind of leakage-resilience security that takes into account leakage only from a key
(as opposed to leakage simultaneously from a key and a random plaintext being encrypted).

F.1 Average-Case Indistinguishability with Auxiliary Input for SKE

We formalize the security notion that we need for a SKE scheme here.

Definition 11. We say that a SKE scheme E = (SEnc, SDec) (whose plaintext space is {0, 1}t for
some polynomial t = t(k) > 0) satisfies average-case indistinguishability w.r.t. δ-computationally

5 This property was called wrong-key detection in [44, 25].
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(resp. δ-statistically) partially uninvertible auxiliary input (AIND-δ-cPUAI (resp. AIND-δ-sPUAI) se-
curity, for short) if for all PPTAs A and all δ-cPUAI (resp. δ-sPUAI) functions ai, the advantage
function AdvAIND-AIE,ai,A (k) := 2 · |Pr[ExptAIND-AIE,ai,A (k) = 1] − 1/2| is negligible, where the experiment

ExptAIND-AIE,ai,A (k) is defined as follows:

ExptAIND-AIE,ai,A (k) : [K ← {0, 1}k; m0,m1 ← {0, 1}t; z ← ai(K,m0); b← {0, 1}

c∗ ← SEnc(K,mb); b′ ← A(1k, z, c∗); Return (b′
?
= b)].

From MBPF Obfuscator to SKE. Here, we recall the transformation of an MBPF obfuscator into
a SKE scheme [23, 25].

Let MBPO be an MBPF obfuscator for MBPF({0, 1}∗, t). From MBPO, we construct a SKE
scheme E = (SEnc, SDec) as follows:

SEnc(K,m): On input a key K ∈ {0, 1}k and a plaintext m ∈ {0, 1}t, return a ciphertext c ←
MBPO(IK→m).

SDec(K, c): On input a key K ∈ {0, 1}k and a ciphertext c, interpret c as a circuit and return
m← c(K).

The following is obvious from the definition.

Lemma 11. If the MBPF obfuscator MBPO is AIND-δ-cPUAI (resp. AIND-δ-sPUAI) secure, then the
SKE scheme E constructed as above is AIND-δ-cPUAI (resp. AIND-δ-sPUAI) secure and furthermore
has the unique-key property.

F.2 wCCA Secure TBKEM via SKE

As we explained in Section 7 and at the beginning of Appendix F, if we replace the MBPF obfuscator
in our proposed KEMs in Section 4 with a SKE scheme, then the SKE scheme needs to satisfy
unique-key property. (However, for our CCA1 secure KEM in Appendix E, we do not need it.)

Here, we show that we can construct a CCA2 secure PKE scheme/KEM without relying on the
unique-key property. This can be accomplished by first constructing a wCCA secure TBKEM and
then converting it into a CCA2 secure PKE/KEM using the existing methods [30, 24, 54] using a
one-time signature (or a combination of a commitment and a message authentication code [13]).

Our construction of a TBKEM is a simple modification of the KEM Γ given in Section 4. Other
than using a SKE scheme instead of an MBPF obfuscator, the difference between the proposed
TBKEM and the KEM Γ is that we use a tag that is input to the encapsulation algorithm of a

TBKEM as a “selector” of public keys {pk(j)i }i∈[k],j∈{0,1}, instead of using a hash value h = Hκ(c̃).
Formally, the construction of the TBKEM is as follows: Let Π = (PKG,Enc,Dec) be a PKE

scheme with the plaintext space {0, 1}k and the randomness length ℓR(k). We define t(k) = k ·
ℓR(k) + k. Let E = (SEnc, SDec) be a SKE schemes with the plaintext space {0, 1}t. Then we
construct a TBKEM T = (TKG,TEncap,TDecap) as in Fig. 7. (We assume that the tag space of
T is {0, 1}k when used with the security parameter 1k.)

The security of T is guaranteed by the following theorems. As in the proposed KEM Γ in
Section 4, wCCA security of T can be shown in two ways.

Theorem 6. Assume that Π is ϵ-CPA secure with negligible ϵ, and E is AIND-δ-cPUAI secure with
δ(k) ≥ kϵ(k). Then, the TBKEM T constructed as in Fig. 7 is wCCA secure.

Theorem 7. Assume that Π is an ϵ-lossy encryption scheme with negligible ϵ, and E is AIND-δ-
sPUAI secure with δ(k) ≥ kϵ(k). Then, the TBKEM T constructed as in Fig. 7 is wCCA secure.
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TKG(1k) :

(pk
(j)
i , sk

(j)
i )← PKG(1k)

for i ∈ [k] and j ∈ {0, 1}
PK ← {pk(j)

i }i∈[k],j∈{0,1}

SK ← {sk(j)
i }i∈[k],j∈{0,1}

Return (PK,SK)

TEncap(PK, tag) :

Parse PK as {pk(j)
i }i∈[k],j∈{0,1}

α← {0, 1}k
β ← {0, 1}t
c̃← SEnc(α, β)
View tag as (t1∥ . . . ∥tk) ∈ {0, 1}k.
Parse β as (r1, . . . , rk,K)

∈ ({0, 1}ℓR)k × {0, 1}k

ci ← Enc(pk
(ti)
i , α; ri) for i ∈ [k]

C ← (c1, . . . , ck, c̃)
Return (C,K)

TDecap(SK, tag) :

Parse SK as {sk(j)
i }i∈[k],j∈{0,1}.

Parse C as (c1, . . . , ck, c̃).

View tag as (t1∥ . . . ∥tk) ∈ {0, 1}k.
α← Dec(sk

(t1)
1 , c1)

If α = ⊥ then return ⊥.
β ← SDec(α, c̃)
If β = ⊥ then return ⊥.
Parse β as (r1, . . . , rk,K)

∈ ({0, 1}ℓR)k × {0, 1}k

If ∀i ∈ [k] : Enc(pk
(ti)
i , α; ri) = ci

then return K else return ⊥

Fig. 7. The proposed wCCA secure TBKEM T using SKE (possibly without the unique-key property).

The proofs of Theorems 6 and 7 are almost identical to those of Theorems 1 and 2, and thus
we only provide a proof sketch of the former theorem.

Let A = (A0,A1,A2) be any PPTA wCCA adversary. Consider the following sequence of games.

Game 1: This is the experiment ExptwCCAT ,A (k) itself.

Game 2: Same as Game 1, except that all queries (tag, C) are answered with AltTDecap(ŜKtag∗ , C),
where AltTDecap is the alternative decapsulation algorithm that is defined similarly to AltDecap
for the KEM Γ given in Section 4 and ŜKtag∗ is the alternative secret key, which is defined
similarly to that for AltDecap, corresponding to (PK,SK) and the k-bit string tag∗ which is
the challenge tag submitted by A0.

Game 3: Same as Game 2, except that c̃∗ is replaced with an encryption of an independently
chosen random value β′ ∈ {0, 1}t. That is, the step “c̃∗ ← SEnc(α∗, β∗)” is replaced with the
steps “β′ ← {0, 1}t; c̃∗ ← SEnc(α∗, β′).”

For i ∈ [3], let Succi be the event that A succeeds in guessing the challenge bit in Game i.

We can show that Pr[Succ1] = Pr[Succ2], because TDecap(SK, tag, C) = AltTDecap(ŜKtag∗ , tag, C)
holds for all tag/ciphertext pairs (tag, C) satisfying tag ̸= tag∗ and thus the oracle given to A in
Game 1 and that in Game 2 behave identically for all queries from A.

We can show |Pr[Succ2]−Pr[Succ3]| to be negligible using the AIND-δ-cPUAI security of E and
the ϵ-CPA security of Π. In showing this, we consider an auxiliary input function that is exactly the
same as aiΓ we used in the proof of Theorem 1.

Finally, Pr[Succ3] = 1/2 because A’s view is independent of the challenge bit. (More specifically,
K∗1 and K∗0 are both chosen uniformly from {0, 1}k and independent of the challenge ciphertext
C∗ (and any other values that are available for A in Game 3), and thus the challenge session-key
is distributed identically regardless of the challenge bit.)

F.3 On the Non-triviality for Achieving AIND-δ-cPUAI and AIND-δ-sPUAI Security

In this subsection, we show an evidence that constructing an AIND-δ-cPUAI (and AIND-δ-sPUAI)
secure SKE scheme is at least as difficult as constructing a SKE scheme which satisfies one-time
security in the presence of hard-to-invert auxiliary input that captures the leakage only from a key
(which has been considered in several papers [33, 44, 25]). This is done by showing that it is possible
to construct a SKE scheme satisfying the latter security from a SKE scheme satisfying the former
security.
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We first define the latter security notion for a SKE scheme. To this end, we need to define an
appropriate auxiliary input function that captures a leakage from a key, which we simply call an
uninvertible auxiliary input function.

Definition 12. Let âi : {0, 1}k → {0, 1}∗ be a (possibly probabilistic) function. We say that âi
is a δ-computationally (resp. δ-statistically) uninvertible auxiliary input function (δ-cUAI (resp.
δ-sUAI) function, for short), if (1) it is efficiently computable, and (2) for every PPTA (resp. com-
putationally unbounded algorithm) F and for all sufficiently large k ∈ N, it holds that AdvInv

âi,F (k) :=

Pr[ExptInv
âi,F (k) = 1]− 2−k ≤ δ(k), where the experiment ExptInv

âi,F (k) is defined as follows:

ExptInv
âi,F (k) : [ K ← {0, 1}

k; z ← âi(K); K ′ ← F(1k, z); Return (K ′
?
= K) ].

We then define the one-time security in the presence of uninvertible auxiliary input.

Definition 13. We say that a SKE scheme E = (SEnc, SDec) satisfies indistinguishability under
one-time encryption in the presence of δ-computationally (resp. δ-statistically) uninvertible auxil-
iary input (OT-δ-cUAI (resp. OT-δ-sUAI) secure, for short) if for all PPTAs A = (A1,A2) and all
δ-cUAI (resp. δ-sUAI) functions âi, the advantage function AdvOT-AI

E,âi,A(k) := 2 · |Pr[ExptOT-AI
E,âi,A(k) =

1]− 1/2| is negligible, where the experiment ExptOT-AI
E,âi,A(k) is defined as follows:

ExptOT-AI
E,âi,A(k) : [ K ← {0, 1}

k; z ← âi(K); (m0,m1, st)← A1(1
k, z); b← {0, 1};

c∗ ← SEnc(K,mb); b′ ← A2(st, c
∗); Return (b′

?
= b) ].

Relations to the Existing Definitions. Our definition of OT-δ-cUAI security is the “one-time encryp-
tion” version of [33, Definition 4.1]. (Actually, [33] only considers exponentially computationally
uninvertible functions as auxiliary input functions).

Furthermore, our definition of OT-δ-cUAI/OT-δ-sUAI security is similar to the “semantic security
with weak keys and auxiliary inputs” in [26, Def. 4.1], but is weaker in two aspects. First, our
definition only considers keys that are chosen uniformly at random, while the definition in [26]
treats “weak keys” that are only guaranteed to have some sufficiently high min-entropy. Second, our
definition only requires ordinary indistinguishability (of an encryption of two challenge plaintexts),
while the definition in [26] requires the existence of a universal simulator that can generate a
ciphertext that is indistinguishable from an honestly generated ciphertext for any adversarially
chosen plaintext (the simulator needs to be universal in the sense that it needs to work for all
PPTA adversaries).

Constructing OT-δ-cUAI and OT-δ-sUAI Secure SKE Schemes. Let E = (SEnc, SDec) and E′ =
(SEnc′, SDec′) be SKE schemes, where we assume that the plaintext space of E and that of E′ are
{0, 1}k and {0, 1}t (where t = t(k) > 0 is a polynomial), respectively. Then we construct another

SKE scheme Ẽ = (S̃Enc, S̃Dec) with the plaintext space {0, 1}t as in Fig. 8.

The following shows that constructing an AIND-δ-cPUAI (resp. AIND-δ-sPUAI) secure SKE scheme
is at least as difficult as constructing an OT-δ-cUAI (resp. OT-δ-sUAI) secure one.

Theorem 8. If the SKE scheme E is AIND-δ-cPUAI (resp. AIND-δ-sPUAI) secure and the SKE
scheme E′ is OT secure, then the SKE scheme Ẽ constructed as in Fig. 8 is OT-δ-cUAI (resp.
OT-δ-sUAI) secure.
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S̃Enc(K,m) :

R← {0, 1}k
c1 ← SEnc(K,R)
c2 ← SEnc′(R,m)
Return C ← (c1, c2)

S̃Dec(K,C) :
Parse C as (c1, c2)
R← SDec(K, c1)
If R = ⊥ then return ⊥
Return m← SDec′(R, c2)

Fig. 8. The construction of an OT-δ-cUAI (resp. OT-δ-sUAI) secure SKE scheme Ẽ from an AIND-δ-cPUAI (resp. AIND-
δ-sPUAI) secure SKE scheme E and an OT secure SKE scheme E′.

Proof of Theorem 8. The security proofs for the both cUAI and sUAI cases are essentially the
same, and thus we only show the former case.

We will show that for any PPTA adversary A attacking the OT-δ-cUAI security of the SKE
scheme Ẽ and any δ-cUAI function âi, there exist PPTAs B and B′ and a δ-cPUAI function ai such
that

AdvOT-AI
Ẽ,âi,A(k) ≤ 2 · AdvAIND-AIE,ai,B (k) + AdvOTE′,B′(k), (18)

which, combined with the assumptions on E and E′, implies that AdvOT-AI
Ẽ,âi,A(k) is negligible, and

proves the theorem.

To this end, fix arbitrarily a PPTA adversary A = (A1,A2) attacking the OT-δ-cPUAI security
of Ẽ and a δ-cPUAI function âi. Consider the following games: (The values with asterisk represent
those related to the challenge ciphertext for A.)

Game 1: This is the experiment ExptOT-AI
Ẽ,âi,A(k) itself.

Game 2: Same as Game 1, except that c∗2 is generated by using an independently chosen random
key R′ ∈ {0, 1}k. That is, the step “c∗2 ← SEnc′(R∗,mb)” is replaced with the steps “R′ ←
{0, 1}k; c∗2 ← SEnc′(R′,mb),” where b is the challenge bit for A. (Note that c∗1 still encrypts R

∗.)

For i ∈ [2], let Succi be the event that A succeeds in guessing the challenge bit (i.e. b′ = b occurs)
in Game i. Using the above notation, A’s advantage can be calculated as follows:

AdvOT-AI
Ẽ,âi,A(k) = 2 · |Pr[Succ1]−

1

2
| ≤ 2 · |Pr[Succ1]− Pr[Succ2]|+ 2 · |Pr[Succ2]−

1

2
|. (19)

Therefore, it remains to upperbound the right hand side of the above inequality.

We first would like to show the upperbound of |Pr[Succ1]−Pr[Succ2]|, using the AIND-δ-cPUAI
security of E. To this end, we first specify the δ-cPUAI function ai : {0, 1}k × {0, 1}k → {0, 1}∗ as
follows:

ai(K,R): On input K,R ∈ {0, 1}k, compute z′ ← âi(K) and output z ← (z′, R).

It is straightforward to see that the above function is a δ-cPUAI function, because âi is a δ-cUAI
function and R is independent of z′. In fact, it is easy to construct an inverter for âi, given an
inverter for ai. Furthermore, here, it is also easy to see that if âi is a δ-sUAI function, then ai is a
δ-sPUAI function.

Now, we proceed to showing the upperbound of the right hand side of the inequality (19).

Claim 18 There exists a PPTA B such that AdvAIND-AIE,ai,B (k) = |Pr[Succ1]− Pr[Succ2]|.

Proof of Claim 18. Consider a PPTA adversary B that takes an auxiliary input z = (z′, R0) ←
ai(K,R0) and a challenge ciphertext c∗1 ← SEnc(K,Rb) as input (where K,R0, R1 ∈ {0, 1}k are
chosen uniformly at random, and b is the challenge bit for B), and runs as follows:
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B(1k, z = (z′, R0), c
∗): B runs (m0,m1, st) ← A1(1

k, z′). Then B picks a fair coin γ ∈ {0, 1}, com-
putes c∗2 ← SEnc′(R0,mγ) sets c∗1 ← c∗ and C∗ ← (c∗1, c

∗
2), and then runs γ′ ← A2(st, C

∗).

Finally, B terminates with output b′ ← (γ′
?
= γ).

The above completes the description of B. B’s AIND-AI advantage can be calculated as follows:

AdvAIND-AIE,ai,B (k) = 2 · |Pr[b′ = b]− 1

2
| = |Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

= |Pr[γ′ = γ|b = 0]− Pr[γ′ = γ|b = 1]|.

Consider the case when b = 0. Note that by definition, if we regard K in the experiment
ExptAIND-AIE,ai,B (k) as the key K∗ under which A’s challenge ciphertext is generated in Game 1, then

B always inputs a correct auxiliary input z′ output from âi(K). If we furthermore regard R0 in
the experiment ExptAIND-AIE,ai,B (k) as R∗ in Game 1, then the distribution of the challenge ciphertext
C∗ = (c∗1, c

∗
2) is identical to that generated in Game 1 in which the challenge bit for A is γ

(in particular, c∗1 is computed as SEnc(K,R0) and c∗2 is computed as SEnc′(R0,mγ)). Under the
situation, the probability that γ′ = γ occurs is exactly the same as the probability that A succeeds
in guessing the challenge bit in Game 1, i.e. Pr[γ′ = γ|b = 0] = Pr[Succ1].

When b = 1, on the other hand, c∗ = c∗1 is now an encryption of R1 chosen independently of
R0, while still c∗2 is computed as SEnc′(R0,mγ). Under the situation, we can regard R0 and R1

in ExptAIND-AIE,ai,B (k) as R∗ and R′ in Game 2, respectively, and thus B simulates Game 2 perfectly
for A in which the challenge bit for A is γ. With a similar argument to the above, we have
Pr[γ′ = γ|b = 1] = Pr[Succ2].

In summary, we have AdvAIND-AIE,ai,B (k) = |Pr[Succ1] − Pr[Succ2]|. This completes the proof of
Claim 18. ⊓⊔

Claim 19 There exists a PPTA B′ such that AdvOTE′,B′(k) = 2 · |Pr[Succ2]− 1/2|.

Proof of Claim 19. We show how to construct a PPTA adversary B′ that attacks the SKE scheme
E′ with the claimed advantage. The description of B′ = (B′1,B′2) is as follows:

B′1(1k): B′1 first picks a random value K∗ ∈ {0, 1}k, and computes z′ ← âi(K∗). Then B′1 runs
(m0,m1, st)← A1(1

k, z′). B′1 then prepares the state information stB consisting of all informa-
tion known to B′1, and terminates with output (m0,m1, stB).

B′2(stB, c∗): B′2 picks R∗ ∈ {0, 1}k uniformly at random, computes c∗1 ← SEnc(K∗, R∗), sets c∗2 ← c∗

and C∗ ← (c∗1, c
∗
2), and runs b′ ← A2(st, C

∗). B′2 finally outputs this b′ and terminates.

The above completes the description of B′. Let b be the challenge bit for B′. It is easy to see that
B′ perfectly simulates Game 2 for A in which the challenge bit for A is that of B. Therefore, we
have Pr[b′ = b] = Pr[Succ2], and thus AdvOTE′,B′(k) = 2 · |Pr[b′ = b] − 1/2| = 2 · |Pr[Succ2] − 1/2|.
This completes the proof of Claim 19 ⊓⊔

We have seen that there exist PPTAs B and B′ and a δ-cPUAI function ai satisfying the inequal-
ity (18), as required. Since the choice of A and its corresponding δ-cUAI function âi was arbitrarily,
the above proof works for any choice of PPTA A and a δ-cUAI function âi. This means that Ẽ is
OT-δ-cUAI secure. This completes the proof of Theorem 8. ⊓⊔
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MBPOR(Iα→β) :

r ← {0, 1}k
(X∥K)←R(r∥α) where |X| = 2k and |K| = t
Y ← K ⊕ β
Return DLR ← CRr,X,Y (·).

CRr,X,Y (x) :
(X ′∥K)←R(r∥x) where |X ′| = 2k and |K| = t
If X ′ ̸= X then return ⊥.
Return β ← K ⊕ Y .

Fig. 9. The MBPF obfuscator MBPOR in the random oracle model in [57]. MBPOR takes an MBPF Iα→β as input,
and returns a circuit DLR = CRr,X,Y (·) that is described in the right column.

G AIND-δ-cPUAI Secure MBPF Obfuscator in the Random Oracle Model

Here, we recall the MBPF obfuscator by Lynn, Prabhakaran, and Sahai [57] that uses a random
oracle, and show that it can be shown to be AIND-δ-cPUAI secure (for any negligible function δ) in
the random oracle model. (We note that in the random oracle model, not only an MBPF obfuscator,
an obfuscated circuit, and an adversary, but also the corresponding δ-cPUAI function is allowed to
access to the random oracle.)

Let t = t(k) > 0 be a polynomial and let R : {0, 1}∗ → {0, 1}2k+t be a random oracle. Then,
the MBPF obfuscator MBPOR in [57] for MBPF({0, 1}∗, t) is as in Fig. 9.

We note that this construction only satisfies the approximate functionality. That is, with a
negligible probability (over the choice of the random oracle R), MBPOR(Iα→β) can output an
obfuscated circuit DL for which there exists a value α′ ̸= α such that DL(α′) ̸= ⊥. However, such
approximate functionality is sufficient for our purpose in this paper. (Additionally, when viewed as
a SKE scheme, it satisfies the unique-key property.)

The security can be shown as follows.

Theorem 9. The MBPF obfuscator MBPOR constructed as in Fig. 9 is AIND-δ-cPUAI secure for
any negligible function δ in the random oracle model where R is modeled as a random oracle.

Proof of Theorem 9. Let A be any PPTA adversary and let ai : {0, 1}k × {0, 1}t → {0, 1}∗ be any
δ-cPUAI function where δ is a negligible function, and let R be a random oracle. Suppose A and ai
make at most qA and qai queries, respectively. (Note that since A and ai are PPTAs, qA and qai are
polynomials.) Recall that in the experiment, A is given an auxiliary input z ← aiR(α, β0) and an
obfuscated circuit DLR = CRr,X,Y (·)← MBPOR(Iα→βb

) where R(r∥α) = (X∥K) and Y = (K ⊕ βb),
is given oracle access to the random oracle R, and has to guess the challenge bit b.

Firstly, note that the probability that aiR(α, β0) makes the query (r∥α) is negligible (actually
it is at most qai/2

k), because r is independent of the view of ai and r is chosen uniformly at random
from {0, 1}k.

Secondly, conditioned on the event that ai has not made the query (r∥α), it is easy to see that
the probability that A(z, DL) submits the query (r∥α) is negligible due to the partial uninvertibility
of ai. More specifically, the probability can be shown to be at most qA · (δ+ 1/2k) + qai/2

k. (If this
does not hold, then one can construct an inverter for ai that is given z ← aiR(α, β), uses A as a
building block and succeeds in outputting α with the advantage greater than δ.)

Finally, conditioned on the event that neither ai nor A made the query (r∥α), K looks like a
uniformly random string over {0, 1}t, and the information on the challenge bit b is information-
theoretically hidden from A, because R is a random oracle.

Therefore, by the union bound over the undesirable events that ai or A makes the query (r∥α),
we can conclude that A has at most negligible advantage. This completes the proof of Theorem 9.

⊓⊔
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