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Abstract We present a new protocol for maliciously secure two-party computation based on cut-and-choose of
garbled circuits using the recent idea of “forge-and-loose”, which eliminates around a factor 3 of garbled circuits
that needs to be constructed and evaluated. Our protocol introduces a new way to realize the “forge-and-loose”
approach, which avoids an auxiliary secure two-party computation protocol, does not rely on any number theoretic
assumptions and parallelizes well in a same instruction, multiple data (SIMD) framework.
With this approach we prove our protocol universally composable-secure against a malicious adversary assuming
access to oblivious transfer, commitment and coin-tossing functionalities in the random oracle model.
Finally, we construct, and benchmark, a SIMD implementation of this protocol using a GPU as a massive SIMD
device. The findings compare favorably with all previous implementations of maliciously secure, two-party com-
putation.

1 Introduction

Background. Secure two-party computation (2PC) is the area of cryptography concerned with two mutually distrusting
parties who wish to securely compute an arbitrary function with private output based on their independent and private
input. A bit more formally Alice has the input x, Bob the input y, and they wish to compute the function f(x, y) = z
while ensuring such properties as correctness, privacy, and input independence.1

2PC was introduced in 1982 by Andrew Yao [Yao82, Yao86], specifically for the semi-honest case where both
parties are assumed to follow the prescribed protocol and only try to compromise security by extracting information
from their own views of the protocol execution. Yao showed how to construct a semi-honestly secure protocol using
a technique referred to as the garbled circuit approach. This approach involves having one party (the constructor),
say, Alice, encrypt, or “garble”, a Boolean circuit computing the desired functionality. The “garbling” involves first
choosing two random keys for each wire in the circuit, one representing a value of 0 and another representing a value
of 1. Each gate in the garbled circuit is then constructed such that Bob (the evaluator), given only one key for each
input wire, can compute only one key for the output wire, namely the key corresponding to the bit that the gate is
supposed to output, for example the logical AND of the two input bits. Alice sends the garbled circuit to Bob and
makes sure that for each input wire, Bob learns only one of that wire’s keys. For Alice’s own input, she simply sends
these keys to Bob. For Bob’s input, they use an oblivious transfer (OT) protocol such that Bob learns one key for each
input wire corresponding to his own input, without Alice learning Bob’s input. Now, given one key for each input wire,
Bob can then evaluate the whole garbled circuit, gate by gate, while at the same time, he cannot learn which bits flow
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1 Who should learn the output z can differ and in the most general case there might be a specific output for Alice and one for Bob,
i.e., f(x, y) = z = (zA, zB) = (fA(x, y), fB(x, y)) where Alice should only learn zA and Bob only zB . In this paper we only
consider the case where Bob learns the entire output z. If output for Alice is also needed then any of several general approaches
can be used. We consider some of these approaches in Appendix H.



on the wires. Only when he reaches the output wires, he uses some auxiliary information to learn which bits the keys
encode. See [LP09] for a thorough description of Yao’s scheme.

A major reason why Yao’s original protocol is only secure against a semi-honest adversary is that Bob cannot be
sure that the garbled circuit he receives from a Alice has been garbled correctly. One way to ensure correct garbling
is with a cut-and-choose approach: Instead of sending one garbled circuit, Alice sends several independently garbled
versions of the circuit to Bob. Bob then randomly selects some of these, called the check circuits, where all the keys
on the input wires are revealed to Bob, allowing him to verify that the check circuits do indeed compute the correct
function f . If enough circuits are checked and all found to be correct, a large fraction of the remaining circuits, called
evaluation circuits, will also be correct.

Doing cut-and-choose on several garbled circuits introduces some other issues that have to be dealt with in order
to obtain malicious security. First, there may still be a few incorrect circuits among the evaluation circuits. Also, since
there are now many circuits, some mechanisms must ensure input consistency amongst the circuits: Alice and Bob
must give the same input to all the circuits. Information about Alice’s input will leak to Bob if he gets to evaluate the
circuit on different inputs. But information might also leak to Alice, depending on the function the circuit is computing,
if she gives inconsistent input. Another perhaps more subtle issue that arises is a certain kind of selective failure attack:
Since Alice will supply Bob with the keys in correspondence with his input bits through an OT Alice can simply input
garbage for one of the keys, e.g, the 0-key for the first bit of his input. If Bob aborts the protocol, because he cannot
evaluate a garbled circuit when one of the keys is garbage, Alice will know that the first bit of his input is 0! On the
other hand, if he does not abort the protocol then his first bit must be 1!

Cut-and-choose of Garbled Circuits. In recent years several protocols have been presented which obtain malicious
security by combining Yao’s original protocol with cut-and-choose on the circuits [LP07,PSSW09,LP11,sS11,KSS12,
Bra13, FN13, HKE13, Lin13, MR13, SS13]. They mainly differ in the way they handle the above issues and, as a
consequence, in how many circuits are needed to send from Alice to Bob. We call the amount of circuits needed to be
sent from Alice to Bob for the replication factor. Most of these approaches are based on an analysis saying that if the
fraction of check circuits is high enough and if the check circuits are all found to be correct, then a majority of the
remaining evaluation circuits will also be correct except with negligible probability. This allows Bob to compute the
correct output as the majority of the outputs from the evaluation circuits.

Recent results [Bra13, HKE13, Lin13] manage to ensure that Alice only succeeds in cheating if all check circuits
are honestly constructed and all evaluation circuits are maliciously constructed. This happens with noticeably less
probability than only the majority of the evaluation circuits are honestly constructed, thus making it possible to run a
protocol with noticeably less garbled circuits. The main idea of [Bra13] and [Lin13] (called “forge-and-loose”) is to
make sure that if Alice cheats, that is, if two evaluation circuits yield different results, then this enables Bob to learn
Alice’s private input x. He can then use x to compute locally, unencrypted, the correct input f(x, y). In [Lin13] Bob
learns Alice’s input through an auxiliary secure protocol execution, using as input part of the transcript of the “original”
protocol execution, as proof that Alice is corrupt. In [Bra13] a special kind of commitments are used which leaks some
auxiliary information if the outputs of two garbled circuits differ. This auxiliary information can then be used to learn
Alice’s input. The idea of [HKE13] is to have both parties play the role of the circuit constructor and circuit evaluator
respectively in two simultaneous executions of a cut-and-choose of garbled circuits protocol.

Other Approaches to Malicious Security. Several other approaches to maliciously secure two party computation exist,
based on Yao’s garbled circuits as well as other novel constructions.

In [NO09] Nielsen and Orlandi introduced the notion of cut-and-choose at the gate level in order to achieve
malicious security for Yao’s garbled circuits, popularly referred to as the LEGO approach. LEGO gave an asymptotic
increase in efficiency of O(log(|C|)) where |C| is the amount of gates in the circuit to compute. However, their
approach relied on heavy group based computations (as the protocol required homomorphic commitments) for each
gate in the circuit.

In the later work [FJN+13] a new approach for constructing xor-homomorphic commitments based on error cor-
recting codes was introduced. These xor-homomorphic commitments made it possible to use the LEGO approach
without doing group operations for each gate, unfortunately at the price of large constants.
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Another approach, not using garbled gates, was introduced in [NNOB12] where heavy usage of oblivious transfers
was used to construct verified and authenticated Boolean gates. To achieve efficiency the authors constructed a highly
efficient maliciously secure OT extension, which took a few random OTs as “seeds” and then used a random oracle to
extend these to polynomially many random OTs.

Yet another approach, not necessarily using Yao’s garbled circuits, is the idea of “MPC-in-the-head” from [IKOS07,
IPS08] where the parties run a semi-honestly secure two-party protocol, but within this they emulate n > 2 parties
that run a virtual second protocol secure against a malicious minority. The final protocol is then maliciously secure.
Another idea is to base the protocol on preprocessed constrained randomness as in [DZ13].

If one is willing to accept a weaker kind of “malicious” security one can get significant improvements by using the
“dual execution” approach where only a single garbled circuit is constructed and evaluated by both parties. [MF06,
HKE12, MR13].

Besides all of the above approaches a whole other subfield of secure multi-party computation exists where the
function to be evaluated is arithmetic (which can clearly also be used to evaluate Boolean circuits when the field for
the arithmetic operations is F2). Some of the more recent works in this area include [BDOZ11] (semi-honest security)
and [DPSZ12, DKL+13] (malicious security).

Motivation. The area of 2PC and multi-party computation, MPC, (when more than two parties supply input) is very
interesting as efficient solutions yield several practical applications. The first “real world” usage of MPC was described
in [BCD+09] where MPC was used to decide the market clearing price of sugar beet quotas in Denmark. Still, several
other applications of 2PC and MPC exists such as voting, anonymous identification, privacy preserving database
queries etc. Thus we believe that it is highly relevant to find practically efficient protocols for 2PC and MPC.

Our Results. We present a new maliciously secure two-party protocol based on cut-and-choose of garbled circuits.
The protocol combines previous ideas, mainly from [Bra13,Lin13,HKE13] and [FN13,SS13] with new optimizations
to a protocol with the following benefits:

1. A small replication factor for the same reasons as [Bra13, Lin13].2 But unlike [Lin13] our protocol eliminates the
need for running an auxiliary protocol and unlike [HKE13] we eliminate the need of both parties both constructing
and evaluating O(s) garbled circuits.

2. A very lightweight approach to ensure that Alice gives consistent input to all garbled circuits used for evaluation.
3. Reliance only on lightweight primitives (in practice a hash function) and few OTs.
4. A large degree of same instruction, multiple data (SIMD) parallelization, and therefore direct benefits from access

to a large amount of computation cores.
5. A security proof in the Universally Composable (UC) model [Can01].3 We also show how to realize a highly

efficient version of the protocol in the Random Oracle Model (ROM) without number theoretic assumptions, only
assuming access to an OT functionality.

Finally, we also provide an implementation of the protocol written in C and CUDA, using a consumer grade GPU for
exploiting the inherent parallelism in the protocol.

Outline. We start by going through the overall ideas of our scheme, along with the primitives we need in Section 2.
We then continue with a high level description of our protocol in Section 3. A discussion of our implementation
along with experimental results are given in Section 4 and we finally conclude the paper in Section 5 by giving a
discussion of the findings from our implementation and directions for future work. In Appendix A we give two tables
describing the variable and symbols used throughout the paper. Detailed description of the primitives we need are
given in Appendix B and Appendix C, then in Appendix D a fully detailed description of our protocol is given and in
Appendix E we give a full proof of security with supplementing details in Appendix F, Appendix G and Appendix H.

2 We do not strictly obtain the same replication factor as [Bra13, Lin13], where the replication factor is s, when s is the statistical
security parameter. Our replication factor is slightly larger as in [HKE13]. See the full version of this paper for details [FJN14].

3 Specifically we provide a UC-proof of our protocol in a hybrid/random oracle model with OT, commitments and coin tossing,
and a secure garbling scheme with free-xor [KS08].
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Notation. We assume Alice is the constructor and Bob the evaluator and that the functionality they wish to compute is
f(x, y) = z, where Alice gives input x, Bob gives input y and only one party, Bob, receives the output z. We denote
the amount of bits of x as |x| = m, the amount of bits of y as |y| = n and the amount of bits of z as |z| = o. We
denote the Boolean circuit computing the functionality f(·, ·) by C and assume it consist of gates with fan-in 2 and
fan-out 1 such as AND, XOR, OR etc. Furthermore, we say the size of C, |C|, is the amount of Boolean gates. When
considering a garbled version of C we add a tilde, i.e., C̃. In a garbled circuit we define the semantic value of a key to
be the bit it represents. We furthermore define the plain values or functions to be the unencrypted, unhidden values or
functionalities, e.g., the actual function f(x, y) = z with inputs x and y and output z. We use s to represent a statistical
security parameter, and we let κ be a computational security parameter. Technically, this means that for any fixed s
and any polynomial time bounded adversary, the advantage of the adversary is 2−s + negl(κ) for a negligible function
negl. I.e., the advantage of any adversary goes to 2−s faster than any inverse polynomial in the computational security
parameter. If s = Ω(κ) then the advantage is negligible. If s = O(log(κ)) or s = O(1) we only have covert security
(see [HL10] for a detailed description of this concept).

Let [n] denote the set of integers {1, 2, . . . , n} and let H(·) denote a hash function modeled as a random oracle
giving κ bits of output. We use subscript to denote index, i.e. xi denotes the i’th bits of a vector x and mi,j denotes the
i’th row and j’th column of the matrix m. Finally we let x ∈R S denote that x is sampled uniformly at random from
the set S. An overview of the various variables and parameters along with their meaning is given in Appendix A.

2 The Big Picture

We assume the reader is familiar with free-xor Yao circuits [KS08] for maliciously secure computation, otherwise see
Appendix B. The overall strategy is as follows:

1. Garbling. Alice garbles a bunch of circuits and sends them to Bob.
2. Oblivious Transfer. The parties then engage in an OT protocol, secure against malicious adversaries, such that

Bob, for each garbled circuit, learns the input keys corresponding to his input to the function f .
3. Cut-and-Choose. The parties then use a coin tossing protocol to select around half of the garbled circuits as check

circuits and the remaining as evaluation circuits. Bob then verifies that the check circuits have been constructed
correctly and receives from Alice the keys corresponding to her input to the evaluation circuits.

4. Evaluation. Bob will then use his own input keys, which he learned from the OT, along with Alice’s input keys to
evaluate all the evaluation circuits. Using the results from the evaluated circuits he finds the correct output.

This generic scheme leaves open how to handle the problems that arise due to the fact that the parties might act
maliciously and due to multiple circuits being garbled and evaluated instead of just one circuit. These problems are (1)
selective failure attacks, (2) consistency of the parties’ input and (3) how to know which output is the correct one in
the evaluation phase. Many different approaches exist to solve these problems with different levels of efficiency and
security assumptions. In the following sections we shortly discuss various solutions and in particular, how we solve
these issues.

Avoiding Selective Failure Attacks. To ensure privacy, a corrupted party should not be able to deduce anything about
the other party’s private input based on the other party’s behavior. If care is not taken, 2PC based on cut-and-choose of
circuits can easily lead to a vulnerability of this kind: If, e.g., Alice inputs another 1-key in the OT for a certain input
wire than she uses when garbling the corresponding circuit, and that circuit happens to be an evaluation circuit, she
can deduce that Bob’s input on that wire is 1 if he aborts. Such an attack is known as a selective failure attack and was
first pointed out by [KS06, MF06],

Mohassel and Franklin [MF06] suggested thwarting the attack by means of committing OT’s, which makes it
possible for Bob to verify Alice’s input to the OT against the keys in the check-circuits. Lindell and Pinkas [LP07]
thwarted the attack by increasing the amount of input wires of Bob, letting Bob replace his original input with con-
strained randomness, where certain input wires xor’ed together would give his real input. This eliminates the attack
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since it is hard for Alice to “guess” Bob’s choice of randomness, which is needed in order for her to successfully com-
plete her attack. Unfortunately, this also increases the size of Bob’s input from n bits to max(4n, 8s) bits. Lindell and
Pinkas’ technique was later refined by shelat and Shen to give a smaller increase in the amount of input bits needed by
Bob [SS13].

Another approach works by introducing a tighter coupling between the OTs and the rest of the protocol. Lindell
and Pinkas [LP11] introduced the single-choice batch cut-and-choose oblivious transfer based on Diffie-Hellman
pseudo-random synthesizers, which were used to “glue” together the OTs and the garbled circuits. The pseudo-random
synthesizers were also used to ensure consistency of the parties’ inputs to the different garbled circuits.

In our solution we handle the selective failure problem in the same manner as in [LP07]. The approach involves
increasing the amount of input bits of the evaluator from a string y of n bits to a string ȳ of n̄ = max(4n, 8s) bits.
More specifically, what we do is to have Bob choose a random binary matrix MSec ∈R {0, 1}n̄ × {0, 1}n and his
input randomly, i.e., ȳ ∈R {0, 1}n̄, but under the constraint that MSec · ȳ = y where y is his “true” input. Thus the
augmented functionality computes exactly the same as the original. Still, the idea is that if a selective failure attack is
done, using the augmented function will not leak any useful information: as the entire vector ȳ is random, learning a
few bits of ȳ will only give the adversary a negligible advantage in learning one of the constructor’s true input bits.
This follows from the fact that the other bits of ȳ will be used to hide each of the actual bits of y. The details and a full
proof of security of this approach can be found in [LP07].

Ensuring Consistency of Bob’s Input. Making just multiple calls to a basic protocol for OT, Bob could input
different choice bits for each of the circuits, which would allow him to evaluate the function on different inputs. That
is, he would learn both f(x, y) and f(x, y′) for two different inputs y and y′ of his own choice, which obviously leaks
too much information to Bob.

To avoid this we must make sure that for each of the bits yi in Bob’s input, he gives the same choice bit for all
of the garbled circuits in the OTs. This can easily be achieved by doing fewer OTs, but of longer bit strings: For
each OT Alice inputs a concatenation of the 0-, respectively 1-keys for a given input wire for all circuits, Bob inputs
only one choice bit and receives the keys for all the circuits corresponding to his choice bit on that given input wire.
This approach is used in most previous results [LP07, LP11, sS11, FN13, Lin13, SS13]. In the ROM this can be very
efficiently realized using black box access to a one-out-of-two OT of strings of length s [FN13,SS13].For more details
and its realization in the ROM, see Appendix C.

Ensuring Consistency of Alice’s Input. To see why there is also a problem if Alice is inconsistent in her in-
puts, assume the functionality to be computed is the inner product, that Alice inputs the strings 〈100 . . . 0〉, 〈010 . . .
0〉, . . . , 〈000 . . . 1〉 and that she is the party who is supposed to learn the output of the computation. In this case what
she will learn is the majority of bits in Bob’s input string, which is clearly too much information.

One could perhaps think that the problems arising by Alice giving inconsistent inputs can be solved by having
Bob abort if the results of the circuit evaluations diverge. But aborting based on diverging output may leak information
about Bob’s secret input to Alice. To see this, note that the function f might give the same outcome for several different
inputs from Alice, but only if Bob’s input comes from some particular subset of his possible inputs. Alice would learn
whether Bob’s input belongs to this subset based on whether Bob aborts or not. See [LP07] for a concrete example of
such a function.

A similar attack is possible if Bob instead of aborting, randomly picks one of the different outputs from the circuits:
For certain functions f , Alice would be able to control what the majority of outputs would be and to let this depend on
Bob’s secret input.4

4 If Bob aborts we have an example of a selective failure attack. If he instead takes majority or picks a random result when the
outputs diverge it is sometimes called a selective input attack. There seems to be some confusion about these terms. Selective
input attacks are used to describe the attacks where Alice can deduce information about Bob’s private input by submitting
different inputs to different circuits. So, enforcing consistent input from Alice is the same as preventing all selective input
attacks, and – if Bob aborts when results diverge – not enforcing consistent input from Alice would make the protocol vulnerable
to a specific selective failure attack.
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Since our aim is to allow secure evaluation of any function (and since it is not obvious which functions allow
leakage when Alice gives inconsistent inputs) we therefore must ensure that all circuit evaluations are based on the
same inputs from Alice.

Lindell and Pinkas [LP07] embedded a consistency check of Alice’s input into the cut-and-choose step itself,
resulting in O(ms2) commitments. Shelat and Shen [sS11] ensures input consistency using another approach based
on claw-free functions.

We follow a different approach, introduced independently by Frederiksen and Nielsen [FN13] and shelat and
Shen [SS13]. The idea is to augment the functionality computed by the garbled circuits such that Alice’s input, apart
from being used in the original computation of f , is also fed into a universal hash function decided by Bob. The output
of both the original functionality f and the hash digest of Alice’s input is then learned by Bob. We can now safely let
Bob abort if any of these digests diverge without leaking anything to Alice about his input. Intuitively, this approach
is secure if the output of the augmented functionality does not leak information about Alice’s input and Alice cannot
find two inputs whose digests collide. We achieve the first property by having Alice give some auxiliary random input,
which one-time pads the output of the hash function. The second property will follow directly from the nature of a
universal hash function if Alice is committed to her input choices before potentially learning the specific hash function
used.

A specific, but simple way to construct such an augmentation is as follows [FN13]: Assume the functionality we
wish to compute is defined by f as f(x, y) = z. We then define a new function f ′ as f ′(x′, y′) = f ′(x‖a, y‖b) = z‖c
where a ∈R {0, 1}s, b ∈R {0, 1}m+s−1 and c ∈ {0, 1}s. To compute c we define a matrix M In ∈ {0, 1}s × {0, 1}|x|
where the i’th row is the first m = |x| bits of b << i where << denotes the bitwise left shift. Specifically the j’th bit
of the i’th row is the i + j’th bit of the binary vector b, i.e., M In

i,j = bi+j−1. The computation of c is then defined as
c = (M In · x)⊕ a, assuming all binary vectors are in column form. Now see that f computes the same function as f ′,
but requires s extra random bits of input from Alice and m + s − 1 extra random bits from Bob. The s extra output
bits will work as digest bits (since (M In · x) ⊕ a is actually a universal hash function) and can be used to check that
Alice is consistent with her inputs to the circuits, by verifying that they are the same in all the garbled circuits which
Bob evaluates.

Next, [SS13] observed that it is in fact not needed to have Bob specify the specific hash function as part of his
input. Instead he can send Alice the vector b defining the matrix M In and have her garble the circuits to compute the
hash function this vector specifies. Evaluation of the garbled universal hash function can now be done using only xor
operations, which we can do for “free” with the free-xor approach. Thus the binary string b ∈ {0, 1}m+s−1 defines a
family of universal hash functions mapping m bits to s bits. In turn, a sampling of such a function is simply a random
choice of the string b. We will call a specific function from this family for HIn and call the actual circuit augmentation
for HIn ⊕ a where a will be Alice’s auxiliary input sampled from {0, 1}s.

A remaining problem with the construction is that Alice can now try to find a collision for the hash function before
she gives her input keys to Bob. This is a significant problem as collisions for universal hash functions can be easy to
find. However, if we let Alice commit to her input and then let Bob reveal his choice of hash function to her then she
will only have negligible probability in the size of the digest of finding a collision.

It should be noted that in [SS13] another universal hash function was used, which required 2s + log(s) auxiliary
random bits of input from Alice, unlike only s in [FN13]. However, the authors of [FN13] did not observe that it was
enough to send M In in plain, nor did they actually prove their construction secure. In Appendix E we prove that the
universal hash function used in [FN13] is secure in our setting when M In is sent in plain after Alice commits to her
inputs.

We follow the approach of circuit augmentation outlined above. Concretely we implement the consistency check
by having Alice commit to her input before the cut-and-choose phase. Then we have Bob give her the specification of
the hash function. Alice then garbles the circuit with the hash function augmentation. When Bob later has evaluated
the evaluation circuits, he aborts if the hash values from any two of the augmentations of these circuits differ.

Computing the Correct Output. Despite the input consistency of Alice being enforced as discussed above, Bob may
still end up with more than one distinct output when he evaluates the evaluation circuits. This is due to the fact that
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the cut-and-choose technique does not ensure that all the remaining evaluation circuits are good. With non-negligible
probability some of them may not evaluate at all and some may evaluate, but result in diverging output.

Given several different outputs, Bob cannot just abort the computation or choose a random result without becoming
vulnerable to the same kind of selective failure attack as we discussed in connection with the input consistency.
However, Lindell and Pinkas [LP07] showed that for a statistical security parameter s, if the number of garbled circuits,
i.e., the replication factor, is greater than cs for some constant c and if half are chosen as check circuits, then, except
with negligible probability, the majority of the outputs are well-defined and are in fact the correct output.

For realistic circuit sizes, the replication factor has proven to be very important for the performance of the
overall protocol [PSSW09, KSS12, FN13]. Thus recent effort has been made to reduce the replication factor. As a
start, [PSSW09] claimed that [LP07] only requires a replication factor ` ≥ 4s (to achieve failure probability at most
2−s). The analysis was later improved by [LP11] showing that one only needed a replication factor ` ≥ 3.22s. Fi-
nally, [sS11] refined the analysis further by showing that taking 60% of the circuits to be check circuits, a replication
factor ` ≥ 3.13s is sufficient.

All of these results are based on taking the majority of the outputs from the evaluation circuits. As mentioned in
the introduction, recently Brandão [Bra13] and Lindell [Lin13] independently showed how to avoid taking majority by
instead enabling Bob to learn Alice’s private input if the results diverge, and thereby letting Bob compute the correct
result in “clear”. Doing so allows for a replication factor of only s to achieve an error probability of 2−s, which
is a considerable improvement. Independently Huang et al. [HKE13] showed the same, but with a slightly higher
replication factor. In particular, doing the protocol with a replication factor ` gives an error probability of at most
2−`+O(log `). For comparison, note that for a typical application with s = 40, [LP11] and [sS11] need 129 and 125
circuits respectively, while [Bra13, Lin13] requires only 40 circuits to be garbled.

Our protocol is based on the same idea as [Bra13, Lin13], namely to make it possible for Bob to recover Alice’s
plain input x if any inconsistency arrives in the evaluation circuits and, in turn, let Bob evaluate the functionality in
plain. To do this, [Lin13]relies on a secondary secure computation “inside” the protocol in order for Bob to learn
x. While being independent of the size of the original circuit, the secondary secure computation still introduces a
significant overhead. Furthermore, [Lin13] requires a number of modular exponentiations linear in the input size and
reliance on the DDH assumption in order to ensure Alice inputs the correct x to the secondary computation. In [Bra13]
Bob gets to recover Alice’s input by having her commit to her input keys and the keys on the circuit output wires using
trapdoor commitments where a the trapdoor can be efficiently computed if two different output keys are achieved for
the same wire, but in different garbled circuits.

Our main theoretical contribution arrives in the way we allow Bob to find the correct output based on the evaluation
of the garbled circuits. We do so without using an extra secure computation as in [Lin13] or computationally heavy
trapdoor commitments as in [Bra13], furthermore, we do not strictly require any specific computational assumption. 5

Let t = `/2, that is, t is the amount of check circuits. Also, let k′0i,j and k′1i,j be the zero and one keys for the i’th
output wire on the j’th circuit. We use the free-xor technique [KS08] and let Alice garble each circuit with a different
∆. That is, for circuit j and all wires k Alice chooses the wire keys such that k0

k,j ⊕ k1
k,j = ∆j .

We select the replication factor ` such that, except with probability 2−s, if Alice was not caught cheating during the
cut-and-choose phase, at least one of the evaluation circuits that remain is correct. Our strategy is then to make sure
that for each pair of garbled circuit evaluations whose semantic output differ, Bob will be able to efficiently compute
the ∆ values for one of those circuits. Knowing the ∆ value used to garble a circuit allows Bob to learn the input x
that Alice submitted for that circuit.

Using Polynomials to Compute ∆’s. We now explain how we let Bob compute ∆s for those circuits whose outputs
diverge.

As part of the garbling phase, Alice associates a polynomial of degree at most t, Pi with each output wire in the
circuit, where t = `/2. Now for each garbled circuit j ∈ [`] and each output wire i ∈ [o] Alice associates a point on
the corresponding polynomial, i.e., a value Pi(j). Thus we have a polynomial associated with each output wire and
for each of these polynomials we have a point associated with each garbled circuit. Next, for the 0-key on each output

5 We do require access to OT, but any one-out-of-two OT can be used, including OT extensions.
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wire in each circuit
{{
k′0i,j
}
i∈[o]

}
j∈[`]

and point Pi(j) we associate the “link” Li,j (see Appendix B for details).

For simplicity assume that the link is realized as follows Li,j = (ri,j , si,j , hi,j , gi,j) where ri,j , si,j ∈R {0, 1}κ are
uniformly random sampled elements, hi,j = H (Pi(j), ri,j) ⊕ k′0i,j and gi,j = H

(
k′0i,j , si,j

)
⊕ Pi(j). Alice sends all

these links to Bob.
Next notice, that after the cut-and-choose step, Bob will learn all the 0-keys on the output wires for t garbled

circuits and in turn be able to learn t points on all the polynomials (by using the output 0-keys, k′0i,j along with the
corresponding links Li,j). Thus by learning just one more 0-key for a given output wire, Bob will be able to learn one
more point on one of the polynomials. This will give him a total of t + 1 points on a polynomial of degree at most t
and he will thus be able to do polynomial interpolation and learn all the points on that polynomial. Knowing all the
points on a given polynomial will make it possible for Bob to learn the 0-key on a given output wire in all the garbled
circuits (by using the points, Pi(j) along with the links Li,j).

A bit more specifically, suppose that Bob ends up with two garbled circuits where there is an output wire that
outputs the 0-key in one of the circuits and the 1-key in the other. Say, w.l.o.g. that this is the case for output wire 1 in
circuit 1 and circuit 2, such that Bob learns both k′01,1 and k′11,2 = k′01,2⊕∆2. Using the link L1,1 = (r1,1, s1,1, h1,1, g1,1)
Bob can compute the point P1(1) as P1(1) = g1,1 ⊕ H

(
k′01,1, s1,1

)
. This gives him a total of t + 1 points on the

polynomial P1 (remember that he already knew t points from the check part of the cut-and-choose phase). Using these
points he can then do polynomial interpolation, which in turn will make it possible for him to easily compute the point
P1(2). Finally, he can then compute the following:

h1,2 ⊕ H (P1(2), r1,2)⊕ k′11,2 = k′01,2 ⊕ k′11,2 = ∆2 .

Using ∆2 he can completely degarble the second garbled circuit, and in turn, also learn Alice’s plain input to circuit
2. This is so, as knowing the ∆ value and one key for all wires allows to compute both keys for all wires and thus
completely open up a garbled circuit.

GC1

P1

P2

P3

GC2 GC3 GC4

Figure 1. Four garbled circuits with three output wires.
Each 0-key on these output wires is linked to a particular
point on a polynomial of degree at most 2.

The approach of using the links to learn the ∆ values gen-
eralizes to each output wire in two circuits where one is the 0-
key and other the 1-key. Thus, assuming we have enough output
wires with different values it is possible to find ∆ for all garbled
circuits, and in turn Alice’s plain input to all garbled circuits.

We want to emphasize, however, that Bob does not use the ∆
values to completely open up any garbled circuit, as this would
be too expensive (it would essentially count as an extra garbling
towards the computational complexity). Instead Bob only opens
up the input layer to learn the semantic value of the input keys
of Alice to the circuit. He then evaluates the universal hash function on Alice’s input in plain and compare it with the
semantic meaning of the garbled evaluation of the universal hash function. Then Bob discards the circuits where the
plain and semantic meaning of the output of the universal hash function is discrepant, which cannot lead to selective
errors, as the correctness of the augmented part of the circuit is known by Alice already. Now, for all the remaining
circuits, the inputs of Alice are the same, except with a small probability 2−s that a collision for the universal hash
function occurred. This is so, as the circuits computed the hash function correctly, and the hash function was chosen
by Bob after Alice committed to her inputs. Hence Bob can safely abort if there are different inputs left and otherwise
just evaluate f in plain on his own input and the unique input of Alice.

Ensuring Consistency of Polynomials. We made a few assumptions in the strategy described above. That is, it only
works if the polynomials are consistent, that is, if they are at most degree t and we have enough output wires that
diverge in value to make sure Bob can learn the ∆ values for each of the evaluation circuits. Since Alice might
be malicious, and thus can deviate from the prescribed protocol in an arbitrary manner, we cannot be sure that she
constructs the polynomials of degree at most t. In particular she might construct these to be degree 2t and thus make
it impossible for Bob to use polynomial interpolation to find the ∆ values. We could use techniques like Kate et al.
[KZG10] to ensure consistency of the polynomials, but this would be inefficient and impose certain number theoretic
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assumptions. We instead introduce an additional cut-and-choose phase in which Alice prepares more polynomials than
actually needed, and then Bob randomly chooses half of the polynomials as check polynomials, which Alice then
reveals and Bob verifies to have degree at most t. We say that a polynomial of degree greater than t is inconsistent
and if it has degree at most t we say it is consistent. Thus for Bob to accept the check polynomials they must all
be consistent. If all the check polynomials are consistent then a large quantity of the remaining polynomials are
guaranteed to be consistent. In fact, we select half of the polynomials as check polynomials, and therefore get that
a majority of the remaining circuits are guaranteed to be correct except with negligible probability in the amount of
challenge polynomials, for the same reasons as in the analysis of circuit cut-and-choose in [LP07].

Ensuring consistency of the polynomials with cut-and-choose is efficient and does not rely on any specific number
theoretic assumptions. However, it leaves us with the issue that some of the polynomials that are not checked might still
be inconsistent and thus not usable for interpolation in our context, along with the problem that we still need enough
output wires which diverge in value to make sure Bob can learn the ∆ values for each of the evaluation circuits.

To cope with these problems we introduce another circuit augmentation, which is a universal hash function, taking
the output of the original computation as input. We then let the the wire keys used in the links be the wire keys of the
output of this new universal hash function instead of the wire keys of the actual output of the garbled circuit. Intuitively,
if there is any divergence on one bit in the original output then the digests of the universal hash function will diverge
in many bits. Thus the hash function ensures that we have enough output wires which will differ in their keys, since
the output of the hash function is uniformly distributed. Thus, if a garbled circuit is maliciously constructed then the
hashed value of the malicious output will differ in many bits compared with the hashed value of the correct output.
This ensures, except with negligible probability in the amount of output bits of the augmentation, that we will have
enough output wires with different keys to learn ∆ for all the evaluation circuits. In the full version [FJN14] we prove
that with only a majority of the polynomials guaranteed to be consistent, a hash function with at least d4.82s+ 4.82e
output bits is sufficient in order to guarantee, except with probability 2−s, that Bob will be able to learn all the∆ values
of the evaluation circuits if he ends up with two or more evaluation circuits where at least one output wire diverge.

s

s

a

z

o

m n

x y

m

GC GC

max(4n, 8s)

ȳ

MSec · ȳ = y

z

x y

HOut

d4.82s + 4.82e

HIn

Figure 2. Illustration comparing the original circuit (right) and the augmented
circuit (left). Inputs and output are shown in light grey, whereas actual compu-
tation is shown with a darker grey.

The augmentation on the output wires
is done in almost the same efficient way
as the augmentation to ensure input con-
sistency of Alice. That is, we exploit
the free-xor technique and let Bob send
the specification of the hash function to
Alice in clear. Specifically, let z be the
binary output of the computation. Then
we have Bob choose two random binary
strings bOut1 ∈R {0, 1}do+4.82s+3.82e and
bOut2 ∈R {0, 1}d4.82s+4.82e. Using the first
string we define a d4.82s + 4.82e × o bi-
nary matrix MOut such that the j’th bit of
the i’th row is the i + j − 1’th bit of bOut1.
That is,MOut

i,j = bOut1
i+j−1. The augmentation

should then compute
(
MOut · z

)
⊕bOut2 as-

suming z is a binary vector in column form.
Thus the binary strings bOut1 ∈ {0, 1}do+4.82s+4.82e and bOut2 ∈ {0, 1}d4.82s+4.82e defines a family of universal hash
functions mapping o bits to d4.82s + 4.82e bits. In turn a sampling of such a function is simply a random choice of
the strings bOut1 and bOut2. We will call a specific function from this family for HOut.

An illustration of the final circuit with both augmentations is given in Fig. 2 and an informal version of the protocol
itself is given in Section 3.
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1. Setup
(a) Assume the function to compute is f(x, y) = z where Alice inputs x ∈ {0, 1}m, Bob inputs y ∈ {0, 1}n and Bob

learns the results z ∈ {0, 1}o.
(b) Bob then samples a random binary matrix MSec ∈R {0, 1}n̄ × {0, 1}n and a random input ȳ of n̄ = max(4n, 8s)

bits such that MSec · ȳ = y. He sends MSec to Alice and they both agree on a function, f ′ with MSec embedded such
that f ′(x, ȳ) = f(x, y). Denote the Boolean circuit computing f by C.

2. Polynomial Setup
(a) Alice then randomly selects p = 6s+ 7 polynomials, Pi for i ∈ [p], of degree ≤ t = `/2, over a finite field with 2κ

elements.
(b) Alice computes ` points on each of the polynomials, achieving a total of ` · (6s + 7) points. Alice commits to each

point j on each polynomial i using a verifiable commitment scheme and sends these commitments to Bob.
(c) Alice and Bob complete a cut-and-choose procedure on the random polynomials to select b1.18s + 2.18c of these

for checking and d4.82s + 4.82e for evaluation. For each of the check polynomials Alice sends the openings to the
points committed to in the previous step. Bob then uses the points to interpolate the polynomials and verifies that
they are in fact all polynomials of degree at most t. If not, he aborts.

3. Oblivious Transfer
(a) For each j ∈ ` Alice constructs a free-xor garbling of C, denoted by C̃j , which uses a uniformly random chosen

global difference, denoted by ∆j .
(b) Alice and Bob then engage in batch OT such that Bob learns the ` keys in correspondence with each of his input bits

ȳ.
4. Commitment Alice sends the ` garbled circuits to Bob and makes a verifiable commitment to the 0- and 1-output keys of

each of the garbled circuits. She then commits to her own choice of input keys and also makes verifiable commitments to
the concatenation of the 0- and 1-keys on each input wire in each of the garbled circuits.

5. Augmentation
(a) Bob randomly samples a universal hash function HIn from a family of universal hash functions mapping |x| = m

bits to s bits and a universal hash function HOut mapping |z| = o bits to d4.82s+ 4.82e bits from another family of
hash functions as described in the previous section.

(b) Bob sends a description of these hash functions to Alice who augments all of the garbled circuits with HIn ⊕ a and
HOut using only xor operations of respectively her input keys and the output keys of the garbled circuits.

(c) Alice then makes verifiable commitments to the 0- and 1-output keys of the HIn ⊕ a augmentation. Alice also con-
structs, and sends, a “link” of each of the output keys of HOut to the corresponding polynomial points. That is, for
each output wire i of HOut in each garbled circuit j she sends to Bob the link Li,j .

6. Cut-and-Choose
(a) Alice and Bob uses a coin-tossing protocol to agree on a random subset C of size t = `/2 of the garbled circuits,

called the check circuits. Alice then sends both the 0- and 1-key for each input wire in the set of check circuits.
(b) Bob then checks the input keys against the verifiable commitments and verifies that the check circuits were cor-

rectly constructed. He does so by iteratively checking the construction of each gate and at the end checking that the
verifiable commitments to the output keys were correctly constructed.

(c) Bob then verifies the HIn ⊕ a augmentation by using the input keys to compute the output keys of the augmentation
locally and then checking the output keys against the verifiable commitments. Finally, he computes the output keys
of HOut, using the output keys of the garbled circuit. He then uses these keys on the “links” from the augmentation
phase to learn the t points on each of the d4.82s + 4.82e polynomials remaining from the set-up phase. He then
checks these points using the verifiable commitments. If any of the checks above fail he aborts.

7. Evaluation Alice opens the input keys in correspondence with her input x for all the evaluation circuits to Bob. Bob then
evaluates HIn ⊕ a. If the semantic value of any of the evaluations of HIn ⊕ a are discrepant, or if any of the verifiable
commitments on the output keys of this augmentation is incorrectly constructed, he aborts. Otherwise he evaluates the
garbled circuits. He then uses the verifiable commitments on the output wires of the garbled circuits to find the semantic
meaning of the output keys he learn. If any of the semantic values on the output wires of the evaluated garbled circuits
are inconsistent then he proceeds with the reconstruction phase. Otherwise he “simulates” the reconstruction phase using
garbage data (to avoid timing attacks) and in the end outputs the only semantic output value he learned.

Figure 3. Protocol Overview - Part 1

10



1. Reconstruction
(a) Bob computes the augmented output HOut for each of the evaluated garbled circuits. Since he now knows the seman-

tic value on each garbled circuit’s output wires, along with the specification of HOut, he can compute, in plain, the
semantic values he expects to find after evaluating HOut. Any augmented circuit where this is not the case he discards.
From the remaining circuits he computes the points on the remaining polynomials from the Polynomial Setup phase
using the links from the augmentation phase. He then uses the t polynomial points from the cut-and-choose phase
along with the discrepant keys of an augmented output wire in two circuits to learn t + 1 points on a polynomial
for a given wire. He then does polynomial interpolation on these points to find all the ` points of this wire, i.e. one
for each garbled circuit. He then uses the links to find the 0-key on that wire in all of the evaluation circuits. Hence
Bob can learn ∆j for at least one garbled circuit (because the output of that wire is discrepant and thus at least one
garbled circuit will have 1-key output on that wire). He continues in this manner for each discrepant output wire until
he learns ∆j for all the non-discarded evaluation circuits.

(b) Using these ∆’s along with Alice’s input keys and the verifiable commitments to the keys of the input wires Bob
extracts the plain values of Alice’s input in all the evaluation circuits. For each input, Bob evaluates HIn on the plain
input and discards the circuits where the plain output from HIn ⊕ a does not match the semantic output previously
computed by the garbled circuit. He then uses Alice’s plain input for one of the remaining circuits and computes the
function f in plain to learn the correct output. If there are no remaining circuits, Bob terminates.

Figure 4. Protocol Overview - Part 2

3 The Protocol

Assume we have access to a free-xor garbling scheme, an OT functionality, a coin-tossing functionality along with
a commitment scheme supporting both standard commitments (computationally hiding/binding) and commitments
where one opens a commitment by revealing exactly the message committed to. We call the last type of commitment
scheme a verifiable commitment scheme as it allows a party to verify if a particular message is the opening of a
particular commitment without learning the opening if this is not the case.

We let Alice garble ` versions of a Boolean circuit C using the free-xor technique [KS08], we call these garbled
circuits C̃j where j ∈ [`]. For each of these garbled circuits we associate a distinct global value ∆j ∈ {0, 1}κ, which
is used to enforce the constraint that for any wire, i, in the garbled circuit C̃j , we have that k1

i,j = k0
i,j ⊕ ∆j in

correspondence with a free-xor garbling scheme.
At an informal level our protocol can then be summarized with the phases Setup, Polynomial Setup, Oblivious

Transfer, Commitment, Augmentation, Cut-and-Choose, Evaluation, and Reconstruction. Of these, Setup, Oblivious
Transfer and Commitment, are very similar to other protocol based on cut-and-choose of Yao garbled circuit, e.g.,
[LP07,LP11,sS11,FN13,SS13]. In Fig. 3 we sketch what happens in each of these steps and leave the specific details
to Appendix D and the proof of security against a static, malicious, computationally bounded adversary to Appendix E.

4 Implementation

As our protocol is designed to work well in the SIMD model we did our implementation in CUDA, which is a platform
that supports both explicit programming of SIMD execution, along with cheap hardware, GPUs, which supports SIMD
execution. More specifically we implemented our protocol in ANSI C using the CUDA extension by NVIDIA. Some
parts of our implementation is based on the code from [FN13] which gave very efficient construction and evaluation
of garbled circuits (including handling of the possible selective failure attack on Bob’s input), along with an “OT
extension”, using a consumer GPU. We direct the reader to [FN13] for details on these aspects of the implementation.

It should be noted that a recent result by Husted et al. [HMSG13] presents another scheme for constructing and
evaluation garbled circuits using the GPU. Their scheme is up to a factor 3 faster than the scheme in [FN13] in
computation on the same hardware, but increases the size of each gate with another ciphertext (both xor and non-xor
gates). Unfortunately their result was not published until after we had completed our implementation and thus we
do not know whether their scheme would be faster when used with our protocol. However, a study of this would be
interesting for future work.
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Trading Assumptions for Efficiency. Since the description of our protocol is given in the hybrid setting, assuming
access to OTs, commitments, coin-tossing and garbling, we need to make some decisions on the security assumptions
needed in order to realize the functionalities in our implementation. We have chosen to be liberal in the security
assumptions in order to achieve a more efficient solution. In particular this means that our implementation assumes
the existence of random oracles and SHA-1 is used to implement random oracle queries with a 160 bit output, thus we
set κ = 160. We use the ROM garbling scheme of [PSSW09], which only requires 4 calls to the oracle to construct a
garbled gate, and only a single call to the oracle in order to evaluate a garbled gate, see Appendix B for details.

We realize a coin-tossing functionality along with a commitment scheme (that fits our needs) highly efficiently in
the ROM. We also base the OTs we need on an efficient OT extension, which only assume access to O(s) “seed” OTs
in the ROM. See Appendix C for details on these realizations. Finally, we also implement the verification of “circuit
seeds” [GMS08] to eliminate the need of sending the garbled computation tables of the check circuits.6

SIMD Implementation Optimizations.

HIn ⊕ a and HOut. First notice that HOut is very similar to HIn ⊕ a and they can both be computed using only xor
operations on particular keys. Furthermore, each output key of both functions can be computed independently of the
other output keys, since each output key only depends on the input keys to HIn ⊕ a, respectively HOut, and the matrix
M In, respective MOut. Thus the output of each function can clearly be done in a SIMD manner, up to the amount of
outputs of HIn, respectively HOut, i.e. s, respectively d4.82s+4.82e.7 However, the xor operation is so light that it is in
general considered overkill to have a GPU thread do nothing but a few xors, because of the overhead of copying data
from the RAM of the host system to the RAM of the GPU and back. Thus we simply implemented the functionalities
in a sequential manner using the CPU. However, using the CPU might not always be the best case as we will discuss,
based on our experiments, in Section 4.

Commitments. The commitments, both the computationally hiding/binding and verifiable types are also done in the
same manner as in [FN13] i.e. by using SHA-1 to hash the string we wish to commit to (concatenated with an ID and
some pseudo-randomness if it is supposed to be computationally hiding). For commitments of long strings a reduction
approach is used: Concatenate some random salt to the string we need to commit to and assume it is now l bits long,
then we can simply hash all independent and continues ck bits pieces in parallel, for some constant c. This results
in dl/cke digests. We concatenate these digests together to a string and again hash all independent and continues ck
sized pieces of this string in parallel. We continue in this manner until a single digest remains, which will be the
commitment. The overhead, and sequential complexity, of this approach is only logarithmic in the size of the string
we hash.

Polynomial Representation. In the protocol description we explained that the polynomials would have points in
GF
(
2160

)
as they need to have the same size as the wire keys. However, our initial implementation showed, which

was also expected, that doing polynomial interpolation on elements in GF
(
2160

)
was quite slow. This was expected

since multiplying two elements of GF (2κ) requires O(κ2) operations using the “trivial” approach. The multiplication
can of course be optimized, in particular when one of the numbers only has a few bits set. However, in our setting at

6 In the “circuit seeds” approach Alice constructs each specific gabled circuit using a small seed of entropy and a pseudo-random
generator (in our case SHA-1). Then, instead of sending the garbled computation tables of all the garbled circuits she sends a
hash digest of each of the garbled circuits, which is much smaller than the actual garbled computation tables). If a circuit is
selected as a check circuit Alice simply sends the seed for that circuit and Bob can construct the garbled computation tables
himself and verify them against the digest. For the evaluation circuits Alice sends the actual garbled computation tables, which
Bob verifies against the commitments to make sure Alice did not try to cheat.

7 The computation of HIn and HOut can be parallelized even further: Since xor is commutative we can use a classic reduction
approach for computing each output key. That is, have several threads working on each output key by xor’ing together a few
of the input keys and storing the intermediate result. When these threads terminate new threads take over and xor together the
intermediate results, and so on, until a single thread remains which then contains the output key for a single output bit of the
function. This makes it possible to parallelize up to the logarithm of the input to HIn, respectively HOut.
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least one of the numbers will always be random in GF (2κ) and thus it does not seem possible to hope for better com-
plexity than O(κ). However, when κ is small enough, multiplication and inversion in GF (2κ) can be realized highly
efficiently, with a good choice of reduction polynomial, in κ time, or in constant time through a lookup table. This is
in particular true in the implementation of the S-box in AES for κ = 8. Now notice that in our setting we will need to
use polynomials with random coefficients evaluated on points in the range [2t] = [`] = [O(s)]. Since s is a statistical
security parameter and the garbled table are based on a computation security parameter of κ = 160 it will not make
sense to have s > 160. Thus, in practice the range of points we will need to evaluate polynomials on will always be
strictly less than 200. Now see that 28 > 200. So instead of using polynomials in GF

(
2160

)
we use 20 polynomials in

GF
(
28
)

in place of a single polynomial in GF
(
2160

)
– i.e., we use polynomials over the ring GF

(
28
)20

, which is still
a secure secret sharing scheme, c.f. [CFIK03]. Thus that we can use lookup tables to do multiplication and inversion
in constant time, in a SIMD manner for each of the 20 polynomials.8

Polynomial Construction. The 20p polynomials with elements from GF
(
28
)

are generated in a SIMD manner using
the GPU based on a 160 bit seed of entropy. Specifically what we do is to have p× (t+1) threads generate coefficients
consisting of 160 bits of pseudo-randomness by hashing a seed along with a unique identifier. Using these coefficients
we have p × 2t threads computing 2t points on each of the 20p polynomials. More specifically Pi(j) for all j ∈ [2t]
and i ∈ [20p]. This is done by a loop of t + 1 iterations where an element ci,jjd ∈ GF

(
28
)

is computed in the d’th
iteration and then added to the result of the previous d−1 iterations. The value jd is computed by taking jd−1 from the
previous round and multiplying it with j. This is done in order to avoid computing any exponentiations. Notice that the
loop could also be parallelized in a SIMD manner by having a multiple of t+ 1 more threads, each computing a single
value of ci,jjd. Finally, these values could be added together using a reduction approach. However, since benchmarks
showed that the construction of the polynomials only accounted for a very small part of the execution time, we choose
to optimize other aspects of the protocols contributing more to the overall execution time.

Polynomial Interpolation. Our polynomial interpolation (part of the Polynomial Setup) is based on Lagrange interpo-
lation and consists of 4 subphases, denominator, numerator, combination and reduction in order to optimize the SIMD
parallelization. Before we go through these phases remember that in Lagrange interpolation we assume knowledge
of t + 1 data point pairs {(xj , yj)}j∈[t+1] where all xj are distinct. These define the interpolation polynomials in
Lagrange form:

L(x) :=
∑

j∈[t+1]

yj lj(x) ,

where the Lagrange basis polynomials are defined as

lj(x) :=
∏

1≤g≤t+1,g 6=j

x− xg
xj − xg

,

where 1 ≤ j ≤ t + 1. Using lj(·) an arbitrary point x can then be computed. In our case we will know t + 1 points
from [2t] and want to compute the remaining t− 1 points in [2t].

When we verify that the 2t points Bob got from Alice, for each of the b1.18s+2.18c check polynomials, constitutes
polynomials of degree at most t+ 1, we do polynomial interpolation of the points ]t+ 1; 2t] using the points [1; t+ 1]
and verify that the newly interpolated points are the same as Alice sent us. Now the phases for which we interpolate
these points in a SIMD manner goes as follows:

Denominator: We have t+1 threads computing the denominator of each lj(x). Notice that this is enough as the choice
of value of x does not come into play here, but only in the numerator. Finally, each thread computes the inverse so
that each denominator can be directly multiplied onto a numerator later.

8 In the actual implementation we do not use a look up table for multiplication as it turned out to be around two times slower than
simply doing 8 iterations of bit shifts and if statements. Furthermore, as an artifact of the implementation framework we do not
do 20 polynomials in a SIMD manner, but instead sequentially.
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Numerator: We use (t+ 1)× (t− 1) threads to compute the numerator of each lj(i). That is lj(i) will be computed
by thread j · (t − 1) + i so that we compute the numerator of each of the t + 1 Lagrange polynomials using a
different value for i ∈]t+ 1; 2t]. Finally, each thread multiply its result with the appropriate denominator from the
previous step. That is, computing lj(i) for each i ∈]t+ 1; 2t].

Combination: We use b1.18s + 2.18c × (t + 1) × (t − 1) threads to compute each term of the t + 1 terms of L(i)
for the 20b1.18s+ 2.18c polynomials for each i ∈]t+ 1; 2t]. This is simply done by having each thread multiply
the appropriate values yj for each for the 20b1.18s + 2.18c polynomials with the corresponding Lagrange basis
polynomial (computed in the “Numerator” step).

Reduction: To continue with the maximal level of SIMD parallelization up to b1.18s+2.18c×(t+1)×(t−1) threads
will complete a reduction approach, i.e. any given thread will xor together two terms of L(i). A new thread will
take over two of the intermediate results and xor these together. This will continue until b1.18s+ 2.18c × (t− 1)
threads remain, containing the result L(i) for all i ∈]t+ 1; 2t] and all 20b1.18s+ 2.18c polynomials

All the steps are done with all generated data staying in the GPU’s RAM and only at the end the final results are copied
back to the host’s RAM. Because all the data is on the GPU it is sensible to do the reduction step instead of a sequential
computation on the host system, even though the operations done will only be xors.

Polynomial Reconstruction. The polynomial reconstruction (part of the Reconstruction phase) is done almost in the
same manner as the polynomial interpolation. The main difference being that in the reconstruction the set of t + 1
points we know might be different for each of the d4.82s + 4.82e sets of 20 polynomials. However, at most one of
these points might be different since Bob will always learn the same t points for all the polynomials as an effect of the
cut-and-choose of garbled circuits. Thus we can implement the numerator step in the following two substeps:

– First we use t× (t− 1) threads to compute
∏

1≤g≤t,g 6=j (x− xg) for each point j ∈ [t] where xj is an index of a
check circuit and for each of the t− 1 points, x being an index of an evaluation circuit.

– We then use d4.82s+4.82e×(t+1)×(t−1) threads to multiply the last point, which might vary from polynomial
to polynomial, onto the result of the previous step. This will give us the numerator in all the t+ 1 Lagrange basis
polynomials for each of the t− 1 points Bob needs to learn, i.e. the t− 1 indices of the evaluation circuits.

The same idea applies to the computation of the denominator step, but with a factor t − 1 less, as the denominator
remains the same for all possible values of x we need to learn.

With the above approach we avoid having d4.82s+4.82e× (t+1)× (t−1) threads doing a multiplication loop of
t+1 iterations and instead only use t× (t−1) threads with a loop of t iterations and d4.82s+4.82e× (t+1)× (t−1)
threads with a constant amount of multiplications to achieve the same result.

A Note on Multi-Threading. In order to limit the time each party is idle we employ multi-threading to the protocol
in a non-SIMD manner. That is, when several distinct steps of the protocol can be carried out independently of each
other we fork the host process to carry out these computations in parallel. In particular we fork when some data needs
to be sent/received while other operations can be carried out with the data already known.

A Note on Parallel Complexity. The parallel complexity of cut-and-choose of garbled circuits is bounded by the
depth of the circuit to compute times the garbling of a single gate along with the parallel complexity of the handling of
selective failure attacks, consistency of inputs, OTs and commitments. In our case, as well as in [FN13], the complexity
of handling selective failure attacks is bounded by O(log(max(n, s))) as it only consists of xor’ing (because of the
free-xor approach) at most max(4n, 8s) keys of κ bits with each other, O(sn) times in parallel, using a reduction
approach. The same argumentation goes for ensuring consistency of Alice’s input, i.e. computing HIn ⊕ a: Using
a reduction approach it is basically O(log(m)) SIMD xor operations using O(s2κm) SIMD processors. Regarding
handling input recovery in case of cheating, first notice that the parallel computation of HOut is almost the same as for
HIn ⊕ a, thus it requires O(log(o)) SIMD xor operations using O(s2oκ) SIMD processors.

Considering the polynomial generation, notice that we first generate coefficients and then evaluate points based on
the coefficients. Now, evaluating points can be done using a reduction approach, that is, each term of a polynomial is
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evaluated independently, then two terms are added together by one thread, these results are then added together two
at a time, and so on until all the terms for a given point in a given polynomial has been added together. This implies
that the complexity of polynomial generation is bounded by the logarithm of the degree of the polynomial, that is
O(log(s)) SIMD operations using O(s3κ) SIMD processors. Regarding polynomial interpolation, assuming we use
Lagrange interpolation, the straight forward approach would be to make an evaluation of a Lagrange basis polynomial
for each point we wish to interpolate. These basis polynomials will consist of 1 + s/2 factors. Again we can compute
each factor independently and combine the factors using a reduction approach. These basis polynomials will be the
same for each of the polynomials we wish to interpolate, with the exception of at most one factor (depending on which
augmented output wires contains 0-values for each evaluation circuits). These basis polynomials are then used to find
the actual points by multiplying each of them with a known point (learned from the links) and then adding the terms
together. There will be 1 + s/2 terms and again these can be added together using a reduction approach. Thus, the
interpolation complexity is also limited to O(log(s)) SIMD operations using O(s3κ) SIMD processors.

Notice that in the above analysis we assume that addition and multiplication is constant time, which makes sense
since they can be implemented in a loop with 8 iterations or through a lookup table following the implementation idea
in Section 4.

s IO Comp. Comm. Idle Party total Total Total idle

9
A. 4.073± 0.036 53.19± 0.47 45.77± 0.17 81.70± 3.5 184.7± 3.6

211.0± 3.6 160.1± 7.0
B. 4.040± 0.0012 82.81± 0.60 45.77± 0.17 78.38± 3.5 211.0± 3.6

19
A. 4.053± 0.020 65.81± 0.89 71.97± 0.20 86.75± 4.5 228.6± 4.3

260.1± 4.3 171.3± 8.7
B. 4.039± 0.00097 99.49± 0.71 71.97± 0.20 84.56± 4.3 260.1± 4.3

30
A. 4.046± 0.0080 119.9± 0.90 108.1± 0.26 112.3± 3.8 344.4± 3.9

398.1± 4.1 231.0± 7.6
B. 4.066± 0.031 167.3± 0.70 108.1± 0.26 118.7± 3.8 398.1± 4.1

40
A. 4.055± 0.017 137.3± 0.79 132.3± 0.30 118.5± 4.1 392.1± 4.2

455.7± 4.2 244.7± 8.1
B. 4.049± 0.016 193.1± 1.0 132.3± 0.30 126.2± 4.1 455.6± 4.2

60
A. 4.043± 0.0069 170.1± 1.9 178.1± 0.38 130.3± 4.5 482.6± 4.3

583.0± 4.3 263.7± 8.5
B. 4.093± 0.088 266.2± 0.77 178.1± 0.38 133.4± 4.3 581.8± 4.4

80
A. 4.055± 0.017 247.1± 1.6 231.2± 0.37 168.1± 4.1 650.5± 4.2

810.4± 3.5 340.2± 6.9
B. 4.069± 0.038 398.8± 1.1 231.2± 0.37 172.0± 3.0 806.1± 3.5

119
A. 4.055± 0.020 377.9± 2.9 343.8± 0.37 215.1± 6.9 940.8± 4.2

1220± 5.2 431.0± 12
B. 4.040± 0.0026 641.5± 1.1 343.8± 0.37 215.9± 5.3 1205± 5.2

Table 1. Timing in milliseconds of our protocol computing oblivious AES-128 for both Alice (A.) and Bob (B.) under different
statistical security parameters (s). Column “Comp.” represents wall-clock time where at least one thread does computation. Columns
“IO”, “Comm.” and “Idle ” represents wall-clock time where the protocol execution is single-threaded and does disk loading,
network communication or is completely idle, respectively. Column “Party total” represents the total wall-clock time of protocol
execution for each party. Column “Total” represents the total wall-clock execution time of the entire protocol. Column “Total idle”
represents the total wall-clock time when one of the parties is idle.

Experimental Results. All of our experiments are based on the same, commonly used, circuit for oblivious 128 bit
AES encryption.9 This circuit is used as benchmark in [HEKM11, LP11, NNOB12, HKS+10, FN13], and many more
implementations of 2PC for functions expressed as a Boolean circuit. We ran experiments on the circuit with several
different statistical security parameters on two consumer grade desktop computers connected to Aarhus University’s
gigabit local area network. At the time of purchase (2012) each of these machines had a price of less than $1600. Both

9 We thank Benny Pinkas, Thomas Schneider, Nigel P. Smart and Stephen C. Williams for supplying the circuit.
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machines have similar specifications: an Intel Ivy Bridge i7 3.5 GHz quad-core processor, 8 GB DDR3 RAM, an Intel
series-520 180 GB SSD drive, a MSI Z77 motherboard with gigabit LAN and a MSI GPU with an NVIDIA GTX 670
chip and 2 GB GDDR5 RAM. The machines ran up-to-date versions of Linux Mint 14 and CUDA 5.5. Each of the
experiments was repeated 50 times and with no front end applications running on either of the machines. The timings
are summarized in Table 1 and Table 2. These timings include loading circuit description and randomness along with
communication between the host and device and communication between the parties.10 However, in the same manner
as done in [NNOB12] and [FN13] the timings of the seed OTs have not been included as it is a computation that is
needed once between two parties and thus will get amortized out in a practical context. The time it takes to initialize
the GPU device (driver related overhead) has not counted either, and generally would constitute between 50 and 60
milliseconds on our test systems when the GPU is set to “persistence mode”.

The timings are in milliseconds and represent “wall-clock” times. However, since some aspects of the execution are
multi-threaded we have chosen to count those parts as computation time, even though one thread might not be doing
computation, but rather be idle or doing communication. Thus what is counted in the communication, respectively idle
columns, is the time where the party is only doing communication, respectively is completely idle.

Table 2. Timing in miliseconds of the parts of
our protocol responsible for cheating recov-
ery. The timings are taken from the computa-
tion of oblivious AES-128 for both Alice (A.)
and Bob (B.) under different statistical secu-
rity parameters (s). Column “Comp.” repre-
sents wall-clock time where at least one thread
of a given party does computation. Columns
“IO”, “Comm.” and “Idle ” represents wall-
clock time where the protocol execution is
single-threaded and does disk loading, network
communication or is completely idle, respec-
tively. Column “Party total” represents the total
wall-clock time of protocol execution.

s Comp. Comm. Idle Party total

9
A. 4.836± 0.17 1.592± 0.046 < 1 6.467± 0.17

B. 14.04± 0.43 1.592± 0.046 4.808± 2.4 20.44± 2.5

19
A. 7.373± 0.93 3.885± 0.066 < 1 11.28± 0.94

B. 20.10± 0.52 3.885± 0.066 10.49± 3.9 34.47± 3.9

30
A. 33.24± 1.4 8.244± 0.079 < 1 41.86± 1.4

B. 34.56± 0.78 8.244± 0.079 12.53± 2.5 55.34± 2.7

40
A. 42.60± 0.46 12.64± 0.079 < 1 55.34± 0.44

B. 51.63± 1.1 12.64± 0.079 18.40± 2.9 82.67± 3.1

60
A. 47.35± 0.62 24.38± 0.11 < 1 71.94± 0.58

B. 116.1± 0.83 24.38± 0.11 23.67± 2.5 164.2± 2.7

80
A. 66.48± 0.40 40.91± 0.089 < 1 107.4± 0.37

B. 185.4± 2.7 40.91± 0.089 39.13± 0.28 265.4± 2.7

119
A. 102.4± 0.59 84.71± 0.11 < 1 187.6± 0.51

B. 315.1± 1.8 84.71± 0.11 71.28± 0.22 471.1± 1.7

Data Analysis. From Table 1 we see that idle time takes up a significant portion of the total execution time of the
protocol, i.e. between 18% and 44% for each party and up to 76% of the wall-clock time one party sits idle. Taking
Table 2 into account, we see that at most 30% of the overhead of recovery is idle time. The reason is probably that
most messages that needs to be sent, as part of our approach to input recovery, can be batched together with messages
that needs to be sent as part of the generic structure of cut-and-choose of garbled circuits.

It should be noted that we have spent quite a bit of time trying to limit the idle time of the implementation by
using multi-threading, batching messages and restructuring steps within a given party’s execution. Unfortunately, it
remains unknown how much this has limited idle time compared to other implementations of cut-and-choose of garbled
circuits, as other authors with comparable protocols have not included measurements of idle time.

Comparing the total times of Table 1 and Table 2 we see that input recovery constitutes from 10% up to 39% for
of the execution time for Bob, whereas for Alice it goes from 3.5% up to 20%. Looking further into the different steps
of input recovery it turns out that around half of the computation time Bob spends on Reconstruction is actually spent
doing the “free” computation of the output keys of HOut (since it is all xor operations on keys and we use free-xor).

10 In the tests the entropy used was sampled from /dev/urandom, which is a non-blocking source of pseudo-randomness.
This source was used in order to avoid high variance in the execution time caused by waiting for “true” randomness from
/dev/random, which is a blocking source of randomness.

16



He spend even more time on “free” computations before we optimized the Reconstruction part of our implementation
to limit the amount of cache-misses.

Security s Model Rounds Time (s) Equipment
[HEKM11] Semi honest - ROM O(1) 0.20 Desktop
This work Malicious 2−9 ROM O(1) 0.21 Desktop w. GPU
This work Malicious 2−40 ROM O(1) 0.46 Desktop w. GPU
[FN13] Malicious 2−39 ROM O(1) 1.1 Desktop w. GPU
This work Malicious 2−60 ROM O(1) 0.58 Desktop w. GPU
This work Malicious 2−80 ROM O(1) 0.81 Desktop w. GPU
[NNOB12] Malicious 2−58 ROM O(d) 1.6 Desktop
[KSS12] Malicious 2−80 SM O(1) 1.4 Cluster, 512 nodes
[FN13] Malicious 2−79 ROM O(1) 2.6 Desktop w. GPU
[SS13] Malicious 2−80 SM O(1) 40.6 Cluster, 8 nodes

Table 3. Timing comparison of secure
two party computation protocols eval-
uating oblivious 128-bit AES. d is the
depth of the circuit to be computed.
Notice that our implementation is run
on the same hardware and using the
same garbling scheme as [FN13].

5 Conclusion and Future Work

We have presented a new approach to the recent idea of “forge-and-loose” which does not need any number theoretic
assumptions, avoids an auxiliary secure computation and parallelizes well in a SIMD manner. We have implemented a
random oracle realization of this protocol in CUDA to take advantage of its SIMD friendly structure. The implemen-
tation shows that our protocol is up to a factor 3 faster than the most comparable implementation, showing the greatest
improvements for the larger the statistical security parameters. The benchmark shows that this is not because of the
extra computations associate with our forge-and-loose approach, but rather because of the asymmetry of the overall
cut-and-choose of garbled circuits approach, which takes up a significantly larger percentage of the total execution
time for the smaller statistical security parameters.

As future work it would be interesting to look into ways of making the overhead, needed for recovering Alice’s
input, smaller. In particular for larger statistical security parameters. Furthermore, making implementations (based
on the same garbling, OT, etc.) of the other protocols using the forge-and-loose approach would be interesting, in
particular to see which forge-and-loose technique introduces the least amount of overhead in different contexts. Finally,
as we see that a significant portion of the wall-clock execution time of the protocol, even when using multi-threading,
is idle time it would be interesting to look into ways of making the general structure of cut-and-choose of garbled
circuits more symmetric.11

Acknowledgement. The authors would like to thank Rasmus Lauritsen for useful discussions.
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A Overview of Variables and Parameters

A list of variable names and their meaning is given in Table 4 and Table 5.

Symbol Meaning
s Statistical security parameter.
κ Computational security parameter.
C The plain description of the Boolean circuit to compute.
f The function computed by C.
x A bit string representing the constructor’s (Alice’s) input to the circuit.
y A bit string representing the evaluator’s (Bob’s) input to the circuit.
z The circuit output destined for the evaluator.

Table 4. Overview of the free parameters of the protocol along with their meaning.

Symbol Meaning

` Circuit replication factor; defined as the smallest even integer satisfying `− 1
2

log(`) + log
(

2
√

2π
e2

)
≥ s.

t The amount of check circuits; t = `/2.
p The number of polynomials; defined as the smallest integer satisfying p ≥ 6s+ 7.
|C| Amount of gates in C.

m Amount of input bits to the circuit from the constructor, m = |x|.
n Amount of input bits to the circuit from the evaluator, n = |y|.
o Total amount of output bits from the non-augmented circuit, o = |z|.
m̄ The length of the constructor’s extended input; m̄ = n+ s.
n̄ The length of the evaluator’s extended input; n̄ = max{4n, 8s}.

ψ The check set for cut-and-choose on polynomials.
π, φ The check and evaluation sets, respectively, for cut-and-choose on circuits.
∆j The global key for the j’th garbled circuit.
Pi(j) The j’th values of the i’the polynomial in the field F2κ .

Table 5. Overview of “internal” variables and parameters derived from the free parameters.

B Preliminaries

Garbled Circuits. Our protocol requires a free-xor garbling scheme. We now describe a garbling scheme that com-
bines the state of the art optimizations for Yao garbled gates i.e., free-xor [KS08], permutation bits [NPS99] and
garbled row-reduction [NPS99]. The scheme is secure in the ROM and is due to [PSSW09].

In the RO scheme of [PSSW09] one can garble a gate by doing 4 evaluations of SHA-1, and a garbled gate consists
of only 3 ciphertexts (therefore saving on communication complexity). The evaluation of the gate can be done using a
single SHA-1 evaluation.
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When considering keys in the following we do so only for a single garbled circuit and thus eliminate the circuit
index, i.e., the 0-key on wire i is called k0

i and the 1-key k1
i . When it is unknown if a key represents a 0 or 1 bit we

discard the superscript, i.e., we simply call the key ki. We will sometimes also abuse notation and call the index of the
respectively left, right and output key of a given gate for kL, kR and kO respectively, adding the superscript 0 or 1 as
appropriate.

– We have a (possibly randomized) algorithm Yao(g, k0
L, k

0
R, ∆, id) with g a description of a Boolean function, a

left input 0-key k0
L ∈ {0, 1}κ, a right input 0-key k0

R ∈ {0, 1}κ, a global difference ∆ ∈ {0, 1}κ and a unique gate
identifier id, outputs a garbled gate g̃ and a output 0-key k0

O ∈ {0, 1}κ.
– We have an algorithm Eval(g̃, k′L, k

′
R) that on input a garbled gate g̃, a left key k′L ∈ {0, 1}κ and a right key

k′R ∈ {0, 1}κ outputs an output key k′O ∈ {0, 1}κ ∪ {⊥}.
– We define the 1-keys k1

L,k1
R,k1

O s.t. k0
L ⊕ k1

L = k0
R ⊕ k1

R = k0
O ⊕ k1

O = ∆.

The idea is that a garbled gate g̃ has a 0- and a 1-key associated with each of its wires (left input, right input and
output wire), and that these keys represent the bit values on those wires. E.g., if g̃ is a garbled AND gate generated as
(g̃, k0

O)← Yao(∧, k0
L, k

0
R, ∆, id) then Eval(g̃, kaL, k

b
R) for any a, b ∈ {0, 1} should output ka∧bO .

Note that if Alice samples ∆ and a 0-key, say k0
L, at random and gives the key kaL to Bob then there is no way for

Bob to infer the bit a from kaL. Furthermore, even if Bob learns a he cannot guess the key k1−a
L with better probability

than guessing ∆. For a garbling scheme to be secure we intuitively want that even if Bob learns g̃ and keys kaL and kbR
for a, b ∈ {0, 1}, and thus is able to evaluate kg(a,b)O ← Eval(g̃, kaL, k

b
R), then he cannot learn anything about k1−a

L ,
k1−b
R or k1−g(a,b)

O , even if he knows a and/or b.
Furthermore, Bob cannot evaluate the gate on any other inputs. Thus if Bob sends back kg(a,b)O to Alice, Alice can

learn g(a, b) (as she knows k0
O and ∆) and be confident that this is the correct result.

Definition 1. We say that (Yao,Eval) is a Yao free-xor gate garbling scheme if the following holds:
Correctness: Let (g̃, k0

O) ← Yao(g, k0
L, k

0
R, ∆, id) where k0

L, k
0
R and ∆ are random bit strings, id is a uniques gate

identifier and g is a Boolean function such that g : {0, 1} × {0, 1} → {0, 1} then for all bL, bR ∈ {0, 1} we

demand that Pr
[
Eval(g̃, kbLL , kbRR ) = k

g(bL,bR)
O

]
= 1.

From a garbled gate scheme we can construct a circuit garbling scheme. Let C be a Boolean circuit with m input
wires, n output wires and c gates. First sample a uniformly random ∆ ∈ {0, 1}κ and a random key for each input
wire, denoted by k0

I,1, . . . , k
0
I,m ∈ {0, 1}κ. Then inductively, for all gates which has both input keys defined, proceed

as follows: For an XOR-gate with input wires L and R and output wire O, let k0
O = k0

L ⊕ k0
R. To later evaluate

the gate on kaL and kbR, compute ka⊕bO = kaL ⊕ kbR. For a non-XOR-gate with identifier id, input wires L, R, output
wire O and truth table g, sample (g̃id, k

0
O)← Yao(g, k0

L, k
0
R, ∆, id). This will eventually associate a key to each wire.

Denote the output keys as k0
O,1, . . . , k

0
O,n. Let ID be the set of identifiers of gates. The output of the garbling is then∆,

the input and output keys along with the garbled gates, i.e.
(
∆,
{
k0
I,i

}
i∈[m]

,
{
k0
O,i

}
i∈[n]

, {g̃id}id∈ID

)
. We use C̃ to

denote
(
{g̃id, }id∈ID , C

)
, and we call C̃ the garbled circuit. We use

(
∆,
{
k0
I,i

}
i∈[m]

,
{
k0
O,i

}
i∈[n]

, C̃
)
← CYao(C)

to denote a random circuit garbling. Let x ∈ {0, 1}m, then to evaluate C̃ on
{
kxiI,i

}
i∈[m]

, inductively compute kxww
for each wire w in the circuit, where xw is the value that wire w would have in C(x). This is possible because of the
correctness of the garbled gates and the fact that the XOR evaluation described above is correct too. Let y = C(x). We

denote the output of an evaluation of a garbled circuit by
{
kyiO,i

}
i∈[n]

← CEval

(
C̃,
{
kxiI,i

}
i∈[m]

)
. The evaluation is

deterministic if the evaluation of each garbled gate is deterministic, which we will assume for simplicity.

Definition 2. We say that (CYao,CEval) is a Yao free-xor circuit garbling scheme if the following holds:

Correctness: Let
(
∆,
{
k0
I,i

}
i∈[m]

,
{
k0
O,i

}
i∈[n]

, C̃
)
← CYao (C). Then for all x ∈ {0, 1}m and y = C(x) it holds

that CEval
(
C̃,
{
kxiI,i

}
i∈[m]

)
=
{
kyiO,i

}
i∈[n]

.
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Notation, Convention:
Let KDF be a secure key derivation function, e.g., as in [PSSW09]:

KDF(kL, kR, id) = H(kL‖kR‖id) .

Furthermore, call the least significant bit of every key the permutation bit and define a function lsb : {0, 1}κ → {0, 1}
which extracts exactly this bit. We write pK = lsb(K) and we assume that lsb(∆) = 1 – see discussion at the end of
this section.

Gate Garbling, Yao
(
g, k0

L, k
0
R,∆, id

)
:

With k0
L, k

0
R,∆ ∈ {0, 1}κ under the constraint that lsb(∆) = 1 and id a unique identifier, if g = ⊕ then return

(⊥, k0
L ⊕ k0

R), otherwise do the following:
1. Define

τ0 = g(pL, pR), τ1 = g(pL, 1− pR), τ2 = g(1− pL, pR), τ3 = g(1− pL, 1− pR) .

2. Compute k0
O = KDF (kpLL , kpRR , id)⊕ (τ0 ·∆);

3. Compute:

α1 = kτ
1

O ⊕ KDF
(
kpLL , kpRR , id

)
, α2 = kτ

2

O ⊕ KDF
(
kpLL , kpRR , id

)
, α3 = kτ

3

O ⊕ KDF
(
kpLL , kpRR , id

)
.

4. Output a garbled gate g̃ = (id, α1, α2, α3) and the zero output key k0
O .

Gate Evaluation, Eval (g̃, k′L, k′R):
With k′L, k

′
R ∈ {0, 1}κ if g = ⊕ return k′L ⊕ k′R, otherwise do the following:

1. Parse g̃ = (id, α1, α2, α3). Define α0 = 0κ.
2. Compute pL′ = lsb(L′) and pR′ = lsb(R′) and let j = 2pL′ + pR′ .
3. Return k′O = αj ⊕ KDF(k′L, k

′
R, id).

Circuit Garbling, CYao (C):
1. Sample a uniformly random ∆ and uniformly random input 0-keys, i.e. ∆, k0

I,i ∈R {0, 1}κ for all i ∈ [m].
2. For each gate i with Boolean functionality g in the circuit C, let kL, kR denote the left, respectively, right input key

to the gate and set (g̃i, k
0
i )← Yao(g, k0

L, k
0
R,∆, id).

3. Finally set C̃ to be the set of all the garbled gates along with C and return
(
∆,
{
k0
I,i

}
i∈[m]

,
{
k0
O,i

}
i∈[n]

, C̃
)

.

Circuit Evaluation, CEval
(
C̃,
{
kxiI,i
}
i∈[m]

)
:

1. For each gate i with Boolean functionality g in the circuit C, let k′L, k′R denote the left, respectively, right input key
to the gate and set k′i ← Eval(g̃i, k

′
L, k

′
R).

2. Finally return the set
{
k0
O,i

}
i∈[n]

.

Figure 5. Scheme for garbling of gates and circuits with free xor.

Secrecy: For a value ∆ ∈ {0, 1}κ, let O∆(·) be an oracle which on input Q outputs a bit b where b = 1 if and only if
(iff) Q = ∆. Consider the following indistinguishability under chosen input attack game for a stateful adversary
A.

indciaA(CYao,CEval)(κ)

C ← A(1κ), where C : {0, 1}m → {0, 1}n is a circuit as above.
(x0, x1)← A(1κ), where x0, x1 ∈ {0, 1}m.(
∆,
{
k0
I,i

}
i∈[m]

,
{
k0
O,i

}
i∈[n]

, C̃
)
← CYao (C).

c← {0, 1}.
b← AO∆(·)

(
C̃,
{
k
xci
I,i

}
i∈[m]

)
.

If O∆(·) ever returned 1, then output 0.
Otherwise, output b⊕ c.
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The game says that the adversary gets to choose a Boolean circuit C with m input bits and n output bits, along
with two bit vectors of m bits, x0 and x1. The game then samples a random garbling of the circuit C, denoted by
C̃ and flips a coin to choose a bit c. It then returns the input keys in correspondence with the bit vector xc to the
adversary along with the garbled circuit C̃. In the end the adversary returns a bit b and wins the game if b = c or
if he ever made the oracle query O∆(∆) .

We say that the scheme is IND-CIA if for all PPTAs, it holds that
∣∣∣Pr (indciaA(CYao,CEval)(κ) = 0

)
− 1

2

∣∣∣ = negl(κ).

The definition of secrecy captures two requirements at the same time: Given a garbled circuit and one key for
each wire, including input keys corresponding to either x0 or x1, (1) one does not learn anything about the input,
and (2) one cannot compute ∆. Assume namely that A could distinguish the two inputs x0 and x1 with advantage
ε. Then he could output c = b with probability 1

2 + ε, and then b ⊕ c = 0 with probability 1
2 + ε, and hence∣∣∣Pr (indciaA(CYao,CEval)(κ) = 0

)
− 1

2

∣∣∣ ≥ ε. Assume on the other hand that A could compute ∆ with probability ε.
Then he can input ∆ to the oracle when he has it. Furthermore, if he always outputs a uniformly random b. Then∣∣∣Pr (indciaA(CYao,CEval)(κ) = 0

)
− 1

2

∣∣∣ = ε.
In Fig. 5, a free-xor garbled gates construction, with optimizations, is presented. We briefly sketch its properties.

For correctness, remember that the requirement is: Let (g̃, k0
O)← Yao(g, k0

L, k
0
R, ∆, id), then for all a, b ∈ {0, 1} we

have
Pr
[
Eval

(
g̃, kaL, k

b
R

)
= k

g(a,b)
O

]
= 1 .

This is the case because, if we let k′L = kaL, k
′
R = kbR, then lsb(k′L) = a ⊕ pL and lsb(k′R) = b ⊕ pR. Then by

construction τ j = g(a, b) for j = 2pL + pR and

αj = kτ
j

O ⊕ KDF(kaL, k
b
R, id)

and therefore
k′O = kτ

j

O = k
g((pL⊕a),(pR⊕b))
O .

This garbling scheme can be proven secure under the assumption that KDF(·) behaves like a random function.
Note that, as with any other free-xor based construction, we need to assume that the hash function we use is at least
circular 2-correlation robust [CKKZ12].

To find the plain value of the output keys one use an output decryption table. An output decryption table for
a pair of keys, (k0

w, k
1
w), on wire w can for example be implemented as the pair

(
H(k0

w),H(k1
w)
)

in the ROM. In
particular we view the table as a verifiable commitment to the 0-, respectively 1-key, in that particular order. Our
garbling construction will not make direct use of decryption tables and instead implement them with a black-box call
to a verifiable commitment functionality, see Appendix C for details.

Secret Sharing. For our protocol we use a variation of Shamir’s Secret Sharing scheme [Sha79] in order to make
it possible to reconstruct keys the evaluator is not in possession of. We will secret share a key of κ bits in blocks of
length e bits (we use e = 8 in the implementation). With this in hand we describe the simple polynomial interpolation
methods we will use in our protocol in Fig. 6.

Links. We use a technical tool called links. A link scheme is a tuple (G,F ) of PPT algorithms. The link generator G
takes as input two values x, y ∈ {0, 1}κ, called the joints, and outputs a link L ∈ {0, 1}∗. The follower allows to take
one joint of a link and compute the other joint. To be more precise, for all x, y ∈ {0, 1}κ and L ← G(x, y) it holds
with probability 1 that F (forwards, L, x) = y and F (backwards, L, y) = x.

As for security we want that a link leaks no other information than the ability to compute one joint from the other.
In particular, to a party which does not know how to compute x nor y, the link should not reveal any information on
x not y. We will model this by requiring that an adversary who cannot compute x nor y cannot distinguish a link of x
and y from a link of any two other values.
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Initialization
Initialized with the same parameters (t, `, κ, e) from both Alice and Bob, with 2e > ` and e dividing κ, define the
following polynomial manipulation methods. In the description we assume for notational convenience that e = κ. If
e < κ, the values will be secret shared, interpolated and checked in κ/e blocks.

Construct
1. Alice construct a random polynomial in GF (2e) of degree t by choosing t+ 1 random values in {0, 1}e which will

be the coefficients. Call this polynomial P .
2. Using P compute and return the following ` pairs (i, P (i))i∈[`].

Reconstruct(ψ, (i, P (i))i∈ψ)

1. If ψ is not a subset of [`] with |ψ| ≥ t + 1 then return abort. Otherwise take the t + 1 first pairs of (i, P (i))i∈ψ
(call this set ψ′) and do interpolation on these points. Call the polynomial that results from this interpolation P ′.

2. Return (i, P ′(i))i∈[`]

Verify(ψ, (i, P (i))i∈ψ)

1. If ψ is not a subset of [`] of at least t+1 entries then output abort. Otherwise take the t+1 first pairs of (i, P (i))i∈ψ
(call this set ψ′) and do interpolation on these points. Call the polynomial that results from this interpolation P ′.

2. For the values in ψ not used in the interpolation use the interpolated polynomial P to verify the values lie on this
polynomial. That is, for all i ∈ ψ\ψ′ check if P (i) =? P ′(i). If this is not true for some i return reject otherwise
return accept.

Figure 6. The Methods for Polynomial Manipulation

Definition 3. We call a distribution (x1, y1, x2, y2, . . . , x`, y`, z) ← D on ({0, 1}κ)2` × {0, 1}∗ hard if it holds for
all PPT B that it wins the following game with negligible probability: First sample (x1, y1, x2, y2, . . . , x`, y`, z) ←
D and give z to B. Run B to produce X ⊂ {0, 1}∗, where the set is represented by a list of its elements. Then
B wins iff xi ∈ X or yi ∈ X for some i. We call a class D of distributions hard if all D ∈ D are hard. We
call (G,F ) a secure link scheme for D if it holds for all PPT A and all distributions D ∈ D that A wins the
following game with probability negligibly close to 1

2 : Sample (x1, y1, x2, y2, . . . , x`, y`, z) ← D and give z to A.
Sample uniformly random (x′1, y

′
1, x
′
2, y
′
2, . . . , x

′
`, y
′
`, z) ∈ ({0, 1}κ)2`. Sample a uniformly random bit b ∈ {0, 1}.

If b = 0, let (x′′1 , y
′′
1 , x
′′
2 , y
′′
2 , . . . , x

′′
` , y
′′
` ) = (x1, y1, x2, y2, . . . , x`, y`). Otherwise, let (x′′1 , y

′′
1 , x
′′
2 , y
′′
2 , . . . , x

′′
` , y
′′
` ) =

(x′1, y
′
1, x
′
2, y
′
2, . . . , x

′
`, y
′
`). For i = 1, . . . , `, sample Li ← G(1κ, x′′i , y

′′
i ). Input (L1, . . . , L`) to A. Run A to produce

a guess g. The adversary wins iff g = b.

We can build a link scheme from a hash function H : ({0, 1}κ)2 → {0, 1}κ as follows: On input G(x, y), sam-
ple uniformly random salts r, s ∈ {0, 1}κ. Then output L = (r, s, h, g) = (r, s,H(x, r) ⊕ y,H(y, s) ⊕ x). On
input F (forwards, (r, s, h, g), x), output H(x, r) ⊕ h = y. Similarly for the other direction, i.e. F (backwards,
(r, s, h, g), y) = H(y, s)⊕ h = y.

It is straight forward to prove the above scheme secure in the random oracle model for the class of all hard
distributions. Namely, until an adversaryA queries some H(·, ri) or H(·, si), the value (ri, si,H(xi, ri)⊕yi,H(yi, si)⊕
xi) is uniformly random in its view. So, turn it into an adversaryB by giving it uniformly random values (ri, si, gi, hi)
as input, and then add each xi queried to some H(·, ri) or H(·, si) to the set X , and then at the end output X .

It appears, however, to be a very strong assumption to assume that the scheme is secure for all hard distributions
in the plain model. Assume namely that one could black box obfuscate a function fx,y which takes as input a function
F and a value L and then outputs 1 if F (forwards, L, x) = y and F (backwards, L, y) = x. Let the obfuscation
of fx,y be called Ox,y . Then sample (x, y) uniformly at random and output (x, y,Ox,y). This is a hard distribution, as
it is hard to find x or y from just Ox,y . However, given L = G(x, y) for a link scheme (G,F ) one can run Ox,y on
F and L and will get back 1. Running it on a random link will return 0 except with negligible probability. Hence the
link scheme is not secure when the side information Ox,y is given. So, assuming that the link scheme is secure is also
an assumption that f = fx,y cannot be black-box obfuscated. This is certainly a strong assumption. Note, however,
that this might not be too unreasonable an assumption: According to the recent result [App13], black-box obfuscating
any complexity class which allows to implement a pseudo-random function would allow to black-box obfuscate all
poly-sized circuits, which is impossible. It appears hard to black-box obfuscate a sufficiently strong hash function and
not being able to obfuscate a pseudo-random function. It also seems hard to imagine that one can obfuscate f but not
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obfuscate the function H on which it is based. Hence it might just be impossible to obfuscate f . However, this is a
rather fragile argument, so we would like to not rely on this faint hope.

Another way around the problem of an obfuscater as side information is to require that there is high min-entropy
about either x or y given z. In that case z cannot contain an obfuscation containing x and y, like in the argument above.
Indeed, it seems a reasonable assumption that if each xi or yi hash high min-entropy in the view of the adversary, then
the above construction is a secure link scheme in the standard model for a sufficiently strong hash function H. Assume,
e.g., that xi has high min-entropy in the view of the adversary. Then it is reasonable to assume that ri,H(xi, ri) acts
as a strong extractor and that ri,H(xi, ri, ) ⊕ yi hides all partial information about yi to a computationally bounded
adversary. In that case yi is still hard to compute given z and ri,H(xi, ri)⊕ yi, and then it is reasonable to assume that
si,H(yi, si) acts as an extractor of the computational entropy of yi and produces a pseudo-random value si,H(yi, si),
and that si,H(yi, si)⊕ xi hides all partial information about xi to a computationally bounded adversary.

We will call a distribution super-hard if for each pair (xi, yi) one of the two values xi or yi has min-entropy Θ(k)
bits in the view of the adversary. We will assume that our link scheme is secure for all super-hard distributions.

C Some Sub-Functionalities and Their Implementations

In this appendix we describe the ideal functionality for secure two-party function evaluation that we realize with our
protocol. We then describe some of the ideal functionalities that are used to realize our protocol in the hybrid model,
and show how to realize them.

Secure Two-Party Function Evaluation. In Fig. 7 the ideal functionality for secure function evaluation is presented.

Initialization
Initialized by a circuit C and a statistical security parameter s.

Input Alice
On input (input, x) from Alice, where x is a possible first input to f and where no input was given by Alice before,
store x, and output input to Bob.

Input Bob
On input (input, y) from Bob, where y is a possible second input to f and where no input was given by Bob before,
and at a point after input was output to Bob, compute z = f(x, y) and returns z value to Bob.

Corruption
The adversary may input (corrupt,Alice) or (corrupt,Bob) to corrupt Alice or Bob respectively. Any corrupted
party may then at any time input abort in which case abort is output to both Alice and Bob and the ideal functionality
halts. If Alice is corrupted and does not abort, then Alice may input (cheat, z′). In that case the ideal functionality
samples a bit d ∈ {0, 1} with d = 0 with probability 2−s. If d = 0, then output y to Alice and output z′ to Bob. If d = 1,
then output cheating to Alice and Bob.

Figure 7. The ideal functionality, FSFE, for secure function evaluation for two parties. The box reflects the structure of garbling and
that only Bob gets output.

Commitments. We also need a commitment scheme as defined in Fig. 8. commit and open define a standard
commitment scheme while vc , check and reject define a verifiable commitment scheme.

In the ROM commitments can simply be implemented using a hash function. For standard commitments (commit
), the comitter sends a hash of the message to be comitted concatenated with a random string (the random string can
even be omitted if the value is chosen randomly from a big domain). Verifiable commitments can be done similarly,
but without concatenating the message with a random string. For details on universally composable commitments in
the ROM see [HMQ04].
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Initialization
Both Alice and Bob input (init).

Input
– Upon receiving the command (commit, id, x) from either Alice or Bob, if id is a new unique identifier, then the

functionality stores (id, 0, x, name) where name = Alice if Alice is the party sending the command and name =

Bob otherwise. The functionality then outputs (commit, id) to both parties.
– Upon receiving the command (vc, id, x) from either Alice or Bob, if id is a new unique identifier, then the func-

tionality stores (id, 1, x, name) where name = Alice if Alice is the party sending the command and name = Bob
otherwise. The functionality then outputs (vc, id) to both parties.

Output
Upon receiving (open, id) from Alice if a commitment (id, ·, ·,Alice) is stored then the functionality outputs
(open, id, x) to Bob. Similarly upon receiving (open, id) from Bob if a commitment (id, ·, ·,Bob) is stored then the
functionality outputs (open, id, x) to Alice.

Query
Upon receiving (check, id, x) from any party the box outputs accept if a commitment (id, 1, x, ·) is stored. Otherwise
it returns reject.

Figure 8. The ideal functionality FCOM for commitments.

Single Choice Batch Oblivious Transfer. For each circuit that Alice garbles, oblivious transfers must be carried out
that lets Bob receive one key for each of his input wires without revealing to Alice if he asked for a 0- or 1-key.

Like in the rest of the paper we will use ` to denote the number of circuits to garble (that is, the replication factor)
and n to denote the number of bits in Bob’s input while κ will denote the amount of bits in each key.

We here consider a functionality that allows n` OTs to be carried out in one “batch”. In addition, while the func-
tionality does not make any restrictions on the keys Alice inputs except that they are of κ bits, it does force Bob to use
the same selection bit for all of the ` circuits. For this reason we will refer to the functionality as batch oblivious trans-
fer with consistent choice. We denote it F n̄,`,κBOTCC and it is outlined in Fig. 9. Note that F n̄,`,κBOTCC should not be confused
with the batch single choice cut-and-choose functionality used in [LP11] that also performs the cut-and-choose on the
circuits.

Initialization
Initialized by (n̄, `, κ).

Transfer
On input

(
transfer, {{a0

i,j , a
1
i,j}i∈[n̄]}j∈[`]

)
from Alice where a0

i,j , a
1
i,j ∈ {0, 1}κ for some non-negative

integer constant κ and
(
transfer, {bi}i∈[n̄]

)
from Bob where bi ∈ {0, 1}, the functionality outputs(

transfer, {{abii,j}i∈[n̄]}j∈[`]

)
to Bob.

Corruption
A corrupted player can input abort at any time, in which case ⊥ is output to the honest player and the functionality no
longer responds to input.

Figure 9. The ideal functionality F n̄,`,κBOTCC (with ` circuits, n̄ input bits from Bob and keys of κ bits).

Given access to a random oracle, Fig. 11 shows how to realize F n̄,`,κBOTCC efficiently in the FOT-hybrid model in the
presence of malicious and static adversaries. The ideal functionality of FOT is shown in Fig. 10 and can for example
be realized as described in [PVW08].12

12 We could always realize the functionality by n̄ repeated executions ofFOT where each message was a string of `·κ bits. However,
depending on the protocol used to realize FOT this could be quite inefficient as group operations on group elements of at least
` · κ bits might be needed.
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Initialization
Both Alice and Bob input (init).

Transfer
– Upon receiving (sid, sender, a0, a1) where a0, a1 ∈ {0, 1}κ from the first party, if no tuple (sid, sender, ·, ·) is

stored, then store the tuple (sid, sender, a0, a1).
– Upon receiving (sid, receiver, b) where b ∈ {0, 1} from the other party, if a tuple (sid, sender, ·, ·) is stored where

none of the elements is the symbol ⊥ then output (sid, ab) to the second party and (sid) to the adversary, otherwise
output nothing. Finally, update the tuple such that what is now stored is (sid, sender,⊥,⊥).

Corruption
A corrupted player can input abort at any time, in which case ⊥ is output to the honest player and the functionality no
longer responds to input.

Figure 10. The ideal functionality FOT.

Input
Alice holds ` sets of n̄ key pairs, {{(a0

i,j , a
1
i,j)}i∈[n̄]}j∈[`], with a0

i,j , a
1
i,j ∈ {0, 1}κ. Bob holds a set of n̄ choice bits

{bi}i∈[n̄], i.e., bi ∈ {0, 1}.
The Protocol

1. Alice and Bob initialize FOT by calling (init).
2. For each i ∈ [n̄] Alice calls (i, sender, r0

i , r
1
i ) where r0

i , r
1
i ∈R {0, 1}κ.

3. For each i ∈ [n̄] Bob calls (i, receiver, bi) where {bi}i∈[n̄] is the set of his choice bits.
4. Thus, for each i ∈ [n̄] Bob learns (i, rbii ) with rbii ∈ {0, 1}κ from FOT.
5. Bob now uses a hash function with κ bits output (modeled as a random oracle) to extend each of the n̄ κ-bit strings

to ` strings of κ bits. He computes:
r′bii,j = H

(
rbii ‖idi,j

)
∈ {0, 1}κ

for all i ∈ [n̄] and all j ∈ [`] where idi,j is a unique identifier. Thus he ends up with a total of n̄ · ` strings each of κ
bits.

6. In a similar manner Alice uses the same hash function and IDs to extend each of her 2n̄ κ-bit inputs to ` strings of κ
bits. She computes the following pairs for all i ∈ [n̄] and all j ∈ [`]:(

r′0i,j , r
′1
i,j

)
=
(
H
(
r0
i ‖idi,j

)
,H
(
r1
i ‖idi,j

))
∈ {0, 1}κ × {0, 1}κ .

Thus she ends up with a total of 2n̄ · ` strings each of κ bits; half of these are equal to the ones Bob ended up with
in the previous step.

7. Alice then sends the differences needed to change these values to her original input set. That is, she computes and
sends the following pairs to Bob: (

δ0
i,j , δ

1
i,j

)
=
(
r′0i,j ⊕ a0

i,j , r
′1
i,j ⊕ a1

i,j

)
.

8. Bob uses these pairs to reconstruct the input keys in correspondence with his input set {bi}i∈[n̄]. Thus he simply
computes and outputs:

abii,j = δbii,j ⊕ r′bii,j .

Figure 11. A protocol efficiently realizing F n̄,`,κBOTCC in the FOT-hybrid model with access to a random oracle.

Theorem 1. Assuming the hash function H(·) has κ bits output and is a random oracle then the protocol in Fig. 11 UC-
securely realizes the F n̄,`,κBOTCC functionality in the FOT-hybrid model in the presence of static, malicious adversaries.

If Bob has many bits of input to the functionality he wishes to compute with Alice, i.e., if n̄ is larger than cs for
some constant c, then we can use OT-extension to limit the amount of heavy cryptographic operations needed to realize
the F n̄,`,κBOTCC functionality. A very efficient way of doing this is described in [NNOB12].
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Coin-tossing. In order to prove security by simulation we need to have some of the random choices made in the
protocol be done using a coin-tossing functionality. We define an ideal functionality for coin-tossing in Fig. 12.

Initialization
Upon receiving inputs (init, κ) from both Alice and Bob the functionality leaks κ to the adversary.

Output
The functionality outputs the same uniformly random bit string of κ bits to both Alice and Bob, i.e., ρ ∈ {0, 1}κ. If Alice
is corrupted, then Alice gets to see ρ first, and if she then inputs abort, then output abort to Bob instead of ρ.

Figure 12. The ideal functionality FCT for maliciously secure coin tossing of κ bits.

The Protocol
1. Bob selects a random string ρB ∈R {0, 1}κ and sends a hash digest of it to Alice.
2. Alice also chooses a random string, ρA ∈R {0, 1}κ and sends ρA to Bob.
3. Bob then sends the string ρB to Alice, who computes a hash digest of it and verifies that it equal to the digest she

received in the first step. Furthermore, if |ρB | 6= κ Alice outputs abort.
4. Alice and Bob now defines ρ = ρA ⊕ ρB and both output ρ.

Figure 13. A protocol realizing FCT in the ROM.

UC-secure coin-tossing can be based UC-secure commitment in the plain model using the protocol in [Blu82] or
in the ROM as described in Fig. 13.

D The Full Protocol

The full protocol is described in the figures on the following pages and the proof is given afterwards in Appendix E.
We let Alice garble ` versions of a Boolean circuit C using the free-xor technique [KS08], we call these garbled

circuits C̃j where j ∈ [`]. For each of these garbled circuits we associate a distinct global value ∆j ∈ {0, 1}κ, which
is used to enforce the constraint that for any wire, i, in the garbled circuit C̃j , we have that k1

i,j = k0
i,j ⊕ ∆j in

correspondence with a free-xor garbling scheme.
Now, remember that Alice is supposed to input x‖a ∈ {0, 1}m+s in the augmented circuit, we then say that the

wires from 1 to m represent her input x and the wires from m + 1 to m + s represent her auxiliary random input.
Next, the wires from m + s + 1 = m̄ + 1 to m̄ + n̄ will represent Bob’s input. The wires from m̄ + n̄ + 1 to
m̄+ n̄+ |C| will represent the internal wires of the circuit, i.e., the output wires of the |C| gates and in turn the wires
from m̄+ n̄+ |C| − o+ 1 to m̄+ n̄+ |C|+ o will represent the output z.

In the following we enumerate the output keys resulting from the augmentations from 1 to d5.82s + 4.82e. The
first s will correspond to the digest on Alice’s input and the last d4.82s + 4.82e will correspond to the hash function
applied to the output z. In particular notice that the non-augmented garbled circuit will not use the m+ 1 to m+ s’th
input wires, as they will only be used “after the fact” to construct the augmentation on Alice’s input.

To distinguish these keys from keys used in the actual circuit we call these keys k′i,j for i ∈ [d5.82s + 4.82e] and
j ∈ [`]. In a similar manner we will let z′i,j denote the bit value of the i’th augmented key in the j’th circuit.
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Setup
1. Let n̄ = max{4n, 8s} and let ` be the smallest even integer satisfying `− 1

2
log(`) + log

(
2
√

2π
e2

)
≥ s. Let p be the

smallest integer satisfying p ≥ 6s+ 7. Let Alice and Bob initialize FCOM, F n̄,`,κBOTCC, and FCT.
2. Bob chooses MSec ∈ {0, 1}n×n̄ and a random bit vector ȳ ∈ {0, 1}n̄ under the constraint that MSec · ȳ = y and

sends MSec to Alice.
3. Based onMSec the parties agree on a Boolean circuit C computing the function f ′(x̄, ȳ) = f(x, y) = z where Alice

gives x ∈ {0, 1}m̄ as input and Bob gives y ∈ {0, 1}n̄ as input and Bob receives z ∈ {0, 1}o as output.
Polynomial Setup

1. Alice randomly chooses p polynomials of degree at most t = `/2. We call these polynomials P1, P2, . . . , Pp. For
i ∈ [p] and j ∈ [`] she then computes the points Pi(j). For each i ∈ [p] the ` points (Pi(j))j∈[`] thus uniquely
define the polynomial Pi of degree at most t.

2. Using FCOM Alice commits to Pi(j) for all i ∈ [p] and j ∈ [`]. Formally, she calls FCOM

(
vc, IDpoly

i,j , Pi(j)
)

and

Bob receives
(
vc, IDpoly

i,j

)
from FCOM for all i ∈ [p] and j ∈ [`].

3. Bob chooses a challenge ψ, that is, a random set of distinct elements from [p] such that |ψ| = b1.18s + 2.18c and
sends ψ to Alice.

4. Alice decommits to all the points corresponding to the received challenge. That is, for each i ∈ ψ and j ∈ [`] she

calls FCOM

(
open, IDpoly

i,j

)
and in turn Bob learns Pi(j).

5. Bob now verifies that for each i ∈ ψ the points (Pi(j))j∈[`] define a polynomial of degree at most t = `/2 by
computing Verify(ψ, (i, Pi)i∈ψ). If any of these checks fail Bob outputs abort and halts. Otherwise define the set
χ = [p]\ψ, which is then the indices of the remaining polynomials.

Oblivious Transfer
1. Alice garbles ` copies ofC by setting

(
∆j ,

{
k0
i,j

}
i∈[m̄+n̄]

,
{
k0
m̄+n̄+|C|+i,j

}
i∈[o]

, C̃j
)
← CYao (C) for all j ∈ [`].

2. Alice then inputs to F n̄,`,κBOTCC the set of pairs
{{
k0
m̄+i,j , k

1
m̄+i,j

}
i∈[n̄]

}
j∈[`]

and Bob inputs {ȳi}i∈[n̄]. Thus Bob

learns the set
{{
kȳim̄+i,j

}
i∈[n̄]

}
j∈[`]

.

Commitment
1. Alice sends the garbled circuits

{
C̃j
}
j∈[`]

to Bob. She also makes a verifiable commitment to both

the 0- and 1-output keys of each garbled circuit. That is, she calls FCOM
(
vc, IDout0

i,j , k
0
m̄+n̄+|C|+i,j

)
and

FCOM
(
vc, IDout1

i,j , k
1
m̄+n̄+|C|+i,j

)
for all i ∈ [o] and j ∈ [`].

2. Alice then uses FCOM to make verifiable commitments to the concatenation of the 0- and 1-key on each of her
augmented input wires for each garbled circuit. She does so by calling FCOM

(
vc, IDA−order

i,j , k0
i,j‖k1

i,j

)
for all i ∈

[m̄] and j ∈ [`].
3. She also commits to her augmented input by calling FCOM

(
commit, IDA−in

i,j , kx̄ii,j
)

for all i ∈ [m̄] and j ∈ [`].
4. Finally, she make verifiable commitments to the keys for Bob’s input wires, that is, for all i ∈ [n̄] and j ∈ [`] she

calls FCOM
(
vc, IDB−order

m̄+i,j , k
0
m̄+i,j‖k1

m̄+i,j

)
.

Augmentation
1. Now Bob samples three random bit vectors bIn ∈R {0, 1}m̄−1, bOut1 ∈R {0, 1}do+4.82s+3.82e and bOut2 ∈R
{0, 1}d4.82s+4.82e. The first two vectors define the matrices M In ∈ {0, 1}m×s and MOut ∈ {0, 1}d4.82s+4.82e×o as
M In
i,j = bIni+j−1, respectively MOut

i,j = bOut1
i+j−1.

2. Bob sends the three vectors bIn, bOut1 and bOut2 to Alice who then defines the matrices M In and MOut similarly.
3. Alice augments the garbled circuits to compute

(
M In · x

)
⊕awhere x is Alice’s binary inputs (in column form) and a

is her auxiliary binary inputs (in column form). That is, she computes the keys k′0i,j =
(⊕m

l=1 M
In
i,l · k0

l,j

)
⊕ k0

m+i,j ,
for all i ∈ [s] and all circuits j ∈ [`].

4. She then constructs verifiable commitments to the output keys of M In. That is, she calls FCOM
(
vc, IDout0−aug

i,j , k′0i,j
)

and FCOM
(
vc, IDout1−aug

i,j , k′1i,j
)

for all i ∈ [s] and j ∈ [`].
5. Next, Alice augments the garbled circuits further such that they compute (MOut · z) ⊕ bOut2 where z is the binary

output (in column form). That is, she computes the keys k′0s+i,j =
(⊕o

l=1 M
Out
i,l · k0

l+m̄+n̄+|C|−o,j
)
⊕
(
bOut2
i ·∆j

)
,

for all i ∈ [d4.82s+ 4.82e] and all circuits j ∈ [`].
6. Alice then computes the links Li,j = G

(
Pχ[i](j), k

′0
s+i,j

)
for i ∈ [d4.82s + 4.82e] and j ∈ [`]. Alice then sends

these links to Bob.

Figure 14. The Protocol – Part 1
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Cut-and-choose
1. Alice and Bob invoke FCT to randomly select t = `/2 elements from [`]. Call these t elements π and define
φ = [`]\π. We say that the set π is the check set and that φ is the evaluation set.

2. For the check circuits Alice then opens the commitments to all the input keys along with the polynomial points
associated with the augmented output wires. That is, she executes the following commandsFCOM

(
open, IDA−order

i,j

)
for all i ∈ [m̄], j ∈ [π] and FCOM

(
open, IDB−order

i,j

)
for all i ∈ [n̄], j ∈ [π]. Thus Bob receives from FCOM the

values k0
i,j‖k1

i,j for all j ∈ π and i ∈ [m̄+ n̄].
3. Bob uses the pairs of input keys to degarble the circuits C̃j and checks that they do in fact compute the function

agreed upon in the Setup phase. Thus, letting g̃i,j denote the i’th garbled gate in the j’th garbled circuit, he calls
k̃a,bi,j ← Eval

(
g̃i,j , k

a
i,j , k

b
i,j

)
for all a, b ∈ {0, 1}, i ∈ [n̄ + m̄] and j ∈ π. If he ever learns k̃a,bi,j 6= k

g(a,b)
i,j for any

a, b ∈ {0, 1}× {0, 1}, he outputs abort. He also checks the verifiable commitments to the output keys. That is, he
calls FCOM

(
check, IDout0

i,j , k
0
m̄+n̄+|C|+i

)
and FCOM

(
check, IDout1

i,j , k
0
m̄+n̄+|C|+i

)
for all i ∈ [o] and j ∈ π and

outputs abort if the functionality ever returns reject.
4. Bob also checks that the augmentation computing a digest on Alice’s input has been constructed correctly by check-

ing the verifiable commitments on the output keys of the check circuits. That is, he computes ∆j = k0
1,j ⊕ k1

1,j

for all j ∈ π. He then computes k′0i,j =
(⊕m

l=1 M
In
i,l · k0

l,j

)
⊕ k0

m+i,j , k
′1
i,j = k′0i,j ⊕ ∆j and then calls

FCOM
(
check, IDout0−aug

i,j , k′0i,j
)

and FCOM
(
check, IDout1−aug

i,j , k′1i,j
)

for all i ∈ [s] and j ∈ π. If FCOM ever
returns reject he outputs abort.

5. In the same manner Bob then uses all the output keys from the garbled circuits to compute the augmented output.
That is, he computes k′0s+i,j =

(⊕o
l=1 M

Out
i,l · k0

l+m̄+n̄+|C|−o,j
)
⊕
(
bOut2
i ·∆j

)
, k′1s+i,j = k′0s+i,j ⊕ ∆j and uses

these values to compute Pχ[i](j) via the link Li,j .That is he computes F (backwards, Li,j , k
′0
s+i,j) = Pχ[i](j).

He then verifies these values by calling FCOM

(
check, IDpoly

χ[i],j , Pχ[i](j)
)

for all i ∈ [d4.82s+ 4.82e] and j ∈ π.
6. If any of the above checks fail or if FCOM returns reject on any of the calls Bob outputs abort and terminates

the protocol.
Evaluation

1. Alice now opens her input keys by calling FCOM
(
open, IDA−in

i,j

)
for all i ∈ [m̄] and j ∈ φ from which Bob in turn

learns kx̄ii,j .
2. Using Alice’s input keys Bob evaluates the augmentation for consistency checking of Alice’s input for all j ∈ φ.

Thus he computes k′i,j =
(⊕m

l=1 M
In
i,l · kx̄ll,j

)
⊕ k

x̄m+i

m+i,j for all i ∈ [s] and j ∈ φ. He then uses the ver-

ifiable commitments to find the bit each key k′i,j represent. Thus he calls FCOM
(
check, IDout0−aug

i,j , k′i,j
)

and
FCOM

(
check, IDout1−aug

i,j , k′i,j
)

and sets the bit z′i,j = 0 if the first query returns accept, and z′i,j = 1 if in-
stead the second query returns accept. If both queries return accept or both return reject he then outputs
abort. He then verifies that qi,j = qi,j′ for all i ∈ [s] and j, j′ ∈ φ and if any check fails he outputs abort.

3. Bob now uses Alice’s input keys along with his own input keys which he learned in the Oblivious Transfer phase to
evaluate all garbled circuits in the set φ. That is, he sets

{
km̄+n̄+|C|+i

}
i∈[o]

← CEval
(
C̃j , {ki,j}i∈[m̄+n̄]

)
for all

j ∈ φ. For each j where C̃j =⊥ he discards C̃j .
4. He finds the output bits the keys represent (i.e., the semantic values) by calling FCOM

(
check, IDout0

i,j , km̄+n̄+|C|+i
)

and FCOM
(
check, IDout1

i,j , km̄+n̄+|C|+i
)

and sets the bit zi,j = 0 if the first query returns accept, and zi,j = 1

if instead the second query returns accept. If both queries return accept or both return reject he then sets
zi,j =⊥.

5. If zi,φ[1] = zi,j for all j ∈ φ\φ[1] then Bob accepts and returns this output. If not then Bob proceeds with the
Reconstruction phase.a

a In order to avoid timing attacks Bob should always do the following computations for simulated values.

Figure 15. The Protocol – Part 2
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Reconstruction
1. Bob computes the bits z′s+i,j =

(⊕o
l=1 M

Out
i,l · zl,j

)
⊕ bOut2 for all i ∈ [d4.82s+ 4.82e] and j ∈ φ.

2. Similarly he computes the augmented output keys as k
′z′s+i,j
s+i,j =

(⊕o
l=1 M

Out
i,l · k

zl,j
l,j

)
for all i ∈ [d4.82s+ 4.82e]

and j ∈ φ.
3. Now for each augmented output wire, evaluating to a semantic 0, Bob computes the values Pχ[i](j) for all

i ∈ [d4.82s + 4.82e] and j ∈ φ. That is, he uses link Li,j to compute Pχ[i](j) = F (backwards, Li,j , k
′z′s+i,j
s+i,j ).

for all i ∈ [d4.82s + 4.82e] and j ∈ φ where z′s+i,j = 0. For each of these values, he calls

FCOM

(
check, IDpoly

χ[i],j , Pχ[i](j)
)

. If FCOM returns reject on any of these instances he discards the associated
circuit j.

4. Bob now takes the remaining garbled circuits that evaluate to different values, and looks at all the augmented output
wires that evaluates differently between at least two of these garbled circuits to find a new polynomial point. That is,
define U ⊆ φ to be the set of circuits which has not been discarded and define W ⊆ [d4.82s+ 4.82e] such that for
each i ∈ W there exist a pair of indices j, j′ ∈ U where z′s+i,j 6= z′s+i,j′ and let V = W × U be the Cartesian
product of U and W . Now for each i ∈W do the following:a

(a) Find the first element j ∈ U for which it is true that z′s+i,j = 0. Now using link Li,j he calls

FCOM

(
check, IDpoly

i,j , F (backwards, Li,j , k
′
s+i,j)

)
. If FCOM returns reject then take the next element

(if it exist) j ∈ U where z′s+i,j = 0 and call FCOM

(
check, IDpoly

i,j , F (backwards, Li,j , k
′
s+i,j)

)
and con-

tinue taking elements (if they exist) until FCOM returns accept.
(b) When FCOM returns accept do polynomial interpolation using the set of pairs S = {π ∪ j} ×{

Pi(l)l∈π ∪ F (backwards, Li,j , k
′
s+i,j)

}
by calling Reconstruct(π ∪ j, S). Then the result should be

(l, Pi(l))l∈[`]. For each l ∈ [`]\{π ∪ j} call FCOM

(
check, IDpoly

i,l , Pi(l)
)

.

(c) Next, for each element j′ ∈ U for which it is true that z′s+i,j = 1 compute the values ∆j′ =

F (forwards, Li,j , Pi(j
′))⊕ k′s+i,j′ .

5. Now Bob should know ∆j for all j ∈ φ where the garbled circuit has not bee discarded. If he does not, then he
outputs abort and terminates.

6. Using ∆j and Alice’s input keys Bob can find Alice’s input for all circuits calling
FCOM

(
check, IDA−order

i,j , kxii,j‖kxii,j ⊕∆j

)
and FCOM

(
check, IDA−order

i,j , kxii,j ⊕∆j‖kxii,j
)
, if the first call re-

turns accept, Alice’s bit xi = 0, if the second call returns accept then xi = 1, otherwise he outputs abort and
terminates the protocol.

7. If Alice’s input bits are the same in all the remaining garbled circuits Bob evaluates the function f(x, y) = z

unencrypted and finally outputs ok and uses z as his output of the computation. However, if there is a discrepancy
he evaluates HIn⊕a in plain and compares the output with the semantic meaning of the output of HIn⊕a he found in
Evaluation. He discards any circuit where the plain and the semantic output are discrepant. Finally, he uses Alice’s
input of any remaining circuit, to evaluate the function f in plain.b

a The following should be done for each j being an index of an evaluation circuit in order to avoid timing attacks.
b Alice’s input will be unique on each of the remaining garbled circuit unless there is a collision in HIn ⊕ a, which only

happens with probability at most 2−s.

Figure 16. The Protocol – Part 3
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E Proof of Security

Before continuing with the actual proof we need the following preliminaries about universal hash functions:

Universal Hash Functions.

Definition 4 ((Binary) universal hash function). Given a family of functions H = {h : {0, 1}q → {0, 1}w} is a
family of universal hash functions if

∀x, y ∈ {0, 1}q, x 6= y : Prh∈RH[h(x) = h(y)] ≤ 2−w .

Furthermore, we say that a family of universal hash functions have the uniform difference property if

∀x, y ∈ {0, 1}q, x 6= y : ∀z ∈ {0, 1}w : Prh∈RH[h(x)⊕ h(y) = z] = 2−w .

We say that the family is pairwise independent if

∀x, y ∈ {0, 1}q, x 6= y : ∀z1, z2 ∈ {0, 1}w : Prh∈RH[h(x) = z1 ∧ h(y) = z2] = 2−2w .

Finally, we say that family is uniform if

∀x ∈ {0, 1}q,∀z ∈ {0, 1}w : Prh∈RH[h(x) = z] = 2−w

From the definition notice that pairwise independence is the strongest type of family as it implies both uniformity
and the uniform difference property. Furthermore, notice that if the family is uniform then it also satisfies the uniform
difference property, but the converse is not necessarily true.

Definition 5 (HIn (formal)). Let b ∈ {0, 1}m+s−1 and M In ∈ {0, 1}s × {0, 1}m be a matrix with each entry defined
as M In

i,j = bi+j−1. Now define the function hb : x → z as hb(x) = M Inx = z when queried on b. Finally define a
family of functions HIn = hb(·)b∈{0,1}m+s−1 .

Lemma 1. HIn is a universal hash function with the uniform difference property.

Proof. First notice that it is enough to show the uniform difference property by the following:

∀x, y ∈ {0, 1}m, x 6= y : ∀z ∈ {0, 1}s : Prh∈RH[h(x)⊕ h(y) = z] = 2−s ⇒
∀x, y ∈ {0, 1}m, x 6= y : ∀z ∈ {0, 1}s : Prh∈RH[h(x) = z ⊕ h(y)] = 2−s .

This must in particular be true when z = 0s and so ∀x, y ∈ {0, 1}m, x 6= y : Prh∈RH[h(x) = h(y)] = 2−s ≤ 2−s,
which meets the definition of a universal hash function.

Now what we need to show is Pr[
(
M Inx

)
⊕ (M Inx′) = z] = 2−s for any z ∈ {0, 1}s when each entry of M In

is defined as M In
i,j = bi+j−1, b ∈R zm+s−1 and x 6= x′. First notice that matrix multiplication is linear, so these are

equivalent: (
M Inx′

)
⊕
(
M Inx

)
= z

M In(x⊕ x′) = z

Thus it is enough to show that Pr[M In(x⊕ x′) = z] = 2−s for x 6= x′ and any z. We do this by showing that for any
choice of (x⊕ x′) 6= 0 there exist 2m−1 choices of b for each of the 2s possible elements in the range of the function.
Thus when b is chosen at random (from {0, 1}m+s−1) there is uniform probability of hitting each of the elements in
the function’s range, in particular of hitting z.
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Now set x̃ = x⊕ x′ and see that given b, M Inx̃ can be computed as follows:

M Inx̃ =


b1 b2 . . . bm
b2 b3 . . . bm+1

...
...

. . .
...

bs bs+1 . . . bm+s−1

 ·

x̃1

x̃2

...
x̃m

 .

That is, as an s ×m binary matrix times a column vector of m bits. Notice that we can rewrite this computation as
follows: 

b1 b2 · · · bm
b2 b3 · · · bm+1

...
...

. . .
...

bs bs+1 · · · bm+s−1

 ·

x̃1

x̃2

...
x̃m

 =


x̃1 x̃2 x̃3 · · · x̃m 0 · · · 0

0 x̃1 x̃2 · · · x̃m 0 · · · 0

0 0 x̃1 · · · x̃m 0 · · · 0
...

...
...

. . .
...

...
...

...
0 0 0 · · · 0 x̃1 · · · x̃m

 ·


b1
b2
b3
...

bm+s−1

 .

A bit more specific we view b as a column vector ofm+s−1 bits and define a binary matrixX ∈ {0, 1}s×{0, 1}m+s−1

where

Xi,j =

{
x̃j−i+1 ifj − i+ 1 ≤ m
0 otherwise

Now see that since x̃ 6= 0m+s−1 there must be at least one bit, say at position i, that is 1. Thus, we see that matrix X
will be of the following form: 

x̃1 · · · 1 · · · x̃m 0 0 · · · 0

0 x̃1 · · · 1 · · · x̃m 0 · · · 0
...

...
...

. . .
...

...
...

...
0 0 · · · 0 x̃1 · · · 1 · · · x̃m

 .

That is, the matrix is in row echelon form and does not have any all-0 rows. Thus the matrix has full rank (s) and
therefore is surjective and so we can hit each of the 2s possible s-bit outputs.

Next consider row i and column j. No matter what the value is of all the other m+ s− 2 entries in row i are set to,
the i’th bit in the output vector can be uniquely decided by setting bi to either 0 or 1. That is, if bi = 0 the m+ s− 2
other entries in row i and the vector b computes the i’th output bit, if it is set to 1, the negation of this will be the i’th
output bit. The point is that bi can be used to hit either 0 or 1 no matter what the other bits in the matrix and the vector
b are set to. This is clearly true individually for all the rows. However, as the output is a vector and we use one bit
of b for each row to determine each output bit we see that for a given output vector (of s bits) we need s bits of b to
uniquely decide its value, whereas the rest of the m+ s− 1− s = m− 1 bits of b remain free no matter what output
we desire and what the input is. Thus there will exist at least 2m−1 choices of b to give a specific output, in particular
z on any non-zero choice of x. But since we have already established, by the fact that our new matrix description of
the computation has full rank, it means that this is the case for all 2s possible outputs, thus there can only be exactly
2m−1 choices of b for each output, and in particular z, as 2s · 2m−1 = 2m+s−1 covers all the possible choices of b.

ut
Definition 6 (HOut (formal)). Let bOut1 ∈ {0, 1}do+4.82s+4.82e−1, bOut2 ∈ {0, 1}d4.82s+4.82e and
MOut ∈ {0, 1}d4.82s+4.82e × {0, 1}o be a matrix with each entry defined as MOut

i,j = bOut1
i+j−1. Now define the function

h′bOut1,bOut2 : x→ z as h′bOut1,bOut2(x) = (MOutx)⊕ bOut2 = z .

Finally, define a family of functions

HOut = h′bOut1,bOut2(·)
bOut1∈{0,1}d4.82s+4.82e,bOut2∈{0,1}do+4.82s+4.82e−1

.

Lemma 2. HOut is a pairwise independent universal hash function.

Proof. A proof can be found in [MNT90]. ut
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Proof of Protocol Security. We prove the protocol secure according to the standard real/ideal simulation paradigm
with sequential composition [Can00,Gol04,HL10] under the assumption that our garbling scheme is IND-CIA secure,
we have a secure link scheme in accordance with Def. 3 and hybrid access to the FBOTCC, FCT and FCOM functionali-
ties. In the end we argue how the protocol can be proven secure in the UC model [Can01] and show how to efficiently
realize it in the random oracle, FOT-hybrid model.

Theorem 2. Let π be the protocol in Fig. 14 to Fig. 16. Assume that the garbling scheme G = (CYao,CEval) used
in π is IND-CIA secure according to Def. 2 and the link scheme (G,F ) used is secure according to Def. 3. Then
π securely realizes FSFE in Fig. 7 in the (FBOTCC, FCT, FCOM)-hybrid model with abort in the presence of static,
malicious adversaries.

Proof. We split the proof up in two lemmas, one considering a corrupted Alice and one where Bob is corrupted. The
two lemmas are treated in Appendix E.1 and Appendix E.2, respectively. Theorem 2 follows directly from these two
lemmas. ut

E.1 Corrupt Alice

Lemma 3. Let π be the protocol in Fig. 14 to Fig. 16. Assume that the garbling scheme G = (CYao,CEval) used in π
is IND-CIA secure according to Def. 2 and the link scheme (G,F ) used is secure according to Def. 3 then π securely
realizes FSFE in Fig. 7 in the (FBOTCC, FCT, FCOM)-hybrid model with abort in the presence of static, malicious
adversary corrupting Alice.

Proof. Before proceeding with the formal proof we give some high-level intuition. Notice first that if Alice tries to
cheat she can only do so before the cut-and-choose phase as there is no interaction (except opening of commitments)
with her after this phase.

A common strategy [LP07,LP11,FN13,sS11] is to take the result to be the majority of the results of the evaluation
circuits. It can be shown that selecting half of the circuits as evaluation circuits, the majority of the evaluation circuits
are correct except with probability at most 2−s if ` = 3.22s [LP11]. It was later shown [sS11] that with the majority
approach, selecting 3/5 of the circuits as check circuits allows for a replication factor of ` = 3.13s.

However, in our approach we make sure that two evaluation circuits evaluating to different results enable Bob to
recover Alice’s plain input for these circuits. Hence, intuitively, a cheating Alice must guess exactly the cut-and-choose
challenge (in order to ensure that all check circuits are good while all evaluation circuits are bad). In this case the
optimal ratio between check and evaluation circuits is 1/2. This is seen as a cheating Alice’s success probability is(
s
cs

)−1
when c ≤ 1. Now,

(
s
cs

)−1
is clearly minimized when c = 1/2 since

(
s
cs

)
for 0 < c ≤ 1 is maximized when

c = 1/2.
The following lemma gives a lower bound on the replication factor ` required in our protocol (that is, how many

circuits to garble) in order to ensure that Alice guesses exactly the cut-and-choose challenge with probability at most
2−s.

Lemma 4. The probability of guessing exactly the elements in a set of size `/2 sampled randomly from a set of `

elements is less than 2−s when log
(

2
√

2π
e2

)
− 1

2 log(`) + ` ≥ s.

Proof. See Appendix F. ut

Choosing the replication factor according to Lemma 4, the only problem is therefore that Bob might not know
which circuit is the correct one. Thus, if more than one circuit “seemingly” evaluate correctly Bob must be able to dis-
cover which of these evaluations are correct. He does that by restoring Alice’s input as mentioned in the Reconstruction
phase and then evaluating the function f in plain. We now proceed with the formal proof.

Let A be an adversary controlling Alice in the real world execution of protocol π. We construct a simulator S
running in the ideal world with external access to FSFE. Internally S runsA, controlling Alice, along with a simulation
of the interaction between A, an honest Bob and the ideal functionalities (FBOTCC, FCT, FCOM). See Fig. 17 for an
illustration of this. The simulator S works as follows:
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Figure 17. The ideal and the real world execution with corrupt Alice (A). We must prove that for all adversaries A there exists a
simulator S such that for all input x, y and all auxiliary input aug to A and all values of s it holds that the (joint) distributions
IDEALS(x, y, z, κ) and REALA(x, y, z, κ) are computationally indistinguishable in κ.

– S starts simulating internally the real world execution of protocol π consisting of A, Bob and the ideal function-
alities FBOTCC, FCT and FCOM. If an honest Bob would abort at any time during the simulation, then S sends
abort to FSFE.

– The simulator then simulates the Setup, Polynomial Setup and Oblivious Transfer phases, but simulating his “real”
input as the all-0 string, i.e., it sets y = 0n.

– When reaching the Commitment phase the simulator extracts the ` (possibly different) inputs ofA to the ` garbled
circuits it has constructed. It does so directly since A calls FCOM with the keys of its input wires. We will later
determine which of these inputs is the oneA is actually committed to. In the rest of the proof we call the i’th input
bit in the j’th circuit given by A for x′ji . When we consider the entire vector of input bits in the j’th circuit we
remove the subscript, i.e., x′j , and when we consider the input to the ideal functionality we simply call it x′. In
either case if we consider the augmented input we add a bar, i.e., x̄′ji , x̄′

j and x̄′.
– The simulator continues and chooses two random universal hash functions in the Augmentation phase and then

runs the Cut-and-Choose, Evaluation and Reconstruction phases.
– At the end of the Evaluation phase an honest Bob (and in this case the simulator) will have discarded any in-

consistent garbled circuits received by A. Thus what remains are garbled circuits that can be evaluated. If they
all give the same output then the simulator will use one of Alice’s input vectors extracted during the Oblivious
Transfer phase to one of the evaluable garbled circuits and input such a vector to FSFE. Otherwise, it will continue
simulating an honest Bob in the Reconstruction phase and in turn find Alice’s input to each of the garbled circuits.
In particular S will, like honest Bob, then evaluate the function HIn ⊕ a in plain and compare the plain output
with the semantic meaning of the output he learned in Evaluation to find an input of Alice given to the correctly
constructed circuits. S then uses such an input of Alice as input to FSFE. Notice that there can only be one suitable
set of inputs (except with probability 2−s) since having more would imply that either the verifiable commitments
on the output keys of HIn ⊕ a were incorrectly constructed, in which case the simulator would have discarded the
circuit, or Alice has guessed a collision for HIn ⊕ a, which can only happen with probability 2−s.

Our first observation is that in the real (hybrid) world execution Bob’s input ȳ is only used as input to the ideal
functionality computingF n̄,`,κBOTCC. Consequently, the messages that Bob sends during the remaining part of the protocol
and hence the view of A do not depend on ȳ. Therefore, the output of A in the real world execution and S in the ideal
world are identical.

We must, however, prove that the joint distribution ofA’s and Bob’s output in the real world execution is identical
to the joint distribution of S’s and Bob’s output in the ideal world, except with negligible probability in κ. This involves
proving the following cases:
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1. Consider all steps of the protocol except for the reconstruction phase. For all these steps we must argue that Bob
outputs abort with the same probability in the ideal and real worlds. In the ideal world Bob outputs abort if
and only if S sends abort to FSFE. By construction S outputs abort if and only if Bob aborts in the simulation.
But the probability that Bob aborts may in general depend on his input, which is y in the real execution and 0n in
the simulation. So we must argue that the probability that Bob aborts does not depend on whether his input is y or
0n.

2. In the cases where Bob does not abort before the reconstruction phase we must argue that, except with probability
negligible in the security parameter, he does not abort during reconstruction and that his output in the real execution
is f(x′, y) where x′ is the same input for Alice that S inputs to FSFE in the ideal world. Our strategy for this is the
following:
(a) We show that after a certain point in the protocol, even a malicious Alice is committed to her inputs x′j for

each of the ` garbled circuits.
(b) We show how S can extract x′j for all j ∈ [`] from A.
(c) Then we show that both S and honest Bob will use the x′j as input for a circuit that is correctly garbled,

committed and where the verifiable commitments on the output keys of HIn⊕a are also correctly constructed.
(d) We then show that such a circuit exists except with negligible probability in the security parameter, if not he

will abort.
(e) Next we show that there cannot exist several good circuits where the input Alice is committed to is different.
(f) Finally, we argue that even with a malicious Alice, Bob outputs f(x′, y) except with negligible probability, in

particular that the real Bob will compute f(x′j , y) for the same x′j as the simulator, if not he will abort.

Before we show each of these steps, consider the following characterization: We let the circuit keys for a garbled
circuit be the symmetric keys corresponding to the input and output wires of that circuit which Alice commits to in
the Commitment phase. We say that a garbled circuit is good if the plaintext circuit that is obtained by decrypting
(degarbling/opening) the garbled circuit using its corresponding circuit keys results in the correct circuit (that is, the
circuit that correctly computes the augmented circuit). A garbled circuit that decrypts to some other plaintext circuit,
or that cannot be decrypted at all, using its circuit keys, is called a bad circuit. Note that after the Commitment phase
all garbled circuits are either good or bad. In a similar manner we call a verifiable commitment to an output key good
if it is correctly constructed and the id of the commitment reflects the key committed to. For example, the commitment
with id IDout0

i,j should be made to the i’th output 0-key in the j’th garbled circuit.

Proof of Case 1 We now consider all the steps in which Bob can output abort:
Polynomial setup If the opening of the polynomials, after the cut-and-choose step, is wrong or the polynomials

are not of correct degree then Bob aborts. However, which polynomials are checked is completely determined by
Bob’s challenge and is thus independent of his input.

Cut-and-choose Bob terminates in this phase if any of the garbled check circuits are incorrect, if Alice has not
committed to the correct input keys for each of the garbled circuits, if any commitment to the output keys of the
garbled circuit or HIn⊕ a is bad or if there is a problem with the verifiable commitments to the polynomial points,
found using the links. All of these cases depend on the cut-and-choose challenge which is chosen by coin tossing13

and thus independent of Bob’s input.
Evaluation If Alice does not give the correct openings to the commitments of her choice of input keys, if she

committed to garbage or if any of the verifiable commitments to the output keys of HIn ⊕ a are bad, then Bob will
terminate. However, the computation of HIn⊕a is only based on Alice’s input and thus independent of Bob’s input.
Finally, Bob will terminate if he cannot evaluate any of the garbled evaluation circuits. Whether Bob terminates
might be based on his input as he learns only one of the keys for each wire in each circuit in the Oblivious Transfer
phase. However, if Alice tries to do a selective failure attack during the OTs she cannot learn anything about Bob’s
true input because what Bob actually inputs to the protocol is ȳ, which by construction seems uniformly random.
Still, Alice can always learn one bit of ȳ using a selective failure attack, and even more bits if she is lucky. However,

13 Failure of HOut also depends on the cut-and-choose of polynomials but we have already showed that such failure is independent
of Bob’s input.

36



as proved in [LP07] if |ȳ| = max(4n, 8s) this does not give Alice any information about Bob’s true input except
with probability 2−s.

Proof of Case 2.a and 2.b We first observe that in the protocol even a malicious Alice is committed to a value
associated with each of her input wires for all the j ∈ [`] garbled circuits after the Commitment phase. The simulator
can furthermore extract each of these values since Alice commits to these using FCOM. Furthermore, the simulator can
find the semantic values (if the circuit can be evaluated) for each of Alice’s commitments by extracting Alice’s “order
commitments” (The Commitment phase, step 2). More specifically what S does is as follows:

– In Step 2 of the Commitment phase S learns k0
i,j‖k1

i,j = k0
i,j‖(k0

i,j ⊕∆j) for all i ∈ [m̄] and j ∈ [`] directly by
extracting them from Alice’s calls to FCOM.

– Then in Step 3 of the same phase S learns kx
′
i
i,j for all i ∈ [m] and j ∈ [`].

– For each i ∈ [m̄] and j ∈ [`] S learns the bits Alice committed to by checking if kx
′
i
i,j = k0

i,j or kx
′
i
i,j = k1

i,j . If the
first is true then x̄′ji = 0, if the second is true then x̄′ji = 1.

Proof of Case 2.c Next, notice that some of these commitments may not be actual keys to their associated garbled
circuit but instead just random garbage. In that case and both S and Bob will discard their associated garbled circuits
during the Evaluation phase (or terminate the protocol during Cut-and-Choose). So, unless the protocol has terminated,
by the end of the Evaluation phase, at least one garbled circuit for evaluation will exist where each of the inputs
committed to by Alice are actual keys for the corresponding garbled circuit. However, there might be more than one
such circuit and Alice might have committed to keys with different semantic value in each of these. Still, if that is the
case then the augmented output of HIn⊕a will be different for each of the circuits where she has given different inputs
except with probability 2−s.

To see this we must show that it will not be possible for Alice to find a collision on HIn ⊕ a with probability
larger than 2−s. That is that it is not possible for her to give two inputs x‖a, x′‖a′ ∈ {0, 1}m̄ with x 6= x′ such that
(M Inx) ⊕ a = (M Inx′) ⊕ a′ with probability larger than 2−s. Now remember that we have from Lemma 1 that HIn

computes a universal hash function with the uniform difference property, i.e., that Pr[M Inx⊕M Inx′ = ā] = 2−s for
any ā ∈ {0, 1}s. It turns out that the uniform difference property is enough to ensure Alice cannot find a collision. To
see this notice that what we actually need to show is Pr[

(
M Inx

)
⊕ a =

(
M Inx′

)
⊕ a′] ≤ 2−s for all x‖a, x′‖a′ ∈

{0, 1}m̄ with x 6= x′ when M In is uniformly sampled. However, setting ā = a⊕ a′ we see

M Inx⊕M Inx′ = ā

M Inx⊕M Inx′ = a⊕ a′

(M Inx)⊕ a = (M Inx′)⊕ a′ ,

and thus we have Pr[
(
M Inx

)
⊕ a =

(
M Inx′

)
⊕ a′] = 2−s and we are done.

Next see that both Bob and the simulator will see if the evaluation of HIn ⊕ a is correct for the circuits in φ during
the Evaluation phase and abort if that is not the case. However, Alice could commit to different inputs without being
detected by corrupting the verifiable commitments of the output keys of HIn ⊕ a. Still, we force Alice to commit to
the output keys before the Cut-and-Choose phase, so if she chooses to cheat we then have from Lemma 4 that she
cannot successfully do this for all evaluation circuits and thus there will be at least one circuit for which the verifiable
commitments to the output keys of HIn ⊕ a are correctly constructed. Furthermore, one of these must be associated
with some correct input keys as the protocol would otherwise terminate during Evaluation.

We have now established that there must be a vector of input keys from Alice along with good verifiable commit-
ments to the output key of HIn⊕ a. However, there might still be instances of input keys that fit their associated circuit
but where HIn ⊕ a is incorrectly constructed, e.g., so that it gives the same digest as the correctly constructed case. In
this situation we must now argue that both Bob and S can find out which of the garbled circuits and its corresponding
HIn ⊕ a augmentation is correct. In particular, we have two cases:

– Either the semantic output of the garbled circuit is the same in both cases and there is no issue for Bob since the
correct output is known in the real world and Bob can output this. In the simulation S can easily find out which
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circuit is correct since it can extract the semantic value of Alice’s input keys as described above in the proof of 2.a
and 2.b. The input for a correct circuit whose associated HIn ⊕ a augmentation is correct S inputs to FSFE.

– If the semantic output of the garbled circuits are different the simulator can do the same as in the case above or it
can do the same as a real-world Bob would; use the Reconstruction phase to extract x′j for all j ∈ φ committed
to by Alice and evaluate HIn ⊕ a of the disputed circuits in plain and find out which input is used in a correctly
constructed circuit and the use this input to evaluate the function f in plain.

Proof of 2.d The fact that at least one good circuit exists or both S and Bob will terminate the protocol follows directly
from Lemma 4.

Proof of 2.e The fact that we cannot have several correctly constructed augmented garbled circuits evaluate to different
outputs stems from the fact that if they evaluate differently then Alice’s input must be different. However, if that is the
case then HIn⊕ a, except with probability 2−s, will output different values and thus both Bob and S will terminate the
protocol by Lemma 1 and the discussion of case 2.c.

Proof of Case 2.f We finally argue that even with a malicious Alice, if x′ is the semantic value of the input that Alice
commits to in the Commitment phase, associated with a correctly constructed augmented garbled circuit, then f(x′, y)
will be the output of Bob if he does not abort.

To see this we only need to argue that in the real world, and despite a corrupted Alice, Bob outputs f(x′, y) where
x′ is the input that Alice commits to in the Commitment Step. To show this we consider the following lemma:

Lemma 5. Assume we have c evaluation circuits and w output wires where at most half are bad, then the probability
that we cannot find the ∆ for each circuit, and thus might fail the reconstruction, is at most

1 + (w/2)(2c − 1) +

w/2∑
i=2

((
w/2

i

)
· c · 2i(c−1)

)
.

Proof. See Appendix G. ut

According to Lemma 5 we can bound the probability that a corrupted Alice passes the cut-and-choose test of
polynomials and that we cannot restore all the ∆ values for the evaluable circuits. When we use the following lemma
we get that the amount of wires needed in order to make sure that we can find ∆j for all j ∈ φ except with probability
at most 2−s:

Lemma 6. Assuming the polynomials on at least half of the wires are good then we achieve failure probability at most
2−s for s ≥ 1 if we have at least w = d4.82s+ 4.82e ≥ − s

log(3)
2 −1

− 1
log(3)

2 −1
output wires.

Proof. See Appendix G. ut

Next, to bound the amount of polynomials needed in the cut-and-choose challenge remember that we need at least
half of the d4.82s + 4.82e evaluation polynomials to be good. Thus there is a total of

(
s2

s2−(d4.82s+4.82e)
)

possible
ways to choose the check polynomials. If more than half of the evaluation polynomials are “bad” then there is a

total of
(s2−( d4.82s+4.82e

2 +1)
s2−(d4.82s+4.82e)

)
“bad” cut-and-choose challenges. Since there is only a set of s2 −

(
d4.82s+4.82e

2 + 1
)

good polynomials to choose from and the check size remains s2 − (d4.82s + 4.82e). Thus the probability of a “bad”
cut-and-choose challenge is (s2−( d4.82s+4.82e

2 +1)
s2−(d4.82s+4.82e)

)(
s2

s2−(d4.82s+4.82e)
)

We must now find a value for s2 such that this expression is less than 2−s. According to the following lemma this is
the case if we set s2 ≥ 6s+ 7.
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Lemma 7. (6s+7−( d4.82s+4.82e
2 +1)

6s+7−(d4.82s+4.82e)
)(

6s+7
6s+7−(d4.82s+4.82e)

) ≤ 2−s

for s > 1.

Proof. See Appendix G. ut

Next see that at least half of the polynomials used to augmented the output wires of HOut are good (the event in
Lemma 6) then we have exactly the case described in the Reconstruction phase except if some of the links of HOut are
wrong. However, since Alice sends the links before the cut-and-choose phase then Lemma 4 tells us that there will be
at least one circuit where the links are correctly constructed. In turn Bob will always be able to recover the input x′

used by A.
Whether a garbled circuit is good or bad is determined before partitioning them into check and evaluation circuits

in Cut-and-Choose. Thus when using a replication factor of ` (which is the replication factor actually used in the
protocol), the random partitioning into check and evaluation circuits will ensure that there will be no good evaluation

circuit with probability at most 2−s ≤ 2
−(`− 1

2 log `+log
(

2
√

2π

e2

)
) (by Lemma 4).

This completes the proof for the case where Alice is corrupt.

E.2 Corrupt Bob

Lemma 8. Let π be the protocol in Fig. 14. Assume that the garbling scheme G = (CYao,CEval) used in π is
IND-CIA secure according to Def. 2 and the link scheme (G,F ) used is secure according to Def. 3 then π securely
realizes FSFE in Fig. 7 in the (FBOTCC, FCT, FCOM)-hybrid model with abort in the presence of static, malicious
adversary corrupting Bob.

The intuition for this part of the proof is quite similar to most other two-party protocols based on garbled circuits
and cut-and-choose [LP07, LP11]. Plainly speaking a malicious Bob cannot cheat since all the input he gives to the
protocol is his plain input bits (to FCOM) and some random choices, which are used only to protect himself against a
potentially malicious Alice.

Still, from a simulation point of view, we must argue that the simulated B outputs the same as B in the real
(hybrid) execution, including the literal output of the protocol f(x, y′) = z. This is not as obvious as in the case of a
corrupted Alice and is achieved by S learning the cut-and-choose challenge directly from FCT and then constructing
the evaluation garbled circuits “maliciously” such that they always output f(x, y′) = z no matter what the semantic
value of the input is, in particular it will still give the correct output even if the x′ used in the garbled circuit is the all-0
string.

The formal proof proceeds as follows: Given an adversary B that controls Bob, we construct a simulator S in a
way analogous to the case where Alice is corrupted. Formally the simulator S works as follows:

– S starts simulating internally the real world execution of the protocol consisting of Alice, B and the ideal func-
tionalities F n̄,`,κBOTCC, FCT and FCOM. If Alice aborts at any time during the simulation, then S sends abort to
FSFE.

– The simulator then executes the Setup and Polynomial Setup phases as an honest Alice would.
– When reaching the Oblivious Transfer S first constructs the garbled circuits as an honest Alice would. It then

extracts B’s input ȳ′ from his call to F n̄,`,κBOTCC. S then computes MSecȳ′ = y′ and sends y′ to FSFE, which returns

z = f(x, y′). Simulating F n̄,`,κBOTCC, S returns the the keys kȳ
′
i
m̄+i,j for i ∈ [n̄] and j ∈ [`] to B.

– In the Commitment phase S sends the garbled circuits it just constructed to B. Then, S simulates FCT to select
the partition of check and verification circuits. For all the check circuits it constructs the verifiable commitments
of the output keys correctly. For the evaluation circuits it first sets Alice’s input to x′ = 0m‖a with a ∈R {0, 1}s
and evaluates z′ = f(0m, y′) in plain. It then constructs the verifiable commitments to each bit i correctly if
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z′i = zi, otherwise it switches the meaning of the 0- and 1-key, i.e. it doesFCOM

(
vc, IDout0

i,j , k
0
m̄+n̄+|C|+i,j ⊕∆j

)
and FCOM

(
vc, IDout1

i,j , k
0
m̄+n̄+|C|+i,j

)
. Thus when B evaluates the evaluation circuits and learns the semantic

meaning of the output keys they will always be z = f(x, y′). The rest of the commitments in the Commitment
phase S constructs as an honest Alice would.

– In the Augmentation phase S receives the specification for HIn and HOut from Bob. For the check circuits S then
constructs the verifiable commitments to the output keys of HIn⊕a along with the links, as an honest Alice would.
For the evaluation circuits S decides on a uniformly random string of s bits and hardcodes the HIn ⊕ a part of the
evaluation circuits to compute this. That is, it constructs the verifiable commitments to the output keys of HIn ⊕ a
such that they hit the randomly chosen string when evaluated on 0m‖a. For HOut S uses the output z received
from FSFE and constructs the verifiable commitments as an honest Alice would.

– S now proceeds with the Cut-and-Choose, Evaluation and Reconstruction phases as an honest Alice would.

To prove security we must show the following:

1. We must argue that Alice outputs abort with the same probability in the real and ideal world. In particular
that the probability with which she aborts does not depend on whether or not her input is x‖a or 0m‖a′ with
a, a′ ∈R {0, 1}s.

2. If Alice does not abort then we must argue that, except with negligible probability in s, Alice outputs the same in
the real and ideal world.

3. We need to argue that the output of B is the same in the real and ideal world. In particular that B does not learn
anything that depends on Alice’s input x except f(x, y′) = z.

Together, the steps avove ensure that the joint distributions of B’s output and Alice’s output in the ideal and in the real
world are indistinguishable.

Proof of Case 1 Notice that an honest Alice following the protocol will not abort during the protocol.

Proof of Case 2 This case is quite easy to argue about since Alice does not receive any “real” output. What she receives
is perhaps a message saying abort. However, since Alice is honest this will happen with the same probability in both
the real and ideal world.

Proof of Case 3 This is the hardest case and we must first argue that S can convince B to learn the true value
z = f(x, y′) with the same probability in the real and ideal world. To do this we first observe that in the real protocol
even a corrupt Bob is committed to a specific input ȳ′ at the time he sends his input to F n̄,`,κBOTCC. Since S fully controls
the simulation of F n̄,`,κBOTCC, S can therefore easily extract ȳ′ from Bob’s communication with F n̄,`,κBOTCC, compute y′ =
MSecȳ′ and input y′ to FSFE (as done in the simulation above). Thus, in the real world, B learns f(x, y′) = z from
FSFE. This is the same as in the ideal world since S hardcodes the evaluation garbled circuits to be exactly f(x, y′) = z.

Furthermore, B cannot learn anything about the semantic values of Alice’s input keys (or any other wire keys in
the circuit) for the evaluation circuits because of the IND-CIA security of the garbling scheme. Notice that IND-CIA is
needed as we use a simulated input for Alice in the simulation.

More formally we reduce a distinguishability advantage of the view of the execution of the protocol in either the
real or ideal (simulated) world to an advantage in winning the IND-CIA game. Specifically we construct a distinguisher
D in the IND-CIA game which makes use of B and an environment that tries to distinguish executions of the protocol
in the real or ideal (simulated) world. We will construct D, such that depending on the value of the challenge bit c in
IND-CIA,D will produce a transcript of the protocol that is indistinguishable from the real, respectively S’s simulation
of the ideal world.

We have D make the environment execute the real, respectively simulated ideal protocol, up to the Oblivious
Transfer phase when B inputs ȳ′. At this point D sets the bit vector x0 = x̄‖ȳ′ and x1 = 0m‖a‖ȳ′ where a is a
uniformly random vector of s bits. It then initializes `/2 executions of the IND-CIA game by asking for `/2 independent
garbled versions of the circuit C and at each instance it queries the game (x0, x1).
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Next,D embeds these circuits in the protocol as evaluation circuits. This means that B will receive garbled circuits
constructed as an honest Alice would. The keys for the evaluation circuits he receives are constructed by the IND-CIA
game. These will again be made as in the real world if c = 0 and as in the ideal, simulated world, if c = 1.

Next we let D evaluate the garbled circuits received by the IND-CIA games using the input keys it also got from
the IND-CIA games. Then, it constructs verifiable commitments on the output keys so that they hit their corresponding
bits in z = f(x, y). That is, if the output key on the i’th wire in the j’th evaluation circuit is ki,j and zi = 0 it does
FCOM

(
vc, IDout0

i,j , ki,j
)
, otherwise it does FCOM

(
vc, IDout1

i,j , ki,j
)
. It then simulates the other verifiable commitment

by calling FCOM
(
vc, IDout1

i,j , ri,j
)

if zi = 0 and FCOM
(
vc, IDout0

i,j , ri,j
)

otherwise, where ri,j is a uniformly random
sampled κ bit string. In a similar manner it simulates the order commitments by just committing to uniformly random
sampled strings.

Since we are in the hybrid model for commitments this goes unnoticed until the commitment functionality is
queried on one of the keys D did not learn, so if B could distinguish between the random commitments and the true
commitments, then it is because it can query the functionality for commitment on the other key it did not learn. But
then we have both keys for one of the wires and can compute the value ∆ for that wire, which allows D to win
the IND-CIA game. Specifically, for all queries x to the ideal functionality for verifiable commitment done by B, if
x ∈ {0, 1}κ D will query O∆(x⊕ k) in each IND-CIA game for all output keys k which it learned from the keys and
circuits returned by the game. If instead x ∈ {0, 1}2κ then D will query O∆(x′ ⊕ x′′) in each IND-CIA game, where
x′ is the first κ bits of x and x′′ the last κ bits of x.

Another subtlety in the embedding done in the above reduction is that D needs to give the links Li,j =
G
(
Pχ[i](j), k

′0
i,j

)
to B. This is only possible for the wires where D has learned the 0 key. However, for all the wires

where D learns only the 1 key, it holds that if it did not give the links to B, then it would be hard for B to compute
any point on the corresponding polynomial or the 0 key: The points on the polynomials have high min-entropy in
the view of B, as he knowns only t points, and computing a 0 key would be the same as breaking the security of
the garbling scheme. Hence, if we consider the distribution (x1, y1, . . . , x`, y`, z) generated by running the protocol
and letting z be the view of B with the links removed which correspond to wires for which he learned the 1 key and
if D let (xi, yi) be the corresponding

(
Pχ[i](j), k

′0
i,j

)
, then this distribution is hard. Hence D can replace the links

Li,j = G
(
Pχ[i](j), k

′0
i,j

)
by G(a, b) for uniformly random a and b. Note that it only needs to do this step twice. First

D replaces all the involved links by random links, then it can do the hybrids where we circuit by circuit replace input
a with input 0 in the circuits, and then we can go back and replace the random links by correct links.

The arguments above imply that if it is possible for the environment to distinguish between a real world execution
and a simulated execution, then this translates directly into an advantage for D in the IND-CIA game.

Finally, the reason a PPT B cannot learn anything from the output of HIn ⊕ a, which will be different in the real
and ideal world, is because the output is encrypted under a one-time pad, i.e., the random bits a chosen by S are xor’ed
with M Inx. So both in the real and ideal world this value will be uniformly distributed.

Hence, the above series of hybrids take us from the real execution to the simulation.
ut

A Note On the Statistical Security Parameter. In the proof above we use that each of the bad events that a cheating
Alice can try to cause can only happen with probability at 2−s. These events are:

1. A majority of inconsistent polynomials remains after cut-and-choose of polynomials.
– This can only happen if she incorrectly constructs at least d2.41s+ 3.41e of the polynomials.

2. Every check circuit is good and every evaluation circuit is bad.
– This only happens if she constructs half of the circuits correctly and the other half incorrectly.

3. There is a collision of HIn ⊕ a.
– This can only happen if she gives at least two different inputs to the protocol.14

4. Alice is successful in a selective failure attack.
– This can only happen if she gives garbage for some inputs to the FBOTCC.

14 There can seemingly be a collision if Alice maliciously constructs the verifiable commitments to the output keys of HIn ⊕ a for
one of the circuits where she has given divergent input. However, this is not actually a collision of HIn⊕a but an incorrect circuit.
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5. There is a collision of HOut.
– This can only happen if she constructs at least one circuit maliciously such that it computes something else

than f(x, y).

However, nothing is preventing Alice from trying to cause each of these events. Still, it should be noted that if Alice
is unsuccessful in her cheating attempt of event 1, 2 or 3 then Bob will notice and can safely abort the protocol. Thus
trying to cause more than just a single of the events 1, 2 or 3 will only increase the probability of Alice being caught
and Bob terminating the protocol without the compromising security. Now notice that list of bad events are in the order
of which Bob will discover if they are unsuccessful (and in turn for the three first events, abort). Thus, to increase the
probability of a successful cheating attempt Alice should try to make event 4 and 5 occur. This is so since if there is
a collision of HOut Bob cannot terminate the protocol without possibly leaking some information on his private input
and since a selective failure attack does not necessarily make Bob abort the protocol. She cannot combine an attack
for event 4 or 5 with attack 1, 2 or 3 since if one of these are unsuccessful then Bob will terminate before event 4 and
5 could happen.

Now since event 4 and 5 can happen independently with probability 2−s we get from the union bound that if
Alice tries to make both occur she will be successful in having at least one of them occur with probability at most
2−s+ 2−s = 2−s+1. This means that in order to achieve a total failure probability of at most 2−s we must instead of s
use s′ = s+ 1 in the part of the protocol concerned with HOut and the selective failure attack prevention. Thus MSec

must be a n×max(4n, 8(s+ 1)) matrix and HOut must have d4.82(s+ 1) + 4.82e output wires (in turn we must also
construct 6(s+ 1) + 7 polynomials to be certain that the success probability of guessing the cut-and-choose challenge
of polynomials is still at most 2−s unless we wish to reprove Lemma 7).

UC Security. We note the following about the simulator in the proof:

1. The simulator does not at any time rewind the adversary it simulates.
2. The simulator can extract the modified input of the malicious player in its simulation (and hence obtain the honest

players output from FSFE).

Therefore, we immediately achieve UC security [Can01] if the underlying OT protocol used for the OTs and coin
tossing protocol are UC-secure.

For example, assuming that the discrete log problem (DLP) is hard, the UC-secure oblivious transfer of [PVW08]
can be used to realize the seed OTs.

Theorem 2 is stated in the hybrid world where the protocol depends on ideal functionalities for commitments,
coin tossing and oblivious transfers with consistent choice. In order to achieve a protocol that can be implemented in
practice we apply the UC composition theorem, as stated in the following corollary.

Corollary 1. Let (CYao,CEval) be the concrete Yao circuit garbling scheme of Fig. 5 and let the links be implemented
as discussed in Appendix B. Let π be the protocol in Fig. 14 to Fig. 16, but where the call to FBOTCC is replaced by
invocation of the protocol πBOT in Fig. 11 (in which calls to FOT are replaced by an execution of the OT protocol
in [PVW08]) and where calls to FCOM are replaced with invocations of the protocol πCOM from Appendix C and where
the calls to FCT are replaced by invocations of the protocol πCT from Appendix C and where calls to H(·) in the
subprotocols above are done with calls to the random oracle. Then in the random oracle model π UC-securely realizes
FSFE with abort in the presence of static, malicious adversaries assuming DLP is hard and both parties have access
to a common reference string.

Proof. The (CYao,CEval) scheme in Fig. 5 is shown to be IND-CIA secure in the random oracle model in [PSSW09].
As proved in Appendix C the protocol πCOM UC-securely realizes FCOM in the random oracle model. Next, consider
that FBOTCC can be implemented by an invocation of πBOT along with a random oracle and a protocol for FOT as
described in Appendix C, where FOT can be realized as in [PVW08] using a common reference string and the assump-
tion that DLP is hard. Then FCT can be realized as described in Appendix C. Finally, all of the above realizations are
UC-secure in the presence of static and malicious adversaries. Hence, by Theorem 2 and the UC-composition theorem
Cor. 1 follows immediately from Theorem 2. ut
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F The Replication Factor

Using Stirling’s approximation formula we find a lower bound for the circuit replication factor ` required for a mali-
cious Alice being able to guess the cut-and-choose challenge with probability at most 2−s. We restate Lemma 4 here:

The probability of guessing exactly the elements in a set of size `/2 sampled randomly from a set of ` elements is less

than 2−s when log
(

2
√

2π
e2

)
− 1

2 log(`) + ` ≥ s.

Proof (of Lemma 4). First notice that a cheating Alice can only succeed if she guesses exactly the set of check circuits
in the cut-and-choose phase. For circuit replication factor ` there are exactly

(
`
`/2

)
possible sets, of which one is

randomly selected based on the coin tossing. We now bound
(
`
`/2

)
using Stirling’s approximation, assuming ` ≥ 2:

(
`
`
2

)
=

`!
`
2 !
(
`− `

2

)
!

=
`!(
`
2 !
)2 ≥

√
2π`

(
`
e

)`(
e
√

`
2

(
`
2

e

) `
2

)2 =

√
2π`

(
`
e

)`
e2 `

2

(
`
2e

)` =

√
2π```e−`

e22−1```2−`e−`

=
2
√

2π`2`

e2`
=

2
√

2π

e2
·
√
`2`

`
=

2
√

2π

e2
· `− 1

2 2`

We now want to find ` such that 2
√

2π
e2 · `− 1

2 2` ≥ 2s. This will mean that there will be at least 2s possible choices
for the cut-and-choose phase and thus Alice’s probability of guessing the choice will be at most 2−s. Setting c = 2

√
2π
e2 ,

taking the logarithm, and isolating s we get:

log
(
c`−

1
2 2`
)
≥ log (2s)

log(c)− 1

2
log(`) + ` ≥ s

ut

Approximating the constant we get:

`− 1

2
log(`)− 0.5596 ≥ s

G Polynomial Cut-and-Choose

We restate Lemma 5 here:

Assume that we have c evaluation circuits and w output wires and at most half of the wires have an associated
polynomial that is bad (of degree greater than t), then the probability that we cannot find the ∆ for each circuit, and
thus might fail the reconstruction, is at most

1 + (w/2)(2c − 1) +
∑w/2
i=2

((
w/2
i

)
· c · 2i(c−1)

)
2cw

.

Proof (of Lemma 5). In the following denote the bit value on the i’th wires in the j’th circuit by bi,j . We now prove
this lemma using a counting argument. First notice that the total amount of cases of c circuits with w wires are 2c·w

since we can view it as a set of cw binary wires where each outcome is possible. We now count the number of “bad”
configurations of these wires, i.e., configurations of the polynomial points of the wires in the circuits that does not
make it possible to do interpolations such that we can learn the ∆ used in each of the c circuits. First define a “very
bad” wire to be a wire whose associated polynomial is not correctly constructed. Any very bad wire will be completely
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useless, no matter how its associated bit is set. Furthermore, the position of a very bad wire does not matter as all wires
are equally usable in the manner that they can be used to restore ∆j for all j ∈ [c]. Next define an “AND0 wire” to be
a wire where the bits from all c circuits AND’ed together gives 0, assuming it is not a very bad wire. Notice that for a
given wire on c circuits there is only one configuration where the bits AND’ed together to 1, that is for the all 1-string.

Notice that in the view of finding ∆j for all j ∈ [c] the positions of very bad wires does not matter, as any wire
that is not very bad can be used to do polynomial interpolation and thus find ∆ values. Next see that because of the
potential existence of very bad wires the worst cases will always be when we have w/2 very bad wires. So we can
simply consider bad cases on the remaining w/2 wires. The reason being if we can restore the ∆ values with only
w/2 wires then we can always restore it with more wires, no matter the configuration of the bits on the extra wires,
as we can simply choose to ignore them in the restoration process. So in the following we only count configurations
of the w/2 wires which are not very bad. Now see that all bad configurations are captured in the following, possibly
intersecting, sets:

1. All configurations when we do not have any AND0 wires.
2. All configurations when we only have a single AND0 wire.
3. For all i ∈ [w/2]\1, all configurations when we have i AND0 wires and ∃j ∈ [c] : ∨ik=1bk,j = 0, that is, the

cases where the OR of the bits on each of the i wires in any of the c circuits results in 0.

If the first case happens then we cannot do any polynomial interpolation and thus must be included. However, this
case only occurs when the values on all the w/2 wires are 1’s, i.e., only on one configuration.

For the second case assume the AND0 wire is wire i, then if this case occurs we will only be able to do interpolation
on wire i, and in turn only be able to find ∆j for each circuit j when bi,j = 1 (which cannot occur for all circuits since
wire i must have at least one 0-bit). Now see that a wire is an AND0 if and only if it is not the 1-string. Thus there are
2c − 1 possible ways a given wire can be of the AND0 type. Furthermore, notice that there are w/2 ways of selecting
an AND0 wire. Finally see that when we only have a single AND0 wire, the values on the remaining wires must all be
the 1-string. So we get a total of (w/2)(2c − 1) bad configurations in this case.

The third case is a bit harder to show and we consider it in an inductive manner. I.e., first consider the case of two
AND0 wires, w.l.o.g. wire 1 and 2, and the event that ∃j ∈ [c] : b1,j ∨ b2,j = 0. This means that for circuit j we will
only be able to learn 0 keys on the two wires we a able to interpolate (the AND0 wires) and thus not be able to find∆j .
Now to count configurations see that bits only OR to 0 if all of them are 0, so it must be the case that b1,j = b2,j = 0.
Now since each AND0 wire has c bits, we see that the amount of remaining configurations of these two wires are at
most15 22(c−1), since each wire constitute 2c−1 possible configurations (once the j’th bit has been set to 0). However,
this occurs no matter which value j takes, i.e., it happens once for each of the c possible values j can take. That is at
most c22(c−1) cases. Finally see that we can select two AND0 wires in

(
w/2

2

)
different ways, so we get

(
w/2

2

)
c22(c−1)

cases in total.
Now consider the general case where we have i AND0 wires. There must be no circuit where the bits of these i

wires OR to 0. When they OR to 0 the remaining configuration of the wires are bad, i.e., at most 2i(c−1) configurations.
Again it is bad no matter for what circuit the wires OR to 0, so in total c · 2i(c−1) cases. Also, these i AND0 wires can
be chosen in

(
w/2
i

)
ways. So in total

(
w/2
i

)
· c · 2i(c−1) bad configurations.

Finally we add all the cases together and get an upper bound on bad cases:

1 + (w/2)(2c − 1) +

w/2∑
i=2

((
w/2

i

)
· c · 2i(c−1)

)
.

Dividing this number with the total amount of possible cases (2cw) yields the desired result.
ut

Notice that this analysis is not tight as our argumentation only considers a subset of all good cases. That is, there are
several bad cases that get counted several times.

15 We count some redundant configurations here.
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We restate Lemma 6 here:

Assuming the polynomials on at least half of the wires are good then we achieve failure probability at most 2−s for
s ≥ 1 if we have at least w = d4.82s+ 4.82e ≥ − s

log(3)
2 −1

− 1
log(3)

2 −1
output wires.

Proof. First observe that the optimal strategy for Alice, if she wishes to succeed in cheating, is to construct only two
circuits that evaluate differently (assuming that the amount of circuits is less than the amount of output wires). This is

so since the equation
1+(w/2)(2c−1)+

∑w/2
i=2 ((w/2i )·c·2i(c−1))

2c·w/2 is maximized for c = 2 under the constraint that 1 < c < w,
c ∈ Z and w ≥ 8. Notice that we need c > 1 since otherwise there is no chance of failure as the output will be the
same in all circuits. Obviously we also need c ∈ Z. Finally notice that c < w and w ≥ 8 are constraints arriving as
artifacts of the equation.

Under these constraints consider the probability of the worst case, i.e. that the output is discrepant on 2 circuits:

1 + (w/2)(22 − 1) +
∑w/2
i=2

((
w/2
i

)
· 2 · 2i(2−1)

)
22·w/2 =

1 + 3(w/2) +
∑w/2
i=2

((
w/2
i

)
· 2 · 2i

)
2w

=
1 + 3(w/2) + 2 ·∑w/2

i=2

((
w/2
i

)
· 2i
)

2w

=
1 + 3(w/2) + 2 ·

(∑w/2
i=0

((
w/2
i

)
· 2i
)
− w − 1

)
2w

=
1 + 3(w/2) + 2 ·

(
(1 + 2)w/2 − w − 1

)
2w

=
1 + 3(w/2) + 2 · 3w/2 − 2 · w − 2

2w

=
2 · 3w/2 − (w/2)− 1

2w

= 2 · 2−w · 3w/2 − 2−w · (w/2)− 2−w

= 2−w+1 · 2log(3)w/2 − 2−w((w/2) + 1)

= 2−w+1+log(3)w/2 − 2−w2log((w/2)+1)

= 21+w( log(3)
2 −1) − 2−w+log((w/2)+1)

≤ 21+w( log(3)
2 −1) − 21−w

The last step follows when w ≥ 2. So we finally need to show that 21+w( log(3)
2 −1)−21−w ≤ 2−s. To do so we replace

w by our hypothesis term, w = − s
log(3)

2 −1
− 1

log(3)
2 −1

.

2−s ≥? 2
1+

(
− s

log(3)
2
−1
− 1

log(3)
2
−1

)
( log(3)

2 −1)
− 2

1−
(
− s

log(3)
2
−1
− 1

log(3)
2
−1

)

= 21+(−s−1) − 2
1+ s

log(3)
2
−1

+ 1
log(3)

2
−1

= 2−s − 2
1+ s

log(3)
2
−1

+ 1
log(3)

2
−1

Next observe that 2
1+ s

log(3)
2
−1

+ 1
log(3)

2
−1 ≈ 2−4.82s−3.82. Thus for s ≥ 1 we have that

2−s − 2
1+ s

log(3)
2
−1

+ 1
log(3)

2
−1 < 2−s.

Finally, since the amount of evaluation circuits are less than s for s ≥ 1 then c < w ⇒ 2s < d4.82s+ 4.82e is clearly
true and we are done. ut
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We restate Lemma 7 here:

(6s+7−( d4.82s+4.82e
2 +1)

6s+7−(d4.82s+4.82e)
)(

6s+7
6s+7−(d4.82s+4.82e)

) ≤ 2−s

for s > 1.

Proof. Consider 2−s/
(
6s+7−( d4.82s+4.82e

2
+1)

6s+7−(d4.82s+4.82e) )

( 6s+7
6s+7−(d4.82s+4.82e))

. If we can show that this is an increasing function for s > 1, then we are

done, as this means that 2−s is growing faster than
(
6s+7−( d4.82s+4.82e

2
+1)

6s+7−(d4.82s+4.82e) )

( 6s+7
6s+7−(d4.82s+4.82e))

and in turn that
(
6s+7−( d4.82s+4.82e

2
+1)

6s+7−(d4.82s+4.82e) )

( 6s+7
6s+7−(d4.82s+4.82e))

<

2−s. We see this by taking the derivative of 2−s/
(
6s+7−( d4.82s+4.82e

2
+1)

6s+7−(d4.82s+4.82e) )

( 6s+7
6s+7−(d4.82s+4.82e))

and noticing this is always positive.

ut

H Two-Output Functionality

Until now we have only considered functions where Bob receives the output and where Alice does not receive any
output. This is an artifact of the Yao garbling approach, caused by its asymmetric nature, in which functions with only
output to Bob is simpler. In the general case both Alice and Bob get private output fA(x, y) = zA and fB(x, y) = zB ,
respectively. Since Alice can just input a one-time pad r (which is “free” when using the free-xor technique [KS08]),
constructing two-output functions is essentially a matter of ensuring authenticity or correctness, meaning mechanisms
letting Alice be sure that the result she receives from Bob is indeed the correct result fA(x, y).

In the basic Yao scheme designed for a semi-honest adversary, a common technique for authenticating Alice’s
result is to let Bob send the output keys obtained to Alice. But for a malicious adversary, when multiple circuits are
being sent, sending keys to Alice would reveal to Alice from which circuit Bob choose the output, opening up for
selective failure attacks.

Lindell and Pinkas [LP07] suggested embedding a one-time (information theoretic) MAC of the result in the
function to be computed, i.e., where Alice as part of her input submits the secret MAC key and later uses it to verify
the result. This increases Alice’s input with |zA| + 2s bits and the circuit size with O(s|zA|) gates, that is, O(s2|zA|)
inexpensive cryptographic operations.

Shelat and Shen [sS11] instead uses digital signatures and witness-indistinguishable proofs, givingO(s|zA|) heavy
cryptographic operations. Mohassel and Riva [MR13] brings this down to O(s|zA|) inexpensive operations.
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