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Abstract. Authenticated encryption algorithms protect both the confidentiality and integrity of
messages with a single processing pass. We show how to utilize the L ◦ P ◦ S transform of
the Russian GOST R 34.11-2012 standard hash “Streebog” to build an efficient, lightweight
algorithm for Authenticated Encryption with Associated Data (AEAD) via the Sponge con-
struction. The proposed algorithm “StriBob” has attractive security properties, is faster than the
Streebog hash alone, twice as fast as the GOST 28147-89 encryption algorithm, and requires
only a modest amount of running-time memory. StriBob is a Round 1 candidate in the CAESAR
competition.
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1 Introduction
Since January 1, 2013, the Russian Federation has mandated the use of new GOST R 34.11-
2012 hash algorithm in digital signatures [10, 13]. This hash was designed apparently in re-
sponse to cryptographic weaknesses reported in the previous hash standard GOST R 34.11-94
[12, 18]. The 2012 standard, dubbed STREEBOG, has superficial similarities to the old 1994
standard but also features clearly AES-inspired design elements [8, 14, 20].

In contrast to the Russian approach, the U.S. NIST selected a novel Sponge-based design,
KECCAK, as the basis of future SHA-3 hash function standard [2, 7]. Sponge hashes diverge
from more traditional Davies-Mayer [17] (SHA) and derived HAIFA [5] (STREEBOG) construc-
tions in that they are based on a single keyless permutation π rather on a keyed permutation
which can seen as a special-purpose block cipher.

Furthermore, Sponge permutations can be used to achieve Authenticated Encryption in
straightforward manner (see Figure 1) [1, 3]. Here both the confidentiality and integrity of a
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message can be guaranteed with a single processing pass, without the use of a separate encryp-
tion algorithm such as GOST 28147-89 [11]. This has clear advantages for performance and
implementation footprint, which are especially useful in limited-resource applications. Even
full-featured secure communications suites can be constructed from a single permutation [22].

In this note we show how to construct a modern lightweight AEAD algorithm from the
core of the GOST R 34.11-2012 STREEBOG hash. Our proposal, “STRIBOB” is faster than the
STREEBOG hash alone, has good security arguments, and runs on low-resource platforms. The
proposal is a first round candidate in the U.S. NIST - funded CAESAR Competition [21, 23].
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Figure 1: A simplified view of a Sponge-based AEAD. First the padded Secret Key, Nonce, and
Associated Authenticated Data - all represented by du words - are “absorbed” or mixed into the
Sponge state. The π permutation is then used to also encrypt data pi into ciphertext ci (or vice
versa) and finally to “squeeze” out a Message Authentication Code hi.

2 Structure of GOST R 34.11-2012
STREEBOG produces either a 256-bit or a 512-bit hash from a bit string of arbitrary size using
the Merkle-Damgård [9, 19] iterative method without any randomization.

Figure 2 gives an overview of the hashing process. Padded message M is processed in 512-
bit blocks M = m0 | m1 | · · · | mn by a compression function h′ = gN(h,mi). The chaining
variable h also has 512 bits and N denotes the index bit offset of the input block. After the
last message block, there are finalization steps involving two invocations of the compression
function, first on the total bit length of input, and then on checksum ε, which is computed over
all input blocks mod 2512.
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Figure 2: Operation of STREEBOG with 512-bit output. For 256-bit hashes, the initial h value
is changed to 0x010101..01 and the output h(M) is truncated to 256 bits.
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2.1 STREEBOG Compression Function gN(h,m)

The compression function h′ = gN(h,m) takes in a chaining variable h, message block m, a
position index variable N , and produces a new chaining valuee h′. The compression function
is built from a keyless 512-bit nonlinear permutation LPS and 512-bit vector XOR operations.
The compression function has 12 rounds and a performs a total of 25 invocations of LPS :

[K1, X1] = [ LPS(h⊕N), m ]

[Ki+1, Xi+1] = [ LPS(Ki ⊕ Ci), LPS(Xi ⊕Ki) ] for 1 ≤ i ≤ 12

gN(h,m) = K13 ⊕X13 ⊕ h⊕m.
Figure 3 shows the structure of g. We can view it as a two-track substitution-permutation

network where input value h ⊕ N and a set of 12 round constants Ci is used to key (via Ki)
another substitution-permutation network operating on h . The outputs of the two tracks are
finally XOR’ed together with original values of h and m. We note that h together with offset N
uniquely defines all Ki subkey values for each invocation of g.

Computation of gN(h,m) requires at least 3 × 512 bits or 192 bytes of temporary storage,
which may be preventive for ultra light-weight applications. Furthermore the mod 2512 sum-
mation for ε must be performed concurrently to the compression function.
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Figure 3: STREEBOG compression function. All data paths, inputs, and outputs are 512-bit
vectors. Here the ⊕ symbol denotes the XOR operation between two 512-bit vectors.

2.2 The LPS Transform
The LPS transform is a 512-bit keyless permutation, and forms the cryptographic core of
STREEBOG and STRIBOB. It depicted in Figure 4. and consists of three stages. We abbre-
viate the composite function L(P (S(x))) = (L ◦ P ◦ S)(x) as LPS . The components are:

S Nonlinear substitution. A 8× 8 - bit S-Box is first applied to each of the 64 bytes of data.

P Permutation. A byte transpose where the 8 × 8 byte matrix is reflected over its main
diagonal (rows written as columns or columns written as rows).

L Linear transform. Finally the eight 64-bit words are individually subjected to a vector-
matrix multiplication with a 64× 64 - bit matrix in F2

3



S S S S S S S S

S S S S S S S S

S S S S S S S S

S S

S S

S S S S S S S S

S S S S S S S S

S S S S S S S S

( byte transpose )

0 8 16 24 32 40 48 56

1

2

3

4

5

6

7

9 17 25 33 41 49 57

10 18

13

14

15

26 58

59

60

61

62

63

34 42 50

55473931

22

21

30

29

38

37

46

45

54

53

23

( 64× 64-bit matrix )

L

L

L

L

L

L

( 8× 8-bit S-Box )

L ◦ P ◦ S

S P L

Figure 4: LPS consists of a byte substitution layer S, byte transpose P , and linear layer L.

2.3 Security of LPS
STREEBOG gets all of its nonlinearity from 8-bit S-box S, which seems to have been designed to
offer resistance against classical methods of cryptanalysis. Its differential bound [6] is P = 8

256

and best linear approximation [16] holds with P = 28
128

.
The linear transform L is not randomly constructed even though it is expressed without

explanation as a 64 × 64 binary matrix in [13]. L in fact has a byte-oriented structure as an
MDS matrix with F28 arithmetic in a similar fashion as AES, even though this is not mentioned
in the standard specification [14, 20].

S and L are effective in mixing the bits of the eight 64-bit rows. P swaps rows and columns
and after two rounds each input bit affects each output bit of the 512-bit state. LPS has similar
per-round avalanche to AES and similar resistance to Square attacks1 [15].

3 Authenticated Encryption Algorithm STRIBOB

In a sponge function only a single keyless permutation π is required. We utilize the LPS trans-
form and twelve round constants Ci of GOST R 34.11-2012 in our new design. For some vector
of twelve 512-bit subkeys Ci we define a 512-bit permutation πC(X1) = X13 with iteration

xi+1 = LPS(Xi ⊕ Ci) for 1 ≤ i ≤ 12.

Theorem 1. If πC(x) can be effectively distinguished from a random permutation for any C, so
can gN(h, x) for any h and N .

Proof. If h is known, so are all of the subkeys Ki as those are a function of h alone. We have
the equivalence

gN(h, x)⊕ x⊕ h = πK(x⊕N).

Assuming that the round constants Ci offer no advantage over known round keys Ki, πC is as
secure as πK and any distinguisher should have the same complexity.

1STRIBOB has 6-round “Squarepants”, as this is the best theoretical Square attack we know of.
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Theorem 1 indicates that a generic powerful attack against π is also an attack on g. A
distinguishing attack against g of course does not imply a collision attack against STREEBOG as
a whole. However as the security level expected of STRIBOB is lower than that of STREEBOG,
Theorem 1 a significant level of confidence for our construction.

Structure of π is shown in Figure 5. One may find it helpful to compare it with Figure
3 while considering the first input block which always has N = h = 0; the subkey values
Ki are always the same, regardless of the input message block m. The chaining value h after
processing the first block (but before final XORs) is h = πK(m), which is equivalent to πC , just
with different random round constants.

The output truncation after the last invocation of g of STREEBOG-256 indicates that collision
resistance is expected of half of the output as well, which is exactly what we need in a r = 256
Sponge mode (Section 3.1).
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C1

LPS

C2

LPS LPS

C3 C12

x′x

x′ = π(x)

Figure 5: The 512-bit permutation π used by STRIBOB.

3.1 Sponge Mode and Security Parameters
The sponge function π is operated in a MULTIPLEX - like mode in order to achieve maximum
flexibility [22]. This way STRIBOB can be used for plain hashing, PRNG generation and in
two-party protocols in addition to Authenticated Encryption with Associated Data (AEAD).

Theorem 2 (Theorem 4 from [4]). The DUPLEXWRAP and BLNK authenticated encryption
modes satisfy the following privacy and authentication security bounds:

Advprivsbob(A) < (M +N)2−k +
M2 + 4MN

2c+1

Advauthsbob(A) < (M +N)2−k +
M2 + 4MN

2c+1

against any single adversary A if K $← {0, 1}k, tags of l ≥ t bits are used, π is a randomly
chosen permutation, M is the data complexity (i.e., the total number of blocks queried to the
keyed sponge function or duplex object) and N is the time complexity (total number of times π
or its inverse is called).

Proof. Can be derived from Theorem 4 from [4] and Theorem 1 of [1].

Since b = 512, we choose a Sponge rate of r = 256 bits, which leaves capacity c = b− r =
256. We choose key size k = 192 and limit M < 256 (264 bits) and N < 2k. As our actual
effective capacity is c ≈ 254 (δ ≤ 2 effective capacity bits are lost due to domain separation
bits [22]), a 192-bit security level is comfortably reached.
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3.2 Padding Example
STRIBOB uses BLNK padding, which is a variant of [22]. The “payload rate bytes” are the
first 32 bytes of the state and byte 32 is used as padding and domain indicator. Each element
is padded with a 0x01 byte and zeros to full r-bit block length so that π is called between
different domains. If the domain data length is an exact multiple of r, BLNK_END is set at the
domain indicator byte. The domain flags used in the CAESAR implementation are:

Flag name Value Padding bit or Domain identifier
BLNK_END 0x01 Padding marker bit
BLNK_FIN 0x02 Data element final block marker bit
BLNK_KEY 0x10 Secret key (in)
BLNK_NPUB 0x20 Public sequence number (in)
BLNK_NSEC 0x30 Secret sequence number (in / out)
BLNK_AAD 0x40 Authenticated Associated Data (in)
BLNK_MSG 0x50 Confidential Message Payload (in/out)
BLNK_MAC 0x60 Message Authentication Code (out)

Example. To illustrate the operation with CAESAR parameters, we use the 192-bit secret key
"192-bit Secret Key value" and public nonce "Nonces Used Once" (16 bytes) to
authenticate Associated Data "AAD Test Vector Exact Block 32 B" (32 bytes) and
to encrypt plaintext "This is a Test Vector for stribob192r1" (38 bytes).

S1 STRIBOB uses an all-zero initial state. The first input to π is the padded secret key value:
3139322D62697420536563726574204B65792076616C756501000000000000001200· · ·00

S2 Nonce is XORed into the state before second π:
4E6F6E6365732055736564204F6E6365010000000000000000000000000000002200· · ·00

S3 Associated data length equals rate (32 bytes) so padding is in domain separation byte:
414144205465737420566563746F7220457861637420426C6F636B20333220424300· · ·00

Info. The state before encryption is:
39E876FD1FA6DB05FC681ECAC803A2A48B6CB30E6B47D9FEC94FE1E8CB3E02D4

734803FB16F36A5653DEFEBC7012C28C949172CAEC1274E19A7C5132AFE58EAC

S4 Padded plaintext blocks for π invocations 4 and 5:
546869732069732061205465737420566563746F7220666F722073747269626F5000· · ·00
62313932723101000000000000000000000000000000000000000000000000005200· · ·00

Corresponding ciphertext bytes:
6D801F8E3FCFA8259D484AAFBB7782F2EE0FC7611967BF91BB6F929CB95760BB

A808DE292F8B

S5 Authentication tag extraction, 128 bits. No need for state after this with CAESAR.
165BD9D62B3C7B7D6DC423446BE76082
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4 Implementation and Performance Notes
Since the new construct requires 12 invocations of LPS per 256 bits processed in comparison
to 25 invocations per 512 bits with STREEBOG, we see that the new construct is faster. Further-
more, the operational memory requirement is shrunk to approximately 25 % of the original.

Low-resource software platforms. For a software implementation on a low-resource 8 or 16-
bit CPUs and SoCs (e.g. RFID, Smart Card, Sensor, Ubiquitous / IoT category systems) it
is advantageous to realize the linear layer L as a matrix multiplication in F28 . Multiplication
in a small finite field can be implemented via discrete logarithm and exponentiation tables:
AB = exp(logA + logB). Note that STREEBOG and therefore STRIBOB uses a special bit-
inverted representation for field elements [14].

One can combine the S-Box lookup and discrete logarithm table into a single 8 × 8 - bit
lookup table log(S(x)). The 8 × 8 matrix over F28 M (representing L) can be stored in log
form. Required addition x+ y (mod 28 − 1) can be implemented by adding carry bit bx+y

28
c of

addition x+ y (mod28) to the 8-bit sum itself – set exp(255) = exp(0) in this case.
As the transpose P can be coded into the loops (switching the column and row indexes),

the implementation of LPS requires a total of 256 + 256 + 8 × 8 = 576 bytes for storage.
Unfortunately Ci round constants still require 12 × 64 = 768 bytes. One may consider a vari-
ant that uses a fast pseudorandom generator such as some Fibonacci-based sequence or linear
congruential generator instead of a truly random C to further compress the implementation.

Medium- to high-resource software platforms. A software implementation on system with a
medium- or high-performance CPUs (e.g. server, desktop, laptop, or tablet category systems)
can utilize 8 × 8 × 64 - bit lookup tables that combine S and L, requiring a total of 16 kB and
768 B for round constants. The compression function code itself is very compact.

Results of wall-clock throughput measurements on a typical desktop system: 2

Algorithm Throughput
AES - 128 / 192 / 256 109.2 / 90.9 / 77.9 MB/s
SHA - 256 / 512 212.7 / 328.3 MB/s
GOST 28147-89 53.3 MB/s
GOST R 34.11-1994 20.8 MB/s
GOST R 34.11-2012 109.4 MB/s
STRIBOB 115.7 MB/s

Hardware. Use of AES instruction set significantly boosts AES performance, but so would
similar hardware optimizations for STREEBOG and STRIBOB. Since the rate of STRIBOB is
twice that of AES and there are 12 rounds (indicating roughly equivalent critical path), we can
expect STRIBOB hardware implementations to be significantly faster than AES.

2Measurements were made on a single core of an Intel Core i7 860 @ 2.80 GHz system running Ubuntu Linux
13.10 (amd64) with gcc 4.8.1. The AES, SHA, GOST 28147-89 and R 34.11-1994 timings with were measured
with Ubuntu default OpenSSL (1.0.1e). A. Degtyarev’s implementation (0.11) was used for the GOST 34.11-2012
benchmark. The STRIBOB reference implementation is by author.
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5 Conclusions
We propose STRIBOB, an Authenticated Encryption with Associated Data (AEAD) algorithm
based on the GOST R 34.11-2012 hash standard. The new algorithm is faster than the hash
standard alone, twice as fast as the GOST 27147-89 encryption algorithm, and is competitive
against AES. STRIBOB is a first round candidate in the CAESAR competition of the U.S. Na-
tional Institute of Standardization and Technology [21, 23].

A strong security relation exists between STRIBOB’s π function to the compression function
g of GOST R 34.11-2012, giving us a significant level of confidence in its security. Furthermore
the underlying Sponge mode of operation is provably secure. We feel that our proposal offers a
viable alternative to present GOST standards.
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