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Abstract. In pairing-based cryptography, the security of protocols us-
ing composite order groups relies on the di�culty of factoring a composite
number N . Boneh et al proposed the Cocks-Pinch method to construct
ordinary pairing-friendly elliptic curves having a subgroup of composite
order N . Displaying such a curve as a public parameter implies revealing
a square root of the complex multiplication discriminant −D modulo N .
We exploit this information leak and the structure of the endomorphism
ring of the curve to factor the RSA modulus, by computing a square root
λ of −D modulo one of its factors. Our attack is based on a generic dis-
crete logarithm algorithm. We recommend that λ should be chosen as a
high entropy input parameter when running the Cocks-Pinch algorithm,
in order to ensure protection from our attack.

Keywords : composite order group, integer factorization, elliptic curve,
endomorphism, Coppersmith's algorithm

1 Introduction

Bilinear groups of composite order have been used as a convenient tool
to provide plenty of cryptosystems with advanced functionalities. such
as zero-knowledge proof systems [15], group signatures in the standard
model [5], traitor tracing with full traceability [8], functional encryption
with full security [23, 2] and attribute-based encryption with e�cient re-
vocable storage [1].

In the composite order setting, the abelian group G can be expressed
as a direct product ofm prime order subgroups Gi for i ∈ [1,m]. Assuming
the order of the group is hard to factor, such decomposition is non trivial.
Since we rely on the hardness of factoring, we need to use large moduli
for implementing these protocols. This yields too costly group operations
and pairing computation. Freeman [11] has investigated the possibility
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to generically convert composite order schemes into primes order ones
and has identi�ed two properties of composite order constructions, called
cancelling and projecting shown to be also achievable in the prime order
setting. In this work, Freeman provides several examples of protocols that
could be transformed, but the conversion does not work mechanically;
description and proofs have to be reworked for each scheme. Several pa-
pers [22, 30, 29] have further explored the possibility to build a general
framework for such conversion. Although a fully generic transformation
would be desirable in many aspects, composite order groups remain a
very convenient tool to implement more e�cient schemes with new func-
tionalities. In addition, they allow to introduce nice abstractions such as
cancelling, projecting and parameter hiding which provide a clear under-
standing of the underlying algebraic structure. It is thus essential to �nd
e�cient ways to implement pairings on composite order groups securely.

In order to construct pairing-based schemes with composite order
groups, we can either implement the pairing using supersingular curves
as in the original construction in [9] or use ordinary curves as suggested
by Boneh et al [4]. These are particularly recommended if the security re-
lies on the Decisional Di�e-Hellman (DDH) assumption. Moreover, recent
results [12, 20, 32, 10] show that the discrete logarithm problem on super-
singular curves is weak. In particular, recent announcements (see [14] for
instance) show that pairings of Type 1 as de�ned in [28] are no longer safe.
This is a �rst reason for constructing pairing-friendly ordinary curves. Sec-
ondly, note that the use of ordinary curves for implementing composite
order group protocols is particularly meaningful if we want to compare
performance analysis between composite order schemes and their prime
order analogues in Freeman's framework [11].

In this paper, we investigate the security of pairing-based compos-
ite order group protocols that use ordinary curves. We identify security
weaknesses of instantiations of pairing-based protocols in the composite
order setting. Our analysis departs from the complex multiplication (CM)
construction of pairing friendly elliptic curves whose number of points is
divisible by the product of several large primes. In order to construct
pairing over composite order groups from such curves, the Cocks-Pinch
method can then be employed [6]. Boneh, Rubin and Silverberg [4] point
several security issues that occur in this setting. Following their work, we
provide a discrete log based type attack when implementing the protocol
using this method. We take the Boneh-Goh-Nissim encryption scheme as
master study case.



Description of our attack. Boneh et al [4] noticed that when displaying
a public ordinary curve, whose number of points divisible by N can be
counted in polynomial time, one may easily compute a square root s of
the CM discriminant −D mod N . Assuming that a generator Pi of one of
the subgroup Gi is given as a public value, we show how we can recover
λ such that λ ≡ s (mod pi) with λ < pi. To do so, we use an e�ciently
computable endomorphism φ and the fact that an element of order pi is
publicly known. We thus have the equation φ(P1) = λP1 with 0 ≤ λ < p1.

We �rst show how to recover λ in the case where λ ≈ b√pic. We
consider two approaches: the �rst one consists in viewing the previous
equation as a monic polynomial equation of degree one whose root is λ. We
then apply Coppersmith's techniques for �nding small roots of modular
polynomial equation. The second one consists in running the kangoroo
method in an interval of small size depending on the desired security
level. Once λ is found, we can recover pi by computing pi = gcd(N, s±λ).

While the case λ ≈ b√pic arises with negligible probability, we build
on the treatment of these low density instances in order to attack factor-
ization when λ is arbitrary large (i.e. 0 ≤ λ < pi). The idea is to write λ as
x+b√picy where x and y are of size bounded by b√pic. We then combine
the two previous methodologies as follow: we will use a Pollard-rho like
algorithm to �nd x, while running Coppersmith's algorithm to recover y.

Organisation. This paper is organised as follows. Section 1 speci�es the
attack setting and makes it explicit using the BGN encryption scheme.
Section 2 reviews the Cocks-Pinch method and its generalization to the
case of a composite modulus. Section 3 reviews some backgrounds on Cop-
persmith techniques to �nd small roots of polynomials. Section 4 identi�es
weak instances and show how to recover part of the factorization of N .
Section 5 extends the methodologies of the attack on low density instances
to any instances. Section 6 gives the complexity of our attack and com-
pares it to the best known algorithm for factoring.

2 Backgrounds on pairings and composite order protocols

2.1 Composite order schemes and setting of the attack

In this section, we specify the general frame of our attack and review the
schemes which work in this setting. We focus on schemes using a pairing

e : G×H 7→ GT (1)



and such that the order of the groups G,H,GT is a composite modulus
N = p1 . . . pm, where p1, . . . , pm are primes. We denote by Gi (resp. Hi)
the subgroup of G (resp. H) of order pi. We de�ne by G a generator for a
composite order bilinear structure which on input the security parameter
τ outputs (p1, . . . , pm, G,H,GT , e). The system that �ts to the attack
setting is any composite order scheme implemented using ordinary curve
and for which:

1. a curve whose number of points is known and divisible by a large
composite public modulus N .

2. one element of one of the subgroups of G (or H) is displayed as public
information when implementing the scheme.

To simplify, we focus on systems implemented using a pairing gen-
erator for m = 2 and describe the BGN encryption scheme [9] using
asymmetric pairings. Our attack works as well for certain instances when
m > 2. This will be further explained in Section 6.

The security of the BGN encryption scheme relies on the Subgroup
Decision problem [9], which is a particular instance of the General Sub-
group Decision family of assumptions introduced in [24]. Recall that this
assumption has been proven valid in the generic group model assuming
that N is a hard to factor modulus (see [18]). It is worth to precise that
our attack does not assume that the General Subgroup Decision problem
is easy, but uses the fact that an element of one of the subgroups of G or
H can be displayed when running the protocol.

When implementing the Boneh, Goh, Nissim encryption scheme [9]
using asymmetric pairings, the public key consists in (N = p1p2, G ∼=
G1 × G2, H ∼= H1 × H2, GT , P, P1, Q,Q1), where G1 and H1 (resp. G2

and H2) are both of order p1 (resp. p2) and P, P1 and Q,Q1 are random
generators of G,G1 and H,H1 respectively. To encrypt a message m, one
computes (mP + rP1,mQ+ sQ1), for random scalars r, s ∈ ZN . One can
thus get for free an element of H1 from the public key.

2.2 The Cocks-Pinch method

Pairings on elliptic curves, i.e. the Weil and the Tate pairing map to the
multiplicative group of an extension �eld of Fq. This extension �eld needs
to contain the N -th roots of unity. We denote by k the embedding degree
with respect toN , i.e. the smallest integer such that the extension �eld Fqk
contains the N -th roots of unity. Pairings are usually computed by using
Miller's algorithm, whose e�ciency depends on an e�cient arithmetic for



Fqk . Therefore, we use elliptic curves for which the embedding degree k is
small.

Writing the Frobenius endomorphism π as an element of the endomor-
phism ring leads to the following condition

∃ y ∈ Z 4q = t2 + y2D (2)

If this condition is satis�ed, the CM method outputs a curve whose
number of points is #E(Fq) = q+1− t. Cocks and Pinch [17] proposed an
algorithm which, given a prime number N and an integer k, constructs a
pairing friendly elliptic curve such that N |#E(Fq) and whose embedding
degree with respect to N is k. This method was extended by Boneh, Rubin
and Silverberg [4] to the case where N is a composite number. We brie�y
recall the method in Algorithm 1.

Algorithm 1 The Cocks-Pinch algorithm

Require: k, r prime numbers pi, D and N |(qk−1), N = pα1
1 . . . pαrr , and −D a square

mod N .
Ensure: q, t such that there is a curve with CM by −D over Fq with q + 1− t points

where N |(q + 1− t) and N |(qk − 1).
1: Choose an integer X which is a primitive k-th root of unity modulo every pαii .
2: Choose any s (mod N) such that s2 = −D (mod N).
3: Take an integer Y congruent to ±(X − 1)s−1 (mod N).
4: repeat
5: q ← ((X + 1)2 +D(Y + jN)2)/4
6: j ← j + 1
7: until q is prime
8: return q and t = X + 1

One may use the Chinese Remainder Theorem to obtain X of order k
modulo all the pαii 's, i ∈ {1, . . . , r}, in Step 1. Similarly, Step 2 computes
s2 = −D (mod N) by using the Chinese Remainder Theorem. Boneh et
al. [4] note that if D is a divisor of k, then one may compute a square
root of unity by the formula

s =


∑2D−1

a=1
(a,2D)=1

(−Da )X
ak
D if D ≡ 3 (mod 4),

1
2

∑4D−1
a=1

(a,2D)=1
(−Da )X

ak
4D otherwise

(3)



2.3 Implementation and choice of subgroups on ordinary

curves

In this section, we are interested in pairing implementation on ordinary
curves.

On an ordinary curve, if the embedding degree k is greater than 1, it
is most e�cient to choose to implement the pairing in (1) by choosing

G = E[N ] ∩Ker(π − [1]) and H = E[N ] ∩Ker(π − [q]) (4)

Indeed, it was shown that when pairing elements in these subgroups, many
operations in Miller's algorithm can be done in sub�elds Fqk , which crit-
ically reduces the cost of the pairing computation. When implementing
composite order protocols, if we need to ensure that the DDH assumption
holds in both G and H, then we need to choose these subgroups such
that there are no distortion maps for points in these subgroups. Given a
point P ∈ E[N ], a distortion map for P is a map φ such that for a point
P , φ(P ) /∈ 〈P 〉. The following result was given by Verheul [34], whose
purpose was to investigate the existence of distortion maps for points of
order N .

Theorem 1. Let E be an ordinary curve de�ned over Fq and let P be
a point over E of prime order N 6= q. Suppose the embedding degree k
is greater than 1 and denote by Q a point de�ned over Fqk , such that
π(Q) = qQ. Then P and Q are eigenvectors of any other endomorphism
of E.

Hence, if the security of the protocol relies on the DDH assumption, then
one needs to choose G and H as in (4).

3 Coppersmith's method

In 1996, Coppersmith [7] introduced lattice-based reduction techniques
to �nd small roots of polynomials. These techniques have been reformu-
lated in a simpli�ed manner [16] and also generalized to more variables
and become a powerful cryptanalytic toolbox. Let N = p1p2 be a pub-
lic RSA modulus, whose factorization is secret. In this paper, we will
use Coppersmith's technique to �nd small roots of a polynomial equation
F (t) = 0 mod p1 where F is a monic polynomial of degree 1 and p1 is
unknown. Our attack relies on the following results.



Lemma 1. [16] Let F ∈ Z[t] be a polynomial of degree d. Let X = p
h/d
1

and let bF be the vector given by the coe�cients of F (tX). Assume that

F (t0) = 0 mod ph1 where |t0| ≤ X and that ‖bF ‖ ≤
ph1√
d+1

. Then F (t0) = 0

holds over the integers.

Theorem 2. [3, 13] Let N = p1p2 with p1 < p2 < 2p1. Let 0 < ε < 1/4
and let F (t) as above. Then, if t0 is a small root of F satisfying |t0| ≤
1

2
√
2
N1/4−ε, then one can recover p1 in polynomial time in logN and 1/ε.

In the following, we explain how this technique works for F (t) = t+a,
when we want to solve F (t) = 0 mod p1. First, we collect a set of small
polynomials de�ned by gu,v(t) = Nh−uF (t)utv where 0 ≤ u ≤ h and any
v ≥ 0. The parameter h will be determined later.

We represent polynomials as row vectors and use a lattice reduction
algorithm to �nd small vectors in a lattice. Let k = 2h and X = bN1/4−εc.
We construct the k + 1-dimensional lattice L spanned by the vectors of
coe�cients of the following polynomials:

� gu,0(tX) for u = 0, . . . , h
� gh,v(tX) for v = 1, . . . , k − h

The determinant of the lattice is then given by det(L) = Nh(h+1)/2Xh(2h+1).
The condition of Lemma 1 ensures that if the �rst vector b1 of the LLL
reduced basis satis�es ‖b1‖ ≤ ph1/

√
k + 1, the polynomial F will have a

root over Z.
Since ‖b1‖ ≤ 2

k
4 det(L)1/(k+1), it is su�cient to have the following

condition

2k/4 det(L)1/k+1 < ph1/
√
k + 1. (1)

By using the LLL algorithm and root �nding algorithms for polynomials
over the integers, one can �nd |t0| ≤ X in polynomial time in (log N, 1ε ).

Now, by substituting the bound for X in (1), we obtain that if h
satis�es 1

(4(2h+1)) < ε, then we are guaranteed to �nd t0.

4 Finding weak instances

Boneh et al [4] note that in the case of a RSA modulus N , a square
root s (mod N) is leaked during the Cocks-Pinch construction. This is
a potential security concern, since computing all square roots modulo a
composite is as hard as factoring. In this section, we show that, under



certain conditions, when a square root of s (mod N) is revealed from q,
N and E, one may use this information to factor N . As explained before,
we present our attack in the case where N = p1p2.

Let us begin by explaining how to recover s. An elliptic curve over Fq
will have #E(Fq) = q + 1− t. Since the curve is public, an attacker may
use Schoof's point counting algorithm to get t. Thus he may compute Y in
Step 3 of the Cocks-Pinch algorithm by factoring t2−4q (which is feasible
for cryptographic sizes). If (N,Y ) = 1, he will then get s = (X − 1)Y −1

(mod N), where X = t− 1. Note that if k = 1, we have X = 1 (mod N)
and Y = 0 (mod N). Hence s may not be recovered by displaying E.

In the remainder of this paper, the embedding degree k is greater
than 1. We denote by φ the endomorphism whose characteristic equation
is φ2 +D = 0. For P1 ∈ G1, we have φ(P1) = λ1P1, with λ1 < p1. Note
that λ1 veri�es

λ1 = ±s (mod p1).

Hence if one recovers λ1 (mod p1), one may compute p1 as λ1 = gcd(N, p1±
s).

4.1 First approach: �nding small root via Coppersmith's

method

If λ1 ≤ N1/4, one may apply the technique presented in Section 3 to �nd
λ1 as a root of the polynomial F (t) = t± s (mod p1).

Algorithm 2 The attack
Require: An elliptic curve E de�ned over Fq, N |#E(Fq).
Ensure: A factor p1 of N .
1: Compute t = q + 1−#E(Fq), get Y such that Y 2D = t2 − 4q.
2: Compute s = (t− 2)Y −1.
3: Use Coppersmith's algorithm to �nd λ1 as a small root of the polynomial F (t) =
t− s (mod p1).

4: Compute p1 ← gcd(N, s± λ1).

We give a toy example computed with MAGMA.

Example 1. Let p1 = 1073741827 and p2 = 1074790447. We take N =
p1p2 and D = 3. With λ1 ≡ 32768 (mod p1) and λ2 ≡ 547381745
(mod p2), the CRT theorem gives

s = 7943732666174021566464 (mod N).



Using the Cocks-Pinch method, we obtain the following curve with em-
bedding degree 2 with respect to N :

y2 = x3 + 13 de�ned over Fq,

with q = 1140730183325927132841992508979589859787. Our implemen-
tation of Coppersmith's method using the fplll library [31] for lattice
reduction recovers λ1 as a square root of the polynomial F (t) = t −
7943732666174021566464 (mod p) in approximatively 2 seconds, on a In-
tel Core i3-3227U at 1.90 GHz.

4.2 Second approach: discrete logs in an interval of small size

Note that if D is small, the endomorphism φ can be computed very e�-
ciently, by using Vélu's formulae [33]. Details on this computation and its
complexity are given in Section 6. At this point, we assume that if P1 is
public, the attacker may easily compute φ(P1). Obviously, p1 is not known
to the attacker, but its size 2f(τ) depends on the desired level of security
of the cryptosystem. The attacker may then run the kangoroo method in

the interval [2
f(τ)
2 , 2

f(τ)
2 + w] in order to compute λ1. The size w of the

weak interval depends on the security level τ .

Algorithm 3 The attack
Require: An elliptic curve E de�ned over Fq, N |#E(Fq), (G,G1, P, P1).
Ensure: A factor p1 of N .
1: Compute t = q + 1−#E(Fq), get Y such that Y 2D = t2 − 4q.
2: Compute s = (t− 2)Y −1.
3: Compute φ(P1) = λ1P1.

4: Apply the kangoroo method in the interval
[
2
f(τ)

2 , 2
f(τ)

2 + w
]
and compute λ1.

5: Compute p1 ← gcd(N, s± λ1).

We consider again the curve given in Example 2.

Example 2. The endomorphism φ corresponding to
√
−3 is given by the

equation

φ(x, y) =

(
x3 + 52

x2
,
x3y + 1140730183325927132841992508979589859683y

x3

)
.

Given a point P1 in a subgroup of order p1, the attacker may then compute
φ(P1) with a few operation in the �nite �eld Fq. Using the kangoroo
algorithm, the attacker �nds λ1 = 32768 as the discrete log of φ(P1) with
respect to P1.



Remark 1. As explained in Section 2.2, if D is a divisor of k, then a
square root s of −D (mod N) is given by equation (3). This value should
obviously be used when running the Cocks-Pinch algorithm. Note that
s is a sum of a small number of powers of X. If X (mod p1) is small,
then s (mod p1) may also be small. Hence the output of the Cocks-Pinch
algorithm will be a curve vulnerable to our attack.

Example 3. [4, Example 6.2] Assume k = D = 3 and p1 = p2 = 1
(mod 3). Then one must chooseX such thatX2+X+1 ≡ 0 (mod N). As-
sumeX mod p1 is small. Using equation (3), one may compute s ≡ 2X+1
(mod N), which veri�es s2 ≡ −3 (mod N). Hence λ1 ≡ s mod p1 is small
and the Cocks-Pinch construction using these parameters will be vulner-
able to our attack.

More weak instances using endomorphisms

Let D ≡ 3 mod 4. Consider φ̃ the endomorphism of equation

X2 +X +
1 +D

4
= 0 (5)

The solutions of this equation are −1±
√
−D

2 . This implies that if s is such
that s2 ≡ −D mod N , then 2−1(−1 + s) mod N is a solution of equa-
tion (5). Consider λ1 ≡ 2−1(−1 + s) mod p1. We have φ̃(P1) = λ1P1.
Obviously, λ1 veri�es

λ21 + λ1 +
1 +D

4
= zp1,

with z ∈ Z. If z is small (i.e. a couple of digits), then λ1 ≈
√
p1 and

the attacker will recover it by running the Pollard kangoroo method in

the interval
[
2
f(τ)
2 , 2

f(τ)
2 + w

]
, where f(τ) is a function depending on the

level of security of the cryptosystem.

5 Extending the attack to large values of λ1

In this section, we show that by combining the two techniques presented
in Section 4, one may recover λ1, when this is arbitrarily large.

The setting is the following: we are given an asymmetric pairing group
structure (G,H,GT , P,Q) where P and Q have order N such that N =
p1p2 is an RSA modulus and divides #E(Fq). We assume that E(Fq)
is constructed using Algorithm 1 and that its embedding with respect



to N is k. We further assume that s can be recovered as explained in
Section 4. Note that although the construction of E(Fq) uses the fact
that the factorization of N is known, we assume that when encrypting,
the sender does not know the factorization of N . Let P1 be an element of
order p1 which is part of the public key.

Now, assume that p1 < p2 and hence that p1 < N
1
2 . Let w = bN

1
4 c

and write λ = x + bN
1
4 cy, with 0 ≤ x, y < w. Note that x and y are

unique with this property.
Our main idea is the following:

1. we �rst search for x ∈ [0, w] using a variant of the Pollard-rho algo-
rithm for an interval [27]. Assuming the departure point is known, we
de�ne a pseudo-random walk in the interval, which is similar to the
pseudo-random walk in the Pollard-rho algorithm. We will call this a
kangoroo walk and describe it below. In order to �nd x, we use the
kangoroo walk in a Floyd cycle �nding algorithm. More precisely, we
consider two kangoroos, both starting at P1. At each step, we denote
by u and v the distance from the starting point for the �rst and the
second kangoroo, respectively. Both kangoroos follow the same path,
with the only di�erence that the second one is twice faster and takes
two steps at a time.

2. We set y′ = |u− v| ∈ [0, w]. At each iteration, a collision takes places
if y = y′. Note that if y = y′, then there exists x such that |x| ≤ w
and x + y′b√p1c − s = 0 (mod p1). In other words, the polynomial

F (X) = X + y′bN
1
4 c − s has a small root. Thus, we can �nd it using

Coppersmith's method for �nding small roots of polynomials over Z.
Assuming that Coppersmith's algorithm will return a root x′ for a
given y′, we verify that λ1 = x′+y′[N1/4] is not an invalid solution by
checking whether (x′+y′bN1/4c)P1 6= φ(P1). Heuristically, this almost
nevers happens (the probability for a polynomial with coe�cients of
size N to have a root of size bounded by bN1/4c is negligible). Hence
the veri�cation test may be avoided most of the times.
By the birthday paradox, the expected number of iterations is

√
π
2 bN

1
4 c.

The method is described in Algorithm 4. In the following, we denote by
Coppersmith(a0, a1, N) the function which returns the root found by the
method from Section 3 to the polynomial F (t) = t+ a0bN1/4c − a1.

Computing random walks

To de�ne the kangoroo pseudo-random walk, we need to associate to each
group element a step size deterministically. To do so, we �rst partition G



into nS disjoint sets Si such that G = S0 ∪ S1 . . . ∪ SnS−1, by using a
selection function S : G→ {0, . . . , nS − 1}.

In order to ensure that the output of the function is an element whose
discrete logarithm is in the interval [0, w], each element of the group is
represented by a couple (R, f), where f is the discrete logarithm of R in
base P1. The rho walk g is de�ned as follows:

(R′i+1, f
′
i+1) = g((Ri, fi)) =

{
(2 ·Ri, 2 · fi) if S(xi) = 0
(Ri +Qi, fi + `i) if S(xi) = j,

where `i = logP1
Qi. If f

′
i+1 > w, then we consider k and f such that

f ′i+1 = wk+f and f ≤ w. Finally, we compute (Ri+1, fi+1) = (R′i+1−kw ·
P, f). Note that the values of k are either 1 or 2 and can be precomputed.
S is modelled as a random function, but in practice one usually takes
a hash function H : Fq → {0, . . . , nS − 1}, applied to the x-coordinate
of points on the elliptic curve. For our implementation on toy examples,
we set nS = 3, but a common recommended choice is nS = 20. In the
following, we denote by Randomwalk(Q, u,w) the procedure that updates
the tuple (Q, u,w) as (Q′, u′, w) such that (Q′, u′) = g(Q, u) where g is
our kangoroo walk de�ned above.

Algorithm 4 The attack
Require: An elliptic curve E de�ned over Fq, N |#E(Fq), (G,G1, P, P1), a parameter

s, an endomorphism φ, an integer w
Ensure: λ1 such that φ(P1) = λ1P1.
1: (Q1, u)← (P1, 1), (Q2, v)← (P1, 1)
2: Randomwalk(Q2, v, w)
3: x← Coppersmith(u− v, s,N)
4: while (x+ (u− v)[N1/4])P1 6= φ(P1) do
5: Randomwalk(Q1, u, w)
6: Randomwalk(Q2, v, w)
7: Randomwalk(Q2, v, w)
8: x← Coppersmith(u− v,−s,N)
9: end while

10: return x+ (u− v)bN1/4c

Example 4. We consider the curve given in 2. We consider φ the endo-
morphism verifying the equation φ2 + φ+ 1 = 0. Then

s = 895256486372398168

is a root (mod N) of this polynomial. We have bN
1
4 c = 32775 and we

search for x, y ∈ [0, 32775[. For y = 16381, Coppersmith's method �nds



x = 22 a small root of the polynomial F (X) = X +32775y− s (mod p1).
One easily checks that one has φ(P1) = λ1P1, with λ1 = x+ 32775y mod
p1.

6 Complexity of our attack

The fastest algorithm for factoring is the number �eld sieve algorithm
(NFS), whose complexity is given by

L[N ] = e1.923(logN)1/3(log logN)2/3

However, in order to �nd small factors of a composite number, it is more
e�cient to use the ECM method. The expected time required in order to
�nd a factor p of a composite number N is then

E[N, p] = (logN)2e
√
2 log p log log p

We use formulae in Lenstra's paper [21] to compute the size of N and
of each of its factors, for 80 bit and 128 bit security levels. We also took
into account that the current record for factoring with ECM is �nding
a factor of 79 digits (see [35]). As a consequence, we take all factors of
N of size at least 300 bits, in order to prevent from attacks with ECM.
Our computations, for composite numbers with 2, 3 and 4 factors, are
summarized in Table 1. The column DLP in this table gives the size of y
such that λ1 = x+ ybN

1
4 c.

Table 1. Composite number size (in bits) for a �xed security level

80 bit security level 128 bit security level
Number of prime factors RSA DLP RSA DLP

log pi logN log y log pi logN log y

2 512 1024 256 1612 3244 806
3 341 1024 170 1045 3244 520
4 300 1200 150 811 3244 400

For cryptographic sizes, computing the number of points on the elliptic
curve (i.e.#E(Fq) = q+1−t) by using the SEA algorithm has logarithmic
complexity in q and is performed with MAGMA 2.15-15 within seconds
on a Intel Core i3-3227U Processor (3M Cache, 1.90 GHz). Moreover, the
quantity t2 − 4q = DY 2 usually has many small factors and its factoriza-
tion can be computed in negligible time on the same processor.



Computing an endomorphism. The kernel of the endomorphism ver-
ifying φ2 +D = 0 is of size D. If r is a prime number, the points of order
D are de�ned over an extension �eld of degree at most 2ordr(q), where
ordr(q) is the order of q in Fr (see [19]). If D is small (i.e. one or two
digits), the extension �eld over which the points of order D are de�ned
has degree smaller than 2D. Hence one may apply Vélu's formulae to get
an isogeny of degree D in M(D) operations over Fq, where M(D) is the
cost of a multiplication over an extension �eld of degree D.

If D is larger, it is too expensive to use this method because the points
of order D will be de�ned over an extension �eld of large degree. One
may then write φ = −t+π

Y . We compute Y −1 (mod N) and get φ(P1) =
Y −1(−t+π)P1. Since |t| < 2

√
q and Y −1 < N , this costs O(logN +log q)

operations over Fq. Since the curve is constructed with the Cocks-Pinch
method, we have that log q ∼ 2 logN . Thus we conclude that computing
φ(P1) costs 3 logN operations in Fq.

Computing discrete logarithms. The Pollard kangoroo method de-
scribed in Section 5 needs

√
π
2w group operations and negligible memory

to compute the value of y in a �xed interval of length w.

Finding small roots via Coppersmith's method. The complexity
of Coppersmith's algorithm depends mainly on the running time of the
LLL algorithm. We brie�y recall that the complexity for Coppersmith's
lattice-based algorithm is upper bounded by 0

(
d5(d+ β)β

)
if one uses

the Nguyen-Stehlé L2 algorithm [25] and by O(d5+εβ + dω+1+ε)β) using
Novocin et al 's L1 algorithm [26], where d is the dimension of the lattice,
β is the maximal bit-size of an entry in the input basis and ω is a matrix
multiplication exponent.

Altogether, this gives an asymptotical running time of O(h7(logN)2)
using L2 andO(h6(logN)1+ε), using L1 for our (2h+1)-dimensional lattice

with coe�cient size bounded by N
5h
4 .

Table 2 shows how the search space on x varies depending on the
choice of h and the number of factors of N . The formulae for ε are taken
from [13].

With these parameters in mind, we conclude that the complexity of

our algorithm is O(h6(logN)(1+ε)p
1/4
1 ). Using values in Table 1, a simple

calculation shows that the complexity of our attack is comparable to the
one of the NFS algorithm for factoring RSA moduli with 2 factors, at
the 80 bit security level. Although this estimation is rough, we stress
here that our attack will be faster, if one runs the Pollard-rho algorithm



Table 2. Choice of parameters

Number of prime factors ε/h formula h size of p1 size of X
2 ε = 1

4h
15 2512 2240

2 ε = 1
4h

25 2512 2245

3 ε = 1
4h

25 2342 2114

4 ε = 1
4h

25 2300 275

within a smaller search space for y. In other words, the smaller λ1 is, the
higher the chances to recover it are. We conclude that λ should be chosen
as an input parameter with maximal entropy, when running the Cocks-
Pinch algorithm. At the 128 security level, our algorithm is slower when
compared to the NFS method. If the RSA modulus has three factors or
more, we compare the complexity of our algorithm to that of the ECM
method. Our calculation shows that the two methods have comparable
complexities for the 80 bit security level. However, if the number of factors
of N is greater than 2, our attack can only recover particular instances for
λ1, because the bound X used by Coppersmith's algorithm is very small.
For example, for a composite number with 3 factors, our attack works
only if λ1 has approximatively 284 bits. Note that for a �xed security
level, the higher the number m of factors of N is, the more e�cient the
Pollard-rho search for collision of our algorithm is. On the other hand, if
m > 2, Coppersmith's method for �nding roots of polynomials (mod p1)
only allows to recover x in a small size search space.

7 Conclusion

Computing pairing friendly ordinary curves for implementing composite
order group protocols can be done by using the Cocks-Pinch method.
When running a protocol using a curve constructed with this method, one
reveals a square root of the CM discriminant −D modulo the composite
modulus N = p1p2. We show that if the square root λ of −D (mod p1)
does not have maximal entropy, one may run a Pollard-rho type algorithm
in order to �nd this value and thus to factorize N . Our conclusion is that
extra precautions should be taken when choosing the RSA modulus N .
More precisely, λ should be given as an input parameter of the Cocks-
Pinch algorithm.
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