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1 Laboratoire MIS, Université de Picardie Jules Verne, 33 Rue Saint Leu 80000
Amiens, France

2 CEA LIST, 91191 Gif-sur-Yvette Cedex, France
sorina.ionica@u-picardie.fr,malika.izabachene@cea.fr

Abstract. In pairing-based cryptography, the security of protocols us-
ing composite order groups relies on the difficulty of factoring a composite
number N . Boneh et al proposed the Cocks-Pinch method to construct
ordinary pairing-friendly elliptic curves having a subgroup of composite
order N . Displaying such a curve as a public parameter implies revealing
a square root s of the complex multiplication discriminant −D modulo
N . We exploit this information leak and the structure of the endomor-
phism ring of the curve to factor the RSA modulus, under certain con-
ditions. Our conclusion is that the values of s modulo each prime in the
factorization of N should be chosen as high entropy input parameters
when running the Cocks-Pinch algorithm.
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1 Introduction

Pairings on elliptic curves are widely used in cryptography, due to their applica-
tion in protocols such as the tripartite Diffie-Hellman [27], identity based encryp-
tion [7] and short signatures [17]. Bilinear groups of composite order have been
used as a convenient tool to provide plenty of cryptosystems with advanced func-
tionalities. For example, they can be used to build homomorphic encryption [8],
to instantiate zero-knowledge proof systems [23], group signatures in the stan-
dard model [11], traitor tracing with full traceability [10], functional encryption
with full security ([34, 12] for example). From the practical point of view, prime
order groups are preferable but the security proofs are in general more com-
plex. Several papers studied general techniques for converting composite-order
constructions into prime order groups constructions with the same functional-
ities [13, 14, 33, 18, 39, 38]. However, conversions do not work mechanically [25,
13, 44, 40, 35]. And although the operations over composite order groups are ex-
pensive, they remain a very convenient tool for proving security of cryptographic
constructions with advanced functionalities. Indeed, several schemes were firstly
conceived using composite order before being transformed in the prime order
setting.



While the security of prime order group protocols rely on discrete logarithm-
based security assumptions, in the composite order setting, the security is based
on the hardness of factoring the modulus N giving the cardinality of the elliptic
curve group used in the protocol implementation. In order to construct pairing-
based schemes with composite order groups, we can either implement the pairing
using supersingular elliptic curves as in the original construction in [8] or use
ordinary curves as suggested by Boneh et al [9]. Ordinary curves are particularly
recommended if the security additionally relies on the Decisional Diffie-Hellman
(DDH) assumption. Moreover, a line of papers [2, 21, 24, 28] suggests that the
discrete logarithm problem on supersingular curves is weak. In particular, recent
announcements (see [22] for instance) show that pairings of Type 1 as defined
in [20] are no longer safe.

In this paper, we investigate the security of composite order group protocols
that use ordinary elliptic curves. As shown by Boneh et al. [9], in order to
construct pairing over composite order groups from such curves, the Cocks-
Pinch method can then be employed [15]. However, Boneh et al. point out several
security issues that occur in this setting. In particular, they noticed that given
a public ordinary curve, whose number of points is divisible by N and can be
counted in polynomial time, one may easily compute a square root s of the CM
discriminant −D mod N .

Our analysis follows the work of [9] and starts from the complex multiplica-
tion (CM) construction of pairing friendly elliptic curves whose number of points
is divisible by N . First, we show that one may use Coppersmith’s techniques for
finding small roots of modular polynomial equations to factor N .

Let p1 be one of the large prime factors of N and denote by λ the integer
such that λ ≡ s (mod p1) and 0 ≤ λ < p1. We show how to recover λ in the case
where λ ≈ b√p1c and then compute p1 = gcd(N, s− λ). While à priori the case
λ ≈ b√p1c arises with negligible probability, this may happen when the input
parameters of the Cocks-Pinch method are mistakenly chosen to be small.

Secondly, we relate the square root s to an endomorphism on the elliptic

curve which corresponds to
√
−D under the isomorphism End(E) ' Z[D+

√
−D

2 ].
Assuming that a generator P1 of the subgroup G1 of order p1 in G is given as a
public value and that the discrete logarithm in this group is easy, we show how
we can recover λ using an efficiently computable endomorphism φ of the elliptic
curve.

Organisation. This paper is organised as follows. Section 2 reviews the Cocks-
Pinch method and its generalization to the case of a composite modulus. Sec-
tion 3 briefly presents the Coppersmith technique to find small roots of polyno-
mials. Section 4 identifies weak instances of the Cocks-Pinch construction and
shows how to recover part of the factorization of N . Section 5 gives the com-
plexity of our method, and explains how to choose the parameter λ to avoid
constructing weak instances of the Cocks-Pinch algorithm.

2



2 Background on pairings and composite order protocols

2.1 Composite order schemes

In this section, we specify the general framework of our analysis and review
the schemes which work in this setting. Let G be a group of order a composite
modulus N = p1 · · · pτ , where p1, . . . , pτ are distinct primes. We denote by Gi
(resp. Hi) the subgroup of G (resp. H) of order pi. To simplify, we focus on
systems implemented using τ = 2. We further explain in Section 5 how security
is impacted in the case where τ > 2.

More precisely, we consider composite order schemes implemented using a
group G which is a subgroup of an ordinary elliptic curve. This elliptic curve
verifies the following conditions:

1. The number of points on the curve is known and divisible by N .
2. The curve admits an efficient pairing e : G × H 7→ GT , with all groups
G,H,GT of order N .

The best known example of a scheme in this setting is the BGN encryp-
tion scheme [8]. For completeness, we recall here this scheme in the asymmetric
pairing setting.

Let G1 be the subgroup of G of order p1 and P, P1 random generators of
G,G1 respectively. To encrypt a message m with public key (G,N,P, P1) and
secret key p1, one computes C = mP + rP1, for a random scalar r ∈ ZN . To
decrypt, one computes P̃ = p1P and C̃ = p1C and then gets m as the logarithm
of C̃ with respect to P̃ .

The security of the BGN encryption scheme relies on the Subgroup Decision
Problem (SDP) [8], which is a particular instance of the General Subgroup De-
cision family of assumptions introduced in [3]. The Subgroup Decision Problem
states that given (N,G ∼= G1 ×G2, G1, P ), with P a random element of G, it is
hard to decide whether P is in G1 or not. The hardness of SDP is proven in the
generic model assuming the order of the subgroup is unknown [29]. To the best
of our knowledge, no result has been proven so far on the reverse statement in
a non-generic model.

2.2 The Cocks-Pinch method

Pairings on elliptic curves, i.e. the Weil and the Tate pairing map to the multi-
plicative group of an extension field of Fq. This extension field needs to contain
the N -th roots of unity. We denote by k the embedding degree with respect to
N , i.e. the smallest integer such that the extension field Fqk contains the N -th
roots of unity. Pairings are usually computed by using Miller’s algorithm, whose
efficiency depends on an efficient arithmetic for Fqk . Therefore, we use elliptic
curves for which the embedding degree k is relatively small.

Writing the Frobenius endomorphism π as an element of the endomorphism
ring leads to the following condition

∃ y ∈ Z s.t. 4q = t2 + y2D, (2)
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where D is the complex multiplication discriminant for the elliptic curve and t is
the trace of the Frobenius endomorphism. If this condition is satisfied, the CM
method outputs a curve whose number of points is #E(Fq) = q + 1 − t. Cocks
and Pinch [6] proposed an algorithm which, given a prime number N and an
integer k, constructs a pairing friendly elliptic curve such that N |#E(Fq) and
whose embedding degree with respect to N is k. This method was extended by
Boneh, Rubin and Silverberg [9] to the case where N is a composite number.
We briefly recall the method in Algorithm 1.

Algorithm 1 The Cocks-Pinch algorithm

Require: k, r prime numbers pi, λi, D and N = pα1
1 . . . pαr

r s.t. λ2
i = −D (mod pi).

Ensure: q, t such that there is a curve with CM by −D over Fq with q + 1− t points
where N |(q + 1− t) and N |(qk − 1), and N does not divide qj − 1 for j < k.

1: Choose an integer X which is a primitive k-th root of unity modulo every pαi
i .

2: Compute using the CRT theorem s (mod N) such that s2 = −D (mod N).
3: Take an integer Y congruent to ±(X − 1)s−1 (mod N).
4: repeat
5: q ← ((X + 1)2 +D(Y + jN)2)/4
6: j ← j + 1
7: until q is prime
8: return q and t = X + 1

One may use the Chinese Remainder Theorem to obtain X of order k modulo
all the pαi

i ’s, i ∈ {1, . . . , r}, in Step 1. Similarly, Step 2 computes s2 = −D
(mod N) by using the Chinese Remainder Theorem. Moreover, assume that D
is a divisor of k such that either k is a multiple of 4 and D divides k/4 or k
is not a multiple of 4 and D ≡ 3 (mod 4). Boneh et al. [9] note that then one
computes a square root of −D by the formula:

s =


∑2D−1

a=1
(a,2D)=1

(−Da )X
ak
D if D ≡ 3 (mod 4),

1
2

∑4D−1
a=1

(a,2D)=1
(−Da )X

ak
4D otherwise.

(3)

2.3 Implementation and choice of subgroups on ordinary curves

In this section, we are interested in pairing implementation on ordinary curves.
On an ordinary curve, if the embedding degree k is greater than 1, it is most

efficient to choose to implement the pairing e : G×H → GT by choosing

G = E[N ] ∩Ker(π − [1]) and H = E[N ] ∩Ker(π − [q]). (4)

Indeed, when we compute a pairing of elements in these subgroups, many op-
erations in Miller’s algorithm can be done in subfields of Fqk , which critically
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reduces the cost of the pairing computation (see [31]). When implementing com-
posite order protocols, if we need to ensure that the DDH assumption holds in
both G and H, then we need to choose these subgroups such that there are no
distortion maps for points in these subgroups. Given a point P ∈ E[N ], a dis-
tortion map for P is a map φ such that for a point P , φ(P ) /∈ 〈P 〉. The following
result was given by Verheul [43], whose purpose was to investigate the existence
of distortion maps for points of order N .

Theorem 1. Let E be an ordinary curve defined over Fq and let P be a point
over E of prime order N 6= q. Suppose the embedding degree k is greater than 1
and denote by Q a point defined over Fqk , such that π(Q) = qQ. Then P and Q
are eigenvectors of any other endomorphism of E.

We will show later in Section 4 that assuming we are given an efficiently com-
putable endomorphism of the curve and that G and H are chosen as in Equa-
tion (4), then if one can solve the SDP problem, one can reduce the hardness
of factoring the modulus N to that of solving a discrete logarithm problem in a
subgroup of order p1.

3 Coppersmith’s method

In 1996, Coppersmith [16] introduced lattice-based reduction techniques to find
small roots of polynomials. These techniques have been reformulated in a sim-
plified manner [26] and also generalized to more variables and have become a
powerful cryptanalytic toolbox. In this paper, we will use Coppersmith’s tech-
nique to find small roots of a polynomial equation F (t) = 0 mod p1 where F
is a monic polynomial of degree 1 and p1 is unknown and a factor of a RSA
modulus N .

For a vector x ∈ Rn, with n > 0, we denote by ‖x‖ the Euclidian norm. We
rely on the following results.

Lemma 1. [26] Let F ∈ Z[t] be a polynomial of degree d. Let p1, h,X ∈ N and
let bF be the vector given by the coefficients of the real polynomial F (tX) ∈ R[t].

Assume that F (t0) = 0 (mod ph1 ) where |t0| ≤ X and that ‖bF ‖ < ph1√
d+1

. Then

F (t0) = 0 holds over the integers.

Theorem 2. [19, Theorem 19.4.2] Let N = p1p2 with p1 < p2 < 2p1. Let
0 < ε < 1/4 and let F (t) be a degree 1 polynomial in Z[t]. If t0 is a small root
of F satisfying |t0| ≤ 1

2
√
2
N1/4−ε, then one can recover p1 in polynomial time in

logN and 1/ε.

In the following, we recall how the algorithm announced in Theorem 2 works for
F (t) = t+a, when we want to solve F (t) = 0 (mod p1). First, we collect a set of
small polynomials defined by gu,v(t) = Nh−uF (t)utv where 0 ≤ u ≤ h − 1 and
v ≥ 0. The parameter h will be determined later.

We represent polynomials as row vectors and use a lattice reduction algorithm
to find small vectors in a lattice. Let κ = 2h and X = bN1/4−εc. We construct
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the κ + 1-dimensional lattice L spanned by the vectors of coefficients of the
following polynomials:

– gu,0(tX) for u = 0, . . . , h− 1
– gh,v(tX) for v = 0, . . . , κ− h.

The determinant of the lattice is then given by det(L) = Nh(h+1)/2Xh(2h+1).
The condition of Lemma 1 ensures that if the first vector b1 of the LLL reduced
basis satisfies ‖b1‖ ≤ ph1/

√
κ+ 1, the corresponding polynomial will have a root

over Z.
Since ‖b1‖ ≤ 2κ/4det(L)

1/(κ+1)
, it is sufficient to have the following condition

2κ/4 det(L)1/κ+1 < ph1/
√
κ+ 1. (5)

By using the LLL algorithm and root finding algorithms for polynomials over
the integers, one can find |t0| ≤ X in polynomial time in (log N, 1ε ).

Now, by substituting the bound for X in Equation (5) with κ = 2h, we obtain
that if h satisfies 1

4(2h+1) < ε, then we are guaranteed to find t0.

This result extends also to the case where N has more than two factors. In
this case, the success condition could be expressed in a similar way as follows
(see [19, Proof of Th.19.4.2]): if p1 = Nα and |t0| < Nβ , then the size of h giving
the dimension of the lattice used by Coppersmith’s algorithm is given by:

h(h+ 1)

2
+
βκ(κ+ 1)

2
< αh(κ+ 1),

where h =
√
βκ.

4 Finding weak instances

Boneh et al [9] note that in the case of a RSA modulus N , a square root s
(mod N) is leaked during the Cocks-Pinch construction. This is a potential se-
curity concern, since computing all square roots modulo a composite is as hard
as factoring. In this section, we show that, under certain conditions, when a
square root of s (mod N) is revealed from q, N and E, one may use this in-
formation to factor N . As explained before, we present our method in the case
where N = p1p2.

Let us begin by explaining how to recover s. An elliptic curve over Fq will have
#E(Fq) = q+1−t. Since the curve is public, an attacker may use Schoof’s point
counting algorithm to get t. Thus he may compute Y in Step 3 of the Cocks-

Pinch algorithm by getting the square root of t
2−4q
D (assuming D is known, since

the curve is public). If (N,Y ) = 1, he will then get s = (X − 1)Y −1 (mod N),
where X = t − 1. Note that if k = 1, we have X = 1 (mod N) and Y = 0
(mod N). Hence s may not be recovered from E.

In the remainder of this paper, the embedding degree k is greater than 1. We
denote by λ the integer such that

λ = ±s (mod p1).
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and λ < p1. Hence if one recovers λ (mod p1), one may compute p1 as p1 =
gcd(N,λ∓ s).
We give two toy examples computed with MAGMA.

Example 1. Let p1 = 1073741827 and p2 = 1074790447. We take N = p1p2
and D = 3. With λ ≡ 32768 (mod p1) and λ′ ≡ 547381745 (mod p2), the CRT
theorem gives

s = 211557198247737806 (mod N).

Using the Cocks-Pinch method, we obtain the following curve with embedding
degree 2 with respect to N :

y2 = x3 + 13 defined over Fq, (6)

with q = 1140730183325927132841992508979589859787. Since λ < N1/4, one
may apply the technique presented in Section 3 to find λ as a root of the poly-
nomial F (t) = t ± s (mod p1). Our implementation of Coppersmith’s method
using the fplll library [41] for lattice reduction recovers λ as a square root of the
polynomial F (t) = t− s (mod p1) in approximatively 2 seconds, on a Intel Core
i3-3227U at 1.90 GHz.

Remark 1. As explained in Section 2.2, in some cases a square root s of −D
(mod N) is given by equation (3). This value should obviously be used when
running the Cocks-Pinch algorithm. Note that s is a sum of a small number
of powers of X. If X (mod p1) is small, then s (mod p1) may also be small.
Hence the output of the Cocks-Pinch algorithm will be a curve providing weak
instances.

Example 2. [9, Example 6.2] Assume k = D = 3 and p1 = p2 = 1 (mod 3). Then
one must choose X such that X2 + X + 1 ≡ 0 (mod N). Assume X mod p1
is small. Using equation (3), one may compute s ≡ 2X + 1 (mod N), which
verifies s2 ≡ −3 (mod N). Hence λ ≡ s (mod p1) is small and the Cocks-Pinch
construction using these parameters will provide weak instances for composite
order protocols.

These examples illustrate that if the size of λ is twice smaller than the size
of p1, then implementing composite order group schemes on curves constructed
via the Cocks Pinch method is insecure. Normally, the fact that λ is small arises
with negligible probability when setting input parameters for the Cocks-Pinch
construction, unless it is chosen on purpose to be so. In the remainder of this
section, we show how we handle the case of large λ.

Extending the algorithm to larger values of λ. We show that by using
the technique presented in Section 4 combined with an exhaustive search, one
may recover λ, when this is relatively large.

The setting is the following: we are given an asymmetric pairing group struc-
ture (G,H,GT , P,Q) where P and Q have order N such that N = p1p2 is an

7



RSA modulus and divides #E(Fq). We assume that E(Fq) is constructed using
Algorithm 1 and that its embedding degree with respect to N is k. We further
assume that s can be recovered as explained in Section 4. Note that although
the construction of E(Fq) uses the fact that the factorization of N is known, we
assume that, when encrypting, the sender does not know the factorization of N .
Now, assume that p1 < p2 and hence that p1 < N

1
2 . Let w = bN 1

4 c and write

λ = x + bN 1
4 cy, with 0 ≤ x, y < w. Note that x and y are unique with this

property. We will search for x and y verifying λ = x + bN 1
4 cy, 0 ≤ x, y < w.

Note that the polynomial Fy(X) = X + ybN 1
4 c ± s has a small root. Thus,

if we know y, we can find this root using Coppersmith’s method for finding
small roots of polynomials over Z. To find y, we perform exhaustive search in
an interval [0, w′], with w′ < w. Indeed, let y′ be any integer in the interval
[0, w′]. Assuming that Coppersmith’s algorithm will return a root x′ for a given
y′, we verify that λ = x′ + y′[N1/4] is a valid solution by checking whether
gcd(N, (x′ + y′bN1/4c ± s)) is non-trivial. Heuristically, this almost never hap-
pens, unless y = y′ (the probability for a random polynomial with coefficients of
size N to have a root of size bounded by bN1/4c is negligible). This procedure is
summarized in Algorithm 2, where Coppersmith(y, s,N) denotes Coppersmith’s
method for finding a root for the polynomials Fy.

Algorithm 2 Recovering the value of λ

Require: An elliptic curve E defined over Fq, N |#E(Fq), (G,G1, P, P1), a parameter
s, an endomorphism φ, integers w′ ≤ w.

Ensure: λ such that λ ≡ s (mod p1).
1: y ← 0, x← 1
2: while gcd(N, x+ ybN1/4c ± s) 6= 1 do
3: y ← y + 1
4: x← Coppersmith(y, s,N)
5: end while
6: return λ = x+ ybN1/4c

Note that in practice this method is interesting only if the search space
[0, w′] is small. Indeed, if w′ = w, then this algorithm is exponential in p1 and
thus slower than known subexponential algorithms for factoring. In Section 5 we
give an asymptotic complexity analysis and compare our approach with classical
factoring methods.

Example 3. We consider p1 = 2171163061, p2 = 8684652439, N = p1p2 and
D = 3. Then s = 58007414937220612199598481252 is a root of −D modulo N .
We have bN 1

4 c = 65896 and we search for x, y ∈ [0, 65896[. For y = 26812,
Coppersmith’s method finds x = 13851 a small root of the polynomial F (t) =
t+ 65896y − s (mod p1).
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Using endomorphisms to recover λ. Here we provide further evidence on
the relationship between discrete-log type based assumptions and factorization
in the composite order setting, in the case where the group G is a group coming
from an elliptic curve.

Let P1 be an element of order p1 which is part of the public key. It is obvious
that if one can solve the discrete logarithm problem in G, then he can recover
N/p1 since P1 = (N/p1)P . We denote by φ the endomorphism whose character-
istic equation is φ2 + D = 0. For P1 ∈ G1, we have φ(P1) = λP1, with λ < p1.
Note that if D is small, the endomorphism φ can be computed very efficiently,
by using Vélu’s formulae [42]. Details on this computation and its complexity
are given in Section 5. For example, the endomorphism φ corresponding to

√
−3

on the curve given by Equation (6) is given by the equation

φ(x, y) =

(
x3 + 52

x2
,
x3y + 1140730183325927132841992508979589859683y

x3

)
.

Given a point P1 in a subgroup of order p1, one may then compute φ(P1) with
a few operation in the finite field Fq. At this point, since P1 is public, the
attacker may easily compute φ(P1). Hence if the attacker can solve the discrete
logarithm problem in the group G1, then he recovers λ (mod p1) and computes
p1 as p1 = gcd(N,λ± s).

5 Complexity analysis

The fastest algorithm for factoring a composite modulus N is the number field
sieve algorithm (NFS), whose complexity is given by

L[N ] = e1.923(logN)1/3(log logN)2/3 .

However, in order to find small factors of a composite number, it is more efficient
to use the ECM method. The expected time required in order to find a factor p
of a composite number N is then

E[N, p] = (logN)2e
√
2 log p log log p.

We use formulas in Lenstra’s paper [32] to compute the size of N and of each
of its factors, for 80 bit and 128 bit security levels. We also took into account
that the current record for factoring with ECM is finding a factor of 79 digits
(see [45]). As a consequence, we take all factors of N of size at least 300 bits, in
order to prevent attacks with ECM. Our computations, for composite numbers
with 2, 3 and 4 factors, are summarized in Table 1. The column EX in this
table gives the size of y such that λ = x + ybN 1

4 c. For completeness, we also
add corresponding sizes for discrete logarithms in GT , computed using the NSF
algorithm (see for instance [1])1.

1 Note that more recent attacks in composite degree extension fields [30] do not apply
here, since for our purposes it suffices to consider prime degree extension fields.
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Table 1. Composite number size (in bits) for a fixed security level

80 bit security level 128 bit security level

Number of prime factors RSA EX DLP RSA EX DLP

log pi logN log y DLP log pi logN log y DLP

2 512 1024 256 1024 1612 3224 806 3072

3 341 1024 170 1024 1045 3155 522 3072

4 300 1200 150 1024 811 3244 405 3072

For cryptographic sizes, computing the number of points on the elliptic curve
(i.e. #E(Fq) = q+1−t) by using the SEA algorithm has logarithmic complexity
in q and is performed with MAGMA 2.15-15 within seconds on a Intel Core i3-
3227U Processor (3M Cache, 1.90 GHz).

Finding small roots via Coppersmith’s method. The complexity of Cop-
persmith’s algorithm depends mainly on the running time of the LLL algorithm.
We briefly recall that the complexity for Coppersmith’s lattice-based algorithm
is upper bounded by O

(
d5(d+ β)β

)
if one uses the Nguyen-Stehlé L2 algo-

rithm [36] and by O(d5+εβ + dω+1+εβ1+ε) (for any ε > 0) if one uses Novocin
et al ’s L1 algorithm [37], where d is the dimension of the lattice, β is the max-
imal bit-size of an entry in the input basis, and ω is the matrix multiplication
exponent.

Altogether, this gives an asymptotical running time of O(h7(logN)2) using
L2 and O(h5+ε logN) using L̃1 for our (2h + 1)-dimensional lattice with coeffi-

cient size bounded by logN
5h
4 .

Table 2 gives the maximal size of the small root we can compute, depending
on the choice of the size of h the number of factors of N for ε = 1/8h. The
formulas for ε are taken from [19] as explained in Section 3.

Table 2. Choice of parameters

Number of prime
h size of p1

size of root
factors of degree 1 pol.

2 15 2512 2247

2 25 2512 2250

3 15 2342 2102

3 25 2342 2114

4 25 2300 275

Implementations in the literature have shown that at the 80 bits security
level, i.e. a modulus N of 1024 bits and h chosen as in Table 2, Coppersmith’s
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method finds a small modular root within seconds. The reader is referred for
instance to [5, 4].

If the RSA modulus has three factors or more, we compare the complexity of
our algorithm to that of the ECM method. If m > 2, Coppersmith’s method for
finding roots of polynomials (mod p1) only allows to recover x in an interval of
length smaller than p1/2. For example, for a composite number with 3 factors
at the 80 bit security level, Coppersmith’s algorithm recovers values of λ with
approximatively 114 bits. On the other hand, note that for a fixed security level,
the higher the number m of factors of N is, the smaller the search space for the
exhaustive search part of our algorithm is.

Our analysis here relies on asymptotic timing of the LLL algorithm. Further
implementation work would allow us to determine the constant hidden in the
LLL algorithm complexity for target instances and estimate the size of w′ for
which Algorithm 2 yields an attack faster than NFS at a given security level.
Note also that this exhaustive search algorithm could easily be parallelized, hence
such an investigation should also take into account the amount of hardware
available. We leave this as topic for future work. From our study, we can say
that when running the Cocks-Pinch algorithm for constructing composite order
elliptic curves, one should take λ as an input parameter with maximal entropy,
i.e. 512 bits when working with a two factors RSA modulus at 80 bits security
level. To the best of our knowledge, this choice has no impact on the efficiency
of the protocol implementation and is by far the safest solution.

6 Conclusion

Computing pairing friendly ordinary curves for implementing composite order
group protocols can be done by using the Cocks-Pinch method. When running a
protocol using a curve constructed with this method, one reveals a square root
of the CM discriminant −D modulo the composite modulus N = p1p2. We show
that if the square root λ of −D (mod p1) does not have maximal entropy, one
may use Coppersmith’s algorithm combined with exhaustive search to find this
value and thus to factorize N . Our conclusion is that extra precautions should
be taken when choosing the RSA modulus N . More precisely, λ should be given
as an input parameter of the Cocks-Pinch algorithm.
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