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Abstract. Traceable attribute-based signatures extend standard attribute-based signatures by granting a desig-
nated tracing authority the power to revoke the anonymity of signatures by revealing who signed them. Such a
feature is important in deterring abuse and enforcing accountability.
In this work, we revisit the notion of Decentralized Traceable Attribute-Based Signatures (DTABS) introduced
by El Kaafarani et al. (CT-RSA 2014) and improve the state-of-the-art in two directions: Firstly, we provide a
new stronger security model which circumvents some shortcomings in existing models. Our model minimizes
the trust placed in attribute authorities and hence provides, among other things, a stronger definition for non-
frameability. In addition, unlike previous models, our model captures the notion of tracing soundness which
ensures that even if all parties in the system are fully corrupt, no one but the user who produced the signa-
ture could claim authorship of the signature. Secondly, we provide a generic construction that is secure w.r.t.
our strong security model and show two example instantiations in the standard model which are much more
efficient than existing constructions (secure under weaker security definitions).
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1 Introduction

Attribute-based cryptography provides a versatile solution for designing role-based cryptosystems. In
attribute-based cryptosystems, the private operation, e.g. decryption/signing, is performed w.r.t. a secu-
rity policy. Only users possessing attributes satisfying the policy can perform the operation. Goyal et al.
[17], inspired by the work of Sahai and Waters [33], put forward the first attribute-based cryptosystems.

In Attribute-Based Signatures (ABS) [28, 29], messages are signed w.r.t. signing policies expressed
as predicates. A signature convinces the verifier that it it was produced by a user with attributes sat-
isfying the associated signing policy revealing neither the identity of the user nor the attributes used.
Attribute-based signatures have many applications, including trust negotiation, e.g. [12], attribute-based
messaging, e.g. [8], and leaking secrets. For more details and comparison with related notions refer to
[29, 32].

The security of attribute-based signatures [28] requires user’s privacy and unforgeability. Informally,
user’s privacy (i.e. anonymity), requires that signatures reveal neither the user’s identity nor the attributes
used in the signing. On the other hand, unforgeability requires that a user cannot forge a signature w.r.t.
a signing predicate that her attributes do not satisfy, even if she colludes with other users.

Traceable Attribute-Based Signatures (TABS) [11] extend standard attribute-based signatures by
adding an anonymity revocation mechanism which allows a tracing authority to recover the identity of
the user who produced the signature. Such a feature is of vital importance in enforcing accountability
and deterring abuse.

Related Work. Various constructions of attribute-based signatures exist in the literature [26, 35, 25, 29,
31, 32, 19, 13]. Those constructions vary in terms of the expressiveness of the policies they support and
whether they offer selective or adaptive security. Adaptively secure schemes supporting more expressive
policies are preferable since they cover a larger scale of potential applications.

While there exist constructions supporting threshold policies with constant-size signatures, e.g. [19,
13], constructions supporting monotonic/non-monotonic policies, e.g. [29, 31, 32], yield signatures that
are linearly dependent on the number of attributes in the policy or the systems’ security parameter.



Supporting multiple attribute authorities was first considered by [28, 31]. However, the multi–aut-
hority setting still had the problem of requiring a central trusted authority. Furthermore, in some cases,
the security of the entire system is compromised if the central authority is corrupted. Okamoto and
Takashima [32] recently proposed the first fully decentralized construction.

Escala et al. [11] added the traceability feature to standard ABS schemes and proposed a model for
the single attribute authority setting. More recently, El Kaafarani et al. [10] proposed a security model
and two generic constructions for decentralized traceable attribute-based signatures. They also provided
instantiations without random oracles [3]. Besides correctness, the recent model of [10] defines three
security requirements: anonymity, full unforgeability and traceability. Informally, anonymity requires
that a signature reveals neither the identity of the signer nor the set of attributes used the signing; full
unforgeability requires that users cannot forge signatures w.r.t. signing policies their individual attributes
do not satisfy even if they collude, which also captures non-frameability; and traceability requires that
the tracing authority is always able to establish the identity of the signer and prove such a claim.

We end by noting that there exist other weaker variants of traceable attribute-based signatures suiting
specific applications. For instance, [22] proposed the notion of attribute-based group signatures which
attaches public attributes (i.e. signatures do not hide the attributes used in the signing) to standard group
signatures. Also, [23] proposed a traceable attribute-based signature scheme where the signing policy is
determined beforehand by the verifier and hence requiring interaction in the signing protocol.

Shortcomings in Existing Models. The unforgeability/non-frameability requirements in all existing
models for traceable attribute-based signatures [11, 10] (and even those for standard (i.e. non-traceable)
attribute-based signatures, e.g. [28, 31, 32]) besides placing full trust in attribute authorities, assume the
existence of secure means for the delivery of the secret attributes’ keys from attribute authorities to
users. More specifically, learning the key for any attribute a user owns allows framing the user w.r.t. to
those attributes. For instance, the non-frameability definition in the single-authority model of [11] relies
on the assumption that the attribute authority is fully honest, whereas the full unforgeability definition
(also capturing non-frameability) in the stronger and more recent model of [10] assumes that at least one
attribute authority is fully honest.

While this is not an issue in standard attribute-based signatures (since signatures are perfectly anony-
mous and hence it is infeasible for any party to identify the signer), we emphasize that this could be a
serious limitation in the traceable setting. In particular, the innocence of users could be jeopardized by
being falsely accused of producing signatures they have not produced. A misbehaving attribute authority
or any party intercepting the secret attributes’ keys is capable of signing on behalf of the user w.r.t. any
predicate satisfied by the compromised subset of attributes.

We believe that the overly strong assumptions upon which the unforgeability/non-frameability no-
tions in existing models rely is the result of the absence of the assignment of personal keys to the users.
Moreover, the absence of users’ personal keys further complicates the constructions and degrades the
efficiency. For instance, the recent constructions in [10], similarly to [29], rely on the so-called pseudo-
attribute technique in order to bind the signature to the message: the user proves that she either owns
attributes satisfying the signing predicate or she has a special signature on the message and the encoding
of the signing predicate that verifies w.r.t. some trapdoor verification key.

Another shortcoming of existing models for traceable attribute-based signatures is the absence of the
tracing soundness requirement which was defined recently in the context of traditional group signatures
[34]. This requirement ensures that a valid signature can only trace to a single user even if all entities
in the system are fully corrupt. Tracing soundness is very vital for many applications, for example,
applications where users might get rewarded for signatures they have produced or where abusing signing
rights might result in legal consequences.

Our Contribution. We first rectify the aforementioned shortcomings in existing models by presenting
a stronger security model for the primitive. Our model is for the interesting dynamic and fully decen-
tralized setting in which attributes’ management is distributed among different authorities who may not
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even be aware of one another, and where users and attribute authorities can join the system at any time.
Our model offers a stronger security definition for non-frameability which circumvents the limitations
inherent in existing models. In addition, our model provides a cleaner definition for traceability, and
unlike previous models, it captures the useful notion of tracing soundness [34].

Our second contribution is a generic construction for the primitive which permits expressive signing
policies and meets strong adaptive security requirements.

Finally, we provide two example instantiations of the generic framework in the standard model.
Besides offering stronger security, our instantiations are more efficient than existing constructions.
Paper Organization. In Section 2, we give some preliminary definitions. We present our model in Sec-
tion 3. We list the building blocks we use in Section 4. In Section 5, we present our generic construction
and prove its security. In Section 6, we present instantiations in the standard model and compare their
efficiency to existing constructions.
Notation. A function ν(.) : N → R+ is negligible in c if for every polynomial p(.) and all sufficiently
large values of c, it holds that ν(c) < 1

p(c) . Given a probability distribution S, we denote by y ←
S the operation of selecting an element according to S. If A is a probabilistic machine, we denote
by A(x1, . . . , xn) the output distribution of A on inputs (x1, . . . , xn). By PPT we mean running in
probabilistic polynomial time in the relevant security parameter.

2 Preliminaries

In this section we provide some preliminary definitions.
Bilinear Groups. Let G1 := 〈G〉, G2 := 〈G̃〉 and GT be groups of a prime order p. A bilinear group is
a tuple P := (G1,G2,GT , p,G, G̃, e) where e : G1×G2 −→ GT is a non-degenerate bilinear map. We
will use multiplicative notation for all the groups and let G×1 := G1 \ {1G1} and G×2 := G2 \ {1G2}. We
will accent elements from G2 with˜ for the sake of clarity. We will be working with Type-3 groups [14]
where G1 6= G2 and there is no efficient isomorphism between the groups in either direction. We assume
the existence of an algorithm BGrpSetup which on input a security parameter λ outputs a description of
bilinear groups.
Complexity Assumptions. We will use the following assumptions from the literature:

SXDH. The Decisional Diffie-Hellman (DDH) assumption holds in both groups G1 and G2.
SDLIN in G1 [21] 1. This is a variant of the DLIN assumption [9] and states in Type-3 bilinear groups,

given the tuple (G,Gf , Gh, Grf , Gsh, Gt, G̃, G̃t) ∈ G6
1 × G2

2 for unknown f, h, r, s, t ∈ Zp, it is
hard to tell whether t = r + s or t is random.

q-SDH [7]. Given (G,Gx, . . . , Gx
q
, G̃, G̃x) for x← Zp, it is hard to output a pair (c,G

1
x+c ) ∈ Zp×G1

for an arbitrary c ∈ Zp\{−x}.
q-AGHO [2]. Given a uniformly random tuple (G, G̃, W̃ , X̃, Ỹ ) ∈ G1 ×G4

2, and q uniformly random
tuples (Ai, Bi, Ri, D̃i) ∈ G3

1 ×G2, each satisfying

e(Ai, D̃i) = e(G, G̃) and e(G, X̃) = e(Ai, W̃ )e(Bi, G̃)e(Ri, Ỹ ),

it is hard to output a new tuple (A∗, B∗, R∗, D̃∗) satisfying the above equations and different from
the q tuples.

Span Programs. For a field F and a variable set A = {α1, . . . , αn}, a monotone span program [20] is
defined by a β × γ matrix S (over F) along with a labeling map ρ which associates each row in S with
an element αi ∈ A.

The span program accepts a set A′ iff 1 ∈ Span(SA′), where SA′ is the sub-matrix of S containing
only rows with labels αi ∈ A′, i.e., the program only accepts A′ if there exists a vector z s.t. zSA′ =
[1, 0, . . . , 0].

1 It can similarly be defined in G2.
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3 Syntax and Security of Decentralized Traceable Attribute-Based Signatures

A DTABS scheme involves the following entities: a set of attribute authorities, each with a unique
identity aid and a pair of secret/verification keys (askaid, avkaid); a tracing authority TA with a secret
tracing key tk that is used to identify the signer of a given signature; a set of users, each with a unique
identity uid, a personal secret/public key pair (usk[uid],uvk[uid]) and a set of attributesA ⊆ A (where
A is the attribute universe). Attributes in the system can be distinctly identified by concatenating the
identity of the managing authority with the name of the attribute. This way, the identities (and hence the
public keys) of attribute authorities managing attributes appearing in the signing policy can be inferred
from the predicate itself which eliminates the need for any additional meta-data to be attached. In our
model, attribute authorities as well as users can join the system at any time.

A DTABS scheme is a tuple of polynomial-time algorithms

DT ABS := (Setup,AKeyGen,UKeyGen,AttKeyGen, Sign,Verify,Trace, Judge)·

The definition of the algorithms are as follows; where to aid notation all algorithms bar the first three are
assumed to take as implicit input the public parameters pp output by algorithm Setup.

• Setup(1λ) is run by some trusted third party. On input a security parameter 1λ, it outputs public
parameters pp and a tracing key tk.

• AKeyGen(pp, aid) is run by attribute authority aid to generate its key pair (askaid, avkaid). The at-
tribute authority publishes its public key avkaid.

• UKeyGen(pp) on input the public parameters pp, it outputs a personal secret/verification key pair
(usk[uid],uvk[uid]) for the user with identity uid. We assume that the public key table uvk is
publicly available (possibly via some PKI) so that anyone can obtain authentic copies of uers’ public
keys.

• AttKeyGen(askaid(α), uid,uvk[uid], α) on input the secret key of the attribute authority managing
attribute α (i.e. askaid(α)), a user’s identity uid, a user’s personal public key uvk[uid] and an attribute
α ∈ A, it outputs a secret key skuid,α for attribute α for the user. The key skuid,α is given to uid.

• Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P) on input an ordered list of at-
tribute authorities’ verification keys {avkaid(α)}α∈A, a user’s identity uid, a user’s secret and public
keys (usk[uid],uvk[uid]), an ordered list of attributes’ secret keys {skuid,α}α∈A for attributes A
that user uid owns, a message m and a signing predicate P, it outputs a signature Σ on m w.r.t. the
signing policy P.

• Verify({avkaid(α)}α∈P,m,Σ,P) is a deterministic algorithm which on input an ordered list of at-
tribute authorities’ verification keys {avkaid(α)}α∈P, a message m, a signature Σ and a signing pred-
icate P, it outputs 1 if Σ is a valid signature on m w.r.t. the signing predicate P or 0 otherwise.

• Trace(tk,m,Σ,P,uvk) is a deterministic algorithm which on input the tracing authority’s key tk, a
message m, a signatureΣ, a signing predicate P, and the public keys table uvk, it outputs an identity
uid > 0 of the user who produced Σ plus a proof πTrace attesting to this claim. If it is unable to trace
the signature to a user, it returns (0, πTrace).

• Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace) is a deterministic algorithm which on input
an ordered list of attribute authorities’ verification keys {avkaid(α)}α∈P, a messagem, a signatureΣ,
a signing predicate P, a user’s identity uid, a user’s public verification key uvk[uid], and a tracing
proof πTrace, it outputs 1 if πTrace is a valid proof that uid has produced Σ or 0 otherwise.

Security of Decentralized Traceble Attribute-Based Signatures. The security properties we require
from a DTABS scheme are: correctness, anonymity, unforgeability, non-frameability, traceability, and
tracing soundness. Unlike the model of El Kaafrani et al. [10], we split the games of unforgeability and
non-frameability. This separation allows us to strengthen the definition of non-frameability where we
allow for the corruption of all authorities. Also, unlike previous models, our model defines the notion of
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AddU(uid)

- If uid ∈ HUL ∪ CUL Then Return⊥.
- (usk[uid],uvk[uid])← UKeyGen(pp).
- HUL := HUL ∪ {uid}.
AddAtt(uid,A)

- If ∃α ∈ A s.t. (uid, α) ∈ HAttL Then Return⊥.
- If uid /∈ HUL ∪ CUL Then
◦ If AddU(uid) =⊥ Then Return⊥.

- For each α ∈ A Do
◦ If aid(α) /∈ HAL Then

� If aid(α) ∈ CAL Then Return⊥.
� If AddA(aid(α)) =⊥ Then Return⊥.

◦ If askaid(α) =⊥ Then Return⊥.
◦ skuid,α ← AttKeyGen(askaid(α), uid,uvk[uid], α).

- HAttL := HAttL ∪ {(uid, α)}
α∈A.

Sign(uid,A,m,P)

- If uid /∈ HUL or ∃α ∈ A s.t. (uid, α) /∈ HAttL Then Return⊥.
- Return⊥ if usk[uid] =⊥ or P(A) 6= 1 or ∃α ∈ A s.t. skuid,α =⊥.
- Σ ← Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P).
- SL := SL ∪ {(uid,A,m,Σ,P)}.
- Return Σ.

CHb((uid0,A0), (uid1,A1),m,P)

- If ∃b ∈ {0, 1} s.t. uidb /∈ HUL or P(Ab) 6= 1 Then Return⊥.
- For i=0 To 1 Do
◦ For each α ∈ Ai s.t. (uidi, α) /∈ HAttL DO

� If AddAtt(uidi, α) =⊥ Then Return⊥.
◦ If usk[uidi] =⊥ or ∃α ∈ Ai s.t. skuidi,α

=⊥ Then Return⊥.
- Σ ← Sign({avkaid(α)}α∈Ab , uidb,usk[uidb],uvk[uidb], {skuidb,α

}α∈Ab ,m,P).
- CL := CL ∪ {(m,Σ,P)}.
- Return Σ.

AddA(aid)

- If aid ∈ HAL ∪ CAL Then Return⊥.
- (askaid, avkaid)← AKeyGen(pp, aid).
- HAL := HAL ∪ {aid}.

RevealA(aid)

- If aid /∈ HAL \ (CAL ∪ BAL) Then Return⊥.
- BAL := BAL ∪ {aid}.
- Return askaid.

RevealU(uid)

- If uid /∈ HUL \ (CUL ∪ BUL) Return⊥.
- BUL := BUL ∪ {uid}.
- Return usk[uid].

RevealAtt(uid,A)

- Return⊥ if ∃α ∈ A s.t. (uid, α) /∈ HAttL \ BAttL.
- BAttL := BAttL ∪ {(uid, α)}α∈A.
- Return {skuid,α}α∈A.

CrptA(aid, vk)

- If aid ∈ HAL ∪ CAL Then Return⊥.
- CAL := CAL ∪ {aid}.

CrptU(uid, vk)

- If uid ∈ HUL ∪ CUL Then Return⊥.
- CUL := CUL ∪ {uid}.

Trace(m,Σ,P)

- Return⊥ if Verify({avkaid(α)}α∈P,m,Σ,P) = 0.
- If (m,Σ,P) ∈ CL Then Return⊥.
- Return Trace(tk,m,Σ,P,uvk).

Fig. 1. Oracles used in the security games for DTABS

tracing soundness which was recently proposed in the context of group signatures [34]. In our model,
we distinguish between bad entities, i.e. those who were initially honest until the adversary learned their
secret keys and corrupt entities whose keys have been chosen by the adversary itself.

The experiments used to define the security requirements are shown in Fig. 2. In those experiments,
the following global lists are used: HUL is a list of honest users; HAL is a list of honest attribute au-
thorities; HAttL is a list of honest users’ attributes and has entries of the form (uid, α); BUL is a list of
bad users whose personal secret keys have been revealed to the adversary; BAttL is a list of bad users’
attributes whose keys have been revealed to the adversary with entries of the form (uid, α); BAL is a list
of bad attribute authorities whose secret keys have been learned by the adversary; CUL is a list of corrupt
users whose keys have been chosen by the adversary; CAL is a list of corrupt attribute authorities whose
keys have been chosen by the adversary; SL is a list of signatures obtained from the Sign oracle; CL is a
list of challenge signatures.

The details of the following oracles are given in Fig. 1.

AddA(aid) adds an honest attribute authority with identity aid.
AddU(uid) adds an honest user with identity uid.
AddAtt(uid,A) adds honest attributes A ⊆ A for user uid. It can be called multiple times to add more

attributes for an existing user.
CrptA(aid, vk) adds a corrupt attribute authority whose keys are chosen by the adversary.
CrptU(uid, vk) adds a corrupt user with identity uid whose personal keys are chosen by the adversary.
RevealA(aid) returns the secret key askaid of the honest attribute authority aid.
RevealU(uid) returns the personal secret key usk[uid] of user uid.
RevealAtt(uid,A) returns the secret keys {skuid,α}α∈A for attributes A ⊆ A owned by user uid. It can

be called multiple times.
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Sign(uid,A,m,P) returns a signatureΣ onm using attributesA belonging to user uid where P(A) = 1.
CHb((uid0,A0), (uid1,A1),m,P) is a left-right oracle for defining anonymity. On input (uid0,A0),

(uid1,A1), a message m and a signing policy P with P(A0) = P(A1) = 1, it returns a signature on
m using attributes Ab belonging to user uidb for b← {0, 1}.

Trace(m,Σ,P) allows the adversary to ask for signatures to be traced.

The details of the security requirements are as follows:

Correctness. This requires that honestly generated signatures verify correctly and trace to the user who
produced them. In addition, the Judge algorithm accepts the tracing proof produced by the Trace algo-
rithm. Formally, a DTABS scheme is correct if for all λ ∈ N, all PPT adversaries B have a negligible
advantage AdvCorr

DT ABS,B(λ) := Pr[ExpCorr
DT ABS,B(λ) = 1].

Anonymity. This requires that a signature reveals neither the identity of the user nor the set of attributes
used in the signing. In the game, the adversary chooses a message, a signing policy and two users with
two, possibly different, sets of attributes satisfying the signing policy. The adversary gets a signature by
either user and wins if it correctly guesses the user.

In the game, the adversary can fully corrupt all attribute authorities and learn any user’s personal
secret key/attribute keys including those used for the challenge. Thus, our definition captures full-key
exposure attacks. Since the adversary can sign on behalf of any user, it is redundant to provide it with a
sign oracle. The only restriction we impose on the adversary is that it may not query the Trace oracle on
the challenge signature.

We focus on CCA-anonymity [4] where the adversary can ask Trace queries at any stage of the
game on any signature except the challenge signature. Similarly to [10] WLOG in order to simplify the
security proofs, we only allow the adversary a single call to the challenge oracle. One can show by means
of a hybrid argument (similar to that used in [10]) that this is sufficient. Also, our definition captures
unlinkability since the adversary has access to all users’ personal secret keys/attribute keys. Formally, a
DTABS scheme is (fully) anonymous if for all λ ∈ N, all PPT adversaries B have a negligible advantage
AdvAnon

DT ABS,B(λ) :=
∣∣Pr[ExpAnon-1

DT ABS,B(λ) = 1]− Pr[ExpAnon-0
DT ABS,B(λ) = 1]

∣∣.
Unforgeability. This captures unforgeability scenarios where the forgery opens to a particular user.
It guarantees that even if all users in the system pool their individual attributes, they cannot output a
signature that traces to a user whose individual attributes do not satisfy the signing predicate. In the
game, the adversary can adaptively create corrupt attribute authorities and learn some of the honest
authorities’ secret keys as long as there is at least a single honest attribute authority managing one of the
attributes required for satisfying the policy used in the forgery. The adversary can also fully corrupt the
tracing authority.

Our definition is adaptive and allows the adversary to adaptively choose both the signing predicate
and the message used in the forgery. Note that we consider the stronger variant of unforgeability, i.e.
(strong unforgeability) where the adversary wins even if it forges a new signature on a message/predicate
pair that was queried to the sign oracle. It is easy to adapt the definition if the weaker variant of unforge-
ability is desired. Formally, a DTABS scheme is unforgeable if for all λ ∈ N, all PPT adversaries B have
a negligible advantage AdvUnforge

DT ABS,B(λ) := Pr[ExpUnforge
DT ABS,B(λ) = 1].

Non-Frameability. This ensures that even if all authorities and users collude, they cannot produce a
signature that traces to an honest user whose personal secret key has not been learned by the adversary.

Our definition guarantees that even if the secret attributes’ keys for attributes owned by a user are
leaked (for instance, by means of interception or leakage by dishonest attribute authorities), it is still
impossible to sign on behalf of the user without knowledge of her personal secret key. Thus, our model
overcomes the shortcoming of previous models [11, 10] and ensures that an innocent user cannot be
framed by dishonest attribute authorities or parties who intercept the communication between the user
and the attribute authorities.
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Experiment: ExpCorr
DTABS,B(λ)

− (pp, tk)← Setup(1λ).
− HUL,HAttL,HAL := ∅.
− (uid,A,m,P)← B(pp : AddU(·),AddAtt(·, ·),AddA(·)).
− If P(A) 6= 1 or uid /∈ HUL or usk[uid] =⊥ Then Return 0.
− If ∃α ∈ A s.t. (uid, α) /∈ HAttL or skuid,α =⊥ or aid(α) /∈ HAL Then Return 0.
− Σ ← Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P).
− If Verify({avkaid(α)}α∈P,m,Σ,P) = 0 Then Return 1.
− (uid∗, πTrace)← Trace(tk,m,Σ,P,uvk).
− If uid∗ 6= uid or Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace) = 0 Then Return 1 Else Return 0.

Experiment: ExpAnon-b
DTABS,B(λ)

− (pp, tk)← Setup(1λ).
− CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL,CL := ∅.
− b∗ ← B

`
pp : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·),RevealA(·)

,RevealU(·),RevealAtt(·, ·),CHb((·, ·), (·, ·), ·, ·),Trace(·, ·, ·)
´
.

− Return b∗.

Experiment: ExpUnforge
DTABS,B(λ)

− (pp, tk)← Setup(1λ).
− CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL, SL := ∅.
− (m∗, Σ∗,P∗, uid∗, π∗Trace)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·),RevealA(·)

,RevealU(·),RevealAtt(·, ·), Sign(·, ·, ·, ·)
´
.

− If Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

− If Judge({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗, uid∗,uvk[uid∗], π∗Trace) = 0 Then Return 0.

− Let Auid∗ be the attributes of uid∗ managed by dishonest (i.e. ∈ CAL ∪ BAL) attribute authorities.
− If ∃A s.t. {(uid∗, α)}α∈A ⊆ BAttL and P∗(A ∪Auid∗) = 1 Then Return 0.
− If ∃(uid∗, ·,m∗, Σ∗,P∗) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpNF
DTABS,B(λ)

− (pp, tk)← Setup(1λ).
− CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL, SL := ∅.
− (m∗, Σ∗,P∗, uid∗, π∗Trace)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·),RevealA(·)

,RevealU(·),RevealAtt(·, ·), Sign(·, ·, ·, ·)
´
.

− If Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

− If Judge({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗, uid∗,uvk[uid∗], π∗Trace) = 0 Then Return 0.

− If uid /∈ HUL \ BUL or ∃(uid∗, ·,m∗, Σ∗,P∗) ∈ SL Then Return 0 Else Return 1.

Experiment: ExpTrace
DTABS,B(λ)

− (pp, tk)← Setup(1λ).
− CUL,HAL,HUL,HAttL,BUL,BAttL, SL := ∅.
− (m∗, Σ∗,P∗)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptU(·, ·),RevealU(·),RevealAtt(·, ·), Sign(·, ·, ·, ·)

´
.

− If Verify({avkaid(α)}α∈P∗ ,m
∗, Σ∗,P∗) = 0 Then Return 0.

− (uid∗, π∗Trace)← Trace(tk,m∗, Σ∗,P∗,uvk).
− If uid∗ = 0 or Judge({avkaid(α)}α∈P∗ ,m

∗, Σ∗,P∗, uid∗,uvk[uid∗], π∗Trace) = 0 Then Return 1 Else Return 0.

Experiment: ExpTS
DTABS,B(λ)

− (pp, tk)← Setup(1λ).
− CAL,CUL,HAL,HUL,HAttL,BAL,BUL,BAttL := ∅.
− (m∗, Σ∗,P∗, uid1, πTrace,1, uid2, πTrace,2)← B

`
pp, tk : AddU(·),AddAtt(·, ·),AddA(·),CrptA(·, ·),CrptU(·, ·)

,RevealA(·),RevealU(·),RevealAtt(·, ·).
− If uid1 = uid2 or Verify({avkaid(α)}α∈P∗ ,m

∗, Σ∗,P∗) = 0 Then Return 0.
− If ∃i ∈ {1, 2} s.t. Judge({avkaid(α)}α∈P∗ ,m

∗, Σ∗,P∗, uidi,uvk[uidi], πTrace,i) = 0 Then Return 0 Else Return 1.

Fig. 2. Security experiments for decentralized traceable attribute-based signatures

In the game, the adversary can fully corrupt all attribute authorities as well as the tracing authority.
It can also corrupt as many users of the system as it wishes. We just require that the forgery output by
the adversary is a valid signature and traces to a user whose personal secret key has not been revealed to
the adversary. Formally, a DTABS scheme is non-frameable if for all λ ∈ N, all PPT adversaries B have
a negligible advantage AdvNF

DT ABS,B(λ) := Pr[ExpNF
DT ABS,B(λ) = 1].
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Traceability. This ensures that the adversary cannot produce a signature that cannot be traced. In the
game, the adversary is allowed to corrupt the tracing authority and learn both the personal secret key
and attributes’ keys of any user. However, unlike in the unforgeability and non-frameability games, we
require that all the attribute authorities are honest. We emphasize that such an assumption is inevitable as
knowing the secret key of any attribute authority would allow the adversary to grant attributes to dummy
users resulting in untraceable signature. Formally, a DTABS scheme is traceable if for all λ ∈ N, all
PPT adversaries B have a negligible advantage AdvTrace

DT ABS,B(λ) := Pr[ExpTrace
DT ABS,B(λ) = 1].

Tracing Soundness. This new requirement, which was not defined in previous models [11, 10], ensures
that even if all authorities (including the tracing authority) and users in the system are all corrupt and
collude, they cannot produce a valid signature that traces to two different users. Among other things,
this prevents users from claiming authorship of signatures they did not produce or imputing possibly
problematic signatures to other users. Formally, a DTABS scheme satisfies tracing soundness if for all
λ ∈ N, all PPT adversaries B have a negligible advantage AdvTS

DT ABS,B(λ) := Pr[ExpTS
DT ABS,B(λ) =

1].

3.1 Comparison with Existing Models
As mentioned earlier, our model is stronger than previous models. Assigning personal keys to users
serves to minimize the trust placed in attribute authorities and hence we get a stronger and (more real-
istic) definition for non-frameability. It is important in this setting to prevent corrupt authorities and/or
malicious parties intercepting the communication between attribute authorities and users from being
able to frame users, which might result in innocent users being held accountable for signatures they
have not produced. In addition, we get a cleaner definition for traceability than that used in [10]. In
particular, the public-key table is used as a reference to determine whether a particular user has indeed
joined the system, which eliminates the need for the tracing authority to have a read access to the local
registration tables maintained by the attribute authorities. Moreover, unlike previous models, we capture
the useful notion of tracing soundness [34], which ensures that only the signer can claim authorship of
the signature. The latter is vital in ensuring that a valid signature can only trace to a single user.

4 Building Blocks

In this section we present the building blocks that we use in our constructions.

4.1 Digital Signatures

A digital signature for a message spaceMDS is a tuple of polynomial-time algorithmsDS := (KeyGen,
Sign,Verify), where KeyGen outputs a pair of secret/verification keys (sk, vk) for the signer; Sign(sk,m)
outputs a signature σ on the message m; Verify(vk,m, σ) outputs 1 if σ is a valid signature on the
message m or 0 otherwise.

Besides correctness, the security of a digital signature requires existential unforgeability under an
adaptive chosen-message attack which demands that all PPT adversaries B have a negligible advantage
in winning the following game:

• A key pair (sk, vk) is generated and vk is sent to B.
• Adversary B makes a polynomial number of queries to a sign oracle Sign(sk, ·).
• Eventually, B halts by outputting (σ∗,m∗) and wins if σ∗ is valid on m∗, and m∗ was not queried to

Sign.

A weaker variant of existential unforgeability (i.e. existential unforgeability under a weak chosen-
message attack) requires that the adversary sends all its queries before seeing the verification key.

8



DS.KeyGen(P)

- Choose x, y ← Zp and set (X̃, Ỹ ) := (G̃x, G̃y).
- Return sk := (x, y) and vk := (X̃, Ỹ ).

DS.Sign(sk,m)
- To sign m ∈ Zp, choose r ← Zp s.t. x+ r · y +m 6= 0,

set σ := G
1

x+r·y+m . Return (σ, r).

DS.Verify(vk,m, (σ, r))

- Return 1 if e(σ, X̃ · Ỹ r · G̃m) = e(G, G̃) and 0 otherwise.

DS.KeyGen(P)

- Choose x← Zp and set X̃ := G̃x.
- Return sk := x and vk := X̃ .

DS.Sign(sk,m)

- To sign m ∈ Zp s.t. x+m 6= 0, return σ := G
1

x+m .

DS.Verify(vk,m, σ)

- Return 1 if e(σ, X̃ · G̃m) = e(G, G̃) and 0 otherwise.

Fig. 3. The full Boneh-Boyen (Left) and the weak Boneh-Boyen (Right) signatures

T S.KeyGen(P)

- x1, x2, y ← Zp, set (X1, X2, Ỹ ) := (Gx1 , Gx2 , G̃y).
- Return

`
sk := (x1, x2, y), vk := (X1, X2, Ỹ )

´
.

T S.Sign(sk, τ̃ , M̃)

- a← Zp, A := Ga, B := Ay , D̃ := (G̃ · τ̃−x1 · M̃−x2)
1
a .

- Return σ :=
“
A,B, D̃

”
.

T S.Verify(vk, τ̃ , M̃ , σ)

- Return 1 if e(A, Ỹ ) = e(B, G̃)

and e(A, D̃)e(X1, τ̃)e(X2, M̃) = e(G, G̃).

T S.KeyGen(P)

- w, x, {yi}3i=1 ← Zp, set (W̃ , X̃, Ỹi) := (G̃w, G̃x, G̃yi).
- Return

`
sk := (w, x, {yi}3i=1), vk := (W̃ , X̃, {Ỹi}3i=1)

´
.

T S.Sign(sk, τ,M)

- R← G, a← Zp, A := Ga, D̃ := G̃
1
a ,

B := Gx−aw ·R−y1 · τ−y2 ·M−y3 .
- Return σ :=

“
A,B, D̃,R

”
.

T S.Verify(vk, τ,M, σ)

- Return 1 if e(A, D̃) = e(G, G̃) and
e(G, X̃) = e(A, W̃ )e(B, G̃)e(R, Ỹ1)e(τ, Ỹ2)e(M, Ỹ3).

Fig. 4. Two instantiations of tagged signatures

In this paper, we will use two digital signatures by Boneh and Boyen [7], which we refer to as the
full Boneh-Boyen signature (Fig. 3 (Left)) and the weak Boneh-Boyen signature (Fig. 3 (Right)), respec-
tively. Both schemes are secure under the q-SDH assumption. The weaker scheme is only secure under
a weak chosen-message attack. Let P := (G1,G2,GT , p,G, G̃, e) be the description of an asymmetric
bilinear group. The schemes are given in Fig. 3.

4.2 Tagged Signatures

In [10], the authors defined a variant of a signature scheme they called a tagged signature. Tagged
signatures are similar to digital signatures with the only difference being that the signing and verification
algorithms take as an additional input a tag τ . Formally, a tagged signature scheme for a message space
MT S and a tag space TT S is a tuple of polynomial-time algorithms T S := (Setup,KeyGen, Sign,
Verify), where Setup(1λ) outputs common public parameters param; KeyGen(param) outputs a pair of
secret/verification keys (sk, vk); Sign(sk, τ,m) outputs a signature σ on the tag τ and the message m;
Verify(vk, τ,m, σ) outputs 1 if σ is a valid signature on τ and m w.r.t. the verification key vk.

Besides correctness, the security of a tagged signature [10] requires existential unforgeability under
an adaptive chosen-message-tag attack which is similar to the definition of existential unforgeability of
digital signatures with the difference being the winning condition is now that the adversary outputs a
valid signature on a pair (τ∗,m∗) that is different from the pairs queried to the sign oracle.

In this paper, we will use two instantiations of tagged signatures which are based on two structure-
preserving signature schemes [1] by Abe et al. [2]. The first instantiation (shown in Fig. 4 (Left)) is based
on the re-randomizable signature scheme in [2] which signs messages in G2

2. We refer to this scheme
as AGHO1 after its authors. The tag space of this instantiation is TT S := G2, and the message space
isMT S := G2. The tagged signature size is G2

1 × G2 and the signature is fully re-randomizable. The
unforgeability of the signature scheme rests on an interactive assumption. See [2] for more details.

The second instantiation (shown in Fig. 4 (Right)) is based on the strongly unforgeable signature
scheme from [2] whose unforgeability reduces to the non-interactive q-AGHO assumption (cf. Section
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2). The message space of the underlying signature scheme is G3
1 (where the first element is chosen

randomly by the signer), we refer to the underlying scheme as AGHO2. The tag space of this instantiation
is TT S := G1, and the message space isMT S := G1. The signature size is G3

1 ×G2.
In both instantiations T S.Setup(1λ) outputs P := (G1,G2,GT , p,G, G̃, e) which is the description

of an asymmetric bilinear group.

4.3 Strongly Unforgeable One-Time Signatures

A one-time signature scheme is a signature scheme that is unforgeable against an adversary who makes a
single signing query. Strong Unforgeability requires that the adversary cannot even forge a new signature
on a message that she queried the sign oracle on. In this paper, we will instantiate the one-time signature
using the full Boneh-Boyen signature scheme from Fig. 3.

4.4 Non-Interactive Zero-Knowledge Proofs

Let R be an efficiently computable relation on pairs (x,w), where we call x the statement and w the
witness. We define the corresponding language L as all the statements x in R. A Non-Interactive Zero-
Knowledge (NIZK) proof system [6] for R is defined by a tuple of algorithms NIZK := (Setup,
Prove,Verify,Extract, SimSetup,SimProve).

Setup takes as input a security parameter 1λ and outputs a common reference string crs and an
extraction key xk which allows for witness extraction. Prove takes as input (crs, x, w) and outputs a proof
π that (x,w) ∈ R. Verify takes as input (crs, x, π) and outputs 1 if the proof is valid, or 0 otherwise.
Extract takes as input (crs, xk, x, π) and outputs a witness. SimSetup takes as input a security parameter
1λ and outputs a simulated reference string crsSim and a trapdoor key tr that allows for proof simulation.
SimProve takes as input (crsSim, tr, x) and outputs a simulated proof πSim without a witness.

We require: completeness, soundness and zero-knowledge. Completeness requires that honestly gen-
erated proofs are accepted; Soundness requires that it is infeasible (but for a small probability) to produce
a convincing proof for a false statement; Zero-knowledge requires that a proof reveals no information
about the witness used. The formal definitions can be found in Appendix A.

Groth-Sahai Proofs. Groth-Sahai (GS) proofs [18] are efficient non-interactive proofs in the Common
Reference String (CRS) model. In this paper, we will be using the SXDH-based instantiation, which is
the most efficient instantiation of the proofs [16]. The language for the system has the form

L := {statement | ∃witness : E1(statement,witness), . . . , En(statement,witness) hold },

where Ei(statement, ·) is one of the types of equation summarized in Fig. 5, where X1, . . . , Xm ∈ G1,
Ỹ1, . . . , Ỹn ∈ G2, x1, . . . , xm, ỹ1, . . . , ỹn ∈ Zp are secret variables (hence underlined), whereasAi, T ∈
G1, B̃i, T̃ ∈ G2, ai, b̃i, ki,j , t ∈ Zp, tT ∈ GT are public constants. For clarity, we also accent exponents
to be mapped to group G2 with .̃

The system works by first committing to the elements of the witness and then proving that the
commitments satisfy the source equations.

The proof system has perfect completeness, perfect soundness, composable witness-indistinguishabil-
ity/zero-knowledge. Refer to [18] for the formal definitions and details of the instantiations.

4.5 Tag-Based Encryption

A Tag-based Public-Key Encryption (TPKE) scheme [27] is similar to a public-key encryption scheme
with the only difference being that both Enc and Dec algorithms take as an additional input a tag t.
Formally, a TPKE scheme for a message spaceMT PKE and a tag space TT PKE is a tuple of polynomial-
time algorithms T PKE := (KeyGen,Enc,Dec, IsValid), where KeyGen(1λ) outputs a public/secret key
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• Pairing Product Equation (PPE):
nQ
i=1

e(Ai, Ỹi)
mQ
i=1

e(Xi, B̃i)
mQ
i=1

nQ
j=1

e(Xi, Ỹj)
ki,j = tT ·

• Multi-Scalar Multiplication Equation (MSME) in G1:
nQ
i=1

A
ỹi
i

mQ
i=1

Xi
b̃i

mQ
i=1

nQ
j=1

Xi
ki,j ỹj = T ·

• Multi-Scalar Multiplication Equation (MSME) in G2:
nQ
i=1

Ỹi
ai

mQ
i=1

B̃
xi
i

mQ
i=1

nQ
j=1

Ỹj
ki,jxi

= T̃ ·

• Quadratic Equation (QE) in Zp:
nP
i=1

aiỹi +
mP
i=1

xib̃i +
mP
i=1

nP
j=1

xiỹj = t·

Fig. 5. Types of equations over bilinear groups

Experiment: ExpST-WIND-CCA-b
T PKE,B (λ):

− (t∗, stinit)← Binit

`
1λ
´
.

− (pk, sk)← KeyGen(1λ).
− (m0,m1, stfind)← Bfind

“
stinit, pk : Dect

∗
(sk, ·, ·)

”
, where |m0| = |m1|.

− Ctbe,b ← Enc(pk, t∗,mb).
− b∗ ← Bguess

“
stfind, Ctbe,b : Dect

∗
(sk, ·, ·)

”
, where Dect

∗
returns ⊥ if queried on t∗.

− Return b∗.

Fig. 6. The ST-WIND-CCA security game for tag-based encryption

pair (pk, sk); Enc(pk, t,m) outputs a ciphertext Ctbe; Dec(sk, t, Ctbe) outputs a message m or the reject
symbol ⊥; IsValid(pk, t, Ctbe) outputs 1 if the ciphertext is valid under the tag t w.r.t. the pubic key pk
or 0 otherwise.

Besides correctness, we require selective-tag weak indistinguishability under an adaptive chosen-
ciphertext attack (ST-WIND-CCA), which requires for all λ ∈ N, the advantage AdvST-WIND-CCA

T PKE,B (λ)
:=
∣∣Pr[ExpST-WIND-CCA-1

T PKE,B (λ) = 1]− Pr[ExpST-WIND-CCA-0
T PKE,B (λ) = 1]

∣∣ is negligible for all polynomial-time
adversaries B where the game is shown in Fig. 6.

In order to get more efficient constructions, we use the asymmetric variant [21] of Kiltz’ tag-based
encryption [24] shown in Fig. 7. The security of this instantiation in Type-3 groups, which is based on
the SDLIN assumption (cf. Section 2), requires a polynomial (in the security parameter) message space
so that we can efficiently search when decrypting. Such a restriction is not an issue for our setting as
in our constructions the adversary runs in polynomial-time and hence can only add polynomially many
users in the security games. Also, note that the public key could be chosen from either G1 or G2 which
determines whether SDLIN holds in G1 or G2.

5 Our Generic Construction

In this section, we present our generic construction for decentralized traceable attribute-based signatures.

T PKE .KeyGen(1λ)

- P ← BGrpSetup(1λ).
- K̃, L̃← G2; f, h← Zp; F := Gf ; H := Gh.
- pk := (P, F,H, K̃, L̃); sk := (f, h).

T PKE .Enc(pk, t,M)
- r1, r2 ← Zp.
- C1 := F r1 ; C2 := Hr2 ; C3 := Gr1+r2 ·M .
- C̃4 := (G̃t · K̃)r1 ; C̃5 := (G̃t · L̃)r2 .
- Ctbe := (C1, C2, C3, C̃4, C̃5).

T PKE .Dec(sk, t, Ctbe)
- If T PKE .IsValid(pk, t, Ctbe) = 0 Then return ⊥.
- Parse Ctbe as (C1, C2, C3, C̃4, C̃5).
- M := C3 · C−1/f

1 C
−1/h
2 .

T PKE .IsValid(pk, t, Ctbe)

- Parse Ctbe as (C1, C2, C3, C̃4, C̃5).
- If e(F, C̃4) 6= e(C1, G̃

t · K̃) or
e(H, C̃5) 6= e(C2, G̃

t · L̃) Then Return 0.
- Else Return 1.

Fig. 7. The asymmetric instantiation [21] of the tag-based encryption by Kiltz [24]
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Setup(1λ)

- (crs1, xk1)← NIZK1.Setup(1λ), crs2 ← NIZK2.Setup(1λ), (epk, esk)← T PKE .KeyGen(1λ; ρ).
- Choose collision-resistant hash functions Ĥ : {0, 1}∗ → TT PKE andH : {0, 1}∗ →MOT S .
- Let tk := esk and pp := (1λ, crs1, crs2, epk, Ĥ,H). Return pp.

AKeyGen(pp, aid)

- (avkaid, askaid)← T S.KeyGen(1λ). Return (avkaid, askaid).

UKeyGen(pp)

- (uvk[uid],usk[uid])←WDS.KeyGen(1λ). Return (uvk[uid],usk[uid]).

AttKeyGen(askaid(α), uid,uvk[uid], α)

- skuid,α ← T S.Sign(askaid(α),uvk[uid], α). Return skuid,α.

Sign({avkaid(α)}α∈A, uid,usk[uid],uvk[uid], {skuid,α}α∈A,m,P)

- Return ⊥ if P(A) = 0.
- (otsvk, otssk)← OT S.KeyGen(1λ).
- Ctbe ← T PKE .Enc(epk, Ĥ(otsvk),uvk[uid];µ).
- σ ←WDS.Sign(usk[uid], Ĥ(otsvk)).
- π ← NIZK1.Prove(crs1, {uvk[uid], µ, z, {σαi}

|P|
i=1, σ} : (Ctbe, Ĥ(otsvk), epk, {avkaid(αi)}

|P|
i=1, {αi}

|P|
i=1) ∈ L1).

- σots ← OT S.Sign(otssk, (H(m,P), π, Ctbe, otsvk)).
- Return Σ := (σots, π, Ctbe, otsvk).

Verify({avkaid(α)}α∈P,m,Σ,P)

- Parse Σ as (σots, π, Ctbe, otsvk).
- Return 1 if all the following verify; otherwise, return 0:
◦ OT S.Verify(otsvk, (H(m,P), π, Ctbe, otsvk), σots) = 1.
◦ NIZK1.Verify(crs1, π) = 1.
◦ T PKE .IsValid(epk, Ĥ(otsvk), Ctbe) = 1.

Trace(tk,m,Σ,P,uvk)
- Return (⊥,⊥) if Verify({avkaid(α)}α∈P,m, σ,P) = 0.
- vkuid ← PKE .Dec(tk, Ĥ(otsvk), Ctbe).
- πTrace ← NIZK2.Prove(crs2, {tk, ρ} : (Ctbe, Ĥ(otsvk), epk, vkuid) ∈ L2).
- Return (i, πTrace) if ∃i s.t. vkuid = uvk[i]. Otherwise, return (0, πTrace).

Judge({avkaid(α)}α∈P,m,Σ,P, uid,uvk[uid], πTrace)

- If (uid, πTrace) = (⊥,⊥) Then Return Verify({avkaid(α)}α∈P,m,Σ,P) = 0.
- ReturnNIZK2.Verify(crs2, πTrace).

Fig. 8. Our generic construction for DTABS

Overview of the construction. Our generic construction builds upon those in [29, 10], but with major
and distinct differences. Unlike [29, 10], we dispense with relying on the so-called pseudo-attribute
technique to bind the signature to the message. Thus, we eliminate the need for some of the tools used
by the constructions in [29, 10]. In addition, we weaken the properties required from other building
blocks, which improves the efficiency of the resulting constructions while offering stronger security.

Our construction requires two NIZK proof systems NIZK1 and NIZK2, a selective-tag weakly
IND-CCA secure (i.e. ST-WIND-CCA secure) tag-based encryption scheme T PKE , a tagged signature
scheme T S , an existentially unforgeable digital signature scheme WDS that is secure against a weak
chosen-message attack, and a strongly unforgeable one-time signature scheme OT S. Additionally, we
require two collision-resistant hash functions Ĥ : {0, 1}∗ → TT PKE andH : {0, 1}∗ →MOT S .

We require that NIZK1 is a proof of knowledge. Note that it is sufficient for WDS to be ex-
istentially unforgeable against a weak chosen-message attack as we will use this scheme to sign the
verification keys of the one-time signature scheme OT S .

The Setup algorithm generates two separate common reference strings crs1 and crs2 for the NIZK
systemsNIZK1 andNIZK2, respectively. It also generates a key pair (epk, esk) for the tag-based en-
cryption scheme T PKE . The public parameters of the system is set to pp := (1λ, crs1, crs2, epk, Ĥ,H).
The tracing authority’s key is set to tk := esk.
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When a new attribute authority joins the system, it creates a verification/secret key pair (avkaid, askaid)
for the tagged signature scheme T S . When a user joins the system, she generates a verification/secret
key pair (uvk[uid],usk[uid]) for the digital signature schemeWDS.

To generate a signing key for attribute α ∈ A for user uid, the managing attribute authority signs
the user’s public key uvk[uid] (used as tag) along with the attribute α using her secret tagged signature
signing key. The resulting signature σα is used as the secret key skuid,α for that attribute by user uid.

To sign a message m w.r.t. a signing policy P, the user chooses a fresh key pair (otsvk, otssk) for the
one-time signature OT S and encrypts her public key uvk[uid] using the tag-based encryption scheme
T PKE (and some randomness µ) using Ĥ(otsvk) as a tag to obtain a ciphertext Ctbe. She then signs
Ĥ(otsvk) using the digital signature scheme WDS and her personal secret key usk[uid] to obtain a
signature σ. Using the NIZK system NIZK1, she then computes a proof π that: she encrypted her
public key correctly, she has a signature σ on Ĥ(otsvk) that verifies w.r.t. her public key uvk[uid], and
she has enough attributes on her public key to satisfy the signing predicate P. To prove the latter, we
use a span program (see Section 2) represented by the matrix S: the user proves that she knows a secret
vector z ∈ Z|P|p s.t. zS = [1, 0, . . . , 0]. She also needs to show that she possesses a valid tagged signature
on each attribute in the signing predicate P for which the corresponding element in z is non-zero. For
attributes appearing in P that the signer does not own, she chooses random signatures. Finally, she signs
(H(m,P), π, Ctbe, otsvk) using the one-time signature OT S to obtain a one-time signature σots.

To verify the signature, one just needs to verify the proof π and the one-time signature σots. We note
here that if T S and/orWDS are re-randomizable, one can reveal in the clear the signature components
which are independent of uvk[uid] after re-randomizing them. This simplifies the NIZK proof π and
subsequently improves the efficiency.

To trace a signature, the tracing authority just decrypts the ciphertextCtbe to recover the user’s public
key vkuid, and produces a proof πTrace using the NIZK systemNIZK2 to prove that the decryption was
done correctly. She then searches in the public key table uvk to identify the entry matching vkuid. It
returns (uid, πTrace) if such entry exists, or (0, πTrace) otherwise. To verify the tracing correctness, the
judge just needs to verify the validity of the NIZK proof πTrace.

The construction is in Fig. 8, whereas the languages associated with the NIZK proofs used in the
construction are as follows, where for clarity we underline the elements of the witness:

L1 :
{(

(Ctbe, Ĥ(otsvk), epk, {avkaid(αi)}
|P|
i=1, {αi}

|P|
i=1), (uvk[uid], µ,z, {σαi}

|P|
i=1)

)
:

(
zS = [1, 0, . . . , 0]

|P|∧
i=1

if zi 6= 0⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi) = 1
)

∧ WDS.Verify(uvk[uid], Ĥ(otsvk), σ) = 1 ∧ T PKE .Enc(epk, Ĥ(otsvk),uvk[uid];µ) = Ctbe

}
·

The witness consists of a user’s verification key uvk[uid], the randomness µ used in encrypting uvk[uid],
a vector z ∈ Z|P|p , and signatures {σαi}

|P|
i=1 such that: the span program S verifies w.r.t. to z and for every

non-zero element zi, the tagged signature σαi on uvk[uid] (as a tag) and the attribute αi (as a message)
verifies w.r.t. the corresponding attribute authority verification key, the signature σ on Ĥ(otsvk) veri-
fies w.r.t. to the user’s public key uvk[uid], and the ciphertext Ctbe is the encryption of uvk[uid] using
Ĥ(otsvk) as a tag (and the randomness µ) under the public key epk.

L2 :
{(

(Ctbe, Ĥ(otsvk), epk, vkuid), (tk, ρ)
)

: T PKE .KeyGen(1λ; ρ) = (epk, tk)

∧ T PKE .Dec(tk, Ĥ(otsvk), Ctbe) = vkuid

}
·
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The witness consists of the tracing key, i.e. the decryption key for T PKE , and the randomness ρ (if any)
used in the key generation of T PKE s.t. the encryption/decryption key pair is correct and Ctbe decrypts
to vkuid.

Theorem 1. The construction in Fig. 8 is a secure decentralized traceable attribute-based signature if
the building blocks are secure w.r.t. their security requirements.

The full proof of this Theorem can be found in Appendix B.
Next, we present two instantiations of the generic framework in the standard model.

6 Instantiations in the Standard Model

In this section, we provide two example instantiations in the standard model and compare their efficiency
to existing constructions.

6.1 Instantiation I

Here we instantiate the tagged signature T S using the re-randomizable AGHO1 signature scheme (see
Fig. 4 (Left)) and instantiate the signature scheme WDS and the one-time signature OT S using the
weak and full Boneh-Boyen signature schemes, respectively. We instantiate both proof systemsNIZK1

and NIZK2 using the Groth-Sahai proof system and use the Type-3 asymmetric variant of Kiltz’s tag-
based encryption scheme as illustrated in Fig. 7 to instantiate T PKE .

Let S ∈ Z|P|,βp be the span program for P. To sign, the signer provides the following proofs:

• To prove that zS = [1, 0, . . . , 0], the signer proves the following linear equations:

|P|∑
i=1

(ziS̃i,1) = 1
|P|∑
i=1

(ziS̃i,j) = 0, for j = 2, . . . , β

• To prove if zi 6= 0 ⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi) = 1, where σαi = (A′i, B
′
i, D̃

′
i) ∈

G2
1 × G2 and avkaid(αi) = (Xi,1, Xi,2, Ỹi) ∈ G2

1 × G2. The signer re-randomizes σαi by choosing

a′ ← Z∗p and computing σαi := (Ai, Bi, D̃i) = (A′i
a′ , B′i

a′ , D̃′i

1
a′ ), and proves the following

˘̃Di = D̃i
zi ˘̃Yi = Ỹ

zi
i

˘̃vki =
∼

uvk[uid]zi ˘̃Gi = G̃zi

e(Ai,
˘̃Yi) = e(Bi,

˘̃Gi) e(Ai,
˘̃Di)e(Xi,1,

˘̃vki)e(Xi,2,
˘̃Gi
αi

) = e(G, ˘̃Gi)

Note here thatAi is independent ofA′i and uvk[uid]. The same applies toBi after the re-randomiza-
tion, however, we cannot afford to reveal Bi in the clear since for attributes the user does not own,
she needs to simulate signatures. More precisely, choosing a random pair (Ai, Bi) satisfying the first
pairing-product equation is impossible without knowledge of the secret signing key of the authority
(since Bi and Ỹi lie in different groups). Thus, we hide Bi and just reveal Ai.
Also, note that the verifier can on her own compute a Groth-Sahai commitment to the value ˘̃Gi

αi
by

computing Cαi˘̃Gi
, where C ˘̃Gi

is the Groth-Sahai commitment (which is ElGamal ciphertext) to ˘̃Gi. This

saves the signer producing proofs for the correct computation of such values and hence improves the
efficiency. In addition, the way we express the witness of the equations only requires committing to
the elements of the vector z in G1, which further improves the efficiency.

• To prove thatWDS.Verify(
∼

uvk[uid], Ĥ(otsvk), σ) = 1, the signer proves that

e(σ,
∼

uvk[uid])e(σ, G̃Ĥ(otsvk))e(G, G̃) = 1 G−G = 0
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• To prove T PKE .Enc(epk, Ĥ(otsvk),
∼

uvk[uid]; (r1, r2)) = Ctbe, the signer proves she computed the

ciphertext (C̃1, C̃2, C̃3, C4, C5) =
(
F̃ r1 , H̃r2 , G̃r1+r2 ·

∼
uvk[uid], (GĤ(otsvk) ·K)r1 , (GĤ(otsvk) ·L)r2

)
correctly. It is sufficient to prove that C̃1, C̃2 and C̃3 were computed correctly and the rest can be
verified by checking that e(C4, F̃ ) = e(GĤ(otsvk) · K, C̃1) and e(C5, H̃) = e(GĤ(otsvk) · L, C̃2).
Thus, this requires proving

C̃1 = F̃ r1 C̃2 = H̃r2 C̃3 = G̃r1 · G̃r2 ·
∼

uvk[uid]

Note that we have transposed the roles of G1 and G2 in the tag-based encryption instantiation since
the plaintext (i.e. the user’s public key) is in G2 rather than G1. Thus, the security of the underlying
tag-based encryption scheme used here rests on SDLIN in G2 instead of G1.

The total size of the signature is G26·|P|+21
1 + G24·|P|+13

2 + Zβ+3
p .

The proof πTrace is of size G4
1 ×G3

2 and requires proving the following equations

G̃f = F̃ G̃h = H̃ C̃3 · C̃
−1/f

1 · C̃−1/h
2 = ṽkuid

The proof for the following Theorem follows from that of Theorem 1.

Theorem 2. The instantiation is secure if the AGHO1 signature scheme is unforgeable and the assump-
tions SDLIN in G2, SXDH, and q-SDH all hold.

6.2 Instantiation II

Our aim here is to get an efficient instantiation that is based on falsifiable intractability assumptions [30].
We instantiate the tagged signature using the AGHO2 signature scheme which is based on a falsifiable
assumption, as shown in Fig. 4 (Right). Since the tag space (i.e. the user’s public key) of this instantiation
of the tagged signature is G1, we needed to transpose the groups from which the public key and the
signature components ofWDS are chosen. More precisely, we instantiateWDS with the weak Boneh-
Boyen signature scheme where the public key is X := Gx and the signature is σ̃ := G̃

1
x+m . To this end,

we also transpose the groups used in the q-SDH assumption. We instantiate the tag-based encryption
scheme using the scheme in Fig. 7. The rest of the tools remain the same as in Instantiation I.

Let S ∈ Z|P|,βp be the span program for P. To sign, the signer provides the following proofs:

• To prove that zS = [1, 0, . . . , 0], the signer proves the following linear equations:

|P|∑
i=1

(z̃iSi,1) = 1
|P|∑
i=1

(z̃iSi,j) = 0, for j = 2, . . . , β

• To prove if zi 6= 0⇒ T S.Verify(avkaid(αi),uvk[uid], αi, σαi) = 1 , where σαi = (Ai, Bi, Ri, D̃i) ∈
G3

1 ×G2 and avkaid(αi) = (W̃i, X̃i, Ỹi,1, Ỹi,2, Ỹi,3) ∈ G5
2, the signer proves:

Ăi = Ai
zi B̆i = Bi

zi R̆i = Ri
zi Ği = Gzi v̆ki = uvk[uid]zi

e(Ăi, D̃) = e(Ği, G̃) e(Ği, X̃i) = e(Ăi, W̃i)e(B̆i, G̃)e(R̆i, Ỹi,1)e(v̆ki, Ỹi,2)e(Ği
αi
, Ỹi,3)

Again, the verifier can on her own compute a Groth-Sahai commitment to the value Ğαii . Also, the
way we express the witness of the equations only requires committing to the elements of the vector
z in G2. This further improves the efficiency.
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• To prove thatWDS.Verify(uvk[uid], Ĥ(otsvk), σ̃) = 1, the signer needs to prove that

e(uvk[uid], σ̃)e(GĤ(otsvk), σ̃)e(G, G̃) = 1 G−G = 0

• To prove T PKE .Enc(epk, Ĥ(otsvk),uvk[uid]; (r1, r2)) = Ctbe, the signer proves she computed the

ciphertext (C1, C2, C3, C̃4, C̃5) =
(
F r1 , Hr2 , Gr1+r2 ·uvk[uid], (G̃Ĥ(otsvk) ·K̃)r1 , (G̃Ĥ(otsvk) ·L̃)r2

)
correctly. It is sufficient to prove that C1, C2 and C3 were computed correctly and the rest can be
verified by checking that e(F, C̃4) = e(C1, G̃

Ĥ(otsvk) · K̃) and e(H, C̃5) = e(C2, G̃
Ĥ(otsvk) · L̃).

Thus, this requires proving

C1 = F r̃1 C2 = H r̃2 C3 = Gr̃1 ·Gr̃2 · uvk[uid]

The total size of the signature is G30·|P|+16
1 + G30·|P|+18

2 + Zβ+3
p .

The proof πTrace is of size G3
1 ×G4

2 and requires proving the following equations

Gf̃ = F Gh̃ = H C3 · C
−1/f̃

1 · C−1/h̃
2 = vkuid

The proof for the following Theorem follows from that of Theorem 1.

Theorem 3. The instantiation is secure if the assumptions SDLIN in G1, q-SDH, q-AGHO, and SXDH
all hold.

We end the section by noting that the verification algorithms in the above two instantiations can be
made more efficient by applying batch verification techniques to Groth-Sahai proofs [15, 5].

6.3 Efficiency Comparison

We compare the efficiency of our instantiations with that of existing constructions in Table 1. Note here
that the construction in [11] is for the single attribute-authority setting and that our constructions are
secure w.r.t. to a stronger security model than those in [11, 10].

Construction Signature Size Model Setting No. of Authorities
[11] G|P|+β+7 ROM Composite Order Single
[10] G34·|P|+28

1 + G32·|P|+32
2 + Zβ+1

p Standard Prime Order Multiple
Instantiation I G26·|P|+21

1 + G24·|P|+13
2 + Zβ+3

p Standard Prime Order Multiple
Instantiation II G30·|P|+16

1 + G30·|P|+18
2 + Zβ+3

p Standard Prime Order Multiple
Table 1. Efficiency comparison

7 Conclusion

We have presented a new security model for decentralized traceable attribute-based signatures that is
stronger than existing models. In doing so, we have circumvented some shortcomings in existing models.
We have also provided a generic framework for obtaining constructions secure w.r.t. our strong model
and provided concrete instantiations in the standard model which outperform existing constructions.

Acknowledgments. The author of this work was supported by ERC Advanced Grant ERC-2010-AdG-
267188-CRIPTO and EPSRC via grant EP/H043454/1.
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A Properties of Non-Interactive Zero-Knowledge Proofs

The properties we require from a non-interctive zero-knowledge proof system are:

• (Perfect) Completeness: ∀λ ∈ N, ∀(x,w) ∈ R, we have

Pr
[
(crs, xk)← Setup(1λ);π ← Prove(crs, x, w) : Verify(crs, x, π) = 1

]
= 1 .

• Soundness: ∀λ ∈ N, ∀x /∈ L, we have for all adversaries B

Pr
[
(crs, xk)← Setup(1λ);π ← B(crs, x) : Verify(crs, x, π) = 1

]
≤ 2−λ .

If the above probability is 0, we say the system has perfect soundness.
• Knowledge Extraction: A proof system is a Proof of Knowledge if there exists an efficient extractor

algorithm Extract which can extract the witness from any proof the adversary outputs. Note that
knowledge extraction implies soundness. More formally, for all adversaries B, we have

Pr
[
(crs, xk)← Setup(1λ); (x, π)← B(crs);w ← Extract(crs, xk, x, π)

: Verify(crs, x, π) = 0 OR (x,w) ∈ R] ≤ 1− ν(λ) .

If the above probability is 1, we say the system has perfect knowledge extraction.
• Zero-Knowledge: The system is zero-knowledge if ∀(x,w) ∈ R, we have for all PPT adversaries B

Pr
[
(crsSim, tr)← SimSetup(1λ) : BSim(crsSim,tr,·,·)(crsSim) = 1

]
≈ Pr

[
(crs, xk)← Setup(1λ) : BProve(crs,·,·)(crs) = 1

]
,

where Sim(crsSim, tr, x, w) outputs SimProve(crsSim, tr, x) if (x,w) ∈ R or ⊥ otherwise.

B Proof of Theorem 1

Proof. Correctness of the construction follows from that of the underlying building blocks.

Lemma 1. The construction is non-frameable if NIZK1 and NIZK2 proof systems are sound, the
hash functions Ĥ andH are collision-resistant, and the one-time signature OT S and the digital signa-
tureWDS are existentially unforgeable.

Proof. We start by initiating both NIZK1 and NIZK2 proof systems in the soundness setting which
ensures that the adversary cannot break non-frameability by faking proofs for false statements. We show
that if there exists an adversary B that breaks non-frameability, we can construct adversaries: F1 against
the unforgeability of the digital signature schemeWDS, adversary F2 against the strong unforgeability
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of the one-time signature scheme OT S, and adversaries F3 and F4 against the collision-resistance of
H and Ĥ, respectively.

AdvNF
DT ABS,B(λ) ≤κ(λ) · AdvUnforge

WDS,F1
(λ) + δ(λ) · AdvUnforge

OT S,F2
(λ) + AdvCR

H,F3
(λ) + AdvCR

Ĥ,F4
(λ)

+ AdvSound
NIZK1,F5

(λ) + AdvSound
NIZK2,F6

(λ),

where κ(λ) and δ(λ) are polynomials in λ representing an upper bound on the number of honest users
and sign queries, respectively, B is allowed to make in the game.

The collision-resistance ofH ensures that B has a negligible probability in finding pairs (m∗,P∗) 6=
(m,P) s.t. H(m∗,P∗) = H(m,P). If this is not the case, we can use B to construct an adversary F3

that breaks the collision-resistance of H. Similarly, the collision-resistance of Ĥ ensures that B has a
negligible probability in finding two different one-time signature keys otsvk 6= otsvk′ s.t. Ĥ(otsvk) =
Ĥ(otsvk′). If this is not the case, we can use B to construct an adversary F4 that breaks the collision-
resistance of Ĥ. Thus, from now on we assume that there are no hash collisions.

• Adversary F1: Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B will frame
user i. We have a probability 1

κ(λ) of guessing the correct user. Let η(λ) denote the number of
sign queries by user i adversary B makes in the game. F1 chooses random key pairs OTSK :=
{(otsvk, otssk)j}η(λ)

j=1 for the one-time signature. It forwards Ĥ(otsvk1), . . . , Ĥ(otsvkη(λ)) to its
game and gets back a verification key vk and signatures σ1, . . . , ση(λ). Adversary F1 starts by run-
ning (crs1, xk1) ← NIZK1.Setup(1λ), crs2 ← NIZK2.Setup(1λ) and choosing the key pair
(epk, esk) for the tag-based encryption scheme T PKE . It then forwards pp := (1λ, crs1, crs2, epk,
H, Ĥ) and tk := esk to B.
To answer AddA queries, F1 chooses the secret/verification keys for the authority itself so it can
answer any AddAtt queries. To answer AddU queries, for all users other than user i, F1 chooses the
personal key pair for the user itself. However, for user i, it sets its verification key to vk it got from
its game (and thus it does not know the corresponding secret key). If in the game B issues a RevealU
query on user i, F1 aborts the game.
To answer Sign queries (uid,A,m,P) for any uid 6= i,F1 first chooses a fresh key pair (otsvk′, otssk′)
for the one-time signature OT S and encrypts uvk[uid] using Ĥ(otsvk′) as a tag and generates the
rest of the signature itself. For the j-th sign query by user i, F1 uses the j-th key pair in the set OTSK
and encrypts uvk[uid] using Ĥ(otsvkj) as a tag, and generates the rest of the signature. The rest of
B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F1 uses the NIZK1’s extraction key xk1 to extract the
witness and returns the signature σ∗ on Ĥ(otsvk∗) that is different from all otsvk1, . . . , otsvkη(λ)

that F1 has used in answering signing queries if B’s forgery involved framing user i as was guessed
by F1. Otherwise, it aborts.
By the existential unforgeability of the signature scheme WDS, the probability of B winning is
negligible.

• Adversary F2: Adversary F2 gets otsvk∗ from its game and has access to an oracle Sign that it uses
to obtain a single one-time signature that verify w.r.t. otsvk∗ on a message of its choice. It runs
(crs1, xk1) ← NIZK1.Setup(1λ), crs2 ← NIZK2.Setup(1λ). It chooses a key pair (epk, esk)
for the tag-based encryption scheme T PKE and forwards pp := (1λ, crs1, crs2, epk,H, Ĥ) and
tk := esk to B.
To answer AddA queries, F2 chooses the authority keys itself. To answer AddU queries, F2 chooses
the user’s key pair itself. To answer AddAtt queries, F2 uses the corresponding authorities’ secret
keys askaid(α) to create the attributes’ keys for the user.
AdversaryF2 randomly chooses i← {1, . . . , δ(λ)} and guesses thatB’s forgery will involve forging
a one-time signature that verifies under otsvk∗ used in answering the i-th signing query.
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When asked for the j-th Sign query on (uid,A,m,P), if j 6= i, F2 chooses a fresh key pair
(otsvk, otssk) for the one-time signature scheme and answers the query by itself. If j = i, F2

encrypts uvk[uid] using Ĥ(otsvk∗) (i.e. the verification key it got from its game) as a tag to obtain
Ctbe. It then generates σ by signing Ĥ(otsvk∗) using usk[uid] that it chose, and constructs the proof
π. It then forwards (H(m,P), π, Ctbe, otsvk∗) as the message to its one-time signing oracle to get a
one-time signature σots. F2 then sends the signature Σ to B.
The rest of B’s queries are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F2 aborts if the B’s forgery did not involve forging a one-
time signature that verifies w.r.t. otsvk∗ it got from its game. The probability that B forges a one-time
signature that verifies w.r.t. otsvk∗ is 1

δ(λ) .
By the strong existential unforgeability of the one-time signatureOT S , B has a negligible advantage
in wining this case.

This concludes the proof.

Lemma 2. The construction is unforgeable ifNIZK1 andNIZK2 proof systems are sound, the hash
functions Ĥ and H are collision-resistant, and the tagged signature T S , and the one-time signature
OT S are existentially unforgeable.

Proof. We show that if there exists an adversary B breaking unforgeability, we can construct adversaries:
F1 against the unforgeability of the tagged signature scheme T S , F2 against the strong unforgeability
of the one-time signature scheme OT S, adversaries F3 and F4 against the collision-resistance of the
hash functions Ĥ and H, and adversaries F5 and F6 against the soundness of NIZK1 and NIZK2

respectively, such that

AdvUnforge
DT ABS,B(λ) ≤κ(λ) · AdvUnforge

T S,F1
(λ) + δ(λ) · AdvUnforge

OT S,F2
(λ) + AdvCR

Ĥ,F3
(λ) + AdvCR

H,F4
(λ)

+ AdvSound
NIZK1,F5

(λ) + AdvSound
NIZK2,F6

(λ),

where κ(λ) and δ(λ) are polynomials in λ representing an upper bound on the number of honest attribute
authorities and sign queries, respectively, B is allowed to make in the game.

We instantiate both NIZK1 and NIZK2 proof systems in the soundness setting and hence the
adversary cannot break unforgeability by faking proofs for false statements. By the collision-resistance
of Ĥ, B has a negligible probability in finding two different one-time signature keys otsvk 6= otsvk′

s.t. Ĥ(otsvk) = Ĥ(otsvk′). If this is not the case, we can use B to construct an adversary F3 that
breaks the collision-resistance of Ĥ. Similarly, by the security of H, B has a negligible probability in
finding collisions (m,P) 6= (m∗,P∗) s.t.H(m,P) = H(m∗,P∗). If this is not the case, we can use B to
construct an adversary F4 that breaks the collision-resistance of H. Thus, from now on we assume that
there are no hash collisions.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game
and has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on
messages and tags of its choice. Adversary F1 starts by running (crs1, xk1)← NIZK1.Setup(1λ),
crs2 ← NIZK2.Setup(1λ) and choosing a key pair (epk, esk) for the tag-based encryption scheme
T PKE . It forwards pp := (1λ, crs1, crs2, epk,H, Ĥ) and tk := esk to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s forgery will involve forg-
ing an attribute managed by the attribute authority i. To answer AddA queries, for all authorities
j 6= i, F1 chooses the secret/verification keys for the authority itself. For authority i, it sets its veri-
fication key to vk it got from its game (and thus it does not know the corresponding secret key). If in
the game B asks a RevealA query on authority i, F1 aborts the game.
To answer AddU queries, F1 chooses the user’s key pair itself. To answer AddAtt queries, if the
user has attributes managed by authority i, it forwards such a query to its Sign oracle; Otherwise, it
answers the query itself by using the authorities’ secret keys available to it.
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To answer Sign queries on (uid,A,m,P), F1 first chooses a fresh key pair (otsvk, otssk) for the
one-time signature OT S and encrypts uvk[uid] using Ĥ(otsvk) as a tag and generates the rest of
the signature Σ which it then forwards to B. The rest of B’s queries are answered normally as in
Fig. 1.
Eventually, when B outputs its forgery, F1 uses the NIZK1’s extraction key xk1 to extract the
witness and returns the tagged signature on uvk[uid∗] and the attribute α∗ if B’s forgery involved
forging a tagged signature. Otherwise, it aborts. F1 also aborts if the forgery does not involve forged
attributes managed by authority i that F1 has guessed. The probability of F1 guessing the correct
authority is 1

κ(λ) .
By the existential unforgeability of the tagged signature scheme, the probability of B winning is
negligible.

• Adversary F2: Adversary F2 gets otsvk∗ from its game and has access to an oracle Sign that it
uses to obtain a single one-time signature that verifies w.r.t. otsvk∗ on a message of its choice.
It runs (crs1, xk1) ← NIZK1.Setup(1λ), crs2 ← NIZK2.Setup(1λ). It also chooses a key pair
(epk, esk) for the tag-based encryption scheme T PKE . It forwards pp := (1λ, crs1, crs2, epk,H, Ĥ)
and tk := esk to B.
To answer AddA queries, F2 chooses the authority keys itself. To answer AddU queries, F2 chooses
the user’s key pair itself. To answer AddAtt queries, F2 uses the corresponding authorities’ secret
keys askaid(α) to create the attribute key for the user.
AdversaryF2 randomly chooses i← {1, . . . , δ(λ)} and guesses thatB’s forgery will involve forging
a one-time signature that verifies under otsvk∗ used in answering the i-th signing query.
When asked for the j-th Sign query on (uid,A,m,P), if j 6= i, F2 chooses a fresh key pair
(otsvk, otssk) for the one-time signature scheme and answers the query by itself. If j = i, F2 en-
crypts uvk[uid] using Ĥ(otsvk∗) as a tag to obtain Ctbe and generates the proof π. It then forwards
(H(m,P), π, Ctbe, otsvk∗) as the message to its one-time signature signing oracle to get a one-time
signature σots. F2 then sends the signature Σ := (σots, π, Ctbe, otsvk∗) to B. The rest of B’s queries
are answered normally as in Fig. 1.
Eventually, when B outputs its forgery, F2 aborts if the B’s forgery did not involve forging a one-
time signature that verifies w.r.t otsvk∗ it got from its game. The probability that B forges a one-time
signature that verifies w.r.t otsvk∗ is 1

δ(λ) .
By the strong existential unforgeability of the one-time signatureOT S , B has a negligible advantage
in wining.

This concludes the proof.

Lemma 3. The construction is traceable if theNIZK1 proof system is sound and the tagged signature
T S is existentially unforgeable.

Proof. Since the NIZK proof system NIZK1 is sound, the adversary has a negligible advantage in
succeeding by faking proofs for false statements. We show that if there exists an adversary B break-
ing traceability, we can construct an adversary F1 attacking the unforgeability of the tagged signature
scheme T S such that

AdvTrace
DT ABS,B(λ) ≤ κ(λ) · AdvUnforge

T S,F1
(λ) + AdvSound

NIZK1,F2
(λ),

where κ(λ) is a polynomial in λ representing an upper bound on the number of honest attribute authori-
ties B is allowed to use in the game.

• Adversay F1: Adversary F1 gets the tagged signature scheme’s verification key vk from its game
and has access to an oracle Sign that it uses to obtain tagged signatures that verify w.r.t. vk on
messages and tags of its choice. Adversary F1 starts by running (crs1, xk1)← NIZK1.Setup(1λ),
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crs2 ← NIZK2.Setup(1λ) and choosing a key pair (epk, esk) for the tag-based encryption scheme
T PKE . It forwards pp := (1λ, crs1, crs2, epk,H, Ĥ) and tk := esk to B.
Adversary F1 randomly chooses i ← {1, . . . , κ(λ)} and guesses that B’s forgery will involve forg-
ing an attribute managed by the attribute authority i. To answer AddA queries, for all authorities
j 6= i, F1 chooses the secret/verification keys for the authority itself. For authority i, it sets its ver-
ification key to vk it got from its game. If in the game, B issues RevealA query on authority i, F1

aborts the game. To answer AddU queries, F1 chooses the user’s key pair itself. Whenever asked
AddAtt queries, if the user has attributes managed by authority i, it forwards such a query to its Sign
oracle; Otherwise, it answers the query itself.
To answer Sign queries on (uid,A,m,P),F1 first chooses a fresh key pair (otsvk, otssk) for the one-
time signature OT S and encrypts uvk[uid] using Ĥ(otsvk) as a tag and generates the rest of the
signature by itself. F1 forwards the signature Σ to B. The rest of B’s queries are answered normally
as in Fig. 1.
Eventually, when B outputs its forgery, F1 uses the NIZK1’s extraction key xk1 to extract the
witness and returns the tagged signature on the uvk[uid∗] and the attribute α∗ if B’s forgery in-
volved forging a tagged signature that verifies w.r.t. vk it got from its game. Otherwise, it aborts. The
probability that F1 guesses the correct authority is 1

κ(λ) .
By the existential unforgeability of the tagged signature, the probability of B winning is negligible.

This concludes the proof

Lemma 4. If the NIZK1 and NIZK2 proof systems are zero-knowledge, the tag-based encryption
scheme T PKE is selective-tag weakly IND-CCA secure, the one-time signature OT S is strongly exis-
tentially unforgeable, and the hash functions Ĥ and H are collision-resistant then the construction is
fully anonymous (against full-key exposure).

Proof. We show that if there exists an adversary B breaking anonymity, we can construct adversaries:F1

against the collision-resistance of the hash function Ĥ, F2 against the strong unforgeability of the one-
time signature OT S , F3 against the collision-resistance of the hash function H, F4 against the NIZK
property of the proof systemNIZK1, F5 against the NIZK property of the proof systemNIZK2, and
F6 against the selective-tag weakly IND-CCA security of the tag-based encryption scheme T PKE .

By the collision-resistance of Ĥ, B has a negligible probability in finding otsvk′ s.t. Ĥ(otsvk′) col-
lides with the tag Ĥ(otsvk∗) we use for the challenge signature. If this is not the case, we can use B to
construct an adversary F1 that breaks the collision-resistance of Ĥ.

The strong existential unforgeability of OT S ensures that B has a negligible probability in forging
a one-time signature under otsvk∗ we use in the challenge signature. If this is not the case, we can
construct an adversary F2 that wins the strong unforgeability game of OT S.

By the collision-resistance of H, B has a negligible probability in finding pairs (m∗,P∗) 6= (m,P)
s.t. H(m∗,P∗) = H(m,P). If this is not the case, we can use B to construct an adversary F3 which
breaks the collision-resistance of the hash function H. Thus, from now on we assume that there are no
hash collisions.

We instantiate NIZK1 in the simulation setting which is, by the security of NIZK1, is indis-
tinguishable from the soundness setting. The proof π is thus now zero-knowledge and hence does not
reveal any information about the witness. Also, we instantiate NIZK2 in the simulation setting which
is indistinguishable from the soundness setting. The proof πTrace is now also zero-knowledge and hence
B cannot tell simulated proofs from real proofs.

We now proceed to construct an adversary F6 against the selective-tag weakly IND-CCA secu-
rity of T PKE using adversary B. Adversary F6 runs the Setup algorithm where it starts by randomly
choosing a key pair (otsvk∗, otssk∗) for OT S that it will use when producing the challenge signature.
We needed to choose the key pair beforehand as the tag-based encryption scheme is only selective-tag
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secure and hence the challenger in the ST-WIND-CCA game needs to know the challenge tag before
sending the public-key epk for T PKE . F6 sends Ĥ(otsvk∗) to its challenger and gets back epk. In
its game, F6 has access to a decryption oracle Dec which it can query on any ciphertext under any
tag different from Ĥ(otsvk∗). F6 chooses crs1 and crs2 as simulation reference strings and forwards
pp := (1λ, crs1, crs2, epk, Ĥ,H) to B.

To answer AddU queries, F6 chooses the secret/verification keys of the user itself. To answer AddA
queries, F6 chooses the secret/verification keys for the authorities itself. Thus, F6 can answer any
AddAtt queries itself.

To answer the challenge query CHb((uid0,A0), (uid1,A1),m,P), F6 sends (uvk[uid0],uvk[uid1])
as its challenge in its ST-WIND-CCA game and gets a ciphertext under the tag Ĥ(otsvk∗) of either the
plaintext uvk[uid0] or uvk[uid1] which it needs to distinguish. F6 can now construct the rest of the
challenge signature by simulating the proof π and signing the whole thing with otssk∗ to obtain σots.

To answer Trace queries, F6 just uses its decryption oracle to get the decryption of Ctbe which is
part of the signature and then simulates proof πTrace. Note that since we have chosen the challenge tag
otsvk∗ uniformly at random and since we already eliminated any case where any signature sent to Trace
uses the same tag as that we used for the challenge signature, such a query will be accepted by F6’s
decryption oracle because the tag is different from the tag used in the challenge ciphertext. The rest of
B’s queries are answered as in Fig. 1.

Eventually, when B halts, F6 outputs whatever B outputs. By the ST-WIND-CCA property of the
tag-based encryption scheme, B has a negligible probability in winning.

This concludes the proof.

Lemma 5. The construction satisfies tracing soundness if the NIZK systemsNIZK1 andNIZK2 are
sound.

Proof. The soundness ofNIZK2 ensures correct decryption of the tag-based ciphertext Ctbe and hence
the adversary has a negligible advantage in producing a proof for a false statement that Ctbe decrypts to
a different plaintext.

Similarly, the soundness of NIZK1 guarantees that the ciphertext Ctbe is constructed correctly. By
the correctness of the tag-based encryption scheme, we have that a correctly encrypted ciphertext will
always decrypt to the same plaintext that was encrypted.

This concludes the proof.
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