
WCFB: a tweakable wide block cipher

Andrey Jivsov 1

Abstract. We define a model for applications that process large data
sets in a way that enables additional optimizations of encryption opera-
tions. We designed a new strong pseudo-random tweakable permutation,
WCFB, to take advantage of identified characteristics. WCFB is built
with only 2m + 1 block cipher invocation for m cipherblocks and ≈ 5m
XOR operations.

WCFB can benefit from commonly occurring plaintext, such as encryp-
tion of a 0nm sector, and repeated operations on the same wide block.

We prove the birthday-bound security of the mode, expressed in terms
of the security of the underlying block cipher.

A case analysys of disk block access requests by Windows 8.1 is provided.

1 Introduction

The focus of this paper is how to use a standard block cipher as a component
to build a ”wide” block cipher, or, in other words, to build a secure PRP from
another PRP operating on a smaller domain.

The new mode that we propose, WCFB, stands for Wide Cipher FeedBack
mode. WCFB is a ”tweakable” mode to allow changes to random ”wide” blocks
in an encrypted data set.

An environment in which any block of the encrypted data set is allowed
to be selectively updated calls for multiple authentication tags to provide data
integrity. There are scenarios in which the encrypted data expansion due to
authentication tags is not an option, thus making the ”wide” block cipher the
most secure choice available.

Our contribution is to define the operating environment that represents a
large class of systems that are candidates to use a wide block encryption mode,
the definition of the mode WCFB and explanations how WCFB is optimized for
this environment (Section 4), and, finally, the security proof of WCFB (Section
6).

WCFB is designed with simplicity in mind, in particular, it has modular
design and XOR-only operations. While the security proof is monotonous and
lengthy, it is very simple in principle. The proof is centered around statements
about probability of a collision between n-bit blocks.

1 Symantec Corporation, 350 Ellis Street, Mountain View, CA 94043, USA
crypto@brainhub.org

2

2 Notations

In this paper we consider a new wide block cipher, built with the (underlying)
block cipher. The size of the wide block cipher is l = n ∗ m bits. In practical
applications the l/8 ≥ 512 bytes, is a power of two, and is usually a fixed
value for a given operating system/hardware/data set. Wide block ciphers work
with an underlying n-bit block cipher, such as AES-128. One such underlying
block cipher call is identified by one BC in Section 1. Each wide block P,C is
represented by m n-bit blocks, which are denoted as Pi, Ci : i ∈ [0,m − 1]. Pi
denotes the block of the plaintext such that P = P0||P1|| · · · ||Pm−1, with similar
definition for the C. P0 refers to the block that occupies the lowest n/8 bytes of
the memory range in which P resides. This indexing is known as a little-endian
notation.

The WCFB mode is defined with the following types of operations: the un-
derlying block cipher encryption or decryption and GF(2n) additions (XOR or
⊕).

WCFB is a secret key permutation. Besides using underlying block cipher
with its key k, it has a set of m+1 derived subkeys ki, each n bits long regardless
of the size of the key k. There is a key schedule for k that the underlying block
cipher uses and a set of the subkeys ki (which can be viewed as another key
schedule).

By the data set we mean a set of logically related wide blocks P,C. The same
key k will be used for a given data set. An encrypted storage disk is an example
of a data set.

A tweak is denoted by T . Typically it is an offset in a data set, or a block
index.

Description of loops in iterative algorithms use compact notation defined
next. All loops in this paper are based on the default iteration from 0 to m− 1
in the ascending direction. The default loop is for i = 0, 1, · · · ,m− 1, inclusive;
it is denoted as ∀iy. The same loop in the reverse direction is denoted as ∀ix.
When the range of indexes is different from the default one, it is always explicitly
noted. When the direction is omitted, such as in ∀i, it is not important (and so
the random order is possible).

By Rand(·) we mean a chosen uniformly at random function from the set of
all functions mapping {0, 1}n → {0, 1}n.

We use the following symbols, respectively, for a definition, equality, assign-
ment:

.
=, =, ←.

We rely on security notations from Section 2 of [1].

3 Comparison with other modes

Many wide encryption modes were introduced during the first decade of 2000.
Modes with provable security are CMC [1], EME2 [2], PEP [3], TET [4], HEH
[5], XCB [6], HCTR [7], HCH [8]. EME2 is standardized in the IEEE 1619.2
Section ”Wide-Block Encryption” of the IEEE P1619 standard.

3

There are modes that do not offer security proofs, such as Elephant+CBC
[9], modes that do not offer the benefit of a full block permutation such as XTS
[10] (XTS is standardized by the IEEE 1619 standard and by the NIST), and
there are uses of standard CBC for wide block encryption, most notably, the
CBC is one of the two allowed modes in [11].

The market success of wide encryption modes as of year 2014 is very limited.
We are not aware of any existing whole disk product that even offers a wide block
encryption mode. One likely explanation for this is that the overhead of the the
crypto code is perceived as substantial by end-users, especially with solid-state
storage media.

An overview of current modes is provided in the Table 1 of HEH [5]. Counting
two GF2mul as one BC call, the best mode under this accounting is CMC [1] at
2m+ 1 BC operations for a 2-key variant and 2m+ 2 for a 1-key variant. [5] lists
HEHfp asm+1 BC, 2(m−1) GF2mul, which by our accounting is equivalent to 2m
BC, but it is ignoring other operations that are more complex than XORs. Most
importantly, it does not account for additional 2(m−1) GF2mul that have one of
the multiplication factors random but fixed per the data set. This processing is
similiar to EME2’s, discussed later in this section. In addition, HEHfp includes
(m− 1) · ⊗ x operations. Finally, it has ≈ 6 XORs per BC.

This brings us back to CMC. CMC has 2m + 1 BC among its positives and
a lean mixing layer (3 data-dependent XORs). On the other hand, CMC has
two key schedules and is incapable to take advantage of caching. CMC’s first
encryption pass is performed in CBC mode with T used as a BC. This is an
unfortunate choice that denies any benefit of caching of ciphertexts for known
plaintext. CMC has ≈ 3m XORs for the mixing layer, which is equivalent to
WCFB’s XORs on modern architectures, because 2m of WCFB’s XORs per
n-bit block are data-independent.

Although this may not account for much in practice, two iterations of WCFB
are simple back-and-forth pass over the blocks, with the data from an n-bit block
interacting only with an adjacent one, for the best CPU cache utilization. CMC
performs the mirroring of the block indices between passes which may be a
disadvantage for a large m.

EME2 mode is close to CMC as a suitable alternative for our operating envi-
ronment at 2m+1+m/n BC. EME2 matches WCFB’s caching capability at the
first encryption layer. An implementation optimized for bulk performance will
use ≈ 5m XORs, plus bit operations for m data-dependent GF2mul. One of the
factors in these GF2mul is of special form y(x) = xi, another is data-dependent.
One would expect m GF2mul be accomplished as 2m bitwise shifts and m XORs
in a sequential manner, unless precomputed tables are used. WCFB uses fewer
(5m) XORs and has no need for precomputed tables. While the sequential pro-
cessing in EME2 contradicts its main design goal, only a small constant-degree
parallelism (per CPU core) may practically be realizable and this limited par-
allelism can be accomplished with reasonable precomputed tables. Specifically,
degree s parallelism will require 2s entries in the table and we also assumed m
n-bit values that are precomputed per data set to achieve ≈ 7m complexity of

4

the mixing layer. WCFB’s mixing layer compares well with EME2 and HEHfp:
it is a simple XOR sum of n-bit blocks and fully parallelizable.

WCFB is a single-key mode that achieves 2m + 1 BC and ≈ 5m XORs
with 2m of them data-independent. WCFB has excellent caching capabilities
under update scenarios and other repeated access patterns: in the worst case
WCFB saves at least one encryption during an update (which corresponds to
the encrypted T), while in the best case WCFB can reuse ciphertexts from m+1
encryptions of the n-bit plaintext blocks and T .

WCFB’s only operation is XORs on the n-bit blocks. WCFB has no data-
dependent branching, and thus offers an excellent protection against side-channel
attacks.

Although this is not critical in the defined operating environment, WCFB
and CMC allow full parallelism in 2 out of 3 layers of the encrypt-mix-encrypt
processing within each wide block. Despite not achieving unrestricted 3 out of 3
layer parallelism, EME2 allows parallel execution of either block cipher layers.

The security of WCFB is quadratic in the number of queries, a typical bound-
ary in this category.

Finally, WCFB has the concept of the IV of the data set. While such an IV′

could have been constructed as, for example, IV⊕ T in place of a T , WCFB has
clear separation between data set IV and a block identifier in the mode itself.

4 Our contribution

Our main goal is to make encryption of large data sets faster in practice. Two
steps towards this goal are presented here.

First, we define the target applications and operating environment in such
terms that allow additional optimizations. For example, the wide encryption
modes were traditionally valuing the internal parallelism of the mode, i.e. its
ability to process multiple n-bit blocks within the nm-wide block, however, Sec-
tion 1 leads to the idea that multi-wide-block parallelism is an equivalent if not
better method to exploit the parallelism. We argue that it is the case for many
target applications, and this observation allows simplification of the mode.

Second, we propose the new mode WCFB, which is a ”tweakable” mode to
allow changes to random ”wide” blocks in an encrypted data set. We describe
the WCFB in details and highlight its advantages for processing large data sets.
Some design ideas employed in WCFB, in particular, the ability to cache the
ciphertexts or subkeys, are general techniques with applications beyond WCFB.

For the operating environment defined in Section 1 WCFB is a wide encryp-

tion mode with an operation count of 2m+ 1 BC and a lean mixing layer at

≈ 5mXORs (see Section 3 for the comparison with other modes).
2m+1 operation count is a reasonable threshold for a tweakable wide encryp-

tion mode of encrypt-mix-encrypt, given that there is a mixing step, a tweak,

5

and an IV that need to be ”processed”. We show next how caching lowers the
metric to 2m or lower BC.

There are two likely events that can be relied on in this respect: low entropy
(n-bit) plaintexts and a favorable usage pattern.

The encryption of low-entropy data is quite common in practice. Any fixed-
size data set is expected to use a fixed-value padding, which is typically zeros.
There are many high-level operations that fall into this category, such as zeroiza-
tion of data set blocks; WCFB will only need m BC to accomplish a zeroization
request on a wide block, on par with CBC performance.

Consider the update usage pattern, which we define as subsequent decrypt
and encrypt operations on the same nm-bit block, either performed as a unified
operation, or close enough in time so that some intermediate results can be
efficiently re-used. This pattern corresponds to a very common access pattern to
encrypted data set: reading a random block in an encrypted data set, decrypting
it, making modifications to the plaintext, encrypting it, and then writing back
at the same position. Further, consider an application that only adds data to a
file. While an application adds a byte at a time to a file, at the lower level of
the operating system the storage can only be accessed in blocks, given that the
storage devices are block devices. If the wide block encryption is employed for
the protection of the disk blocks, even consecutive minor file append operations
will likely result in update or at least write operations to the same disk block.
WCFB can reuse at least Êk,km(T) in update scenarios. The greater benefit is
realized on systems with slower BC. See Section 5 for details.

WCFB implementations can fully benefit from caching, primarily owing to
WCFB’s ECB-style first pass of encryption.

5 Specification of WCFB

The algorithm is defined in Fig. 1. Diagrams in Section C are helpful in visual-
izing the data flow.

The WCFB follows the encrypt-mix-encrypt approach. It is built from two
passes over n-bit blocks that are CFB-like and CBC-like. The mix step corre-
sponds to the XOR of intermediate n-bit values. WCFB can be viewed as having
a double nested structure WCFB[Ê[E]], where WCFB is, by and large, defined
in terms of Ê.

The run-time data-dependent input to WCFB encryption or decryption is a
wide block P or C, respectively (steps 5-10), and the corresponding tweak T .

Other input values, κ and IV, are fixed for a given data set; they are pre-
processed during initialization, steps 1-4. Additional values may need to be cal-
culated to take advantage of caching features of WCFB.

Initialization vector

WCFB requires a unique IV per data set for the same κ (κ is the shared
secret, defined below). The uniqueness v.s. randomness condition on the IV is
justified because it is only used as a value Êk,k0(IV) in a standard CFB mode

6

Fig. 1. WCFB algorithm

Encryption Decryption
1: C−1

.
= IV

2: k ← KDF(κ, IV, 0),∀mi=0i : ki ← KDF(κ, IV, i+ 1)

3: define Êk,ki(·)
.
= Ek(· ⊕ ki), Ê−1k,ki

(·) is its inverse
4: Pm

.
= Êk,km(T)

5: ∀ix: P ′i ← Êk,ki(Pi)⊕ Pi+1

6: ∀i : Pi ← P ′i
7: Pm−1 ← Pm−1 ⊕ P0

8: S ← Êk,km(⊕m−1
i=1 Pi)

9: P0 ← P0 ⊕ S
10: ∀iy: Ci ← Êk,ki(Ci−1)⊕ Pi

∀iy: Pi ← Êk,ki(Ci−1)⊕ Ci

S ← Êk,km(⊕m−1
i=1 Pi)

P0 ← P0 ⊕ S
Pm−1 ← Pm−1 ⊕ P0

∀ix: Pi ← Ê−1k,ki
(Pi ⊕ Pi+1)

with n-bit block size. IV offers an additional method to segregate data sets, in
addition to using a different κ. Note that such a processing of IV adds robustness
in practice because high-quality nonces are not critical for WCFB. See (8) for
details.

Key set up at the step 2

WCFB mode uses a single symmetric key κ. This key is ”expanded” into the
main key k and m+ 1 subkeys ki using a key derivation function KDF(κ, IV, i),
where the parameter i is the index of the returned subkey. This key expansion
is performed once per data set and its results are expected to be cached.

WCFB depends on {k, k0, . . . , km} being indistinguishable from selected uni-
formly at random, even when an attacker has access to an oracle providing
Ek(·), E−1k (·). The last clause is necessary because the discovery of k enables
an oracle for Ek(·), E−1k (·), and this must not provide additional information on
other subkeys (thus, ki = Ek(i) is a poor choice for this reason).

The exact definition for how the keys are derived is left to the final instan-
tiation of WCFB. In many cases, such as when the shared secret κ is obtained
through a higher-level key exchange protocol, a KDF is already defined for that
protocol. In these cases the KDF is executed more times to get the needed key
material.

Alternatively, one could instantiate WCFB as a two-key mode with some κ0
and κ1, where k = κ0 and ki = Eκ1(i).

Operation count

There are 2m + 1 encryptions, plus one encryption Pm = Êk,k0(IV), which
is fixed for the data set, and which lifecycle is identical to the lifecycle of the
subkeys ki. It should be cached along with the subkeys.

7

The rest of operations are ≈ 5m XORs and assignments. Each of Ê includes
one XOR, therefore, only ≈ 3m XORs are data-dependent, and only m BC
cannot be fully parallelized (as is the case for CBC encryption).

Update scenario, introduced in Section 4, allows for the caching of pairs Pi,
Ci that are shared between decryption of some ciphertext C to corresponding
plaintext P , followed by the encryption of a similar to P plaintext, for the same
T . We always can reuse Pm (Fig. 1, step 4) that corresponds to the (data-
independent) T . The best case scenario represents changes to a single n-bit
plaintext block. The first step in the encryption direction is identical to CBC
decryption, and in this case only one of the m encryptions on line 5 will be
performed with unknown plaintext. Thus,m out ofm+1 n-bit cached ciphertexts
can be reused at the step 5 of encryption in the best case. This makes sense when
BC is slow to justify the lookup time.

Concrete security

The security bound is stated by (1) in Section 6. This upper bound means that in
order to distinguish 512-byte WCFB with AES-128 from a random permutation
with probability of 0.5 an attacker must obtain 258 plaintext/ciphertexts pairs,
512 bytes each, assuming that there is no better attack on the AES-128. This is
2× 237 TiB, certainly less than a size of any (single) data set in the near future.

6 Security of WCFB

Theorem 1. For any attacker A that can perform up to q queries consisting of
mn-bit request/response pairs, it holds that the A’s advantage to distinguish:

– an oracle providing WCFB encryption or decryption instantiated with a ran-
dom PRP operating on a n-bit domain from

– an oracle providing a random tweakable PRP operating on a nm-bit domain

has the following upper bound:

Adv±p̃rp
WCFB[Perm(n)](q) < 0.5q2(m+ 2)22−n (1)

The theorem means that when we instantiate WCFB with an ideal primitive
modeling a block cipher, we get the insecurity directly attributed to WCFB as
specified in (1).

Other related ”advantage notions” can be obtained from (1) by plugging (1)
into inequalities that were proven to hold for wide encryption modes in general.
For example, if WCFB is instantiated with a block cipher, we use results from
(1) as follows:

Adv±p̃rp
WCFB[E](t, q) < Adv±p̃rp

WCFB[Perm(n)](q) + 2Adv±prpE (t′, q) (2)

(2) comes from [1], where we refer the reader in the interest of saving space.

8

Proof. We will first show that the construction is a pseudo-random function
(PRF) in the decryption direction. If the resulting plaintext P is indistinguish-
able from a random string, a polynomially bound attacker will have no computa-
tionally usable method to distinguish the decrypted plaintext from the output of
a random function. A particular practical property that follows from the indis-
tinguishability is that a small change anywhere in the C will very likely produce
a random-looking P , a feature which narrow-block modes cannot accomplish.

We analyze the decryption steps in the subsections 6.1 – 6.2. The results
from these sections are probabilities Pr5,6,7,8 and Pr9 for respective steps of the
WCFB algorithm (formulae (7) and (9)). The values bound the probability to
distinguish the WCFB instantiated with a n to n bit PRF from a nm-bit PRF.

AdvPRPE[E] =
(
q
2

)
2−n is the advantage to distinguish a PRF E from a PRP

E using the E [E], proven in the Section A.1. Summing it all up, we obtain the
probability to distinguish WCFB decryption from a PRP as:

PrWCFB =Pr5,6,7,8 + Pr9 + AdvPRPE[E]

PrWCFB <0.5q2(m+ 2)22−n ∀m > 2

Adv±p̃rp
WCFB[Perm(n)](q) < PrWCFB (4)

ut

6.1 Analysis of the CFB-decrypt and the mixing layer
(steps 5-8 of decryption)

Consider a ciphertext C = C0||C1||...Cm. We write Êk,ki(x) = Ek(x ⊕ ki) for
the block cipher encryption applied to individual blocks Ci of C such that the
subkey ki is used for the Ci. We are decrypting C in CFB mode with Êk,ki(·)
as an underlying block cipher. A unique IV per data set is used.

We model E as a PRF. Our task is to estimate the probability of internal
collision between the terms of WCFB, a standard reasoning that identifies such
a collision as the event that will make the behavior of a PRF composed of the
steps 5,6,7 of the WCFB diverge from the behavior of a random PRF.

After the step 6 we have:

S′
.
=⊕m−2

i=0 Êk,ki+1(Ci)⊕⊕m−1
i=1 Ci

= (⊕m−2
i=1 Êk,ki+1(Ci)⊕⊕m−2

i=1 Ci)⊕ Êk,k1(C0)⊕ Cm−1

= (⊕m−2
i=1 Êk,ki+1

(Ci)⊕ Ci)⊕ Êk,k1(C0)⊕ Cm−1 (5a)

=⊕m−2
i=0 Êk,ki+1

(Ci)⊕ Cm−1 ⊕⊕m−2
i=1 Ci (5b)

S
.
= Êk,km(S′) (5c)

9

Observe that the terms Ek,ki+1
(Ci) ⊕ Ci of the sum in brackets in (5a) are

equivalent in security to Ek,ki+1
(Ci), per lemma 4. Intuitively, lemma 4 works

here because m − 1 Ci are not indepenedent quantities, unlike Cm−1. We will

not pay more attention to the corresponding Ci after moving⊕m−2
i=1 Ci to the

end, as shown in (5b).
What are the events during which the behaviour of the (5a) may differ from

a PRF, mapping an mn-bit string to an n-bit string? WCFB is defined only in
terms of operations on n-bit blocks. Thus, the events we are interested in will
be described in terms of assignments, equality, or XORs of n-bit blocks.

Such events are two types of collisions. The internal collisions: collision be-
tween any two Êk,ki+1(Ci) and any Êk,ki+1(Ci) with Cm−1 in (5a). There are
also external collisions: when any two sessions or queries return the same S.

An external collision yields S = S̃ for some two queries. Given that the S
is the ciphertext returned by Ê, the collision means that for same subkey km
S′ = S̃′ with probability 1− 1/2n (for a PRF Ê). For km 6= k̃m this means that
S′i ⊕ S′j = km ⊕ k̃m. We cap the probability of an external collision by the value
from lemma 3.

Internal collisions are pair-wise internal collisions between m blocks in a
single query.

We have proven the following lemma stating that S is a PRF:

Lemma 1. For any attacker A that can perform up to q queries consisting of
mn-bit request and n-bit response pairs, it holds that the A’s advantage to distin-
guish the S instantiated with a random PRP operating on a n-bit domain from
a random PRF has the following upper bound:

AdvSS[E] ≤

((
q

2

)
+ q

(
m

2

))
2−n,where

AdvSS[E]
.
=Pr[E ← Rand(·) : AS[E] = 1]− Pr[S ← Rand(·) : AS = 1]

S is defined in Fig. 1.

In step 7 the S is XORed into the first block P0. In step 8 P0 is XORed into
Pm−1. Counting collisions between S, P0, Pm−1 in q queries lemma 1 extends
to:

Pr5,6,7,8 <

((
3q

2

)
+ q

(
m

2

))
2−n (7)

6.2 Analysis of the final (step 9) of decryption

The sequence in this step, which proceeds from higher to lower index, is the
CBC encryption mode when Ê−1k,ki is viewed as an encryption block cipher and

Pm = Êk,km(T) is the IV, which is random as it is an output of a PRF. In this

10

section we refer to this CBC-like construction as CBC+. CBC security bounds
were shown to be m(m− 1)/(2n −m) in [12]. The lucid proof for the bound of
2
(
m
2

)
2−n is in [13]. m(m − 1)/(2n − m) < m2/2n iff m < 2n/2. These results

apply to CBC+.
Previous steps XOR certain value into the block at the index m− 1, the first

block of the CBC+ mode. The XOR into the first block is equivalent to the
XOR into the IV in the CBC mode. Next we analyze the effective value of the
IV used in CBC+ mode, named here as IV′. After the step 8, before the XOR
with Êk,km(T):

IV′ = Êk,k0(IV)⊕ S ⊕ C0 ⊕ Êk,km(T) (8)

The main observation from (8) is that the IV of the CBC+ mode is a function
of IV, T , and the entire C through S. Although an attacker controls C0, S
depends on C0.

Given that CBC+ is IND-CPA secure, the resulting output is the PRF bound
by 2

(
m
2

)
2−n probability to distinguish this PRF from a random function. Includ-

ing the Êk,k0(IV) into the CBC+ formula,

Pr9 < 2

(
q

2

)(
m+ 1

2

)
2−n (9)

6.3 Analysis of the WCFB encryption

The last step of the encryption direction, step 10, is a standard CFB. Therefore,
security claims about CFB apply to WCFB.

The IND-CPA security of CFB decryption with Ê was proven in [14]. When
instantiated with random functions, the output of the CFB encryption is indis-
tinguishable from a random function with probability

(
m
2

)
2−n.

It is easy to verify from Fig. 1 that the variable S used in encryption and
decryption direction of the WCFB is the same quantity (for any corresponding
pair of C, P). Lemma 1 estimates the security bounds for the S as a PRF.

The steps 9,10 result in the following blocks C0, C1, ..., Cm−1, which is CFB,
except for the C0 :

C0 = Êk,k0(IV)⊕ P0 ⊕ S
C1 = Êk,k1(C0)⊕ P1

C2 = Êk,k2(C1)⊕ P2

· · ·

The event we are looking for is a collision between any of qm n-bit blocks
(whcih would have had the probability of a collision as

(
qm
2

)
2−n), except that

the block C0 needs special attention.
Similar to (7), lemma 1 extends to (

(
2q
2

)
+ q
(
m
2

)
)2−n. Together with CFB

bound, we arrive at

11

Prencr <

((
2q

2

)
+ q

(
m

2

)
+

(
qm

2

))
2−n (11)

(11) is smaller than Pr5,6,7,8 + Pr9, thus we can use decryption bounds for
either direction of the WCFB.

References

1. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In Boneh, D., ed.: Ad-
vances in Cryptology - CRYPTO 2003. Volume 2729 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg (2003) 482–499

2. Halevi, S.: Eme*: Extending eme to handle arbitrary-length messages with as-
sociated data. In Canteaut, A., Viswanathan, K., eds.: Progress in Cryptology -
INDOCRYPT 2004. Volume 3348 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2005) 315–327

3. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a tweakable
strong pseudo-random permutation. In Robshaw, M., ed.: Fast Software Encryp-
tion. Volume 4047 of Lecture Notes in Computer Science. Springer Berlin Heidel-
berg (2006) 293–309

4. Halevi, S.: Invertible universal hashing and the tet encryption mode. In Menezes,
A., ed.: Advances in Cryptology - CRYPTO 2007. Volume 4622 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2007) 412–429

5. Sarkar, P.: Improving upon the tet mode of operation. In Nam, K.H., Rhee, G.,
eds.: Information Security and Cryptology - ICISC 2007. Volume 4817 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2007) 180–192

6. McGrew, D., Fluhrer, S.: The security of the extended codebook (xcb) mode of op-
eration. In Adams, C., Miri, A., Wiener, M., eds.: Selected Areas in Cryptography.
Volume 4876 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2007) 311–327

7. Wang, P., Feng, D., Wu, W.: Hctr: A variable-input-length enciphering mode. In
Feng, D., Lin, D., Yung, M., eds.: Information Security and Cryptology. Volume
3822 of Lecture Notes in Computer Science. Springer Berlin Heidelberg (2005)
175–188

8. Chakraborty, D., Sarkar, P.: Hch: A new tweakable enciphering scheme using the
hash-encrypt-hash approach. In Barua, R., Lange, T., eds.: Progress in Cryptology
- INDOCRYPT 2006. Volume 4329 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg (2006) 287–302

9. Ferguson, N.: Aes-cbc + elephant diffuser: A disk encryption algorithm for windows
vista (2006)

10. Martin, L.: Xts: A mode of aes for encrypting hard disks. Security Privacy, IEEE
8 (2010) 68–69

11. NIAP: Protection profile for software full disk encryption version 1.1. Common
Criteria Evaluation and Validation Scheme (2014)

12. Wooding, M.: New proofs for old modes. Cryptology ePrint Archive, Report
2008/121 (2008) http://eprint.iacr.org/.

13. Dodis, Y.: Introduction to cryptography, lecture 10. New York Uni-
versity (2012) http://www.cs.nyu.edu/courses/spring12/CSCI-GA.3210-001/

lect/lecture10.pdf.

12

14. Alkassar, A., Geraldy, A., Pfitzmann, B., Sadeghi, A.R.: Optimized self-
synchronizing mode of operation. In Matsui, M., ed.: Fast Software Encryption.
Volume 2355 of Lecture Notes in Computer Science. Springer Berlin Heidelberg
(2002) 78–91

15. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. J. Comput. Syst. Sci. 61 (2000) 362–399

16. Mihir Bellare, P.R.: Cse207 – introduction to modern cryptography. University of
San Diego (2012) http://cseweb.ucsd.edu/users/mihir/cse207/w-prf.pdf.

17. Kilian, J., Rogaway, P.: How to protect des against exhaustive key search (an
analysis of desx). J. Cryptology 14 (2001) 17–35

18. Lucks, S.: The sum of prps is a secure prf. In: Advances in CryptologyEURO-
CRYPT 2000, Springer (2000) 470–484

A Building blocks

The subsections contain a review of the building blocks of the WCFB. These
results are used in the prior sections of the paper.

A.1 AdvPRPE[E] for E

Consider a wide block cipher E [E] that is built with a block cipher E.
We would like to work with E when it is modeled as a PRF and then translate

the obtained concrete security results to the same setup but with E modeled as
a PRP. E would be a mode like the WCFB.

As the proof of the following lemma shows, we cannot simply apply the lemma
6 of [1] or Proposition 2.5 of [15] to the E as a black box. The following lemma
and corollary properly address the nested structures such as E [E], or Ê [E [E]].

Lemma 2. For any distinguisher A that queries their oracle on a q m-block
inputs, it holds that

AdvPRPE[E] ≤
(
q

2

)
2−n,where

AdvPRPE[E]
.
=Pr[E ← Rand(·) : AE[E] = 1]− Pr[E ← Perm(·) : AE[E] = 1]

Proof. We find the upper bound of the attack first. While the size of the range
and the domain of E [E] is nm bits, there is an effective way to exploit the limited
range of E. The output values of E(·) for unique input will collide in the case of
a random function and never in case of a permutation exactly the same way as
in the setting of the switching lemma proven for CBC-MAC construction [15].
We fix a block index in E [E] for the block which value we will be changing from
0 to 2n − 1, while setting the rest of blocks to 0n, and also fix the T . Being a
permutation, the E [E] will take exactly 2n nm-bit distinct values in case of E
instantiated with a PRP, while we will have a collision in the 2nm space after
about 2n/2 steps in case of a PRF.

13

On the other hand, AdvPRPE[E] cannot be less than
(
q
2

)
2−n, or E [E] can

be used to attack E in a standard distinguishing experiment (real world E v.s.
a PRP in the n-bit domain).

ut

Corollary 1. Lemma 2 holds for nested Ê [E [E]].

Proof. The same argument as in lemma 2 can be extended to nested E . 2n values
in the range of E still permute to 2n values in the range of Ê [E [E]].

ut

A.2 Security of Êk,ki
(x)

We evaluate the security of Êk,ki(x) for an attacker that has access to two

sessions I and J simultaneously, corresponding to Êk,ki(x) and Êk,kj (x). We

then show how this setup allows an attacker to distinguish Ê from a random
function.

This setup is a natural choice for the internal structure of the WCFB, where
XOR between a pair of Ê with different subkeys is a common operation.

In Section A.4 we considered a more common DESX-style construction Êk,ki(x)
= Ek(x ⊕ ki) ⊕ ki, also under the setup of parallel sessions. However, lemma 5
shows that we could not find additional benefits of that more complex construc-
tion.

Lemma 3. Given a PRP Ek(·) : K × {0, 1}n → {0, 1}n, define:

Êk,ki(x)
.
= Ek(x⊕ ki)

The probability to distinguish between Êk,ki(·) and Êk,kj (·) is bound by
(
q
2

)
2−n

for q queries. K is the space of keys for E, ki
$←− {0, 1}n. The probability is the

same when Ek(·) is a PRF.

Proof. The default choice in this paper is to model a block cipher as a PRF in
the proofs, switching to a PRP at later stages. Here we first assume that the Ek
is a PRP. Consider the domain/ranges ∀x ∈X

.
= {0, 1}n : Yi

.
= Ek(x⊕ki),Yj

.
=

Ek(x⊕kj). For a PRP |X| = |Yi| = |Yj | = 2n. Each element of Yi can be paired
with an element of Yj , so that for two subkeys ki, kj

E(a⊕ ki) =E(b⊕ kj)⇔ (13a)

a⊕ b =ki ⊕ kj (13b)

The probability of at least one collision is bound by
(
q
2

)
2−n for q queries. A

collision event will mean the discovery of the “difference” δ = ki⊕kj between the
subkeys. This is sufficient to break many settings similar to left-or-right security.
Knowing δ allows the distinguisher to submit x⊕δ to one oracle, say to the oracle
with kj , which will return Êk,kj (x⊕δ) = Ek(x⊕δ⊕kj) = Ek(x⊕ki) = Êk,ki(x),

14

the output of the oracle with the ki for x. Then the distinguisher knows exactly
the answer that the oracle with the subkey ki will provide for the value x that it
never “seen”, with probability 1. An example of a settings would be to distinguish
between a session with a pair of random PRPs from a session with a pair Êk,ki ,

Êk,kj . A collision in the latter case gives δ that can be confirmed in the next
query; random PRPs will not have such a property attributed to δ.

The proof for the PRF is slightly more difficult because we need to deal with
the possibility of Ek(·) colliding on different input. In the event of a collision
in formula (13a) we cannot assume (13b). However, a challenger can verify the
type of output collision by calculating the candidate δ as above and submitting
a pair t + δ to one oracle, provided that there is an answer for t queried from
another oracle. Let us assume that we know the Ek,ki(t). Assuming that t + δ
is new for the oracle that uses kj , Ek,ki(t) = Ek,kj (t ⊕ δ) if δ is correct with
confidence probability 1− 2−n. ut

A.3 Security of Ek(x) ⊕ x

This section serves to simplify a few places in the paper by showing that dropping
the “outer XOR” of the input added to the output has no consequence for the
security. Intuitively, it makes sense that the addition of the plaintext to the
ciphertext will not make the ciphertext less predictable.

Lemma 4. Given a PRF Ek(x), Y (x)
.
= Ek(x) ⊕ x is a PRF with identical

security.

Proof. We follow closely the setup of the distinguishing games given in [15], [16].
Consider that there is a distinguisher AY that can guess with non-negligible

advantage that the output is produced by Y v.s. a random function, given a set
of inputs x. Assume there is an environment set up in which AY interacts with
an oracle Y , sending requests x, getting back Ek(x) ⊕ x, and at some point,
after obtaining sufficient number of pairs (x, y), it produces the conclusion for
whether it interacts with the “real” world of Y or with a random function. All
the recorded pairs (x, y) represent the only information that the distinguisher
possesses to substantiate his conclusion. Such a sequence of (x, y) used for the
distinguishing session is called here a transcript. A transcript is polynomial in
size and it was obtained in polynomial time.

Observe that we can transform the set of obtained pairs by adding ⊕x to the
y. This is done in time linear to the size of the transcript. This transforms the
transcript for Y into the transcript for Ek.

In doing so we have obtained the polynomial-size transcript for the oracle of
Ek and there is a distinguisher AY that can distinguish it with non-negligible
advantage from a transcript corresponding to a random function.

The remaining technical detail here is that because we rely on the AY , the
key was selected for the session with Y as an oracle and not E. Note that there
is a polynomial-size transcript that gives non-negligible advantage to “break” E
for every key k ∈ K. Even though it is unfeasible to build the transcripts for

15

|K| keys, we know that there is a polynomial-size transcript for every key that
can be selected for an oracle E. [15] defines insecurity of PRF as the maximum
advantage over all distinguishers. Therefore, we don’t have to produce a distin-
guisher for E in polynomial time, we only need to show that it exists in standard
distinguishing experiments.

By the condition of the lemma, no distinguisher choosing between E and
a random function should be able to correctly identify E in polynomial time,
given that E is a PRF. It follows that AY cannot exist and the Y is a PRF with
identical security.

ut

A.4 Security of Ek(x ⊕ ki) ≈ Ek(x ⊕ ki) ⊕ ki

We considered the DESX-like [17] construction, but could not see a benefit of a
second subkey. In general, the construction Ek(x⊕ki)⊕ki is a popular building
block in security modes. We show here that its security is equivalent to the
security of the Êk,ki(x), see Section A.2. Note that we don’t offer the oracle

access to Ek, only to Êk,ki . We show this using distinguishing attack identical to
the one in lemma 3, which determines whether we are interacting with a session
for Ek(x⊕ki)⊕ki or Ek(x⊕kj)⊕kj . Identical definitions to lemma 3 are omitted.

Lemma 5. Given a PRP Ek(·) : K × {0, 1}n → {0, 1}n, define:

Êk,ki(x)
.
= Ek(x⊕ ki)⊕ ki (14)

The probability to distinguish between Êk,ki(·) and Êk,kj (·) is bound by
(
q
2

)
2−n

for q queries, identical to the one in lemma 3.

Proof. We are presented with two encryption oracles, the one that uses key ki
and the one that uses the key kj , referred here as oracles I and oracle J . We
cannot repeat queries to I and J , but we can ask each oracle to encrypt the
same value.

We rely on collisions to distinguish I and J . The collisions are found using
two tables for I and J :

for I : {a, yi(a) = Ek(a⊕ ki)⊕ Ek((a⊕ 1)⊕ ki)}
for J : {b, yj(b) = Ek(b⊕ kj)⊕ Ek((b⊕ 1)⊕ kj)}

Note how the outer keys ki, kj are canceled by the XOR. Name the δ = ki⊕ kj .
Notice that ∀a, b ∈ [0, 2n − 2] there is a 1:1 correspondence between a pair of
elements yi, yj for some i, j. Specifically, ∀a ⊕ b = δ ⇒ yi(a) = yj(b). Once
the collision is found for some a, b, it can be confirmed if it is due to δ with
yi(a⊕ 1) = yj(b⊕ 1).

The sum of PRPs is a PRF, as shown in [18], thus the yi, yj are PRFs on
{0, 1}n. We will be selecting a, b as distinct uniformly at random values.

At this point the setup is consistent with standard collision search between
yi, yj , and is identical to the one in lemma 3, leading to the birthday bounds
security. ut

16

Note that knowing δ, we can distinguish between I and J deterministically
going forward: sending ∀x, x+δ to I, J will cause the fixed value of XOR between
oracle’s outputs. This even works regardless of the outer subkey being different
from the inner.

B Parallelism within a wide block

In this section we provide support for the design decision not to complicate
WCFB with internal parallelism.

First of all, observe that within ≈ 2× block cipher operations WCFB al-
lows unlimited m-degree parallelization of the half of these operations in either
encryption or decryption direction, plus its lean ”mixing” layer is fully paral-
lelizable, without any need for precomputed tables. Thus, this section is about
≈ 1× block cipher operations that have data dependency due to their chaining.

Parallelism within the wide block is not needed in large number of usage
scenarios.

WCFB is designed for random access within a large data set (up to 2n/2−log(m)

wide blocks). An example use case is a whole disk encryption product that is
implemented as a layer within operating system that “sees” blocks of mn bits
and transparently encrypts and decrypts them at the request of an operating
system. Let us assume that the T is a block index. In modern operating sys-
tems, on average, the block at the index T will not be accessed alone. Operating
systems maintain a cache of related blocks through the read-ahead and delayed
write strategies and they commonly batch together multiple Input/Output (I/O)
operations. On average, some minimum of p blocks will be accessed together.
Keep in mind that storage hardware is often doesn’t even have capability to ac-
cess/reference an individual block P ; P can only be accessed/referenced within
as part of a cluster of blocks instead. Similar argument carries over to database
management systems. In general, the systems that are designed for high per-
formance will likely routinely perform parallel I/O with multiple blocks at a
time.

Fig.2 shows the case study to support the above claim. We have instrumented
a Windows disk filter driver to obtain the listed counters for read requests from
disk over the period of 30 min, starting from booting Windows from a pow-
ered down state. The user has logged in and used Internet Explorer to browse
http://yahoo.com and compile source code. The system was idle for about half
the time. The system is a 32-bit Windows 8.1 with 60Gb hard disk, NTFS, and
1 Gb of RAM, installed in a VirtualBox virtual machine. The virtual disk was
indicated as an SSD disk in the VirtualBox settings. The sector size in all the
requests is 512 bytes.

The fraction of sectors appearing in read requests for which p < 4 is less than
0.003, and the fraction of requests for which p < 8 is 0.006.

These numbers are slightly better for write requests, see Fig.3.
In serial protocols, such as decryption of a media stream, it is possible to

buffer and work on p blocks at a time.

17

Fig. 2. Sector read access pattern on Windows 8.1. 30 min after boot, Internet Explorer
browsing of http://yahoo.com

Description Counter

Total number of requests 242093
Total number of sectors 10830072
Total sectors appearing in 4 sector groups 10803156
Total sectors appearing in 8 sector groups 10773176
Total sectors not making 4 sector groups 26916
Total sectors not making 8 sector groups 56896
Minimum number of sectors in a request 1
Maximum number of sectors in a request 4096

Average sectors in a request 44
Percentage of sectors in groups < 4 sectors to sectors in groups even to 4 0.3%
Percentage of sectors in groups < 8 sectors to sectors in groups even to 8 0.6%

Fig. 3. Sector write access pattern on Windows 8.1. 30 min after boot, C source code
compilation
Description Counter

Total number of requests 30962
Total number of sectors 3152391
Total sectors appearing in 4 sector groups 3147896
Total sectors appearing in 8 sector groups 3142312
Total sectors not making 4 sector groups 4495
Total sectors not making 8 sector groups 10079
Minimum number of sectors in a request 1
Maximum number of sectors in a request 2048

Average sectors in a request 101
Percentage of sectors in groups < 4 sectors to sectors in groups even to 4 0.2%
Percentage of sectors in groups < 8 sectors to sectors in groups even to 8 0.4%

18

This shows that there are sufficient number of scenarios where we can count
on the minimum of p wide blocks in a request.

WCFB allows unlimited parallel access to separate wide blocks and this is
the method by which the parallelism of the system can be leveraged with WCFB.
Given p wide blocks, it is possible to implement an interleaved processing method
by which individual blocks Pi (or Ci) are processed in parallel among p wide
blocks P (or C).

Finally, it is difficult to envision an implementation that will leverage multi-
core support (i.e. multithreaded functionality) within an encryption block. The
issue here is that in many instantiations of wide block encryption the m is fairly
small, 32 is common. Such a low value makes the overhead of asynchronous
processing prohibitive. There is mainly one area where internal parallelism can
realistically be used, and it is the SIMD capability of the processors. SIMD
functionality refers to the parallelism within one CPU core and it is realized
by the separate processing pipelines of a single CPU core. SIMD parallelism is
limited (value 4 is common) and it is fixed for a CPU model; adding more CPU
units to a host will not change the degree of SIMD parallelism. This shows that
a mode without limits on internal parallelism has limited upside (e.g. factor of
4) and limited opportunities (e.g. limited to less than 0.3% of the data set).

Fig.2 shows that the added overhead experienced by a mode with high inter-
nal parallelism will likely be a disadvantage in this operating environment.

While we acknowledge that there are certain usage patterns in which built-in
parallelism of the wide encryption mode might be beneficial, there are also cases
in which such a feature only adds complexity and performance penalty.

C WCFB diagrams

Fig. 4 and 5 describe the encryption and decryption of WCFB specified in Fig.
1, respectively. On these diagrams the Ei(·) corresponds to Êk,ki(·).

19

Fig. 4. WCFB encryption diagram

P0 P1 P2 · · · Pm−2 Pm−1 Em(T)

⊕ ⊕ ⊕ · · · ⊕ ⊕

⊕

⊕

⊕ · · ·

⊕ ⊕ ⊕ ⊕ ⊕

C0 C1 C2 · · · Cm−2 Cm−1

E0(P0) E1(P1) E2(P2) Em−2(Pm−2) Em−1(Pm−1)

Em(·)

E0(IV) E1(C0) E2(C1) Em−2(Cm−3) Em−1(Cm−2)

20

Fig. 5. WCFB decryption diagram

C0 C1 C2 · · · Cm−2 Cm−1

⊕ ⊕ ⊕ · · · ⊕ ⊕

⊕

⊕

· · · ⊕

⊕ ⊕ ⊕ ⊕ ⊕

P0 P1 P2 · · · Pm−2 Pm−1 Em(T)

E0(IV) E1(C0) E2(C1) Em−2(Cm−3) Em−1(Cm−2)

Em(·)

E−1
0 (·) E−1

1 (·) E−1
2 (·) E−1

m−2(·) E−1
m−1(·)

21

D Performance at 1.45 times the memcpy

We implemented the WCFB encryption algorithm with x86 SSE2 instruction
set. We emulated the block cipher encryption and decryption as a one-time pad
operation (XOR with a key) in order to time the overhead directly attributed
to the WCFB. All WCFB operations, including the use of subkeys in Ê, were
following the WCFB specification.

We wrote the WCFB algorithm using gcc SSE2 intrinsics, a convenient way
to inject SSE2 instructions into a C program. We compiled the code with gcc
version 4.7.2 targeting x86 64 Linux with -O6 optimization option. The timing
in this section is for a single CPU core (no multithreaded operations).

A useful metric for an algorithm like WCFB is to measure how much is it
slower than a standard runtime library’s memcpy operation on the same plain-
text and ciphertext buffer. Specifically, the unit of measure is the time it takes
the memcpy call to copy the plaintext into the ciphertext buffer. C compilers
frequently generate code to implicitly use memcpy (or its equivalent) when pa-
rameters are passed by value or to implement an assignment between complex
types.

We observed that the WCFB operating on a single block is 2.10− 2.76 times
slower than the corresponding memcpy. This is a worst case scenario when there
is only a single nm-bit block available for encryption. Note, however, that the
code we wrote takes advantage of all the internal parallelism offered by WCFB:
in our implementation the first BC pass and the mixing pass are parallelized at
the factor 4 to take advantage of 4 parallel pipelines of the CPU.

Following the method described in the Section B, we timed the appropriately
enhanced WCFB implementation at 1.45 − 1.97 times the time spent by the
memcpy.

For a reader who is puzzled by the fact how a performance of a more complex
operation such as WCFB can possibly be that close to memcpy’s, the answer can
be explained by the general-purpose design of the memcpy. The implementation
of a memcpy in our case, apparently, doesn’t take advantage of the fact that the
size of the input buffers are even to n bits and it probably doesn’t use SSE2
instructions. Nevertheless, the results are satisfactory because they show that
the overhead of WCFB layer puts the WCFB into the realm of operations that
software developers are typically considering as negligible in their performance
impact.

