
On The Orthogonal Vector Problem and
The Feasibility of Unconditionally Secure Leakage Resilient Computation

Ivan Damgård, Frédéric Dupuis, and Jesper Buus Nielsen?

Dept. of Computer Science, Aarhus University

Abstract. We consider unconditionally secure leakage resilient two-party computation, where security means
that the leakage obtained by an adversary can be simulated using a similar amount of leakage from the private
inputs or outputs. A related problem is known as circuit compilation, where there is only one device doing
a computation on public input and output. Here the goal is to ensure that the adversary learns only the in-
put/output behaviour of the computation, even given leakage from the internal state of the device. We study
these problems in an enhanced version of the “only computation leaks” model, where the adversary is addi-
tionally allowed a bounded amount of global leakage from the state of the entity under attack. In this model,
we show the first unconditionally secure leakage resilient two-party computation protocol. The protocol as-
sumes access to correlated randomness in the form of a functionality fORT that outputs pairs of orthogonal
vectors (u,v) over some finite field, where the adversary can leak independently from u and from v. We also
construct a general circuit compiler secure in the same leakage model. Our constructions work, even if the
adversary is allowed to corrupt a constant fraction of the calls to fORT and decide which vectors should be out-
put. On the negative side, we show that unconditionally secure two-party computation and circuit compilation
are in general impossible in the plain version of our model. For circuit compilation we need a computational
assumption to exhibit a function that cannot be securely computed, on the other hand impossibility holds even
if global leakage is not allowed. It follows that even a somewhat unreliable version of fORT cannot be imple-
mented with unconditional security in the plain leakage model, using classical communication. However, we
show that an implementation using quantum communication does exist. In particular, we propose a simple
“prepare-and-measure” type protocol which we show secure using a new result on sampling from a quantum
population. Although the protocol may produce a small number of incorrect pairs, this is sufficient for leakage
resilient computation by our other results.

1 Introduction

In this paper, we consider secure leakage-resilient computation, more precisely solutions to two different
types of problems, known as two-party computation and circuit compilation.

In two-party computation, two parties A and B want to compute a (possibly probabilistic) function
securely on private inputs. Both parties are assumed to follow the protocol. There is an adversary who
may obtain leakage from the internal state of the players, say by some side channel attack, but we still
want to keep the private inputs and outputs “as private as possible”.

In the closely related problem of circuit compilation, there is only a single device that carries out a
computation (usually given as a Boolean circuit) on public input and output. The goal is to make sure
that an adversary who gets to choose the input and is given the output, will learn nothing more than the
input/output behaviour, even if he can leak from the internal state of the device. The computation may in
addition depend on some secret data that should be completely protected. One may think, for instance,
of a device that uses a secret key to decrypt or sign data: we are fine with revealing the output but want
to hide the secret key, even if an adversary does a side-channel attack on the device.

We need, of course, a meaningful notion of security for protocols claiming to solve such problems.
For this, we clearly need to somehow limit the leakage that the adversary can get, and there is a lot of
previous work considering various restrictions allowing secure protocols to be built. In this paper we
consider a new and enhanced version of the “only computation leaks” model proposed by Micalin and
Reyzin in [MR04]. They assume that the computation of a party under attack is split into several smaller
parts. The adversary may submit one or more leakage functions, where each function must address a
certain part of the computation. The function is applied to only the data that is actually used during this
? Partially supported by Danish Council for Independent Research via DFF Starting Grant 10-081612. Partially supported by

the European Research Commission Starting Grant 279447

part of the computation, and the result is returned to the adversary. It is assumed that only some bounded
number of bits can leak from each part of the computation.

Our enhancement to the model is to allow not only leakage from sub-computations, but also a
bounded amount of leakage from the global state of the party under attack. Typically, the allowed
amount of global leakage will be comparable to what is allowed from a single part of the computa-
tion. This clearly makes the adversary stronger, but also more realistic: in a real life, an adversary might
use a combination of several side channel attacks, and completely avoiding global leakage in such a case
may be extremely difficult.

Security for two-party computation now means that the leakage obtained by the adversary can be
(efficiently) simulated, however, when the adversary leaks from a part where private inputs or outputs are
touched, the simulator is allowed to leak the same number of bits from those inputs/outputs. For circuit
compilation, we require that the leakage can be simulated given only the public inputs and outputs. We
emphasize that we consider throughout unbounded adversaries and leakage functions, nevertheless we
demand that all simulators and honest parties must be efficient.

For two-party computation, a UC based definition of leakage resilience was given in [BCH12].
Also a few examples were given of two party protocols for specific functionalities (based on various
computational assumptions). In [BGJK12], generic leakage resilient multiparty computation protocols
were constructed, again under a computational assumption.

For circuit compilation, Dziembowski and Faust in [DF12] (see also [DF11]) have shown a general
unconditionally secure method. Their construction can be interpreted in a natural way as being derived
from a two-party protocol for parties A and B in the only-computation-leaks model (without global
leakage, and where a single device plays the parts of both parties). They assume that so-called leak-free
gates are available, or equivalently, parties are given access to an ideal functionality fORT which will on
request produce a random pair of vectors u,v over some finite field, subject to u · v = 0 and give u to
A and v to B. It is assumed that nothing about the internal computation of fORT leaks to the adversary.
The idea is to use the vectors from the leak-free gates to refresh the state in between different parts of the
computation, such that leakage from different parts will become (essentially) uncorrelated. The draw-
back of this solution is that an implementation will require secure hardware components, even if these
are much simpler than the device we want to protect. Goldwasser and Rothblum [GR12] improve this
using a different method that does not use leak-free gates during the computation, but instead assumes
that the device initially has a randomised state, a so-called ciphertext bank. They then use this as well
as fresh randomness as a source for refreshing. Also this construction is in the only-computation-leaks
model (with no global leakage). The adversary does not have access to the internal computation of the
algorithm that generates the ciphertext bank, so one can think of this as allowing access once and for
all to a leak-free component (with output size depending only on the security parameter) before the
computation starts.

It is of course natural to ask if we can make do with no leak-free components at all? In particular,
can we securely implement fORT by a two-party leakage resilient protocol?

Our Contribution. In this paper, we make the following contributions:

– We generalise the protocol in [DF12] to show that we can do, not just circuit compilation, but general
unconditionally-secure leakage-resilient 2-party computation given access to fORT. To the best of
our knowledge, this is the first result of its kind. On the way, we propose a new model of leakage
resilient 2-party computation where global leakage from the entire view of the party under attack is
(also) allowed. This is a strictly stronger leakage model than that of [DF12, GR12]. The definition
is simpler than the UC based definition of [BCH12] while still supporting composition.

– Our construction works even given a partially corrupted version of fORT, namely one where the
adversary is allowed to corrupt a constant fraction of the calls to fORT and choose the output vectors
himself. We believe this makes the assumption on leak free gates much more reasonable, as we
make a much weaker assumption on the security of these gates. The result improves on [DF12] and

2

is incomparable to [GR12]: we need a (partially) leak-free source during the computation but on the
other hand we allow active corruption of it under a stronger leakage model.

– We show that general two-party unconditionally secure leakage resilient computation is impossible
in the plain version of our model (where no auxiliary functionalities are assumed). We show that
circuit compilation is also impossible in the plain model, where for this result, we need a compu-
tational assumption to exhibit a function that cannot be computed securely, on the other hand, this
impossibility result holds even if global leakage is not allowed.

– From the results mentioned, it follows easily that there is no unconditionally secure and leakage-
resilient implementation of fORT, not even for a somewhat unreliable version. It also follows that the
ciphertext bank of [GR12] cannot be securely created, starting from scratch.

– We show that the orthogonal vector problem does have an unconditional solution using quantum
communication, in particular we provide a relatively simple “prepare-and-mesaure” type protocol.
While it generates a small but noticeable number of incorrect pairs, this is still sufficient for leakage
resilience by our other results. We show security using a new technical result of independent interest
on sampling from a quantum population.

It should be noted that the impossibility of two-party computation from scratch follows because a
secure protocol in our model is also passively secure in the standard (non-leakage) model. Not only does
this show that correlated randomness is necessary, it also follows that the amount of such randomness
must depend on the size of the secure computation: a generic two-party computation protocol using a
fixed amount of randomness could be used to implement any number of oblivious transfers from such
fixed-size randomness, and this is well known to be impossible. In our protocol, the number of calls we
make to fORT is proportional to the circuit size of the function we compute, so the argument we just gave
says that this is in some sense necessary. Note that the result of [GR12] does not contradict this as it is
does only circuit compilation in a weaker leakage model.

We now explain a few additional details about our quantum result: we introduce an extra component
Q that one may think of as a replacement for fORT. Q will prepare quantum states and send them to A
and B. However, we do not assume secure hardware so we allow the (unbounded) adversary to remove
Q and instead prepare himself the states to be sent1. We must therefore allow for the possibility that the
protocol terminates with no output. Finally, all random choices by A or B during the protocol are leaked
to the adversary as soon as they are made 2. In this model, we obtain solutions that leak no information
on the output u,v.

One such solution can be designed as follows: one can use a quantum key distribution protocol by
Ekert [Eke91] with security proof by Lo and Chau [LC99] to generate a set of essentially perfect EPR
pairs shared by A and B, where in particular the adversary is essentially unentangled with the state held
by A and B. We then then ask A to prepare a bipartite state that is a superposition over all pairs of
orthogonal vectors. Then we use the EPR pairs to teleport one part of this state to B, this only requires
local quantum operations and classical communication. Finally, measuring the state on both sides will
produce exactly the output we need.

However, this is not a satisfactory solution: it requires quantum storage and computation, and so is
very far from what current technology allows. Also, if A and B store and compute on a quantum state
for some time, it makes sense to ask what happens if the adversary can leak from the quantum state. It
is not entirely clear what this should mean and how to protect against it.

We therefore propose a new protocol in whichA andB measure immediately the states they receive.
Although the required states may be non-trivial to prepare, this is certainly much closer to current tech-
nology than the first solution. Note that in this case, the only edge we have on the adversary is that he
must choose the states to send before seeing the random choices A and B use later. This is a minimal

1 equivalently, we could let A prepare the states and send them to B, but allow the adversary to tamper arbitrarily with the
quantum communication.

2 this is similar to the standard model for quantum key distribution, where these choices are sent on a classical channel that
the adversary can observe but not tamper with.

3

assumption: if the adversary knows all random choices in advance, A and B have no chance to verify
the states they receive.

To summarise, this gives us a way to do leakage resilient computation even if Q is replaced by an
arbitrary adversarial (quantum) component, assuming (as usual) that the adversary can only leak inde-
pendently from different parts of the actual computation. Of course, we do not mean to suggest that this
solution is more practical than using leak-free classical gates or ciphertext banks, but we do claim that
the solution is fundamentally different since we need no leak-free components at all, not even as a once-
and-for-all preprocessing. Finally we also want to emphasise that by showing that the orthogonal vector
problem has a quantum solution but no classical solution, we enhance our understanding of which extra
power quantum communication can buy us. We believe this is of fundamental interest, independently of
leakage resilience.

2 Leakage-Resilient Two-Party Computation from Orthogonal Vectors

In this section we present a leakage-resilient two-party computation protocol in a hybrid model assum-
ing an ideal functionality producing pairs of orthogonal vectors. We take the the circuit compiler from
[DF12] as our point of departure. Our goal is to “upgrade” it to two-party computation in a stronger
leakage model. This is partly for added generality and partly for the sake of our negative results. We also
add some protocols: for input, output and secret random bits.

We consider two-party protocols π = (π1, π2, g), where each πi is a poly-time, randomised function:
the running time should be polynomial in kα, where k is the security parameter and α is the number of
activations done by the adversary (defined below). And, g is a function modelling the communication
resources used by the parties. All communication happens through g. In each round g takes a secret
input from each party and gives a secret output to each party, plus one public output. We say that π
is a protocol for the g-hybrid model. An execution is driven by an adversary A, an interactive Turing
machine, and proceeds as in Fig. 1 for security level k. We only consider A which with probability 1
will eventually execute the done command , and we use execπ,A(k) to denote the distribution of the g
in C = (done, g).

The execution will be compared to a simulation, see Fig. 2, with a simulator S = (S0, S1, S2) which
simulates the leakage on the protocol given just leakage on the inputs and outputs of the function. Each
of S0, S1 and S2 are interactive Turing machines. Each has an unbounded random tape, and they share
this tape. They all have read-only access to the tape and cannot see the tape position of each other, to
avoid communication. Each function L will be represented as Turing machine MT . We let T (A) denote
the worst case running time ofA plus the worst case running time of eachML that it submits. Each of S0,
S1 and S2 are allowed polynomial running time in T (A). We use simf,A,S(k) to denote the distribution
of g in C = (done, g).

We mainly a stricter form of simulation where the simulator must simulate the entire view of the
party, and then the leakage function is applied to this view. In this so-called full-view simulation the
command C = (leak, i, L) is handled as follows:

Full-view simulation:

(a) Input L to Si.
(b) Run Si to produce a function V .
(c) Compute s = L(V (ιi)).
(d) Input s to A and Si.
(e) Go to Step 2.

Definition 1. We say that π is an ε-leakage-resilient implementation of f against A if there exists sim-
ulator S such that it holds for all A ∈ A that S runs in polynomial time in T (A) and the statistical
distance between execπ,A(k) and simf,A,S(k) is at most α · ε(k), where α is the number of activations
done by A. We say that π is a full-view ε-leakage-resilient implementation of f against A if the sim-
ulation is of the full-view form. We say that π is an ε-leakage-resilient implementation of f if π is an

4

execπ,A(k):

1. Initialise the states and views σ0
1 = σ0

2 = σ0 = view0
1 = view0

1 = (1k), and a round counter r = 1 and an
activation counter a = 1.

2. Run A to produce a command C.
– If C = (done, g), halt with output g.
– If C = (leak, i, L), input L(viewr

i) to A, and go to Step 2.
– If C = (next-activation, (xa1 , x

a
2)), do:

(a) For i = 1, 2 set σri = (σr−1
i , xai) and viewr

i = (viewr−1
i , xai), and set σr = σr−1 and r ← r + 1.

(b) For i = 1, 2, sample (dri , b
r
i , σ

r
i)← πi(σ

r−1
i ; ρri).a

(c) • If dr1 6= dr2 return execution-error to A and go to Step 2.
• If dr1 = d2

2 = 1, do:
i. Let ȳai = bri for i = 1, 2.

ii. Input (ȳa1 , ȳ
a
2) to A.

iii. viewr
i = (viewr−1

i , ρri).
iv. r ← r + 1 and a← a+ 1.
v. Go to Step 2.

• If dr1 = dr2 = 0, do:
i. Sample (cr1, c

r
2, c

r, σr)← g(b21, b
2
2, σ

r−1).
ii. viewr

i = (viewr−1
i , ρri , c

r
i , c

r).
iii. Input cr to A.
iv. r ← r + 1.
v. Go to Step 2b

(d) Go to Step 2.

a Here ρii is the randomness used by πi, dri is a bit indicating whether party i considers the activation done and bri is an
output or a message for g.

Fig. 1. Real World Execution

simf,A,S(k):

1. Initialise the ideal states ι01 = ι02 = ι0 = (1k) and an activation counter a = 1.
2. Run A to produce a command C.

– If C = (done, g), halt with output g.
– If C = (leak, i, L), do:

(a) Input L to Si.
(b) Run Si to produce L′ with |L′| = |L|.a
(c) Compute s = L′(ιi).
(d) Input s to A and Si.
(e) Go to Step 2.

– If C = (next-activation, (xa1 , x
a
2)), do:

(a) Sample (ya1 , y
a
2 , y

a, ιr)← f(xa1 , x
a
2 , ι

r−1).
(b) For i = 1, 2, let ιai ← (ιa−1

i , xai , y
a
i , y

a).
(c) Input ((ya1 , y

a), (ya2 , y
a)) to A.

(d) Input ya to S0, S1 and S2.
(e) Run S0 to produce a vector (cr

′
, . . . , cr) and for j = r′, . . . , r, input cj to A.

(f) a← a+ 1.
(g) Go to Step 2.

a For a function L we use |L| to denote the bit length of the longest output in the image of L.

Fig. 2. Simulation

5

ε-leakage-resilient implementation of f for all adversaries, i.e., without any restrictions on the leak-
age. Similarly we say that π is a full-view ε-leakage-resilient implementation of f if π is a full-view
ε-leakage-resilient implementation of f for all adversaries.

Discussion of Model The notion of full-view simulation is inspired by the notion of leakage-oblivious
simulation in [BCH12], and as in that work, the motivation is composability. However, the model in
[BCH12] is an extension of the UC framework, and as such adds complications to a model which is al-
ready exquisitely complicated as it has to deal with malicious security, concurrent composition, compu-
tational security, session identifiers, and many other issues needed by a general security model. However,
the focus of the present work is somewhat simpler, so we find it desirable to have a simple self-contained
model aimed at just leakage-resilient, unconditionally secure, two-party computation. The hope is that
the simplicity will make it useful by others.

To distinguish the non-full-view leakage-resilience from full-view leakage-resilience we will call it
no-view leakage-resilience. We consider full-view simulation ”the right” notion of leakage resilience,
as it composes. It is true that no-view leakage resilience might be enough in some case and weaker,
however, it does not necessarily compose, which makes it useless in many settings, and furthermore,
as we will demonstrate in Section 2.6, under reasonable computational assumptions, no-view leakage-
resilience actually implies full-view leakage-resilience for most reasonable adversary classes, so our
position is that one might as well adopt full-view simulation as the base definition.

Note that A can never receive input execution-error in the ideal setting, hence getting input
execution-error would allow him to perfectly distinguish, so we are essentially requiring that it
never happens that dr1 6= dr2.

We are using local simulators, in the sense of [CV12]. This is because this gives a notion of leakage-
resilience which composes. It is possible to modify our model to not use local simulators simply by
giving S, S1 and S2 a shared tape they all can read and write. This notion of leakage-resilience, however,
often does not compose well.

We have no explicit notion of a public input. However, this can be modelled by adding the input that
should be considered public to the public output y, in which case it will be given to S too.

Notice also that we do not allow the adversary to ask for leakage in the middle of an activation. This
is deliberately. We can handle such leakage too, but only if we give the simulator the output of the given
activation, even when it simulates leakage in the middle of an activation which did not terminate. Since
the simulator will be given the outputs anyway, it is easy to see that the optimal strategy of the adversary
is to ask for leakage at the end of the activation, where the view of the party is strictly larger than in the
middle of the activation. We build this into the model, for notational simplicity.

We can extend the model to have several hybrid functions (g1, . . . , gm) for communication. They
can be build into one g and have each party input the index i of the function to use. If they input different
indices, input execution-error to A and go to the next round.

2.1 Technical Results

Let Pi denote the class of adversaries which run for some number of activations, then make a query of
the form (i, L), where L outputs a κ-bit string, and then A returns this bit string as g. We say that a class
A allows κ bits of global leakage if ∪2

i=1Pi ⊂ A.
We call a function f stateless if it ignores the state σi−1 and always outputs empty states σi = ⊥.

We call a function f one-shot if it is stateless and it outputs empty outputs ya1 = ya2 = ya = ⊥ for a < 1.
Let gSEC denote the hybrid function for secure communication, i.e., on input xi from party i it outputs

y3−i = xi to the other party and gives the length of xi as public output.

Lemma 1. Let f be a two-party function for the model in [Can00], i.e., it takes one secret input from
each parties and gives a secret output to each party. Cast it to a stateless function f for our model here
by adding an empty state as input and giving an empty state as output, and an empty public output. If
π is an ε-leakage-resilient implementation of f against A and ε is negligible and A allows one bit of

6

global leakage and π is for the gSEC-hybrid model, then π is secure in the sense of [Can00] against a
computationally unbounded, semi-honest, static adversary corrupting any one party in the model with
secure communication.

Proof (sketch). If the protocol is not secure in the sense of [Can00], there exists a distinguisherD which
can distinguish between a the real state of a party or a simulated state. A distinguisher outputs a single
bit. We can hence use D as a leakage query, i.e., hardcode D into a leakage query L, let L run D on the
state of the party and leak the output bit of D. More details in Appendix A

For a one-shot function f , let f∗ be the function computing f in each activation. For a protocol π
implementing a one-shot function f , we use π∗ to denote the protocol which starts running π anew, with
fresh randomness in each activation. We say that a protocol for a one-shot function is ε-leakage resilient
against λ-leakage if it is ε-leakage resilient against the class of adversaries leaking at most λ bits from
each party in the sense that the sum of |L| for the leakage functions L queried on each party is upper
bounded by λ.

If πA is a protocol for the fB-hybrid model and πB is a protocol for the fC-hybrid model, then we
let πA[πB/fB] denote the protocol for the fC-hybrid model, which runs as πA except that each call to fB
on (a1, a2) is replaced by a run of πB on inputs (a1, a2). We say πA is a protocol for the (fB, qB)-hybrid
model if it makes at most qB calls to fB per activation.

We will consider a generic class of adversaries which considers the execution as divided into leakage
units (each a sequence of rounds) and which leaks at most λ bits on each unit. Each leakage query might
leak simultaneously from several units, but the sum of bits leaked by queries involving a given unit
should stay below λ for all units. To be more precise, after activation a of a protocol which has run for
a total of r rounds, the adversary class is specified by a division of the rounds into disjoint intervals:
Ua = {[1, r1], [r1 + 1, r2], . . . , [rd + 1, r]}. The division must be computable given just the view of
the adversary, specifically we assume it can be computed from just a and the knowledge of how many
rounds each activation took. We assume that the division is monotone, i.e., Ua−1 ⊂ Ua. We use I ∈ U
to denote one of the units. We use V I

i to denote the view of party i in unit I , i.e., the values by which
the view is extended in the rounds of unit I . A leakage query is of the form (i, I, L), where I is a set of
units. The leakage is computed as L({(I, V I

i)}I∈I). We restrict the adversary as follows: Initially, set
counter caI = 0 for each V I

i . On each leakage query (i, I, L), update cIi := cIi + |L| for all I ∈ I. We
require that maxi,I c

I
i ≤ λ. We call this the λ-tradeoff class of adversaries. Clearly this class allows λ

bits of global leakage. We call it a tradeoff class as it allows global leakage, but it is at the cost of a lot
of local leakage: the fewer units a leakage query touches, the less costly it is overall.

Given a λ-tradeoff class for a protocol πA for the fB-hybrid model, we can modify it to be a λ-
tradeoff class for the protocol πA[πB/fB], where the units are the sequences of rounds corresponding to
the units of πA but with each individual round expanded into several rounds, as we run πB instead of
evaluating fB. We call this the derived tradeoff class.

Theorem 1 (Composition of Full-View Simulatability). Let fB be a one-shot function. If πA is a full-
view εA-leakage-resilient implementation of fA in the (f∗B, qB)-hybrid model against some λ-tradeoff
class and πB is a full-view εB-leakage resilient implementation of fB in the (fC, qC)-hybrid model
against λ-leakage, then πA[π∗B/f

∗
B] is a full-view (εA + qBεB)-leakage resilient implementation of fA in

the (fC, qBqC)-hybrid model against the derived λ-tradeoff adversary class,

Proof (sketch). To reconstruct a view of party i in πA[π∗B/f
∗
B] from just the inputs and outputs of party

i, use the full-view simulator for πA to reconstruct a view of party i in πA from just the inputs and
outputs of party i. Then for each invocation of fB in the simulated view, take the corresponding inputs
and outputs of fB and then use the full-view simulator for πB to reconstruct a view of a run of πB on
these inputs. There are more details in Appendix B.

7

2.2 Our Encodings

We first introduce the leakage-resilient encodings we use. They work over a finite field F. A field element
a is encoded as an inner product a = 〈A1, A2〉, where party i holds Ai. The length n of the vectors Ai
is a parameter of the scheme. We later return to how to set n to obtain a given security level.

En(a):

1. Sample uniformly random (A1, A2) ∈ Fn × Fn for
which 〈A1, A2〉 = a.

2. Output (A1, A2).

An(a):

1. Sample uniformly random (A′1, A
′
2) ∈ Fn−1 ×

Fn−1.
2. (A1, A2) := ((A′1, 1), (A′2, a− 〈A′1, A′2〉)).
3. Output (A1, A2).

Throughout this section, when we write an output as (x, y), we mean that x is given to party x and
y is given to party 2. Similarly for inputs.

We will use that En(a) and An(a) are leakage-resilient encodings, and we now define leakage-
resilience of an encoding. We compare leaky encodings of different messages. In the definition we will
need an oracle O((v1, v2), ·), where the vi are bit-strings. On input (i, L), where i ∈ {1, 2} and L is
a function, it returns L(vi). We might put various restrictions on the queries that might be submitted,
but we will phrase that by restricting the entity making the queries. An adversary A against an en-
coding scheme is an interactive Turing machine. The leakage setting proceeds as follows. First sample
(A1, A2)← En(a). Then give A oracle access to O((A1, A2), ·) and run A to produce output V , where
V is the view of A, i.e., the list of queries to and replies from the oracle. We use AO(En(a),·) to denote
the resulting distribution on V .

Definition 2. We say that E is (λ, ε)-leakage resilient, if for all A leaking at most λ bits on each Ai
and for all a, b ∈ F the distributions (a, b, AO(En(a),·)) and (a, b, AO(En(b),·)) have statistical distance at
most ε.

Lemma 2. Let k be a security parameter. If n ≥ 4k+10+4 log2 |F| and |F| ≥ n, then En is (λ(n), 2−k)-
leakage resilient, where λ(n) = 0.25n|F| − k.

Proof. Lemma 1 in [DF11], using δ = 1/2, m = 1 and γ = 2−k−1−log2(|F|). �

Lemma 3. Let k be a security parameter. If n ≥ 4(k + 1) + 10 + 4 log2 |F|+ 1 and |F| ≥ n, then An
is (λ(n), 2−k)-leakage resilient, where λ(n) = 0.25n|F| − k − 1.

Proof. Let V denote the distribution on a obtained by sampling (A′1, A
′
2)← Fn−1× Fn−1 uniformly at

random and letting a← 〈A′1, A′2〉. Sample (B′1, B
′
2)← En−1(a) for a← V . Then (B′1, B

′
2) is uniform

on Fn−1×Fn−1. We use this to turn an adversaryA forAn into an adversaryB for En−1. The reduction
Bc will make use of a parameter c ∈ F. It picks a ∈ F according to V and picks b ∈ F uniformly at
random. Then it asks for an encoding of a or b, using En−1. This samples (C ′1, C

′
2) and Bc gets oracle

access to leakage on the C ′i. Define c1 = 1 and c2 = c − b and Ci = (C ′i, ci). The reduction Bc can
simulate a leakage query (i, L) fromA on Ci by a leakage query (i, L′) on C ′i, where L′(·) := L((·, ci)).
If Bc got an encoding of b, then (C1, C2) is by construction distributed exactly as An(c), i.e.,

(c1, c2, A
An(c1)) = (c1, c2, B

En−1(b)
c1) ,

(c1, c2, A
An(c2)) = (c1, c2, B

En−1(b)
c2) .

If Bc got an encoding of a, then the distribution of (C1, C2) is by construction distributed independent
of c. So,

(c1, c2, B
En−1(a)
c1) = (c1, c2, B

En−1(a)
c2) .

It follows that the distance between (c1, c2, A
An(c1)) and (c1, c2, A

An(c2)) can be no more than twice
the distance between BE

n−1(a)
c2 and BE

n−1(b)
c2 . Then apply Lemma 2. �

In the following we pick the parameters according to Lemma 3 such that both encodings are (λ(n), 2−k)-
leakage resilient for λ(n) = 0.25n|F| − k − 1.

8

2.3 The Protocol

We will present our protocol by giving full-view O(2−k)-leakage-resilient implementations of some
simple functions first. Later we then put them together, using that full-view leakage-resilience composes.
We first list the functions, see Fig. 3, and then discuss how to implement them, see Fig. 4.

(S1, S2)← fORT
n():

1. Input: None.
2. Sample (S1, S2)← En(0).
3. Output (S1, S2).

(B1, B2)← fREF(A1, A2):

1. Input: Encoding (A1, A2) ∈ Fm×Fm for some m.
2. Sample (B1, B2)← Em(〈A1, A2〉).
3. Output (B1, B2).

(C1, C2)← fnAMULT((A1, B1), (A2, B2)):

1. Input: Encodings (A1, A2) ∈ Fm × Fm and
(B1, B2) ∈ Fl × Fl, with l,m ≥ n.

2. Sample (C1, C2)← An(〈A1, A2〉〈B1, B2〉).
3. Output (C1, C2).

(B1, B2)← fNEG(A1, A2):

1. Input: Encoding (A1, A2), where the last element of
A1 is 1.

2. Let B1 = A1.
3. Let B2 = (0, 0, . . . , 0, 0, 1)−A2.
4. Output (B1, B2).

(B1, B2)← fMINUS(A1, A2):

1. Input: Encoding (A1, A2).
2. Let B1 = A1.
3. Let B2 = −A2.
4. Output (B1, B2).

(B1, B2)← fPLUSONE(A1, A2):

1. Input: Encoding (A1, A2).
2. Let B1 = (A1, 1).
3. Let B2 = (A2, 1).
4. Output (B1, B2).

(C1, C2)← fnANAND((A1, B1), (A2, B2)):

1. Input: Encoding (A1, A2) and (B1, B2).
2. Sample (C1, C2)← An(1− 〈A1, A2〉〈B1, B2〉).
3. Output (C1, C2).

(A1, A2)← fnRAN():

1. Input: None.
2. Sample uniformly random a ∈ F.
3. Sample (A1, A2)← En(a).
4. Output (A1, A2).

(A1, A2)← fRANBIT
n():

1. Input: None.
2. Sample uniformly random a ∈ {0, 1}.
3. Sample (A1, A2)← En(a).
4. Output (A1, A2).

(A1, A2)← f1,n
IN (a, 0):

1. Input: a ∈ F to party 1.
2. (A1, A2) := ((a, 0n−1), 1n).
3. Output (A1, A2).

(B1, B2)← f2
OUT(A1, A2):

1. Input: Encoding (A1, A2).
2. Let a = 〈A1, A2〉.
3. Output (0, a).

Fig. 3. The Functions

In our protocol we will assume that we have an oracle producing encodings of 0. We formalise this
as the fORT two-party function. The function fREF is for refreshing an encoding. The function fAMULT

is for multiplication of encoded values. It outputs an alternative encoding. The function fNEG is for
negating an encoded bit. Note that for fNEG we have 〈B1, B2〉 = 〈A1, (0, 0, . . . , 0, 0, 1)〉 − 〈A1, A2〉 =
1−〈A1, A2〉 = 1−a. In particular, if a is a bit, 0 or 1, then we negate it. The function fMINUS is changing
the sign of an encoded value, note in particular that 〈B1, B2〉 = −〈A1, A2〉. The function fPLUSONE is
for adding 1 to an encoded value, note in particular that 〈B1, B2〉 = 〈A1, A2〉+ 1. The function fANAND

is for computing the NAND of encoded values. It outputs an alternative encoding. The function fRAN is
for sampling an encoding of a random element, and the function fRANBIT is for sampling an encoding of
a random bit. The function f i,·IN is for taking input from party i. We give the function for input from party

9

πnAMULT:

1. Input: (A1, A2) and (B1, B2).
2. (D1, D2) := (A1 �B1, A2 �B2).
3. (E1, E2)← fREF(D1, D2).
4. Compute ((E′1, E

′′
1), (E′2, E

′′
2)) such that Ei = E′iE

′′
i and |E′1| = |E′2| = n− 1.

5. Party 1 sends E′′1 .
6. Party 2 computes d := 〈E′′1 , E′′2 〉.
7. (C1, C2) := ((E′1, 1), (E′2, d)).
8. Output (C1, C2).

πnANAND:

1. Input: (A1, A2) and (B1, B2).
2. (D1, D2)← fAMULT((A1, B1), (A2, B2)).
3. (C1, C2)← fNEG(D1, D2).
4. Output [c] = (C1, C2).

πnRAN:

1. Party i samples uniformly random Ai ∈ Fn.
2. Output (A1, A2).

π2
OUT:

1. Input: [a] = (A1, A2).
2. (B1, B2)← fREF(A1, A2).
3. Party 1 sends B1.
4. Party 2 computes a = 〈B1, B2〉
5. Output (0, a).

πRANBIT
n:

1. (R1, R2)← fnRAN().
2. (S1, S2) := fPLUSONE(fMINUS(R1, R2)).
3. (T1, T2)← fnAMULT((R1, S1), (R2, S2)).
4. (0, t)← f2

OUT(T1, T2).
5. Party 2 sends t.
6. If t = 0, then output (R1, R2). Otherwise, go to step

1.

πnf (we assume that f is given as a Boolean circuit consisting of NAND gates):

1. For each input bit x of party 1, sample (X1, X2)← f1,n
IN (x, 0) and store (X1, X2).

2. For each input bit x of party 2, sample (X1, X2)← f2,n
IN (0, x) and store (X1, X2).

3. For each random bit r, sample (R1, R2)← fRANBIT
n() and store (R1, R2).

4. For each NAND gate, in sequence, retrieve the stored encodings (A1, A2) and (B1, B2) of the input bits and
replace them by storing fresh encodings (A′1, A

′
2) ← fREF(A1, A2) and (B′1, B

′
2) ← fREF(B1, B2). Then sample

(C1, C2)← fnANAND((A1, B1), (A2, B2)), and store (C1, C2).
5. For each output bit of party 1, retrieve the encoding (Y1, Y2) and compute (y, 0) = f1

OUT(Y1, Y2). Then replace
(Y1, Y2) by a fresh encoding (Y ′1 , Y

′
2)← fREF(Y1, Y2).

6. For each output bit of party 2, retrieve the encoding (Y1, Y2) and compute (0, y) = f2
OUT(Y1, Y2). Then replace

(Y1, Y2) by a fresh encoding (Y ′1 , Y
′
2)← fREF(Y1, Y2).

Fig. 4. The Protocols

10

1. The corresponding function for party 2 is symmetric. The function f iOUT is for giving output to party
i. We give the function for input from party 2. The corresponding function for party 1 is symmetric.

We now describe full-view O(2−k)-leakage-resilient implementations of these functions. In [DF12]
a protocol πREF is given which implements fREF in the fORT-hybrid model, and which is easily verified
to be full-view 0-leakage-resilient.3 We can construct a full-view 0-leakage-resilient protocol πNEG for
fNEG by noting that the parties can compute the function without randomness or communication: any
deterministic protocol which does not communicate is trivially full-view 0-leakage-resilient. Similarly
for fIN, fMINUS and fPLUSONE.

The protocol πnAMULT is a full-view 2−k-leakage-resilient implementation of fnAMULT. It is a modified
version of a protocol from [DF12]. The views can be perfectly reconstructed (locally given just the
outputs of the protocol and common randomness): the reconstructor/simulator is given (Ai, Bi, Ci). If
i = 1 it samples E′′1 uniformly at random using the common randomness and parses C1 as (E′1, 1). Then
it lets E1 = E′1E

′′
1 . There are no other values to reconstruct. If i = 2 the reconstructor parses C2 as

(E′2, d). Then it samples E′′1 as above, using the common randomness, and then it samplesE′′2 uniformly
at random such that 〈E′′1 , E′′2 〉 = d. It lets E2 = E′2E

′′
2 . Note that 〈E1, E2〉 = 〈E′1, E′2〉 + 〈E′′1 , E′′2 〉 =

(〈C1, C2〉− d) + d = 〈C1, C2〉 = 〈A1, A2〉〈B1, B2〉 as it should be. It is straightforward to check that it
is a random vector with this property. However, the output distribution of the protocol is not perfectly the
same as for the function. For n > 5, there is a statistical distance of up to 2−k. Let c = 〈A1, A2〉〈B1, B1〉.
Both fnAMULT and πnAMULT produce (C1, C2) = ((C ′1, 1), (C ′2, d)) with d = c−〈C ′1, C ′2〉, so it is enough to
bound the distance between the distribution of (C ′1, C

′
2) in fnAMULT and (E′1, E

′
2) in πnAMULT. We have that

(C ′1, C
′
2) is uniform. It is easy to see that (E′1, E

′
2) is 2−k-close to uniform. Namely, assume without loss

of generality that m = l = n. Let H be the distribution of h ∈ F obtained by computing h← 〈H1, H2〉
for uniformly random H1, H2 ∈ Fn2

. If we sample h ← H and then sample (H1, H2) ← En2
(h), we

would get the uniform distribution back. So, if we sample (H1, H2) ← En2
(h) and then truncate to

(H1[1, n − 1], H2[1, n − 1]) we get a uniform distribution on Fn−1 × Fn−1. This is the distribution of
(C ′1, C

′
2). Now instead sample (E1, E2) ← En2

(c) and take (E1[1, n − 1], E2[1, n − 1]). This is the
distribution of (E′1, E

′
2). Since n − 1 ≤ λ(n2) when n > 5 we have that (H1[1, n − 1], H2[1, n − 1])

and (E1[1, n− 1], E2[1, n− 1]) are tolerable leakage on a sharing of length n2 according to Lemma 2.

The protocol πnANAND is clearly a full-view 0-leakage-resilient implementation of fnANAND. The proto-
col πnRAN is a full-view 2−k-leakage-resilient implementation of fnRAN. It is trivially possible to perfectly
reconstruct the view of the protocol given the outputs of the protocol, and it can be seen that the distri-
bution of the output is statistically 2−k-close to the output of fnRAN. All there is to verify is that the inner
product of uniformly random A1, A2 ∈ Fn is 2−k-close to uniform.

The protocol π2
OUT is a protocol for output in the fREF-hybrid model: The protocol is full-view 2−k-

leakage resilient: to reconstruct party 1 sample B1 uniformly at random from the common randomness.
To reconstruct party 2 sample B1 as above, and then sample B2 uniformly, except that 〈B1, B2〉 = a.

The protocol πRANBIT is a protocol for the (fOUT, fRAN, fAMULT)-hybrid model using rejection sam-
pling to sample a random encoding of a random bit: It has the same output distribution as fRANBIT

n: If
〈R1, R2〉 = r, then t = r(1 − r). So t = 0 iff r ∈ {0, 1}. So, if t = 0 then r is uniform on {0, 1}.
The protocol is full-view 0-leakage-resilient. Reconstruct the rejected prefix of the runs by using the
common randomness to do random runs. When the first of these runs succeed, throw it away and use the
rejected prefix. To reconstruct the successful run, start from the output Ri. Then compute Si as in the
protocol, which is possible as there is no communication involved. Then use the common randomness
to sample a random encoding (T1, T2) of 0 and use Ti. Then let t = 0.

The protocol πnf securely computes one activation of a Boolean circuit for f consisting of NAND
gates. Besides this it has input wires and output wires, which specify who is to provide the input re-
spectively learn the output. Finally, it has random wires, which are assigned a uniformly random bit. We

3 The protocol in [DF12] actually generates an encoding where the first element of the first half is invertible. However, this
is done by rejection sampling, and by simply removing the step where the protocol reruns when the element is 0, we get a
protocol for our formulation of the refreshing.

11

assume that the circuit computes f(x1, x2, r). I.e., if the bits of xi are placed on the input wires on party
i and the random wires are assigned uniformly random bits, then the output on the wires of party i will
be some yi such that (x1, x2, y1, y2) is distributed as (x1, x2, f(x1, x2)). The description of the protocol
can be extended to passing an encoded state between activations but for notational convenience we keep
the description to one activation of a one-shot function. The protocol is clearly correct. Below we will
further analyse the protocol and some consequences.

2.4 Analysis

We will consider a class of adversaries which leaks at most λ(n)/2 bits on each of the steps of πnf .
Each query might leak simultaneously from several steps, but the sum of the number of bits leaked
from queries where a given step is involved should stay below λ(n)/2 for all steps. To be more precise,
assume each step is uniquely indexed by some identifier I . We use V I

i to denote the view of party i of
the step identified by I . For an input step of party i let V I

i = (x,Xi). For an input step of party 3− i let
V I

3−i = (X3−i). For a random bit step let V I
i = (Ri). For a NAND step let V I

i = (Ai, Bi, A
′
i, B

′
i, Ci).

For an output step of party i let V I
i = (y, Yi). For an output step of party 3 − i let V I

3−i = (Y3−i).
A leakage query is of the form (i, I, L), where I is a set of identifier. The leakage is computed as
L({(I, V I

i)}I∈I). We restrict the adversary as follows: Initially, set counter cIi = 0 for each V L
i . On

each leakage query (i, I, L), update cIi := cIi + |L| for all I ∈ I. We require that maxi,I c
I
i ≤ λ(n)/2.

We call this the λ/2-class of adversaries. Clearly this class allows one bit of global leakage. Note that
this class is slightly stronger than a λ/2-tradeoff class as some of the intervals overlap: the outputs of
some steps occur as inputs to other steps, and hence we can leak on these values from several units.

Theorem 2. Let c denote the size of the circuit, counting input wires, output wires, random wires and
gates. Then πnf is a full-view O(c2−k)-leakage resilient implementation of f against the λ/2-class of
adversaries.

Proof. The intermediary values in the protocol are represented as random encodings and there are at
most O(1) fresh encodings generated by each step. The simulator will use common randomness to
simulate the half of these encodings seen by the simulated party by the corresponding half of a random
encoding on 0. Then use that the encodings are leakage-resilient plus a hybrid argument. To be able to
do the hybrid argument we need that we leak at most λ bits form each encoding. Since each encoding is
touched by up to two steps, we therefore have to divide the leakage bound by 2.

We describe our simulator S in a bit more detail. For an input step of party 1, define the encoding
to be a function (X1, X2)(x) = ((x, 0n−1), 1n) of the input bit, and define a function of xi, the input
of party i, as V I

1 (xi) = (x, Xi(x)), where x is assigned the appropriate bit from xi. Let V I
2 = (X2).

Similar for input for party 2. For each random bit step sample (R1, R2) ← En(0) and let V I
i = (Ri).

For each NAND step, in the order in which they are computed, retrieve the encodings (A1, A2) and
(B1, B2) simulated above. Then sample (A′1, A

′
2)← En(0), (B′1, B

′
2)← En(0) and (C1, C2)← An(0).

Let V I
i = (Ai, Bi, A

′
i, B

′
i, Ci). For each output step of party i, retrieve the encoding (Y1, Y2) simulated

above. Sample (Y ′1 , Y
′

2) ← En(0). Then define a function of yi, the output of party i, as V I
i (yi) =

(y, Yi, Y ′i) where y is assigned the appropriate bit from yi. Let V I
3−i = (Y3−i, Y

′
3−i). This specifies how

to simulate the entire view. The value returned to the adversary is on (i, I, L) isL({(I, V I
i (xi, yi))}I∈I).

Note that each step in the protocol generates at most three new encodings. Hence there are at most 3c
distinct encodings generated by the protocol. The only difference between the simulated setting and
the real setting is that some random encodings have been replaced by random encodings of 0. Observe
then that our protocol has the property that each encoding is touched by at most two steps: The step
that generates it as output, and the step that takes it as input. The reason is that whenever a step takes
an encoding as input, it will replace it by a fresh encoding to be used by the next step which needs an
encoding of the same value. Hence, if we identify each encoding (AJ1 , A

J
2) by an identifier J and keep

a counter dJi which keeps track of how many bits could have been leaked from ALi , defined as the cJi
for steps, then maxi,I d

I
i ≤ λ(n). Hence the leakage from each encoding is within the tolerated leakage

12

bound. So, by a hybrids argument we can replace each random encoding of 0 by a random encoding of
the correct value, increasing in each step the distance by at most 2−k by Lemma 2 and Lemma 3.

We now consider the protocol πnf [πRANBIT
n/fRANBIT

n, πnANAND/f
n
ANAND, πOUT/fOUT], where all calls

to functions have been replaced by implementations such that we get a protocol for the fORT-hybrid
model. We can extend the λ/2-class to πnf [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT]. We use

the same definition as before, except that we let the view of a step include all the intermediary values
on the sub-protocols the step is running. The following theorem follows exactly as the composability of
full-view simulation, as each replaced function is embedded in one leakage unit.

Theorem 3. Let c denote the size of the circuit, counting input wires, output wires, random wires and
gates. Then πnf [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT] is a full-view O(c2−k)-leakage re-

silient implementation of f against the derived λ/2-class of adversaries in the fORT-hybrid model.

Similarly we can consider replacing fORT by a full-view leakage-resilient implementation πORT. This
is mainly for later proving certain such implementations impossible.

Theorem 4. If there exist a full-view negl-leakage resilient implementation πORT of fORT secure against
an adversary leaking at most λ(n)/2 bits on each share, then πnf [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT,

πORT/fORT] is a full-view negl-leakage-resilient implementation of f against the derived λ/2-class of
adversaries.

2.5 Negative Results

It follows directly from the above theorem that there exists no full-view negl-leakage resilient imple-
mentation πORT of fORT, as we would otherwise have for all f a protocol π securely realizing f in the
sense of [Can00] against a computationally unbounded, semi-honest, static adversary corrupting any one
party in the model with secure communication. It is well known that we cannot have such a thing.

We now prove that also unconditionally secure circuit compilation is impossible in the plain model
with only secure communication. By circuit compilation we mean that we compute a function with no
secret inputs or outputs, so the output is known to all parties, but there might be a hidden secret state, like
a key. To simplify matters, consider a function gPRG which ignores the inputs from the parties and the
state, it is only a function of the first k bits of its own random tape, r say. Furthermore, it gives no secret
outputs, we can formally set y1 = y2 = ⊥. As public output it gives y = f(r) for a pseudo-random
generator f . We will show that it is impossible to compute such a function in the plain model, at least
with an implementation which is perfectly correct.

When we prove impossibility of circuit compilation, it seems we have to give up on getting an
unconditional result. Instead, we will show impossibility under reasonable computational assumptions,
namely those used in [Kil92]. We will assume there exists a collision resistant hash function and a
succinct proof of knowledge with soundness 1/2, where the communication is Õ(k), see e.g. [Kil92].
It might seem odd that we need computational assumptions to prove that an unconditionally secure
protocol is impossible. However, for an intuition why this might be needed, consider the case where
P=NP. In that case it might be possible to compute all functions with no secret inputs and outputs in a
leakage resilient manner,4

Theorem 5. Under the computational assumptions in [Kil92], there exists no perfectly correct and
negl-leakage-resilient implementation of gPRG against an adversary class allowing global leakage of
Õ(k) bits, in the plain model with only secure communication.

4 Consider, e.g., a function like gPRG but for an easy to invert f . If one can compute r from s = f(r) efficiently, then
one might just implement this function by letting party 1 sample r uniformly at random and send s = f(r) to party 2 –
technically this is leakage resilient. If, on the other hand, f is a one-way function, then sampling s in a leakage resilient
manner appears much harder.

13

Proof. We can assume that the length of the output of the collision resistant hash function H plus the
communication of the succinct proof of knowledge is within the leakage-bound by simply setting n
high enough. We will prove that πng [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT, πORT/fORT] has

the property that there exist an expected poly-time extractor X which given just the output s = f(r)
will produce, except with negligible probability, randomness r1 and r2 for party 1 respectively party 2,
such that running πng [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT, πORT/fORT] with this random-

ness will result in a run of the protocol which has output s. Since our protocol is perfectly correct, it
follows that if s is an output of πng [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT, πORT/fORT] then

it is also an output of f . Hence X is an almost perfect distinguisher of outputs from f from random
strings, which breaks the pseudo-randomness.

We conclude by sketching how X works. It starts with a leakage adversary, and it works as fol-
lows: Given leakage access to πng [πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT, πORT/fORT] it will

ask each party to leak a hash h = H(M) of the transcript M of all messages exchanged with the other
party. These hashes will of course be the same, as we assume the parties have noiseless communication
and thus the same transcripts. Then it will ask party i to leak a proof of knowledge of a string ri and a
communication transcript M ′ with the properties that H(M ′) = h and that if party i runs the protocol
with random string ri and the incoming message in M ′ it will produce the outgoing messages in M ′.
The proof might be interactive, but this is not a problem as it can be simulated by one leakage query per
round in the protocol. The communication of the proof is within the leakage bound, so by assumption
we can simulate the view of X given just s. Call the simulator P . We can assume we have P . By as-
sumption the simulation cannot be distinguished from the real execution, so in particular the proof will
be accepting except with negligible probability, which is bounded far away from the knowledge error of
1/2. So, from black-box access to P (s) we can extract the proofs in poly-time. So, from the soundness
of the proofs we can extract r1,M

′
1 from party 1 and r2,M

′
2 from party 2. By the soundness of the proof

and collision resistance, we have that H(M ′1) = h = H(M ′2) except with negligible probability. By
soundness we have except with negligible probability that r1 and r2 are consistent with M ′1 respectively
M ′2. So, we can let the output of X be (r1, r2).

Note that the same proof technique can be applied to show impossibility of protocols satisfying the
standard only-computation-leaks definition, i.e., only independent leakage from each unit is allowed
(and the protocol is not necessarily derived from a 2-party protocol).

More specifically, we assume that: 1) Each unit which exchanges data with c other units should allow
adaptive leakage of O(c)Õ(k) bits. Furthermore, 2) the protocol should be perfectly correct. Finally, 3)
the protocol should allow to compute a PRG on a secret state and give the expanded string as public
output and 4) the leakage should be efficiently simulatable given just this output.

In that case we build an adversary that leaks from each unit a hash of the communication with each
of the units with which it communicates, plus a succinct proof of knowledge of the hashed transcripts
and a proof of knowledge of a random tape consistent with the hashed transcripts. Since these leaked
values can be simulated given just the public inputs and outputs, we can turn the efficient simulator into
an efficient and successful prover in the argument system. Then we can extract all the proofs, and we
will get a consistent run of the protocol as in the above argument, which in particular will allow to verify
that the output is a pseudo-randomly generated string. So we have

Corollary 1. There exists no protocol for computing gPRG satisfying conditions 1–4 above.

The protocol from [GR12] does allow leakage of Õ(k) bits from each unit but is not of the specified
form because it assumes that the ciphertext bank is already given. However, the above corollary rules
out implementing the ciphertext bank perfectly correctly from scratch in a way suitable for plugging into
[GR12], as this would result in a protocol contradicting the corollary5.

5 Note that it does not matter how many units communicate in the construction of [GR12]: we could choose the security
parameter for gPRG and the hash function so small (but polynomially related to k) such that even if all units communicate,
we can still leak enough for the proof to go through.

14

2.6 On Full-View Simulatability as a General Notion

We then return to the issue of full-view simulatability as ”the right” notion of simulation-based leakage-
resilience. Note that under the computational assumptions used by [Kil92], if there exists a negl-leakage
resilient implementation π of f secure against an adversary class allowing λ bits of leakage, then in most
cases there also exists a full-view negl-leakage resilient implementation π of f secure against λ/Õ(k)
bits of leakage. For each leakage query (i, L) submit a leakage query (i, L′) where L′(viewr

i) first leaks
h = H(viewr

i) and a proof of knowledge of viewr
i such that h = H(viewr

i). Then it leaks v = L(viewr
i)

plus a proof of knowledge of viewr
i such that v = L(viewr

i) and h = H(viewr
i). Given a simulator S for

this L′ we can construct a full-view constructor V which given just the ideal state will use S to simulate
h = H(viewr

i) and the proof of knowledge of viewr
i . Since this has to be indistinguishable from the

real values, the proof accepts with probability essentially 1. Since the simulation is efficient given the
ideal state, the view constructor can efficiently run the simulator. So, it can extract the simulator and
compute viewr

i such that h = H(viewr
i). Then it outputs viewr

i . Then the full-view simulation game
gives v = L(viewr

i) to the adversary. This value v will be indistinguishable from the value v′ that the
simulator S would have returned, as S can prove knowledge of viewr

i such that v′ = L(viewr
i) and

h = H(viewr
i), and H is collision resistant. Since S is a simulator demonstrating security the value v′

returned by S would have fooled the adversary, and hence will also the value v = L(viewr
i) given to the

adversary by the full view simulator.
There are many details to consider to make this argument work and many ways around it. E.g., the

interactive proofs require that each leakage query turns into many leakage queries, so an unbounded
number of adaptive leakage queries should be allowed. Also, h = H(viewr

i) is a global leakage query,
which might not be allowed at all, and might make the leakage bound deteriorate quickly. However, one
can counter some of these objections by using, e.g., non-interactive proofs and leaking only hashs of the
part of the view accessed by L plus hashs showing it consistent with previously accessed parts. Under
all circumstances, the moral argument here is that allowing non-trivial leakage means that you might as
well consider full-view leakage simulation, as it is probably what you can prove anyway, and it will give
you composition for free.

3 Leakage Resilient Computation From an Imperfect Source of Orthogonal Vectors

In this section we consider again a Boolean circuit C that computes a two-party function (y1, y2) =
fC(x1, x2). We first show how to compile C into a new circuit C ′ that computes the same function but
is more resilient to errors and specific forms of information leakage. We then show how to use a partial
corrupted source of orthogonal vectors together with the previous construction applied to C ′ to get full
leakage resilience against an adversary who may both leak information and corrupt some of the pairs
received from fORT.

Securing against Faults and Some Leakage We now compile C into a circuit C ′. The compilation
takes the security parameter k as input and the size of C ′ will be polynomial in the size of C and in k.

It is well known that there exists a perfectly secure MPC protocol, computing any function for 3k+1
players tolerating k actively corrupted players. We might take the protocol from [BOGW88], for instance
which is based on Shamir secret sharing. More precisely, we will use a protocol σC that takes as input
Shamir shares of x1, x2 and computes securely Shamir-shares of the output (y1, y2) = C(x1, x2) for
all players, that is, each player gets as input a share of each of the bits in x1, x2 and will output a share
of each of the bits in y1 and y2. The total computational complexity of σC is polynomial in k and the
size of C. We let C ′ be the circuit we get by specifying the internal computation of each player as a
circuit, and putting wires between players at each point where a message is to be sent. Since in σC each
player outputs a share of each bit in the result y1, y2, C ′ will output all such shares. We specify all wires
carrying a share of y1 as output wires for player 1 and wires carrying a share of y2 as output for player
2.

15

Let N be the number of players in σC , and let C ′i denote that part of C ′ that corresponds to the i’th
player in σC .

Note that, by security of σC , the outputs of corrupt players reveal nothing beyond C(x1, x2). In fact,
much more is true: even if the parts of C ′ corresponding to at most k players malfunction and/or leak
information, we would still get the correct result and nothing beyond C(x, y) would be revealed.

Getting Full Leakage Resilience We now show how we can compile C ′ into a fully leakage resilient
computation, however, we now consider a more adversarial setting than in the previous section. Namely,
we still assume access to fORT, but we allow the adversary to initially point out a set D of the calls to
fORT. For these calls, he will be allowed to choose the output vectors in any way he wants. Assuming
there are m calls in total, the set D can be of size at most εm for a constant 0 ≤ ε < 1. In addition, he
may leak η bits in each leakage query. Such an adversary is called a (η, ε)-adversary.

Our protocol works as follows:

Leakage Resilient Protocol for C, πfC
1. Invoke fORT m = 2|C ′|k times, where |C ′| is the size of C ′. The output vectors are stored by A and
B.

2. A chooses a random test subset of the pairs of size m/2 and sends it to B. The parties exchange
the vectors in the test set and check that they are orthogonal. If a non-orthogonal pair is found, the
protocol aborts. Otherwise the pairs in the test set are discarded.

3. A chooses a random permutation ξ on m/2 = k|C ′| elements and sends it to B. We think of ξ as
defining a random division of the remaining pairs into |C| groups of k pairs each. Starting indices
from 0, group j consists of pairs number ξ(jk), ξ(jk + 1), ..., ξ(jk + k − 1).

4. We now start the actual computation: party i secret-shares the bits in his input xi and uses the shares
as input in the protocol we run in the following step.

5. Run the protocol πnfC′ [πRANBIT
n/fRANBIT

n, πnANAND/f
n
ANAND, πOUT/fOUT], where fC′ is the function

computed by C ′, with the following modification: Recall that the protocol runs in the fORT-hybrid
model. When the protocol makes call number j to do a refresh operations (which happens once for
every gate) we will instead do k refresh operations sequentially using each pair in group j as input.

6. For each bit in yi, party i receives 3k+ 1 shares from the protocol in the previous step. He considers
these shares as a Reed-Solomon codeword with at most k errors, decodes and outputs the result.

Theorem 6. πfC is a negl(k)-leakage resilient implementation of the function computed by C, against
the (λ/4, ε)-class of adversaries, where negl() is a negligible function.

Proof. Before we start describing the simulator, we note a few technical facts: First, since we test a
random subset of size m/2 of the m pairs for orthogonality, if there are more than k non-orthogonal
pairs, we will continue past the test stage with probability at most 2−k. We may therefore assume in the
following that at most k non-orthogonal pairs will be used for the actual computation.

Next, consider the following subset of gates in C ′:

Cbad = {C ′i| the group of pairs used for a gate in C ′i contains a non-orthogonal pair}.

We can think of Cbad as sub-circuit of C ′, and we will let Cgood be the rest of C ′. Note that Cbad contains
at most k parts of C ′, and we may think of the corresponding k players in σC as having been actively
corrupted by an adversary.

Finally, consider the random groups we form in step 3. A group is said to be bad if it consists only
of pairs coming from corrupted calls to fORT. Clearly, a single group is bad with probability at most εk,
so by the union bound the probability that some group is bad is negligible, namely at most |C ′|εk. So we
will assume below that all groups are good.

A simulator S for πfC is now built as follows: it will first execute the test phase, where it emulates
the actions of A and B according to the protocol. For corrupted called to fORT, it lets the adversary
specify the vectors to be used, for the other calls, it generates random orthogonal pairs of its own.

16

If the protocol aborts, there is nothing further to do. Otherwise, S will start running the simulator
SσC for the protocol σC , telling it that the players corresponding to Cbad are corrupted. It chooses a
random set of 2k Shamir shares for each bit in x1, x2 to represent the inputs of corrupt players and gives
these as input for Cbad to the adversary and to SσC . We refer to these later as the fake shares for the input
stage. S also creates a set of 2k random shares for each bit in the output y1, y2 to represent the output of
corrupt players, these are given to SσC .

S will now execute itself the entire computation done for the gates in Cbad, starting from leakage
resilient encodings of the fake shares for the input stage. When a wire going into Cgood gets a leakage
resilient encoding assigned to it, S will decode it and give the result to SσC (note that this is part of a
message from a corrupt to an honest player in σC). When S needs an encoding for a wire coming out of
Cgood, S lets SσC produce the corresponding message and makes a random leakage resilient encoding
of it. This way, S will a have full view for both parties of the computation for gates in Cbad and will use
this view to answer leakage queries addressing this part of the computation.

In parallel, S also runs a simulator S′ for πnfCgood
[πRANBIT

n/fRANBIT
n, πnANAND/f

n
ANAND, πOUT/fOUT],

in other words, S′ will simulate the leakage coming from the computation done by Cgood.
To see that such a simulator S′ exists, note that the groups of pairs we use for each gate in Cgood

contain only orthogonal pairs and each group has at least one vector coming from an uncorrupted call to
fORT. Now, Theorem 3 can still be shown when such groups of pairs are used for refreshing encodings,
instead of a single pair: the pairs that are known to the adversary do not hurt the correctness since they
are orthogonal, but as soon as one good pair has been used, the state is refreshed as usual. Note also that
we need the variant of Theorem 3 mentioned earlier where the protocol is invoked several times, with
encoded state passed between invocations, this is because Cgood may exchange data with Cbad several
times during the computation. Finally, note that we touch each pair twice, namely when we get it from
fORT, and when it is used for a refresh, but since we limit the leakage to λ/4 bits per query, the total
leakage from each pair is not more than we can tolerate.

Each time the adversary issue a leakage query to a part of the computation inside Cgood, we let S′

handle those queries. If a query asks for leakage from parts both in Cbad and in Cgood, S will hardwire
the complete view of the relevant parts of Cbad into a leakage function of its own and submit this to S′.
This function is designed to compute the adversary’s leakage function on the view from Cbad as well as
the relevant part of the view from Cgood.

The only leakage queries we have to take special care of are those that leak from the input stage
or the output stage. For a leakage function leaking from the input stage of party i, S hardwires the
fake shares for the input stage into its own leakage function. Once this function is submitted by S and
has access to the input xi, it interpolates the set of of Shamir shares consistent with xi and the fake
shares. This gives a perfect simulation of party i’s view of the input stage and the adversary’s leakage
function is evaluated on this view. For a leakage function leaking from the outputs stage of party i, note
that SσC has simulated some messages from honest players to corrupt in the output stage of σC . These
messages determine the k shares of (each bit in) yi that corrupt players receive. S hardwires these shares
into its own leakage function. Once this function is submitted by S and has access to the output yi, it
interpolates the set of of Shamir shares consistent with yi and the shares of corrupt players. This gives a
perfect simulation of party i’s view of the output stage and the adversary’s leakage function is evaluated
on this view.

We can argue that S is good simulator as follows: Consider a real execution of the protocol, and note
that only uncorrupted calls to fORT are made when computing Cgood. This implies that 1) the leakage
resilient encodings on wires coming out of Cgood reveal nothing beyond the actual values on these wires
(since the internal refreshing of encodings in Cgood will work) and 2) the computation done in Cgood
correctly emulates the honest player’s behaviour in σC . Therefore, leakage from Cbad effectively gives
the adversary access to the interface between honest and corrupt players. This interface is simulated
perfectly by SσC by security of σC (and since SσC is given input and output for corrupt players with
the correct distribution). Hence the view held by S of the computation in Cbad is a perfect simulation of
the real view, and so its responses to leakage queries from this part have the correct distribution. Finally,

17

again because only good groups of pairs of vectors are used when computingCgood, S′ simulates leakage
from Cgood with a statistically close distribution.

4 A Quantum Solution for the Orthogonal Vector Problem

As a warm-up for our positive results, we argue that a solution to the orthogonal vector problem exists
using quantum communication: First note that the quantum key distribution protocol by Ekert [Eke91]
with security proof by Lo and Chau [LC99] works by first generating a set of essentially perfect EPR
pairs that are shared between A and B. In their protocol A and B would now simply measure their
particles to generate the shared key. However, given a set of EPR pairs, one may also convert this to a
different bipartite state. In particular, in [NV01], Nielsen and Vidal show that if a state |φ〉AB is majorized
by another state |ψ〉AB, then |φ〉AB can be converted into |ψ〉AB using only local quantum operations and
classical communication. The details of this can be found in [NV01] and are not important here, except
that it is easy to see that n copies of the EPR state is majorized by any other bipartite state of the same
size. Therefore, we can get a solution to the orthogonal vector problem by converting the EPR pairs to
the state

|ψ〉AB :=
1√
K

∑
u,v∈Fn

|u〉A � |v〉B
(
where K = (|F|n − 1)|F|n−1 + |F|n

)
, (1)

where A and B are Hilbert spaces of dimension |F|n. This state contains a superposition of all pairs of
orthogonal vectors, so measuring on both sides produces the result we want. Since the QKD part ensures
that the adversary is (essentially) unentangled with A and B and this cannot change when only classical
communication is done, the adversary has no information on the measurement results, beyond the fact
that a pair of orthogonal vectors is produced.

5 A simple quantum protocol

While the protocol from the previous section will work, it would require A and B to perform rather
complex quantum operations: already the entanglement-based quantum key distribution part (to generate
the EPR pairs) requires full-scale quantum error correction and storage. It would therefore be desirable
to come up with a protocol that limits the amount of quantum processing required. Ideally, one would
want a prepare-and-measure protocol, in the spirit of quantum key distribution, which would only require
A and B to prepare individual qubits, send them to the other side, and then measure the received qubits
immediately upon reception. While we will not quite achieve this level of simplicity, we can get much
closer to this ideal than the protocol from the last section.

5.1 Basic protocol

Like the EPR-based protocol outlined above, this protocol works by trying to get A and B to share mul-
tiple copies of the state |ψ〉AB (see Equation 1). In this protocol, however, instead of starting with EPR
pairs,A andB receive their respective shares of this state directly from an untrusted source. AfterA and
B get their possibly corrupted copies of |ψ〉, they sample some of them using a checking procedure that
will ensure that the error rate is sufficiently low. Once this is done,A andB measure the remaining states
in the computational basis and use the measurement results as their orthogonal vectors. The checking
procedure ensures that the vast majority of the vectors they have are indeed orthogonal and secret.

The protocol for distributing and checking copies of |ψ〉 is described in Fig. 5.
In the protocol, Test 1 ensures that the input is supported on a subspace which contains very few

non-orthogonal pairs, and Test 2 ensures that the state contains coherent superpositions of at least half
of all possible pairs of vectors. Since only about a fraction 1/|F| of the pairs are orthogonal, the only
states that can pass both tests with non-negligible probability are those that contain the state |ψ〉 in most
positions. In the next section, we analyze the sampling procedure being used here, and then apply the
results to our specific protocol in Section 5.3.

18

Generate-Pairs:
1. A and B receive a state ρA�m+2`B�m+2` from an untrusted adversary.
2. A and B choose two disjoint random subsets T1, T2 ⊆ {1, . . . ,m+ 2`}, each of size `, to test.
3. (Test 1) For all states in T1, A and B measure them in the computation basis and reject if any of the results are not

orthogonal vectors.
4. (Test 2) For all states in T2, A and B measure them in the Hadamard basis, and accept only if at least `K

|F|2n (1− δ)
measurement results are |0tn〉|0tn〉.

5. If both tests succeed, then output the remaining m states.

Fig. 5. A simpler quantum protocol.

5.2 A quantum sampling theorem

To analyze the protocol, we will first rephrase it in more general language as a type of sampling pro-
cedure that may be of independent interest. We describe the procedure in Fig.6. Like our protocol, this
procedure takes an arbitrary state as input, and the goal is to accept if it contains a large fraction of some
pure state |ϕ〉. To ensure this, we again perform two tests: the first test ensures that the vast majority of
the positions are in the support of some projector M , and the second test ensures that if we measure the
POVM {|θ〉〈θ|, id − |θ〉〈θ|} for some pure state |θ〉 such that M |θ〉 =

√
γ|ϕ〉, then roughly a fraction γ

of the sample comes out as |θ〉. Our goal will be to show that if the input has a non-negligible probability
of passing both tests, then the output will with high probability contain at least m(1 − ε) copies of the
state |ϕ〉, for an appropriate choice of ε.

Sampling operation S:
1. Input: An unknown state ρ on H�m+2`.
2. Choose two disjoint random subsets T1, T2 ⊆ {1, . . . ,m+ 2`}, each of size `, to test.
3. (Test 1) For all states in T1, measure them with the POVM {M, id −M}, accept only if the result is M for all of

them.
4. (Test 2) For all states in T2, measure them using POVM {|θ〉〈θ|, id − |θ〉〈θ|}, and accept only if at least γ` (1− δ)

measurement results are |θ〉〈θ|, where γ is such that M |θ〉 =
√
γ|ϕ〉.

5. If both tests succeed, then output the remaining m states.

Fig. 6. The sampling operation analyzed in Section 5.2

To formalize this statement, we will view the whole sampling procedure as a completely positive,
trace-preserving map S from the Hilbert space H�m+2` to H�m⊕span{|fail〉}, the |fail〉 flag being used
to denote the case when the sampling procedure aborts due to a failed test. We also define the projector
Πε,good, which projects onto the subspace of H�m spanned by vectors containing at least m(1 − ε)
copies of |ϕ〉, along with |fail〉:

Πε,good := |fail〉〈fail|+
∑

x∈{0,1}m,|x|6εm

Πx1 � · · ·�Πxm ,

where Π0 = |ϕ〉〈ϕ|, Π1 = id −Π0, and |x| denotes the Hamming weight of x. We will now prove the
following:

Theorem 7. Let Sideal be the “ideal” version of S, defined as Sideal(ρ) := Πε,goodS(ρ)Πε,good, with
ε = 4δ + 8γ−1

√
δ. Then, we have that

‖S − Sideal‖� 6 exp(−Ω(min(`,m))). (2)

Furthermore, if we run on the protocol on the honest input |ϕ〉�m+2`, then the probability of outputting
|fail〉 is at most ` exp(−`γ2δ2).

19

Note that the diamond norm ‖ · ‖� can be interpreted as follows: if we are given a box that implements
either E or F and we must distinguish which of the two using the box only once, the probability that
we will guess correctly using the best strategy is given by 1

2 + 1
4‖E − F‖�. Hence, the above theorem

means that one cannot distinguish the real sampling protocol from the “ideal” protocol that never outputs
something outside of the support of Πε,good except with negligible probability. The proof strategy will
be as follows: we will first show that it is sufficient to consider inputs of the form ρH�m+2` = σ�m+2`

H
using a variant of the “postselection” technique from [CKR09], and we then show that the only σ’s that
survive both tests have a high fidelity with |ϕ〉.

Proof. First, we can rephrase Equation (2) to the condition that

‖(S � idR)(ρ)− (Sideal � idR)(ρ)‖1 6 exp(−Ω(min(`,m)))

holds for any density operator ρ on H�m+2` � R where R is some auxiliary space. Now, using the fact
that Sideal(ρ) = Πε,goodS(ρ)Πε,good together with the gentle measurement lemma [Win99, Lemma 9],
we get that

max
ρ
‖(S � id)(ρ)−Πε,good(S � id)(ρ)Πε,good‖1 6 max

ρ

√
8 tr

[
(Π⊥ε,good � idR)(S � idR)(ρ)

]
6 max

ρ

√
8 tr

[
Π⊥ε,goodS(ρ)

]
,

where Π⊥ε,good := id−Πε,good. At this point, we will proceed in two steps: the first step will be to show
that it is sufficient to prove that the sampling procedure works for independent, identically-distributed
(iid) states, as in [CKR09]. The second step will then be to show that it does indeed work for these states;
this will follow almost directly from results about typical sequences.

Loosely speaking, the postselection technique from [CKR09] enables us to get bounds involving
permutation-invariant superoperators. The first difficulty we encounter if we try to apply it directly here
is that the bound is exponential in the dimension of the Hilbert space H, which may be very large (in
fact, in the case of our protocol, it is |F|2n). To get around this problem, we will show that there exists
an equivalent procedure which acts on a much smaller space. First, let us define the following:∣∣∣ϕ⊥〉 :=

(id−M)|θ〉
‖(id−M)|θ〉‖

=
(id−M)|θ〉√

1− γ
Q0 := |ϕ〉〈ϕ|
Q1 := M − |ϕ〉〈ϕ|

Q2 :=
∣∣∣ϕ⊥〉〈ϕ⊥∣∣∣

Q3 := id−M −
∣∣∣ϕ⊥〉〈ϕ⊥∣∣∣

Furthermore, let us define the space K = span{|0〉, |1〉, |2〉, |3〉}, and the superoperatorM which acts
as follows:

M(ρ) :=
(
|0〉〈ϕ|+ |2〉

〈
ϕ⊥
∣∣∣) ρ(|ϕ〉〈0|+ ∣∣∣ϕ⊥〉〈2|)+ |1〉〈1| tr[ρQ1] + |3〉〈3| tr[ρQ3].

In other words, M measures ρ using the POVM {Q0 + Q2, Q1, Q3}; if the first result comes out,
then we rotate |ϕ〉 and |ϕ⊥〉 into |0〉 and |2〉 respectively. If Q1 or Q3 come out, we output |1〉 or
|3〉 as the case may be. Note that this operation effectively commutes with the sampling operation: if
we first apply M�m+2`, there is a CPTP map E on K�m+2` that will produce the same results as S.
Indeed, whenever S measures a position using the POVM {M, id −M} (corresponding to Test 1), E
will measure the corresponding position using {|0〉〈0|+ |1〉〈1|, |2〉〈2|+ |3〉〈3|}, and whenever S measures
using {|θ〉〈θ|, id − |θ〉〈θ|} (corresponding to Test 2), E will measure using {|0̃〉〈0̃|, id − |0̃〉〈0̃|} where

20

|0̃〉 =
√
γ|0〉 +

√
1− γ|2〉; this follows from the fact that |θ〉 =

√
γ|ϕ〉 +

√
1− γ|ϕ⊥〉. Furthermore,

there exists a projector Π̃⊥ε,good that corresponds to Π⊥ε,good. We can then continue the above as:

max
ρ

√
8 tr

[
Π⊥ε,goodS(ρ)

]
= max

ρ∈D(H�m+2`)

√
8 tr

[
Π̃⊥ε,goodE(M(ρ))

]
6 max

ρ∈D(K�m+2`)

√
8 tr

[
Π̃⊥ε,goodE(ρ)

]
.

Now, let us define τK�m+2` as in Lemma 4. This state has the property that, for any permutation-invariant
density operator ω, ω 6 gτ where g 6 (m+ 2`+ 1)15. We now use the fact that both the sampling pro-
cedure and Πε,good are permutation invariant: for any permutation π ∈ Sm+2` of all m+ 2` subsystems,
we have that tr[Π̃⊥ε,goodE(πρπ†)] = tr[Π̃⊥ε,goodE(ρ)]. We then continue as follows:

max
ρ∈D(Km+2`)

√
8 tr

[
Π̃⊥ε,goodE(ρ)

]
= max

ρ

√
8 tr

[
Π̃⊥ε,goodE

(
Eπ∈Sm+2`

πρπ†
)]
.

In the above, Eπ∈Sm+2`
denotes the expected value when π is chosen uniformly over the symmetric

group on m + 2` elements. Clearly Eππρπ† is permutation invariant, and therefore Eππρπ† 6 gτ .
Hence:

max
ρ

√
8 tr

[
Π̃⊥ε,goodE (Eππρπ†)

]
6

√
8g tr

[
Π̃⊥ε,goodE (τ)

]
.

Here, we use the fact that τ can be expressed as τ =
∫
σ�m+2`µ(σ) for some measure µ over normalized

density operators on K (see Lemma 4) to bound this as follows:√
8g tr

[
Π̃⊥ε,goodE (τ)

]
6 max

σ∈D(K)

√
8g tr

[
Π̃⊥ε,goodE (σ�m+2`)

]
= max

σ∈D(H)

√
8g tr

[
Π⊥ε,goodS (σ�m+2`)

]
.

We have now reduced the problem to showing that the sampling procedure works on independent,
identically-distributed inputs.

Now, to finish the proof, note that the trace term above corresponds to the probability that the sam-
pling procedure does not output |fail〉, and yet the output falls outside of the support of Πε,good when
applied to an iid state σ�m+2`. At this point, we consider two cases. First, assume 〈ϕ|σ|ϕ〉 > 1 − ε

2 .

Then, by Lemma 6, tr
[
Π⊥ε,goodσ

�m
]
6 m exp(−mε2/2), so the bound holds regardless of whether the

tests are passed or not. Now, suppose 〈ϕ|σ|ϕ〉 < 1− ε
2 . Then, we show that, with high probability, either

Test 1 or Test 2 will fail. Using the fact that ε = 4δ+ 2γ−1
√

16δ, we get that by Lemma 5, we have that
either tr[Mσ] < 1− 2δ or 〈θ|σ|θ〉 < γ(1− 2δ). Now, if tr[Mσ] < 1− 2δ, then the probability that Test
1 will pass is at most (1− 2δ)`, and if 〈θ|σ|θ〉 < γ(1− 2δ), then the probability that Test 2 will pass is
at most ` exp{−2`γ2δ2} using Lemma 6. This concludes the proof of the first part of the statement.

Finally, to prove the last part of the statement, we need to show that the protocol succeeds with high
probability on the honest input |ϕ〉�m+2`. In this case, it is clear that the output is correct whenever both
tests are passed, and furthermore that Test 1 always succeeds. The only remaining possibility is that Test
2 fails, and according to Lemma 6 once again, we see that the probability of passing Test 2 is at least
1− ` exp(−2`γ2δ2). �

Lemma 4. Let ρH�k be a normalized density operator on some Hilbert space H�k invariant under
permutations of the k subsystems. Then, ρ 6 gτ , for some τ =

∫
σ�kµ(σ) where µ is some probability

measure over normalized density operators on H, and g =
(
k+d2−1

k

)
6 (k + 1)d

2−1, with d = dimH.

21

Proof. Since ρ is permutation-invariant, according to [Ren05, CKMR07] we can find a purification
|θ〉H�kK�k , with K ∼= H and such that |θ〉 is in the symmetric subspace Symk(H � K) of H�k � K�k.
Now, let P be the projector onto Symk(H�K) and τH�kK�k = 1

gP (note that dim Symk(H�K) = g).
Then, it is clear that

|θ〉〈θ|H�kK�k 6 P = gτH�kK�k . (3)

Now, it is an elementary fact about the symmetric subspace that τ =
∫
U U

�k|ψ〉〈ψ|�kU †�k for any
|ψ〉 ∈ H � K, where the integral is taken over the Haar measure on the unitary group on H � K. Then,
tracing out K�k on both sides of (3) yields the lemma. �

Lemma 5. Let σH be a normalized density operator on H. Then, if tr[Mσ] > 1− ε1 and tr[|θ〉〈θ|σ] >
γ(1− ε2), then 〈ϕ|σ|ϕ〉 > 1− ε2 − γ−1

√
8ε1.

Proof. First, note that by the gentle measurement lemma,

‖MσM − σ‖1 6
√

8ε1.

We can then calculate the fidelity between |ϕ〉 and σ:

〈ϕ|σ|ϕ〉 = tr[|ϕ〉〈ϕ|σ]

= γ−1 tr[M |θ〉〈θ|Mσ]

= γ−1 (tr[|θ〉〈θ|σ]− tr[|θ〉〈θ|(σ −MσM))

> γ−1 (tr[|θ〉〈θ|σ]− ‖σ −MσM‖1)

> γ−1
(
γ(1− ε2)−

√
8ε1
)

= 1− ε2 − γ−1
√

8ε1.

�

Lemma 6. Let ρ be a density matrix on a Hilbert space K, let {Q0, Q1} be a two-outcome POVM
on K such that tr[Q1ρ] = q, and let B(p) be the set of n-bit strings with at least pn 1’s. Now, let
Q =

∑
x∈B(p)Qx1 � . . .�Qxn . Then, if p > q, we have that

tr[Qρ�n] 6 n exp(−nD(p‖q)) 6 n exp(−2n(p− q)2),

and if p 6 q,

tr[Qρ�n] > 1− n exp(−nD(p‖q)) > 1− n exp(−2n(p− q)2).

where D(p‖q) := p log p
q + (1− p) log 1−p

1−q is the relative entropy between two binary distributions with
parameters p and q.

Proof. This is a consequence of well-known facts regarding classical typical sequences. Indeed, tr[Qρ�n]
can be rewritten as ∑

x∈Bε(λ)

q|x|(1− q)n−|x|

which can be upper-bounded by n exp(−nD(p‖q)) as in [Csi98, Equation (II.5)]. We then use the fact
that D(p‖q) > 2(p− q)2 to get the simpler bound. To get the lower bound in the second case, we apply
the same inequality, but with id−Q instead. �

22

5.3 Security of the protocol

We will apply Theorem 7 to prove the security of the protocol given in Fig.5. Before we proceed, we
will need to introduce some notation. In the following, let

P :=
∑

u·v=0

|u〉|v〉〈u|〈v|

be the projector onto the set of all orthogonal vectors, and let

|0H〉AB := H�2n|0n〉A|0
n〉B

be the coherent superposition of all possible pairs. Now, we can easily see that P and |0H〉 play the
roles of M and |θ〉 respectively in Theorem 7. All that is left to check is that P |0H〉 =

√
γ|ψ〉 for an

appropriate choice of γ. We do this in the following lemma:

Lemma 7. We have that P |0H〉 =
√
c|ψ〉, where c = 1

|F| + 1
|F|n

(
1− 1

|F|

)
.

Proof. Recall that K = (|F|n − 1)|F|n−1 + |F|n is the number of pairs of orthogonal vectors. We have
that

P |0H〉 =

(∑
u·v=0

|u〉|v〉〈u|〈v|

)(
1

|F|n
∑
w,x

|w〉|x〉

)

=
1

|F|n
∑

w·x=0

|w〉|x〉

=

√
K

|F|2n

(∑
w·x=0

1√
K
|w〉|x〉

)
=
√
c|ψ〉,

where we have used the fact that c = K
|F|2n . �

Now, we can directly apply Theorem 7 to the protocol at hand. The condition involving the diamond
norm directly implies security once it is embedded in a larger protocol: it shows that no procedure
can distinguish between the actual protocol and an ideal protocol that cannot output a state outside the
support of Πε,good. Since we could consider the larger protocol in which the sampling procedure is
embedded as an attempt to distinguish the two, we can simply assume that the larger protocol is actually
calling the ideal sampling procedure rather than the real one.

6 Leakage Resilience against a Quantum Adversary.

6.1 Security for Bounded-Time Quantum Memory.

It might seem natural to expect that we could immediately get leakage resilience for a quantum adversary
by using the protocol from the previous section as an implementation of a source of orthogonal pairs, and
then run our classical protocol πfC from Theorem 6, which was designed to tolerate a constant fraction
of corrupted pairs. Indeed, the parameters of the quantum protocol can be chosen such that the state
created is very close to an ideal state where at most a constant fraction of the pairs come from measuring
an incorrect state.

However, the problem is that the adversary may be in superposition of having corrupted several
different sets of pairs, and therefore we cannot assume that one single set of pairs is bad, as we did in
the proof of Theorem 66.

6 Of course, each pair we generate is either orthogonal or not, but we cannot point out a single set of pairs that are known to
the adversary.

23

On the other hand, if the adversary cannot keep a coherent state alive until the computation is done,
his superposition will collapse, and then Theorem 6 can indeed be applied. The only price we pay is an
added term in the statistical distance between simulation and real execution that comes from the distance
between real and ideal state in the quantum protocol.

Since long-term quantum memory is much beyond current technology, and we don’t assume quan-
tum memory for honest parties, limiting the adversary’s memory in this way can be a very reasonable
assumption.

Nevertheless, we can get results for an adversary with unlimited quantum memory, as we will now
show.

6.2 Leakage Resilience for Unlimited Quantum Memory.

For this case, we will only be able to get a circuit compilation type of result, rather than a 2-party
computation protocol.

We recall informally the notion of leakage resilient circuit compilation: here a Boolean circuit C
is given that takes a secret input y and a public input chosen by the adversary. The output C(x, y) is
given to the adversary. The goal is now to compile C into a leakage resilient computation that is split
in several parts where the adversary is allowed to leak independently from different parts, as well as
a small amount of global leakage, as defined in our model. The secret input y is assumed to be given
in some specially encoded form. A simulator must exist that simulates the adversary’s view given only
x,C(x, y), i.e., a public-input-output simulator as described earlier. This is a special case of our model
of two-party computation, namely we will give x as input to both parties and both parties get C(x, y)
as output. Furthermore, we assume that the protocol is given access to an oracle function gy() that takes
no input, and outputs y to the parties encoded in some form that is suitable for the protocol. In an
implementation there would be a single device executing all parts of the computation, but here we will
stick to the interpretation as a two-player protocol for consistency with the rest of the paper.

We now define an oracle function gy(), which will fit into the way our protocol πfC represents data.
It will make 3k+ 1 Shamir secret shares of each bit in y and output leakage resilient encodings of these
shares to the two parties.

We can then construct a protocol called πfC ,y which we define to be our protocol πfC (which will
compute C(x, y)), except that instead of getting an encoding of shares of y from the parties, it calls
gy() initially and otherwise evaluates C as usual, assuming access to fORT. While πfC ,y is only secure
against a classical adversary, we can still use it to construct a protocol that is secure against a quantum
adversary.

The idea is as follows: we build from C a new circuit C̄ taking inputs x, ȳ, which works as follows:
It parses ȳ as the concatenation of a bit b and a string y. If b = 0, it outputs C(x, y), while if b = 1 it
outputs y. One may think of C̄ as being like C but with a built-in trapdoor: it “usually” works like C,
but if you can choose the secret input, you can force the output value. The idea is now to simply run
πkfC̄ ,ȳ

instead of πfC ,y. That is, the same protocol is run, but we replace C by C̄. This also means that
the protocol will call initially an oracle function gȳ() that will produce leakage resilient encodings of
Shamir shares in ȳ. Finally, note that the protocol will construct a new circuit C̄ ′ from C̄, just as we built
C ′ from C earlier, based on an MPC protocol secure against k corrupted players.

Our protocol will be used only with secret input of form ȳ = (0, y). The other option is only
something we need for the proof. Our leakage resilient protocol now works as follows:

Quantum Leakage Resilient Protocol for C, QfC ,ȳ

1. Invoke the quantum protocol to obtain m = 2|C̄ ′|k pairs of (hopefully) orthogonal vectors. For each
pair, the process of measuring and storing the pair is defined to be a separate part of the computation
from which the adversary can leak a bounded amount of information.

2. Run πfC̄ ,ȳ based on the list of pairs of vectors from the quantum protocol (instead of getting the list
from fORT). Output whatever πfC̄ ,ȳ outputs.

24

We will consider an adversary that is quantum and unbounded, and for simplicity we assume he is
non-adaptive, that is, he specifies the collection F of leakage functions he wants to use before the actual
computation starts. We sketch later how we may get rid of this restriction. If furthermore all these leakage
functions output at most λ/4 bits, we call this quantum, unbounded and non-adaptive λ/4-adversary.

Definition 3. Consider a protocol π for computing circuit C on public input x chosen by adversary E
and secret input y. The adversary may issue a leakage query for every separate part of the computation.
Let ΦrealE be the state of the adversary after executing π. We say that π is leakage resilient against an
adversary E if there exists a simulator S that interacts with E (where, after E sends the public input x,
S is given C(x, y)). This interaction results in state ΦsimE for E. We require that the trace norm distance
between ΦrealE and ΦsimE be negligible in the security parameter.

Theorem 8. QfC ,ȳ is leakage resilient against a quantum, unbounded and non-adaptive λ/4-adversary.

Proof. The simulator S we need is very simple to describe: on input x,C(x, y), S will choose a secret
input ȳ = (1, C(x, y)) and will now execute QfC ,ȳ with the adversary, exactly as described above.
Note that since S executes the entire computation itself, it knows all the data involved and can hence
trivially answer all leakage queries, and furthermore, by construction of C̄ ′, the output will be C(x, y)
as it should be.

To show that S satisfies the requirement we first observe that since the simulator plays the real
protocol, only with a different secret input, it is enough to show that for any fixed choice of two secret
inputs ȳ, ȳ′ to C̄ ′, public input x with C̄ ′(x, ȳ) = C(x, ȳ′), and allowed leakage functions F , executing
QfC ,ȳ, respectively QfC ,ȳ′ will leave the quantum adversary in states that are at negligible trace distance
from each other.

We first need some notation and terminology. Recall that after the quantum protocol A and B hold
m states, that we hope are all copies of the correct state for a pair of vectors. Let D be a set of at most
k indices among the set {1, 2, . . . ,m}, and let Dk be the collection of all such sets. The state held by A
and B at the end of the quantum protocol is said to be D-corrupt if it consists of copies of the correct
state on all positions outside D, while some arbitrary (possibly mixed) state is in the positions inside
D. Clearly, by measuring a D-corrupt state, A and B would obtain pairs of vectors that might also have
been generated by an adversary corrupting k calls to fORT as we considered earlier.

We will now consider the state of the adversary E and A,B after the quantum protocol is done
and the adversary has specified x, F , also let the secret input be ȳ. We keep these choices fixed in
the following. From the analysis of the quantum protocol, we know that this state is negligibly close
to an ideal state that is a superposition of only cases where A and B hold a D-corrupt state ρD, for
some D ∈ Dk. So we will assume in the following that we have exactly such an ideal state. For fixed
x, F, ȳ,D, ρD, we let

P = {pD(v)|v ∈ V}

denote the probability distribution of the resulting view given to the adversary. The distribution is taken
over the distribution coming from measuring ρD, and over the random coins used internally by A and
B.

Observe that each pair of vectors we use is touched twice in the protocol, namely when the pair is
measured and when it is used later. Since we consider a λ/4-adversary, at most λ/2 bits are leaked from
each pair and so we can use the proof of Theorem 6 to conclude that there exists a classical simulator
that will simulate the adversary’s view given x, F and assuming that the adversary has corrupted a subset
D of the pairs7. So for the fixed x, F,D, ρD, we let

Q = {qD(v)|v ∈ V}

7 The theorem talks about a classical adversary, but that since we fixed D and the view consists of a single classical message
that is sent to the adversary, it does not matter here that the adversary is now quantum.

25

denote the probability distribution we get from running the classical simulator on input x, F and the
result of measuring ρD. By Theorem 6 we may assume that the statistical distance from P to Q is at
most a negligible function ε of the security parameter.

Recalling that the state after the quantum protocol contains only D-corrupt sets, we will assume that
the adversary E has a register E1 that explicitly stores D, this only gives him more information. Then
|ΦD〉E2

denotes the normalised state of his entire additional memory in the branch of the superposition
whereD is the corrupted set of pairs. The state we obtain after running the real game can now be written
as follows

|Ψreal(ȳ)〉 =
∑
D∈Dk

αD|D〉E1
|ΦD〉E2

∑
v∈V

√
pD(v)|v〉E3

|v〉AB,

where we emphasise that this state depends on the secret input ȳ. We have purified the random choice of
v by A and B, such that by tracing out the register AB we obtain exactly the state the adversary has at
the end. The αD’s form a vector of length 1. We can now construct a (slightly) different state that does
not depend on the secret input:

|Ψsim〉 =
∑
D∈Dk

αD|D〉E1
|ΦD〉E2

∑
v∈V

√
qD(v)|v〉E3

|v〉AB .

Note that we do not have to generate |Ψsim〉 efficiently, we just need that it exists.

Lemma 8. The trace-norm distance between |Ψsim〉 and |Ψreal(ȳ)〉 is negligible.

Proof. Since |D〉, |D′〉 are orthogonal for distinct D,D′ and similarly for the |v〉’s, we easily obtain the
fidelity for |Ψsim〉 and |Ψreal(ȳ)〉:

〈Ψreal(ȳ)|Ψsim〉 =
∑
D∈Dk

|αD|2
∑
v∈V

√
pD(v)qD(v) ≥ 1− ε ,

where in the last step we used the standard inequality linking fidelity and trace-norm distance (in a
classical version) to conclude that

∑
v∈V

√
pD(v)qD(v) ≥ 1− ε. Another standard inequality now tells

us that if 1 minus the fidelity is negligible, then the trace norm distance is also negligible. �

Now note that the state the adversary has at the end of the game is obtained by tracing out the AB
register. This cannot increase the trace distance as it corresponds to the adversary trying to distinguish
by looking at only a part of the state. This means that at the end of the game, for any secret ȳ, the
adversary’s state is negligibly close to one fixed state that does not depend on ȳ. It trivially follows, as
desired, that the adversary cannot distinguish between different secret inputs. �

Adaptive choice of leakage functions. In the adaptive model, the adversary specifies a single leakage
function, gets the output, specifies the next, and so on. To handle this situation, we first purify all the
choices of functions by E and responses from A,B, similarly to what we did for the single response in
the above proof: each choice will be determined by an entangled state shared between E and A,B, with
a superposition branch for each possible value. Each party can still evaluate its response by working in
superposition. At the end we obtain a joint state from which we can obtain the adversary’s end state by
tracing out some registers and measuring those that correspond E’s classical choices. Now we construct
a state that does not depend on ȳ by replacing the algorithm run by A and B by that of the simulator.
This only changes the state by a negligible amount again by the result on classical simulation.

26

Bibliography

[BCH12] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In
Theory of Cryptography, pages 266–284. Springer, 2012.

[BGJK12] Elette Boyle, Shafi Goldwasser, Abhishek Jain, and Yael Tauman Kalai. Multiparty com-
putation secure against continual memory leakage. In Proceedings of the 44th symposium
on Theory of Computing, pages 1235–1254. ACM, 2012.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. pages 1–10, 1988.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryptol-
ogy, 13(1):143–202, 2000.

[CKMR07] Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner. One-and-a-half
quantum de Finetti theorems. Communications in Mathematical Physics, 273(2):473–498,
2007.

[CKR09] Matthias Christandl, Robert König, and Renato Renner. Postselection technique for
quantum channels with applications to quantum cryptography. Physical Review Letters,
102:020504, Jan 2009.

[Csi98] Imre Csiszár. The method of types. IEEE Transactions on Information Theory, 44(6):2505–
2523, oct 1998.

[CV12] Ran Canetti and Margarita Vald. Universally composable security with local adversaries.
In Ivan Visconti and Roberto De Prisco, editors, SCN, volume 7485 of Lecture Notes in
Computer Science, pages 281–301. Springer, 2012.

[DF11] Stefan Dziembowski and Sebastian Faust. Leakage-resilient cryptography from the inner-
product extractor. In Advances in Cryptology–ASIACRYPT 2011, pages 702–721. Springer,
2011.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without computational
assumptions. In Theory of Cryptography, pages 230–247. Springer, 2012.

[Eke91] Artur K Ekert. Quantum cryptography based on bell’s theorem. Physical review letters,
67(6):661–663, 1991.

[GR12] Shafi Goldwasser and Guy N Rothblum. How to compute in the presence of leakage. In
Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on, pages
31–40. IEEE, 2012.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract).
In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, STOC, pages
723–732. ACM, 1992.

[LC99] Hoi-Kwong Lo and Hoi Fung Chau. Unconditional security of quantum key distribution
over arbitrarily long distances. Science, 283(5410):2050–2056, March 1999.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography. In Theory of Cryp-
tography, pages 278–296. Springer, 2004.

[NV01] Michael A Nielsen and Guifré Vidal. Majorization and the interconversion of bipartite
states. Quantum Information & Computation, 1(1):76–93, 2001.

[Ren05] Renato Renner. Security of quantum key distribution. PhD thesis, ETH Zürich, 2005.
[Win99] Andreas Winter. Coding Theorems of Quantum Information Theory. PhD thesis, Depart-

ment of Mathematics, University of Bielefeld, 1999.

A Proof of Lemma 1

Proof. In the real world of [Can00] a computationally unbounded, semi-honest, static adversary B cor-
rupting party i will receive the complete view of party i and will then output an arbitrary value b. In
the ideal world there is a poly-time (in the running time of B) simulator S who gets just the inputs and
outputs of party i and then must output a value b′. It is then required that for all A there exists S such

27

that b along with the inputs and outputs of the protocol, (I,O), is statistically indistinguishable from b′

concatenated with the inputs and outputs, (I ′, O′) of f , i.e., the statistical distance is negligible in k. For
unconditional security B is allowed unbounded time.

By the assumption of the lemma, there exists a poly-time simulator T demonstrating that π is a ε-
leakage-resilient implementation of f against Pi. This simulator T outputs a leakage function L′ which
is given the inputs and outputs of party i and then outputs a single bit, hence T can up to a few syntactical
changes act as a simulator ST for the model [Can00].

Assume that it is not the case that π is secure in the sense of [Can00] against a computationally
unbounded, semi-honest, static adversary corrupting any one party. Let B be an adversary demonstrat-
ing the insecurity, in particular, for the simulator ST the distributions (b, I, O) and (b′, I ′, O′) are not
statistically indistinguishable. Then let D be an unbounded time Turing machine which can distinguish
(b, I, O) and (b′, I ′, O′) with non-negligible probability in k: Using ST the distinguisher can compute
the distributions of (b, I, O) and (b′, I ′, O′) up to any precision, and then given a sample from one of
them it can essentially make a maximum likelihood guess at which one it got a sample from.

Now consider the adversary AB,D which submits a leakage query (i, L), which has B and D hard-
coded along with all the inputs and outputs to the protocol, which are known to A in our model. The
leakage function is given viewi. Then it runs B on the view of party i to get b. Then it runs D on b and
the inputs and outputs of the protocol, to get a bit g. Then it outputs g. Hence g is given to AB,D which
can then output g. Clearly AB,D ∈ Pi, so by the assumption that π is a ε-leakage-resilient implementa-
tion of f against A, the statistical distance between execπ,AB,D(k) and simf,AB,D,ST (k) is negligible in
k.

However, in execπ,AB,D(k) the input to D inside the computation of the leakage function is dis-
tributed exactly as (g, I, O), and in simf,AB,D,T (k) the input to D inside the computation of the leakage
function is distributed exactly as (g′, I ′, O′). This is a contradiction.

B Proof of Thm. 1

Proof. To simulate a leakage query (i, I, L), output a full-view simulator V which computes its output
as follows: Use the full-view simulator for πA to reconstruct the view of party i in πA from the inputs
and the outputs of party i, which are given as input to V . Then for each invocation of fB in the simulated
view, take the corresponding inputs and outputs of fB and then use the full-view simulator for πB and
run it on these inputs and outputs to simulate a full view of πB. Then insert this view of πB into πA
to produce a view of πA[πB/fB] – we say that we patch the evaluation of fB with a simulation of πB.
The proof then follows from a hybrid argument showing that the simulated view cannot be distinguished
from a real view given λ-tradeoff leakage. Start with a real run of πA[πB/fB]. Then one by one replace
the runs of πB by evaluations of fB patched with a simulated view. The only difference between two
hybrids is the difference between a simulated view of πB and a real run of πB. Call the one evaluation
that was changed the disputed evaluation. Since the units of the λ-tradeoff adversary class are expanded
original rounds of πA it follows that the disputed evaluation of πB is embedded in a leakage unit, i.e.,
we only leak on the disputed evaluation when we leak on this unit. Since we allow at most λ bits of
leakage on each unit it follows that the difference can be distinguished with advantage at most εB. There
are at most qB runs of πB per activation, which gives a total advantage of at most αqBεB. Now we have
a hybrid which is a run of πA with each evaluation of fB patched. Now replace the run of πA with a
simulation of πA, and then patch this simulation instead. The leakage on these hybrids can be seen as
λ-tradeoff leakage on a real run of πA or a simulation of πA: first patch and then leak. The advantage in
distinguishing is therefore at most αεA, for a total advantage of at most α(εA + qBεB), as needed.

28

	On The Orthogonal Vector Problem and The Feasibility of Unconditionally Secure Leakage Resilient Computation
	Ivan Damgård cl@@auth, Frédéric Dupuis cl@@auth, Jesper Buus Nielsen

