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Abstract

In lattice cryptography, worst-case to average-case reductions rely on two problems: Ajtai’s SIS
and Regev’s LWE, which refer to a very small class of random lattices related to the group G = Zn

q .
We generalize worst-case to average-case reductions to (almost) all integer lattices, by allowing G
to be any (sufficiently large) finite abelian group. In particular, we obtain a partition of the set of
full-rank integer lattices of large volume such that finding short vectors in a lattice chosen uniformly
at random from any of the partition cells is as hard as finding short vectors in any integer lattice.
Our main tool is a novel group generalization of lattice reduction, which we call structural lattice
reduction: given a finite abelian group G and a lattice L, it finds a short basis of some lattice L̄ such
that L ⊆ L̄ and L̄/L ' G. Our group generalizations of SIS and LWE allow us to abstract lattice
cryptography, yet preserve worst-case assumptions.

1 Introduction

A lattice is a discrete subgroup of Rm, e.g. a subgroup of Zm. Nearly two decades after its introduction,
lattice-based cryptography has emerged as a credible alternative to classical public-key cryptography
based on factoring or discrete logarithm. It offers new properties (such as security based on worst-case
assumptions) and new functionalities, such as noisy multilinear maps and fully-homomorphic encryption.
The worst-case guarantees of lattice-based cryptography come from two major problems: the short integer
solution (SIS) problem dating back to Ajtai’s breakthrough work at STOC ’96 [1], and the learning with
errors (LWE) problem introduced by Regev at STOC ’05 [31], and somewhat related to the Ajtai-
Dwork cryptosystem [2]. These two average-case problems are provably as hard as solving certain lattice
problems in the worst case, such as GapSVP (the decision version of the shortest vector problem in a
lattice) and SIVP (finding short linearly independent lattice vectors).

The SIS problem can be defined as finding short (nonzero) vectors in a random lattice from a class
An,m,q of m-dimensional integer lattices related to the finite abelian (homocyclic) group G = Znq , where
n is the dimension of the worst-case lattice problem and q needs to be sufficiently large: any sequence
g = (g1, . . . , gm) ∈ Gm chosen uniformly at random defines a lattice Lg ∈ An,m,q formed by all x =
(x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G; and SIS asks, given g, to find a short (nonzero) x ∈ Lg.

The class An,m,q has an algebraic meaning: the distribution of Lg turns out to be statistically close (for
sufficiently large m) to the uniform distribution over the finite set LG,m of all full-rank lattices L ⊆ Zm
such that Zm/L ' G. This suggests that Ajtai’s lattices are very rare among all integer lattices: in fact,
Nguyen and Shparlinski [24] recently showed that the set ∪G cyclicLG,m of all full-rank integer lattices
L ⊆ Zm such that Zm/L is cyclic (unlike Znq ) has natural density 1/[ζ(6)

∏m
k=4 ζ(k)] ≈ 85% (for large

m), which implies that Ajtai’s classes An,m,q form a minority of lattices among all integer lattices.
This motivates the natural question of whether other classes of random lattices enjoy similar worst-

case to average-case reductions: in particular, if we call GSIS the generalization of SIS to any finite abelian
group G, does GSIS have similar properties as SIS for other finite abelian groups G than G = Znq ? This
would imply that the random lattices of the class LG,m are also hard. Ajtai (in the proceedings version
of [1]) and later Regev [30] noticed that the choice G =

∏n
i=1 Zqi where the qi’s are distinct prime

numbers of similar bit-length also worked. Micciancio [18] showed that another special choice of G also
worked: there, G is actually constructed by an algorithm [18, Lemma 2.11] given as input a very special
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lattice (for which solving the closest vector problem is easy); if the input lattice is Zn, then G = (Zq)n.
However, all these choices of G are arguably very special, and it was unclear if the hardness properties
held outside a small family of finite abelian groups.

A similar question can be asked for LWE, which is known as a dual problem of SIS, and has been
used extensively in lattice-based encryption. However, in order to define GLWE by analogy with GSIS,
we need to change the usual definition of LWE based on linear algebra. Any finite abelian group G
is isomorphic to its dual group Ĝ formed by its characters, i.e. homomorphisms from G to the torus
R/Z. We define search-GLWE as the problem of learning a character ŝ ∈ Ĝ chosen uniformly at random,
given noisy evaluations of ŝ at (public) random points g1, . . . , gm ∈ G, namely one is given gi and a
“Gaussian” perturbation of ŝ(gi) for all 1 ≤ i ≤ m. By analogy with LWE, decisional-GLWE is defined
as the problem of distinguishing the previous “Gaussian” perturbations of ŝ(gi) from random elements
in R/Z. If G = (Zq)n, it can be checked that GLWE is simply LWE. If G = Zp where p is a large prime
number, then search-GLWE is a randomized version of Boneh-Venkatesan’s Hidden Number Problem [8]
(introduced to study the bit-security of Diffie-Hellman key exchange, but also used in side-channel attacks
on discrete-log based signatures [23]), which asks to recover a secret number s ∈ Zp, given t1, . . . , tm
chosen uniformly at random from Zp and approximations of sti mod p for each 1 ≤ i ≤ m. Here,
randomized means that the approximations given are “Gaussian” perturbations of sti mod p. Thus,
GLWE allows to view LWE and the Hidden Number Problem as a single problem, instantiated with
different groups. Alternatively, GLWE can be viewed as a lattice problem: solving a randomized version
of bounded distance decoding (with “Gaussian” errors) for the dual lattice of Lg.

Our results. We show that the worst-case to average-case reductions for SIS and LWE (search and
decisional) can be generalized to GSIS and GLWE, provided that G is any sufficiently large finite abelian
group, e.g. of order nΩ(max(n,rank(G))) if n is the dimension of the worst-case lattice problem and rank (G)
denotes the minimal size of a generating set for G. For GSIS and search-GLWE, our reductions are direct
from worst-case lattice problems. On the other hand, we transfer all hardness results on decisional-LWE
to decisional-GLWE, by reducing decisional-LWE to decisional-GLWE (under similar size constraints on
G): we do so by generalizing the modulus-dimension switching technique of Brakerski et al. [9] (which
was inspired by previous work on fully-homomorphic encryption).

Our reductions are based on a new tool, which we call structural lattice reduction, and which might
be of independent interest: Becker et al. [7] recently used it to design new exponential-space algorithms
for lattice problems. In lattice reduction, one is given a full-rank lattice L ⊆ Zn and wants to find a short
basis of L. In our structural lattice reduction, one is further given a finite abelian group G of rank ≤ n,
and wants to find a short basis of some overlattice L̄ of L such that L̄/L ' G effectively, i.e. the map ϕ

in the short exact sequence 0 −→ L
id−→ L̄

ϕ−→ G −→ 0 is efficiently computable. Our starting point is that
previous worst-case to average-case reductions (e.g. [14, 9]) implicitly used a trivial case of structural
lattice reduction: if B is a short basis of a full-rank lattice L ⊆ Zn and q is an integer, then q−1B is a
short basis of the lattice L̄ = q−1L such that L̄/L ' Znq , which explains the importance of Znq in SIS and
LWE.

Our GSIS reduction shows that in some sense all integer lattices are hard. Indeed, the set of full-rank
lattices L ⊆ Zm (of sufficiently large co-volume ≥ nΩ(m)) can be partitioned based on the finite abelian
group Zm/L, and the reduction implies that each partition cell LG,m has this worst-case to average-case
property: finding short vectors in a lattice chosen uniformly at random from LG,m is as hard as finding
short vectors in any integer lattice of dimension n.

Consider the special case G = Zp for a large prime p. Then our GSIS reduction provides the first
hardness results for the random lattices in LZp,m used in many experiments [12, 10] to benchmark lattice
reduction algorithms, as well as in Darmstadt’s SVP internet challenges. And our GLWE reduction
provides a general hardness result for the hidden number problem: previously, [9, Cor 3.4] established
the hardness for the hidden number problem when the large prime p is replaced by qn where q is smooth.

Finally, our generalizations of SIS and LWE allow us to abstract (the many) lattice-based schemes
based on SIS and/or LWE, where the role of G = (Zq)n was not very explicit in most descriptions
(typically based on linear algebra). We believe such an abstraction can have several benefits. First,
it can clarify analyses and designs: the El Gamal cryptosystem is arguably better described with an
arbitrary group G, rather than by focusing on the historical choice G = Z∗p; comparisons and analogies
with“traditional”public-key cryptography based on factoring or discrete logarithm will be easier. Second,
it opens up the possibility of obtaining more efficient schemes using different choices of G than G = (Zq)n.
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We do not claim that there are better choices than G = (Zq)n, but such a topic is worth investigating,
which we leave to future work. Many factors influence efficiency: trapdoor generation, hashing, efficiency
of the security reduction, etc. For instance, hashing onto Zp can sometimes be more efficient than onto
(Zq)n for large n, which could be useful in certain settings, like digital signatures.

Related work. Baumslag et al. also introduced in [6] group generalizations of LWE, targeting non-
commutative groups, but did not obtain any hardness result.

Open problems. The recent reduction of Brakerski et al. [9] proves the hardness of decisional-LWE
for a wide range of parameters, without establishing a direct search-to-decision equivalence for all these
parameters. Similarly, our strongest hardness result for decisional-GLWE bypasses the one for search-
GLWE. It is unknown if there is a direct search-to-decision equivalence for GLWE, valid for all sufficiently
large finite abelian groups. It would also be interesting to study if structural lattice reduction can be
adapted to the ring setting, in order to obtain more hardness results based on worst-case assumptions
for ideal lattices. Finally, our GSIS and GLWE reductions require the order of G to be sufficiently large
compared to the worst-case lattice dimension, and it is interesting to reduce as much as possible this size
constraint: in particular, the case G = Zn2 for GLWE corresponds essentially to LPN, whose hardness
is well-known to be open; here, the order 2n does not grow quickly enough with respect to the rank n
to be covered by our reduction. On the other hand, Micciancio and Peikert [20] recently showed how to
decrease q for SIS.

Roadmap. The paper is organized as follows. In Sect. 2, we recall background on lattices. In Sect. 3,
we discuss factor groups of integer lattices, and introduce our group generalizations of SIS and LWE.
In Sect. 4, we introduce structural lattice reduction, which will be used in all our reductions. We show
hardness of GSIS in Sect. 5, and search-GLWE in Sect. 6, by generalizing SIS/LWE reductions. In
Sect. 7, we show hardness of decisional-GLWE. Detailed missing proofs can be found in appendix, as
well as an example of abstracting lattice cryptography.

2 Background and Notation

Zq denotes the group Z/qZ. We use row notation for vectors and matrices. In denotes the n×n identity
matrix. A function negl(n) is negligible, if it vanishes faster than the inverse of any polynomial in n. For
an n×m matrix B, ‖B‖ denotes the length of its longest row vector, i.e. ‖B‖ = max1≤i≤n ‖bi‖.

Lattices. A lattice L is a discrete subgroup of Rm: it is of the form L(B) = {∑n
i=1 αibi, αi ∈ Z} for

some set B = (b1, . . . ,bn) of linearly independent vectors, called a basis. When L ⊆ Zm, L is an integer
lattice. The dimension of L, denoted by dim(L), is the dimension n of span(L). Bases of L are related by
multiplication with integer matrix of determinant ±1. The (co)-volume vol(L) is the volume

√
det(BBt)

of any basis B of L. For 1 ≤ i ≤ dim(L), λi(L) is the i-th minimum of L, i.e. the smallest radius of the
0-centered ball containing at least i linearly independent lattice vectors. The dual lattice L× is the set
of all u ∈ span(L) s.t. 〈u,v〉 ∈ Z for all v ∈ L. If B is a basis of L, its dual basis is B× = (BBt)−1B,
which is a basis of L×. For a factor γ = γ(n) ≥ 1, GapSVPγ asks, given a basis B of an n-dimensional
lattice L and a number d ∈ Rge0, to decide if λ1(L) ≤ d or λ1(L) > γd. ApproxSIVPγ asks to compute
a full-rank family of lattice vectors of norm ≤ γλn(L).

Gram-Schmidt Orthogonalization (GSO). Let B = (b1, ...,bn) be a basis of a lattice. The GSO
of B is the unique decomposition as B = µ·D ·Q, where µ is a lower triangular matrix with unit diagonal,
D is a positive diagonal matrix, and Q has orthonormal rows. We let B∗ = DQ whose i-th row b∗i is
πi(bi), where πi denotes the orthogonal projection of bi over span{b1, . . . ,bi−1}⊥. We use the notation
B[i,j] for the projected block [πi(bi), . . . , πi(bj)]. Let B× be the dual basis of B and (B×)∗ denotes its

GSO matrix, then ‖(b×i )∗‖ · ‖b∗n−i+1‖ = 1 for 1 ≤ i ≤ n.

(Explicit) Finite abelian groups. Any finite abelian group G is isomorphic to a product
∏k
i=1 Zqi of

cyclic groups. We call rank of G the minimal number of cyclic groups in such decompositions: this should
not be confused with the rank of an abelian group, which would be zero here. We say that G is explicit
if one knows integers q1, . . . , qk and an isomorphism

∏k
i=1 Zqi → G computable in polynomial time: we
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will assume that k is the rank and each qi+1 divides qi, because from an arbitrary decomposition, one
can always derive the rank and such qi’s in polynomial time. The isomorphism induces k generators
e1, . . . , ek ∈ G s.t. G = 〈e1〉 ⊕ · · · ⊕ 〈ek〉 and each ei has order qi. If the inverse of the isomorphism is
also computable in polynomial time, we say that G is fully-explicit.

Overlattices and exact sequences. When a lattice L̄ ∈ Rn contains a sublattice L of the same
dimension n, L̄ is an overlattice of L. Then the quotient L̄/L is a finite abelian group of rank ≤ n and

order vol(L)/ vol(L̄). Then 0 → L
id→ L̄

ϕ→ G → 0 is a short exact sequence for some ϕ, i.e. ϕ : L̄ → G
is a surjective morphism s.t kerϕ = L. In other words, ϕ represents the isomorphism L̄/L ' G.

Lattice reduction. Gentry et al. [14] introduced the basis length of a lattice L as bl(L) =
minbasis B ‖B∗‖, where ‖B∗‖ = maxi∈[1,n] ‖b∗i ‖. Then: λn(L) ≥ bl(L) ≥ λn(L)/

√
n, bl(L) ≥ λ1(L),

and bl(L) ≥ vol(L)1/n. Lattice reduction can find bases B with small ‖B∗‖. For instance, a basis B is
LLL-reduced [16] with factor ε

LLL
≥ 0 if its GSO µ satisfies |µi,j | ≤ 1

2 for all 1 ≤ j < i and every 2 × 2

block B[i,i+1] satisfies Lovász’s condition: ‖b∗i ‖2 ≤ (1 + ε
LLL

)(
∥∥b∗i+1

∥∥2
+µi+1,i ‖b∗i ‖2). Then it is folklore

that: ‖B∗‖ ≤
(

(1 + ε
LLL

)
√

4/3
)(n−1)/2

bl(L). Given as input ε
LLL

> 0 and a basis B of a lattice L ⊆ Zn,

the LLL algorithm [16] outputs an LLL-reduced basis of factor ε
LLL

in time polynomial in 1/ε
LLL

and

size(B). Usually, one selects ε
LLL

s.t. (1 + ε
LLL

)
√

4/3 =
√

2 or ε
LLL

= 1/ poly(n).

2.1 Gaussian Measures

The statistical distance between two distributions P and Q over a domain X is defined as ∆(P,Q) =
1
2

´
a∈X |P(a) − Q(a)|da or 1

2

∑
a∈X |P(a) − Q(a)| when X is discrete. Two distributions P and Q are

(statistically) ε-indistinguishable if ∆(P,Q) < ε. We write y← P (resp. ←ε P) to denote a sample from
the distribution P (resp. a distribution ε-indistinguishable from P). And the symbol ←≈ means ←ε for
some negligible function ε.

Gaussian Distributions. The Gaussian Distribution (over Rn) DRn,σ,c centered at c ∈ Rn of param-
eter σ ∈ Rge0 is defined by a density function proportional to ρRn,σ,c(x) = exp

(
−π‖x− c‖2/σ2

)
. If c is

omitted, then c = 0. For any countable subset C ⊆ Rn (e.g. a lattice L or a coset x + L), ρRn,σ,c(C)
denotes

∑
u∈C ρRn,σ,c(u). The discrete Gaussian distribution DC,σ,c over a lattice or a coset C ⊂ Rn

is defined by DC,σ,c(x) = ρRn,σ,c(x)/ρRn,σ,c(C) where x ∈ C. It is known how to sample efficiently the
discrete Gaussian distribution over lattices to within negligible distance [14, 28], or even exactly [9]:

Lemma 2.1 There is a polynomial-time algorithm which, given a basis B of an n-dimensional lattice L,
c ∈ Rn, and a parameter σ ≥ ‖B∗‖ ·

√
ln(2n+ 4)/π, outputs a sample with distribution DL,σ,c.

Reciprocally, on can construct a short lattice basis from short discrete Gaussian samples and an arbitrary
basis:

Proposition 2.2 (Cor. of [30, Lemma 14]) Let ε > 0 and L(B) be an n-dimensional lattice. Given a
set of m = O(n) independent Gaussian samples (yi ←ε DL,si) s.t.

√
2ηε(L) ≤ si ≤ σ, 1 ≤ i ≤ m, one

can compute in polynomial time a basis C of L s.t. ‖C∗‖ ≤
√
n/2π ·maxi si.

Modular Distributions and Smoothing Parameter. The continuous distribution DRn,σ,c and dis-
crete distribution DL̄,σ,c over an overlattice L̄ ⊇ L can be projected modulo L. Thus DRn/L,σ,c (resp.
DL̄/L,σ,c) has a density function DRn,σ,c(x + L) for x ∈ Rn/L (resp. L̄/L). Both DRn/L,σ and DL̄/L,σ
converge (uniformly) to the uniform distribution when σ increases. This is quantified by the smoothing
parameter ηε(L) (where ε > 0) introduced by Micciancio and Regev [21] as the minimal σ > 0 s.t.

ρRn, 1σ (L×\ {0}) ≤ ε, i.e.
∥∥∥DRn/L,σ(x + L)− 1

vol(L)

∥∥∥
∞
≤ ε

vol(L) by Poisson’s summation formula, which
proves:

Lemma 2.3 (see Cor 2.8 of [14]) If L̄ is an overlattice of L, ε ∈ (0, 1/2), σ ≥ ηε(L) and c ∈ Rn,
then DL̄/L,σ,c+L is within statistical distance at most 2ε from the uniform distribution over L̄/L.
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For any n-dim basis B, ηε(L(B)) ≤ ηε(L(B∗)) ≤ ηε(Zn) · ‖B∗‖ where ηε(Zn) ≤
√

log
(
2n · (1 + 1

ε )
)
/π.

In particular, ηε(L) ≤ ηε(Zn) · bl(L). Finally, we give a technical lemma on the convolution of a discrete
Gaussian inside a dot product, proved in App. A.2, analogous to [31, 28].

Lemma 2.4 (Dot product convolution) Let K be R or T = R/Z. Let c ∈ R, u ∈ Rn, α, σ ∈
Rge0, ε ∈ (0, 1/2), and z + L be an arbitrary coset of an n-dimensional lattice L ⊆ Rn. Assume that(

1
σ2 + ‖u‖2

α2

)−1/2

≥ ηε(L). Then the distribution DK,α,c+〈u,v〉 where v ← Dz+L,σ is within statistical

distance ≤ 4ε from DK,
√
α2+σ2‖u‖2,c. This still holds when K is a discrete subgroup 1

NZ of R or 1
NZ/Z

of T if α ≥ ηε( 1
NZ).

2.2 SIS and LWE

Let G = Znq . Ajtai’s SIS(m,n, q, β) problem [1] asks, given g = (g1, . . . , gm) chosen uniformly at random
from Gm, to find a non-zero vector x ∈ Zm s.t.

∑m
i=1 xigi = 0 and ‖x‖ ≤ β. Such an x exists if β ≥√

mqn/m. Ajtai [1] proved that SIS (with suitable parameters) is at least as hard as approximating SIVP
in the worst case for dimension n to within some polynomial factor: in the best reduction known [14],
the factor is Õ(n). In Regev’s LWE(m,n, q, β) problem [31], one picks s ∈ G and (g1, . . . , gm) ∈ Gm

uniformly at random. Let A be the n×m matrix whose i-th column is gi. LWE asks to recover s ∈ G,
given as input (A, t = sA+ e) where e ∈ Zmq is chosen with distribution DZm,βq. In [31], the distribution
of e was slightly different, but Peikert’s convolution sampler [28] allows to use this distribution instead.

3 Lattice Factor Groups and Generalizations of SIS and LWE

In this section, we present our group generalizations of SIS and LWE, which are related to factor groups
of integer lattices.

3.1 Lattice Factor Groups

If L is a full-rank lattice ⊆ Zm, its factor group Zm/L is a finite abelian group of order vol(L). For any
finite abelian group G, denote by LG,m the (finite) set of full-rank lattices L ⊆ Zm such that Zm/L ' G.
The following elementary characterization of LG,m is a consequence of [26]:

Theorem 3.1 Let G be a finite abelian group and L be a full-rank lattice in Zm. Then L ∈ LG,m if
and only if G has rank ≤ m and there exists g = (g1, . . . , gm) ∈ Gm such that the gi’s generate G and
L = Lg where Lg = {(x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G}.

Given G, Alg. 1 shows how to sample efficiently lattices from the uniform distribution over LG,m, and
its correctness follows from (the trivial) Lemma 3.2. Previously, efficient sampling was only known for
G = Zp where p is a large prime (see [15]).

Algorithm 1 Sampling lattices of given factor group
Input: Integer m ≥ 1 and a finite abelian group G = Zq1 × · · · × Zqk such that 1 ≤ k ≤ m.
Output: A random lattice from the uniform distribution over LG,m.
1: Generate elements g1, . . . , gm uniformly at random from G until the gi’s generate G.
2: Return the lattice Lg where g = (g1, . . . , gm) ∈ Gm.

Lemma 3.2 Let G be a finite abelian group. Let g = (g1, . . . , gm) ∈ Gm be such that the gi’s generate
G. Let h = (h1, . . . , hm) ∈ Gm. Then Lg = Lh if and only if there is an automorphism ψ of G such that
hi = ψ(gi) for all 1 ≤ i ≤ m. In such a case, ψ is uniquely determined.

We note that several implementations of lattice-based cryptography (such as [13]) implicitly used lattices
in LG,m for some large cyclic group G. Recently, Nguyen and Shparlinski [24] showed that such lattices
are dominant: the set ∪G cyclicLG,m of all full-rank integer lattices L ⊆ Zm such that Zm/L is cyclic has
natural density 1/[ζ(6)

∏m
k=4 ζ(k)] ≈ 85% (for large m).
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3.2 The Group-SIS Problem (GSIS)

We introduce the Group-SIS problem (GSIS), which is a natural generalization of SIS to arbitrary finite
abelian groups. The GSIS parameters are m ≥ 1, a finite abelian group G and a bound β ∈ Rge0. One
picks a sequence g = (g1, . . . , gm) ∈ Gm uniformly at random. GSIS(G,m, β) asks to find a non-zero
vector x ∈ Zm s.t.

∑m
i=1 xigi = 0 and ‖x‖ ≤ β. In other words, GSIS asks to find short vectors in

random relation lattices Lg = {x ∈ Zms.t.
∑m
i=1 xigi = 0}. For instance, GSIS(Znq ,m, β) is SIS, and

GSIS(Zq,m, β) is finding short vectors in random m-dimensional co-cyclic lattices of volume q. If #G
denotes the order of G, the existence of a GSIS-solution is guaranteed if β ≥ √m(#G)1/m.

GSIS is connected to LG,m as follows. It is known [17, 25] that as soon asm ≥ n+2 log log #G+5 (resp.
m > 2 log #G+ 2), g1, . . . , gm generate the whole group G with probability ≥ 1/e (resp. ≥ 1− 1/#G),
in which case Zm/Lg ' G. In particular, if m > 2 log #G + 2, then the distribution of GSIS lattices
Lg is statistically close to the uniform distribution over LG,m, because it is statistically close to the
distribution produced by Alg. 1, in which case, solving GSIS is equivalent to finding short vectors in
random lattices from LG,m.

Finally, we note that to establish hardness of GSIS, it suffices to focus on low-rank groups G. Indeed,
if G′ = G ×H for some finite abelian group G,H, then GSIS over G can trivially be reduced to GSIS
over G′, by “projecting”G′ to G.

3.3 The Group-LWE Problem (GLWE)

We introduce the Group-LWE problem (GLWE), which similarly generalizes LWE. GLWE uses the torus
T = R/Z and a finite abelian group G. Let Ĝ be the dual group of homomorphisms from G to T: it is
isomorphic to G but not canonically. If G is explicit, we have G = 〈e1〉 ⊕ · · · ⊕ 〈ek〉 where each ei has

order qi. Then Ĝ is generated by the characters ê1, . . . , êk defined as êi(
∑k
j=1 αjej) = αi/qi mod 1 for

any 0 ≤ αj < qj .

Let S be a known distribution over Ĝ. Search-GLWE is the problem of learning a character ŝ ∈ Ĝ
picked from S, given noisy evaluations of ŝ at (public) random points a1, . . . , am ∈ G, namely one is given
(for all i’s) ai and a “Gaussian” perturbation of ŝ(ai). Like LWE, several noise distributions are possible.
As in [31], we focus on the continuous distribution where ŝ(a) is shifted by an error e ← DR,α. These
distributions need to be discretized in order to have a finite representation. In App. B.4, we present
discrete versions of GLWE and show that they are at least as hard as the continuous version for some
suitable parameters, which explains why we only consider the continuous GLWE problem in the rest of
the article:

Definition 3.3 Let G be an explicit finite abelian group: in particular, G = 〈e1〉 ⊕ · · · ⊕ 〈ek〉. Let α > 0
and ŝ ∈ Ĝ.

• AG,α(ŝ) is the distribution over G × T defined by choosing a ∈ G uniformly at random, setting
b← DT,α,ŝ(a), and outputting (a, b) ∈ G× T.

• Search-GLWEG,α(S) asks to find ŝ from AG,α(ŝ) for a fixed ŝ sampled from S given arbitrarily

many independent samples. By finding ŝ, we mean finding integers si’s s.t. ŝ =
∑k
i=1 siêi.

• Decisional-GLWEG,α(S) asks to distinguish AG,α(ŝ) from the uniform distribution over G× T for
a fixed ŝ sampled from S given arbitrarily many independent samples.

• For 0 < α < 1, (Search) Decisional-GLWEG,≤α(S) is the problem of solving (Search) Decisional-
GLWEG,β(S) for any β ≤ α respectively, i.e. when the noise parameter is unknown yet ≤ α, by
analogy with LWE.

Search-GLWEG,m,α(S) and Decisional-GLWEG,m,α(S) denote the variants where the algorithms are
given a bounded number of samples m ∈ N. If S is omitted, we mean the uniform distribution over
Ĝ.

If G = Znq , the canonical representation of G and Ĝ shows that GLWE is equivalent to the fractional

version of Regev’s original LWE. If G = Zp for some prime number p, then Ĝ can be defined by
multiplications: ŝ is the homomorphism that maps any t ∈ Zp to ts/p mod 1. Thus, GLWE can be
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viewed as a randomized version of Boneh-Venkatesan’s Hidden Number Problem [8]: recover a secret
number s mod p, given approximations of sti mod p for many random integers ti’s.

By analogy with LWE (see [31, 9]), there is a folklore reduction from (Search) Decisional-
GLWEG,≤α(S) to (Search) Decisional-GLWEG,α(S), respectively.

Lemma 3.4 (Adapted from [9, Lemma 2.13]) Let A be an algorithm for Decisional-GLWEG,m,α(S)
(resp. Search) with advantage at least ε > 0. Then there exists an algorithm B for Decisional-
GLWEG,m′,≤α(S) (resp. Search) using oracle access to A and with advantage ≥ 1/3, where both m′

and its running time are poly(m, 1/ε, log #G).

Proof. (Sketch, see App. B.3 for a detailed proof). Like in LWE, the basic idea is to add noises in
small increments to the distribution obtained from the challenger, and feed it to the oracle solving the
Decisional-GLWEG,α(S) (resp. Search) and estimate the behavior of the oracle. �

4 Structural Lattice Reduction

4.1 Overview

A basic result (following from structure theorems of finitely-generated modules over principal ideal
domains) states that for any full-rank sublattice L of a full-rank lattice L̄ ⊆ Rn, there exists a ba-
sis B̄ = (b̄1, . . . , b̄n) of L̄ and integers q1, . . . , qn ≥ 1 such that q1 ≥ q2 ≥ · · · ≥ qn ≥ 1 and
B = (q1b̄1, . . . , qnb̄n) is a basis of L. The qi’s can be made unique by selecting them as powers of
prime numbers, or by requiring each qi+1 to divide qi, in which case q1, . . . , qn are the elementary di-
visors of the pair (L̄, L): for instance, if L̄ = Zn and L is a full-rank integer lattice, the qi’s are the
diagonal coefficients of the Smith normal form of L.

In this section, we introduce a lattice reduction converse to the previous structure theorem, which we
call structural lattice reduction. Lattice reduction asks to find a short basis of a given full-rank lattice
L ⊆ Zn. In structural lattice reduction, one is further given a finite abelian group G of rank ≤ n, and
wants to find a short basis of some overlattice L̄ of L such that L̄/L ' G effectively. More precisely,
given a basis B of a full-rank lattice L ⊆ Zn, a suitable bound σ > 0 and integers q1 ≥ · · · ≥ qk defining
G = Zq1 × · · · × Zqk , one asks to compute a basis B̄ of an overlattice L̄ ⊇ L such that ‖B̄∗‖ ≤ σ
and B = (q1b̄1, . . . , qkb̄k, b̄k+1, . . . , b̄n) is a basis of L. Interestingly, we do not require the input
basis B to have integer or rational coefficients, as long as its Gram-Schmidt coefficients are known with
enough precision. Indeed, our structural reduction algorithm can simply focus on finding the rational
transformation matrix between B̄ and B.

Previous worst-case to average-case reductions implicitly used the homocyclic group G = Znq , thus

L̄ = L/q. It follows that finding a basis B̄ of L̄ with small ‖B̄∗‖ is the same as finding the basis B = qB̄
of L with small ‖B∗‖, which is just classical lattice reduction. However, we obtain new problems and
applications by considering different choices of G.

In the trivial case G = Znq , we note that B̄ = q−1B implies that ‖B̄∗‖ = ‖B∗‖/q where the factor q

is exactly #G1/n: this suggests that in the general case, we might hope to reduce ‖B̄∗‖ by a factor close
to #G1/n, compared to ‖B∗‖.

Another trivial case of structural lattice reduction is G = Zq1×· · ·×Zqn where the qi’s are distinct pos-
itive integers of similar bit-length. If B = (b1, . . . ,bn) is a basis of L ⊆ Zn, then B̄ = (q−1

1 b1, . . . , q
−1
n bn)

generates an overlattice L̄ such that B̄∗ = (q−1
1 b∗1, . . . , q

−1
n b∗n), and therefore ‖B̄∗‖ ≤ ‖B∗‖/minni=1 qi.

The factor minni=1 qi is close to #G1/n if the qi’s have similar bit-length. But if the qi’s are unbalanced,
such as when minni=1 qi = 1, then the bound is much weaker. In particular, the case G = Zp for some
large prime p looks challenging, as the trivial choice B̄ = (p−1b1,b2, . . . ,bn) looks useless: L̄/L ' G
but ‖B̄∗‖ is likely to be essentially as big as ‖B∗‖, because for a typical reduced basis, the first ‖b∗i ‖’s
have the same size.

4.2 Co-cyclic Lattice Reduction

As a warm-up, we solve structural lattice reduction when the target group G is cyclic of order q, which
we call co-cyclic lattice reduction. Let B̄ be a solution of structural reduction on (L(B), G, σ). Then
C = (qb̄1, b̄2, . . . , b̄n) is a basis of L satisfying ‖c1‖ ≤ qσ and ‖c∗i ‖ ≤ σ for all i ≥ 2.
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To find such a basis B̄, we first show how to transform B to ensure ‖b∗i ‖ ≤ σ for all i ≥ 2, using
a polynomial-time algorithm which we call unbalanced reduction (see Alg. 2). This algorithm can easily
be explained as follows: in dimension two, it is easy to make b∗2 arbitrarily short by lengthening b1

(adding a suitable multiple of b2), since ‖b1‖× ‖b∗2‖ = vol(L) is invariant. Unbalanced reduction works
by iterating this process on two-dimensional projected lattices, similarly to the classical size-reduction
process. However, one would like to make sure that the resulting first basis vector c1 does not become
too large, which is quantified by the following result:

Theorem 4.1 (Unbalanced reduction) Given an n-dimensional projected block B = B′[i,i+n−1] of an

integer lattice L ⊆ Zm and a target σ ∈ Q+, Algorithm 2 outputs in polynomial time an n×n unimodular
matrix U such that C = UB satisfies ‖c1‖ ≤ nσδσ(B) and ‖c∗i ‖ ≤ σ for i ≥ 2, and:

δν(B) ≤ δν(C) ≤ ‖c1‖
σδσ (B)

× δν (B) for all ν ≤ σ (1)

where δσ(B) =
def

n∏
j=1

max
(
1,
∥∥b∗j∥∥ /σ) . (2)

We call δσ(B) the cubicity-defect of B relatively to σ: it basically measures by which amount the
hypercube of side σ should be scaled up to cover the parallelepiped spanned by b∗1, . . . ,b

∗
n. The proofs of

Algorithm 2 Unbalanced Reduction

Input: an n×m basis B of an integer lattice L ⊆ Zm and a target length σ ∈ Q+. More generally, B can be any n-dimensional
projected block B = B′[i,i+n−1] of some basis B′ of L ⊆ Zm.

Output: an n× n unimodular matrix U such that C = UB satisfies ‖c∗i ‖ ≤ σ for i ≥ 2 and ‖c1‖ ≤ nσδσ(B).
1: C ← B, U ← In and compute the Gram-Schmidt matrices µ and C∗

2: If ‖c∗i ‖ ≤ σ for all i, return U
3: for i = k − 1 downto 1 where k is the largest index such that ‖c∗k‖ > σ do
4: if ‖c∗i ‖ ≤ σ then
5: α← b−µi+1,ie
6: else

7: α←
⌈
−µi+1,i +

‖c∗i+1‖
‖c∗i ‖

√
(‖c∗i ‖ /σ)

2 − 1

⌉
8: end if
9: (ci, ci+1)← (ci+1 + α · ci, ci), (ui,ui+1)← (ui+1 + α · ui, ui) and update the Gram-Schmidt matrices µ and C∗.

10: end for
11: return U

Th. 4.1 and Alg. 2 can be found in App. C.2. Th. 4.1 shows that Alg. 2 solves co-cyclic lattice reduction
for q ≥ nδσ(B). However, this may not be suitable for our applications, since this lower bound depends
on B and might be unbounded. To address this issue, we now show that LLL can bound δσ(B) depending
only on n for appropriate σ:

Theorem 4.2 (LLL’s cubicity-defect) Let L be a full-rank lattice in Rn and σ ≥ ((1 + ε
LLL

)
√

4/3)r ·
bl(L) for some r ≥ 0. If B is an LLL-reduced basis of L with factor ε

LLL
, then δσ(B) ≤ ((1 +

ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4 .

By combining Th. 4.1 and 4.2, we obtain:

Theorem 4.3 (Co-cyclic Reduction) Given an n×m basis of a lattice L ⊆ Zm, ε > 0 and a rational

σ ≥ ((1 + ε
LLL

)
√

4/3)r · bl(L) for some r ≥ 0, and an integer q ≥ n((1 + ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4 , Alg. 3
computes a basis B̄ of an overlattice L̄ ⊇ L in time polynomial in the basis size, σ and 1/ε, such that∥∥B̄∗∥∥ ≤ σ and (qb̄1, b̄2, . . . , b̄n) is a basis of L. In particular, L̄/L ' Zq.

For instance, Th. 4.3 with r = n implies that given a lattice L and any cyclic group G of sufficiently large
order (i.e. 2Ω(n2

), one can efficiently obtain a basis B̄ of some overlattice L̄ of L such that L̄/L ' G
and ‖B̄∗‖ ≤ bl(L): by comparison, an LLL-reduced basis only approximates bl(L) to some exponential
factor in the worst case.
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Algorithm 3 Co-cyclic Reduction

Input: a basis of a full-rank integer lattice L ⊆ Zn, a factor ε > 0, and a rational σ ≥ ((1 + ε
LLL

)
√

4/3)r · bl(L) for some r ≥ 0,

and an integer q ≥ n((1 + ε
LLL

)
√

4/3)
(n−2r)2

8 +
(n−2r)

4

Output: a basis B̄ of an overlattice L̄ such that ‖B̄∗‖ ≤ σ and L̄/L ' Zq.
1: Apply Alg. 2 on an LLL-reduced basis with factor ε

LLL
output by the LLL algorithm to find a basis C of L.

2: return B̄ = (c1

q , c2, . . . , cn)

4.3 Arbitrary Groups

Using unbalanced reduction, we prove that for an arbitrary sufficiently large finite abelian group G of
rank ≤ n, given any basis B of the lattice L ⊆ Zn, one can compute a basis B̄ of some overlattice L̄
of L s.t. L̄/L ' G effectively and ‖B̄∗‖ is essentially lower than ‖B∗‖/#G1/n. In particular, bl(L̄) is
essentially #G1/n smaller than bl(L). Although this is slightly weaker than the result we obtained (in
the previous subsection) for cyclic groups G, it is sufficient for our worst-case to average-case reductions.

Theorem 4.4 (Structural Lattice Reduction) Given an n × m basis B of a lattice L ⊆ Zn, and

k ≤ n integers q1 ≥ · · · ≥ qk defining the group G =
∏k
i=1 Zqi s.t. nk(‖B∗‖ /σ)n ≤ #G or:

. #G ≥ n!
(n−k)!δσ(B) and for all i ≤ k, ‖B∗‖ /σ ≤ qi/(n+ 1− i)

Alg. 4 outputs a basis B̄ of an overlattice L̄ ⊇ L such that
∥∥B̄∗∥∥ ≤ σ and (q1b̄1, . . . , qnb̄n) is a basis of

L where qi = 1 for i > k. In particular, L̄/L ' G.

For instance, the condition nk(‖B∗‖ /σ)n ≤ #G in Th. 4.4 means that σ (and therefore ‖B̄∗‖) can be
chosen as low as nk/n‖B∗‖/(#G)1/n. The proof of Th. 4.4 can be found in App. C.3.

Algorithm 4 Structural Lattice Reduction
Input: σ, an n×m basis B of an integer lattice L, and (q1, . . . , qk) s.t. G = Zq1 × · · ·Zqk satisfies the conditions of Th. 4.4
Output: an n×m basis B̄ of an overlattice L̄ of L such that ‖B̄∗‖ ≤ σ and L̄/L ' G.
1: C ← B
2: for i = 1 to k do
3: if

∥∥∥C∗[i,n]

∥∥∥ ≤ σ return B̄ = (c1

q1
, . . . , ckqk , ck+1, . . . , cn)

4: Compute the smallest ` ≥ σ such that ` · δ`(C[i,n]) = qiσ/(n− i+ 1).
5: V ← UnbalancedReduction(C[i,n], σ) using Alg. 2.
6: Apply V on (ci, . . . , cn)
7: end for
8: return B̄ = (c1

q1
, . . . , ckqk , ck+1, . . . , cn)

Intuitively, Alg. 4 simply applies unbalanced reduction iteratively, cycle by cycle of G.

4.4 Application

Structural reduction finds a short overlattice basis, which can typically be used to sample short (over-
lattice) vectors, and which provides the following effective isomorphisms:

Proposition 4.5 Let L and L̄ be two full-rank lattices such that L̄ ⊇ L and L̄/L ' G where G =
Zq1×· · ·×Zqk . Given bases B and B̄ of resp. L and L̄, one can compute in polynomial time a morphism

ϕ s.t. the sequence 0 −→ L
id−→ L̄

ϕ−→ G −→ 0 is exact, and a “dual” morphism ϕ× : L× → Ĝ s.t.

[ϕ×(u)](ϕ(v)) = 〈u,v〉 mod 1 for all u ∈ L× and all v ∈ L̄ (3)

Furthermore, preimages of ϕ× can be computed in polynomial time.

Proof. (Sketch) Let (e1, . . . , ek) be the canonical generators of G =
∏k
i=1 Zqi . Find any basis C of

L and C̄ of L̄ such that C = (q1c̄1, . . . , qkc̄k, c̄k+1, . . . c̄n), then let ϕ be the morphism mapping C to
(e1, . . . , ek, 0, . . . , 0) and ϕ× be the mapping from C× to (ê1, . . . , êk, 0̂, . . . , 0̂). �

This proposition still holds if G is an explicit finite abelian group.

5 Hardness of Group-SIS

Our hardness result for GSIS requires that the finite abelian group G is explicit (see Sect. 2).
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5.1 Overview

We first sketch how to adapt the SIS reduction to GSIS using structural lattice reduction.
The main idea behind the SIS reduction can be traced back to 1935, when Mordell [22] published

an arithmetical proof of Minkowski’s theorem. To prove the existence of short non-zero vectors in an
arbitrary full-rank lattice L ⊆ Rn, Mordell implicitly presented an algorithm to find short vectors from
(exponentially many) long vectors, as follows. Let q ≥ 1 be an integer and w1, . . . ,wm ∈ L be distinct
vectors of norm ≤ R, where m > qn: for large R, m can be essentially chosen as large as the volume
of the R-radius ball divided by the volume of L. Letting vi = q−1wi, we have vi ∈ q−1L. Since
m > qn = [(q−1L) : L], there must be i 6= j such that vi ≡ vj mod L, i.e. vi − vj = q−1(wi −wj) ∈ L
whose (nonzero) norm is ≤ 2R/q, which is suitably short for appropriate choices of q and R.

This algorithm is not efficient since m is exponential in q, but it can be made polynomial by reducing
m to poly(n), using a SIS oracle for (q,m, n). Indeed, let L be an arbitrary full-rank integer lattice in
Zn. The lattice L̄ = q−1L is an overgroup of L such that L̄/L ' Znq = G: namely, there is an exact

sequence of groups 0 −→ L
id−→ L̄

ϕ−→ G −→ 0, where ϕ is efficiently computable, e.g. for any fixed basis
(b̄1, . . . , b̄n) of L̄, one may take ϕ(

∑n
i=1 xib̄i) = (x1 mod q, . . . , xn mod q) ∈ G.

Furthermore, if the basis B̄ is short enough compared to the minima of L, it is possible to sample
short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution of parameter as small as ηε(L). Fourier analysis
guarantees that for such parameter of the Gaussian distribution, each projection gi = ϕ(vi) is uniformly
distributed over G. This allows us to call an SIS oracle on (g1, . . . , gm), which outputs a short x ∈ Zm
such that

∑m
i=1 xigi = 0, i.e.

∑m
i=1 xiϕ(vi) = 0 which implies that v =

∑m
i=1 xivi ∈ L. This v can be

proved to be non-zero with overwhelming probability, and it is short because the vi’s and x are short,
which concludes the reduction from worst-case SIVP to SIS.

With this formalization, we can replace the SIS oracle by a GSIS oracle, as while as we are able to
sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution, where L̄/L ' G. And this is exactly
what structural lattice reduction ensures.

5.2 Reducing Worst-case ApproxSIVP to GSIS

Our main result formalizes the previous sketch and states that for appropriate choices of (G,m, β), if
one can solve GSIS(G,m, β) on average, then one can approximate SIVP in the worst case, i.e. one can
efficiently find short vectors in every n-dimensional lattice:

Theorem 5.1 Let n ∈ N and ε = negl(n). Given as input a basis B of a full-rank integer lattice
L ⊆ Zn and σ ≥

√
2 bl(L), and an explicit finite abelian group G of rank k ≤ n such that #G ≥

nk(‖B∗‖ /σ)n, Alg. 5 outputs (in random polynomial time) n linearly independent vectors of L with
norm ≤ σηε(Zn)

√
nπβ, using polynomially many calls to an oracle solving GSIS(G,m, β) with probability

≥ 1/ poly(n).

Algorithm 5 Reducing ApproxSIVP to GSIS

Input: a basis B of a full-rank integer lattice L ∈ Zn, a parameter σ ≥
√

2 bl(L), an explicit finite abelian group G satisfying the
condition of Th. 5.1, and an oracle O solving GSIS(G,m, β) with probability ≥ 1/poly(n), a negligible ε > 0

Output: A set S of n linearly independent vectors of L of norm ≤ σηε(Zn)
√
n/2πβ.

1: S ← ∅.
2: Call structural lattice reduction (Alg. 4) on (B,G, σ) to get B̄ s.t. ‖B̄∗‖ ≤ σ and ϕ : L̄→ G (Prop. 4.5) where L̄ = L(B̄).
3: repeat
4: Sample v1, · · · ,vm ∈ L̄ with distribution DL̄,σηε(Zn),0 using B̄.
5: gi = ϕ(vi) for 1 ≤ i ≤ m, forming a sequence g = (g1, . . . , gm) ∈ Gm.
6: Call the GSIS-oracle O on g, which returns x = (x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0.

7: v←∑m
i=1 xivi ∈ L

8: if ‖v‖ ≤ σηε(Zn)
√
nπβ and v /∈ span(S) then S ← S ∪ {v}

9: until dim(S) = n
10: Return S

In particular, by letting σ = ‖B‖∗
2ηε(Zn)

√
n/πβ

, we can obtain an incremental version of the reduction,

where the output basis is twice as short as the input. This generalizes [21, Th. 5.9] and [14, Th. 9.2]
with a GSIS oracle instead of SIS. Iterating Th. 5.1 until we reach σ =

√
2 bl(L) allows to connect the

average-case hardness of GSIS to the worst-case of ApproxSIVP.
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Corollary 5.2 Let n ∈ N and ε = negl(n). Let (Gn)n∈N be a sequence of explicit finite abelian groups

s.t. #Gn ≤ (βn/
√
mn)mn for mn ∈ N and Gn has rank kn. If #Gn ≥ nkn

(
ηε(Zn)

√
2n/πβn

)max(n,kn)

,

then using polynomially many calls to an oracle solving GSIS(Gn,mn, βn) with probability ≥ 1/ poly(n),
one can solve the worst-case n-dimensional ApproxSIVP

ηε(Zn)
√
n/πβn

in (randomized) polynomial time.

Consider the set of all full-rank integer lattices ⊆ Zm of volume ≥ ωn = nm
(
ηε(Zn)

√
2n/πβn

)m
. This

set can be partitioned as ∪GLG,m where G runs over all finite abelian groups of order ≥ ωn and rank
≤ m. Each such G satisfies the conditions of Cor. 5.2, and therefore GSIS over G is as hard as worst-case
lattice problems: for any of the partition cells LG,m, finding short vectors in a random lattice from this
cell is as hard as finding short vectors in any n-dim lattice.

6 Hardness of Search-Group-LWE

Like GSIS, our hardness result for GLWE requires that the finite abelian group G is explicit. The main
result of this section states that for appropriate choices of (G,m,α), if one can solve Search-GLWEG,m,≤α
on average with probability ≥ 1/ poly(n), then one can quantumly approximate SIVP in the worst case,
i.e. one can (quantum)-efficiently find short vectors in every n-dimensional lattice, which generalizes
Regev’s quantum Search-LWE reduction [31]. To do this, we only need to modify the classical part of
Regev’s proof, not the quantum part. More precisely, we only need to prove that a GLWE-oracle allows
us to approximate bounded distance decoding (BDD) for dual lattices in the worst-case for some factor
β: given a basis B× of a dual lattice L×, and a target t ∈ span(L×) within distance ≤ βλ1(L×) to L×,
find the lattice point u ∈ L× closest to t.

Let us first explain the main difference with LWE. In previous proofs, the LWE-oracle is used to
transform any β-BDD on L× into an β/q-BDD over the same lattice L×. One iterates this process
k times until the distance β/qk becomes smaller than 2−O(n)λ1(L×), at which point Babai’s nearest
plane algorithm [4] solves the BDD instance in polynomial time. To allow arbitrary structures G, we
reinterpret this as reducing β-BDD on L× to β-BDD over L̄×, where L̄ = L/q. Thus, instead of reducing
the distance, we modify the lattice to increase λ1(L×) until the BDD instance can be solved by Babai’s
algorithm. This approach allows arbitrary overlattices L̄, just like in our GSIS reduction.

More precisely, consider a BDD instance over L×: we have a target t ∈ span(L×) close to some secret
u ∈ L×. Let ŝ = ϕ×(u) ∈ Ĝ. Remember that structural lattice reduction gives an exact sequence of

groups 0 −→ L
id−→ L̄

ϕ−→ G −→ 0, where ϕ is efficiently computable. Let ϕ× be as in Prop. 4.5. Like
in the GSIS reduction, we sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution, in such a
way that each projection gi = ϕ(vi) is uniformly distributed over G. Then: ŝ(gi) = [ϕ×(u)](ϕ(vi)) ≡
〈u,vi〉 (mod1). Since t is close to u, each 〈t,vi〉 is therefore close to ŝ(gi) mod 1, namely 〈t,vi〉− ŝ(gi) ≡
〈t− u,vi〉 (mod 1). By adding a suitable noise, it is possible to simulate the distribution of the GLWE
noisy approximation of ŝ(gi) (using Lemma 2.4). Then one can recover the character ŝ by calling a
Search-GLWE oracle: this allows to compute u′ ∈ L× s.t. ϕ×(u′) = ϕ×(u). One can compute t − u′,
which is a target equally close to u − u′ ∈ L̄×, as t was close to u ∈ L×. Hence, we have transformed
a BDD-instance over L× into a BDD-instance over L̄× with exactly the same error t − u. By iterating
this process, one is eventually able to solve the BDD instance efficiently. Formally, we have:

Theorem 6.1 Let n ∈ N, ε = negl(n), a BDD factor β ≤
√
π/2 (2nηε(Zn))

−1
and θ =

β
√

2/π (2nηε(Zn)). Let α ∈
]
θ
√
π/2,

√
π/2

]
and an explicit finite abelian group G of rank k ≤ n.

Given as input a basis B of an n-dimensional lattice L and t ∈ span(L×) such that the BDD instance
(B×, t) admits a unique solution t −w ∈ L× with ‖w‖ ≤ βλ1(L×), and a Search-GLWEG,m,≤α oracle
satisfying

#G ≥ nk
(
‖B∗‖
bl(L)

θ
√
π/2√
2α

)n
, (4)

Alg. 6 finds in time polynomial in n and log(1/ε) a basis B̄ of some overlattice L̄ such that L̄/L ' G, and
a target t̄ ∈ span(L̄×) such that the BDD instance (B̄×, t̄) have the same error w, namely t̄−w ∈ L̄×.

If B is LLL-reduced with factor ε
LLL

, we can replace ‖B
∗‖

bl(L) by ((1 + ε
LLL

)
√

4/3)
n−1
2 in (4).
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The proof of Th. 6.1 is essentially summarized by Alg. 6, which makes a few simplifying assumptions.

Algorithm 6 Reducing BDD to GLWE
Input: A dimension n and a negligible probability ε = negl(n), a basis B of a n-dimensional integer lattice L, an average-oracle
O for Search-GLWEG,m,≤α satisfying the conditions of Th. 6.1, a BDD factor β, a target t and an upper-bound d0 ≤ βλ1(L×)
on the error norm.

Output: a basis B̄ of length
∥∥B̄∗∥∥ ≤ ‖B∗‖ /2 of some (G-)overlattice L̄ such that and a target t̄ ∈ span(L̄×) such that the BDD

instance (B̄×, t̄) has the same error w of norm ≤ d0 than (B×, t)

1: σ0 ← α√
2d0ηε(Zn)

≥ α
√

2

θ
√
π/2

bl(L) ≥
√

2 bl(L).

2: Call structural lattice reduction (Alg.4) on (B,G, σ0) to get (B̄, L̄) and ϕ : L̄→ G, ϕ× : L× → Ĝ (Prop. 4.5)
3: repeat
4: Sample m random points (v1, · · · ,vm) ∈ L̄ with distribution DL̄,σ0ηε(Zn) using B̄.
5: Let ai = ϕ(vi) and bi ← DT, α√

2
,〈t,vi〉, to form (ai, bi)i∈[1,m] ∈ (G× T)m.

6: Call the Search-GLWEG,m,≤α oracle on (ai, bi)i∈[1,m] to find ŝ ∈ Ĝ.
7: until Search-GLWEG,m,≤α finds a solution
8: t̄← t− u where u ∈ ϕ×−1(ŝ) (take any preimage modulo L̄×)
9: return B̄, t̄

In Step. 6 of Alg. 6, the Search-GLWEG,m,α oracle is called directly on the (ai, bi)i∈[1,m], whereas,
strictly speaking, we should actually randomize these inputs to make sure that the solution s follows the
right distribution: in the classical LWE reduction, one also uses the self-reducibility of LWE. To make
sure that the input has the right distribution, the key step is Step. 5. Note that 〈t,vi〉 = 〈u,vi〉+ 〈t−
u,vi〉 mod 1, where the first term is equal to ŝ(ai) = 〈ϕ×(u), ϕ(vi)〉. Since bi ← DT,

√
α/2,ŝ(ai)+〈t−u,vi〉

where vi ← DL,σ0ηε(Zn), Lemma 2.4 proves that bi has the requested distribution DT,α′,ŝ(ai) for some
α′ ≤ α

By iterating Alg. 6 and Th. 6.1 a polynomial number of times, as the length of the input basis
geometrically decreases, then λ1(L×) geometrically increases. Eventually, the BDD instance becomes
easy, and the error w can be retrieved using for instance Babai nearest plane algorithm. Thus we deduce
the following result on the hardness of Search-LWE.

Corollary 6.2 Let n ∈ N, ε = negl(n) and two real sequences βn ≤
√
π/2 (2nηε(Zn))

−1
, and αn ∈]

θn
√
π/2,

√
π/2

]
where θn = βn

√
2/π (2nηε(Zn)). Let (Gn)n∈N be a sequence of explicit finite abelian

groups of rank kn. If #Gn ≥ nkn
(

(1 + ε
LLL

)
√

4/3)
n−1
2

θn
√
π/2√

2αn

)max(n,kn)

, then using polynomially many

calls to an oracle solving Search-GLWEGn,≤αn with probability 1/ poly(n), one can solve worst-case n-
dimensional BDDβn in (randomized) polynomial time and ApproxSIVP√2n/βn

in quantum polynomial
time.

7 Hardness of Decisional-Group-LWE

In this section, we give two types of reductions for the hardness of decisional-GLWE.
First, it is well-known that in certain cases, such as when q is a small prime number (see [31, 19]), there

is an elementary reduction from search-LWE to decisional LWE, which allows to extend hardness results
on search-LWE to decisional-LWE. These special search-to-decision reductions can easily be adapted to
GLWE, but they only work for very special choices of G (such as G =

∏n
i=1 qi where the qi’s are small

prime numbers), which is insufficient to prove the hardness of decisional-GLWE for arbitrary (sufficiently
large) finite abelian groups G. More precisely, we have the following adaptation of [19], when the target
group order is smooth:

Theorem 7.1 (Search-to-Decision) Let n ∈ N and (Gn)n∈N = 〈e1〉 ⊕ · · · ⊕ 〈ekn〉 be a sequence of
abelian finite groups, where each ei has order qi(n). Let qi(n) have prime factorization qi = p

µ1,i

i,1 . . . p
µi,ti
i,ti

for pairwise distinct polynomially bounded prime pi,ji with µi,ji ≥ 1, where i ∈ [1, kn], ji ∈ [1, ti]. Let
0 < αn ≤ 1/ω(

√
log n) be a real sequence and ` be the number of prime factors pi,ji < ω

√
log n/αn. There

is a probabilistic polynomial-time reduction from Search-GLWEGn,αn to Decisional-GLWEGn,α′n for any

α′n ≥ αn such that α′n ≥ ω(
√

log n)/p
µi,ji
i,ji

for i ∈ [1, kn], ji ∈ [1, ti] and (α′n)` ≥ αn · ω(
√

log n)1+`.
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Our second type of reductions can transfer the following hardness results on Decisional-LWE to
Decisional-GLWE:

Theorem 7.2 ([31, 27]) Let n ∈ N and qn ≥ 1 be a sequence of integers, and let αn ∈ (0, 1) be a
real sequence such that αnqn ≥ 2

√
n. There exists a quantum reduction from worst-case n-dimensional

GapSVPÕ(n/αn) to Decisional-GLWEZnqn ,αn . If qn ≥ 2n/2 is smooth then there is a classical reduction
between them.

Theorem 7.3 ([9]) Let n ∈ N and qn ≥ 1 be a sequence of integers, and let αn ∈ (0, 1) be a real
sequence such that αn ≥ 2

√
n/2n/2. There exists a classical reduction from worst-case

√
n-dimensional

GapSVPÕ(
√
n/αn) to Decisional-GLWEZnqn ,βn , where β2

n = 10nα2
n + n

q2n
· ω(log n)

To do so, we reduce Decisional-LWE to Decisional-GLWE using what we call group switching. This
technique transforms GLWE samples over one group G to samples over another group G′, generalizing the
modulus-dimension switching technique in [9], which is actually the special case G = Znq and G′ = Zn′q′ .
We believe that the group switching technique proposed below is useful to better understand the core
idea of the modulus-dimension switching technique.

Before presenting group switching, we note that the modulus-dimension switching technique from [9]
implicitly uses a special case of structural lattice reduction. More precisely, Brakerski et al. [9] defined
a special lattice Λ (see Th 3.1 of [9]) to transform LWE samples over G = Znq to LWE samples over

G′ = Zn′q′ , but the meaning of Λ may look a bit mysterious. The lattice Λ is defined as Λ = 1
q′Z

n′ ·H+Zn

where H is some n′×n integer matrix: this matrix is actually denoted by G in [9], but this would collide
with our notation G for finite abelian groups. And [9] provided a good basis of Λ in special cases. We
note that the exact definition of Λ is not important: whatever is the quotient Λ/Zn, it turns out to
be isomorphic to the group G′ = Zn′q′ , as shown by the transformation mapping 1

q′x · H + y ∈ Λ to x

mod q′ ∈ G′. Thus, finding a good basis of Λ is actually a special case of structural lattice reduction
for the lattice Zn and the group G′. Therefore, it is natural to use structural lattice reduction directly
(instead of an ad-hoc process) to obtain a more general statement than the modulus-dimension switching
technique of [9].

Since we have two finite abelian groups G and G′ and two overlattices L̄ and L̄′ of Zn, we will have
two morphisms ϕ from L̄ to G and ϕ′ from L̄′ to G′ with ker(ϕ) = ker(ϕ′) = Zn. Both morphisms
are associated to their dual morphism as in Prop. 4.5, i.e. ϕ× from Zn to Ĝ and ϕ′× from Zn to Ĝ′,
satisfying [ϕ′×(u)](ϕ′(v)) = 〈u,v〉 mod 1 for all u ∈ Zn and all v ∈ L̄′ (resp. without the primes).

We say that a distribution S over Zn is K-bounded if Prs←S [‖s‖ > K] ≤ negl(n). By extension,
given a (public) morphism f from Zn to Ĝ, we say that a distribution S over Ĝ is K-bounded (for f)
if it is the image of a K-bounded distribution1 by f . In the following, we will choose ϕ× = f and ϕ
its dual morphism accordingly. Thus, any secret ŝ ← S has with overwhelming probability a preimage
s ∈ Zn of norm ≤ K. Note that the small s ∈ Zn may be hard to compute from ŝ, however in this case,
what matters is its existence. During group switching, the new secret in Ĝ′ will be ϕ′×(s), and the new
K-bounded distribution S ′ = ϕ′×(S).

Lemma 7.4 (Group Switching) Let G and G′ be two finite abelian groups of rank ≤ n s.t. G is
fully-explicit and G′ is explicit. Let L̄ be an overlattice of Zn such that L̄/Zn ' G. Let B̄′ be a basis
of an overlattice L̄′ of Zn such that L̄′/Zn ' G′. Let ϕ,ϕ′ and ϕ′× be defined as in Prop. 4.5. Let
r ≥ max

(√
2ηε(L̄), ‖B̄′∗‖ · ηε(Zn)

)
, where ε is some negligible function. Then, there is an efficient

randomized algorithm which, given as input a sample from G × T, outputs a sample from G′ × T, with
the following properties:
- If the input sample has uniform distribution in G×T, then the output sample has uniform distribution
in G′ × T (except with negligible distance).
- If the input is distributed according to AG,α(ŝ) for some ŝ = ϕ×(s) s.t. s ∈ Zn and ‖s‖ ≤ K, then the

output distribution is statistically close to AG′,β(ŝ′), where ŝ′ = ϕ′×(s) ∈ Ĝ′ and β2 = α2 + r2(‖s‖2 +
K2) ≤ α2 + 2(rK)2.

By combining the Group Switching Lemma 7.4 with the structural reduction Theorem 4.4, one obtains
the following reduction between Decisional-GLWE with group G to Decisional-GLWE with group G′:

1Ideally, f should be collision resistant among samples from S. In the classical LWE (G = Zn
q ), f would map s ∈ Zn to

the secret character ŝ : y→ 1/q〈s,y〉 mod 1 in Ĝ.
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Corollary 7.5 (GLWE to GLWE) Let n ∈ N and 0 < σn < 1 be a real sequence. Let (Gn)n∈N
and (G′n)n∈N be two sequences of finite abelian groups with respective rank kn ≤ n and k′n ≤ n s.t.
#Gn ≥ nkn(

√
2/σn)n (or if Gn = Znqn where qn ≥

√
2/σn) and #G′n ≥ nk

′
n(1/σn)n. Assume that Gn is

fully-explicit and G′n is explicit. Let S be an arbitrary Kn-bounded distribution over Zn and S = ϕ×(S)
its image by some morphism ϕ× : Zn → Ĝn, αn, βn > 0 be two real sequences and ε = negl(n) satisfying

β2
n ≥ α2

n + 2(σnKn · ηε(Zn))2.

Then there is an efficient reduction from Decisional-GLWEGn,≤αn(S) to Decisional-GLWEG′n,≤βn(S ′),
where S ′ = ϕ′×(S) for some morphism ϕ′× : Zn → Ĝ′n

Proof. Given the canonical basis of Zn and the group Gn, structural reduction finds an overlattice L̄
together with a basis C̄ s.t.

∥∥C̄∗∥∥ ≤ σn/
√

2. Therefore
√

2ηε(L̄) ≤ σnηε(Zn). And structural reduction
on G′n and σn gives a short basis B̄′ of length ≤ σn and defines L̄′. The rest of the proof follows
immediately from Lemma 7.4. �

Using the normal form [3] of LWE, namely, if S is the image of the αnqn
√
n-bounded distribution

DZn,αnqn , through the canonical embedding which maps s ∈ Zn to the character ŝ = y → 1/qn〈s,y〉
mod 1, we obtain the quantum/classical hardness of Decisional-GLWE problem for any sufficiently large
finite Abelian group, together with Theorems 7.2 and 7.3:

Corollary 7.6 (Quantum Hardness of GLWE) Let n ∈ N and qn ≥ 1 be a sequence of integers
and (G′n)n∈N be a sequence of any finite abelian explicit groups such that #G′n ≥ nkn(qn/

√
2)n where

kn = rank (G′n) ≤ n. Let αn, βn ∈ (0, 1) be two real sequences such that αnqn ≥ 2
√
n and βn =

αn
√
n·ω(

√
log n). Then there exists a quantum reduction from worst-case n-dimensional GapSVPÕ(n/αn)

to Decisional-GLWEG′n,βn .

The lower bound on #G′n is better than for #Gn in Cor. 6.2 and 5.2, because group switching relies
on structural reduction over Zn, rather than over an arbitrary lattice: the canonical basis of Zn is
orthonormal, which simplifies the bound of Sect. 4.

Corollary 7.7 (Classical Hardness of GLWE) Let n ∈ N and qn ≥ 1 be a sequence of integers
and (G′n)n∈N be a sequence of any finite abelian explicit groups such that #G′n ≥ nkn(qn/

√
2)n where

kn = rank (G′n) ≤ n. Let αn, βn ∈ (0, 1) be two real sequences such that αn ≥ 2
√
n/2n/2 and

β2
n = n2α2

n · ω(log n) + n2

q2n
· ω(log2 n). There exists a classical reduction from worst-case

√
n-dimensional

GapSVPÕ(
√
n/αn) to Decisional-GLWEG′n,βn .
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A Missing Proofs of Sect. 2

In order to ease the proofs of indistinguishability between two distributions, we introduce an approximate
equality which will also be used in App. E: for ε ∈]0, 1

2 ] and n,m ∈ N, the notation a =ε,n,m b means

b · (1−ε)n
(1+ε)m ≤ a ≤ b ·

(1+ε)n

(1−ε)m , which implies b =ε,m,n a and also a = b(1 + (m+ n)ε+O(ε2)). If a =ε,n,m b

and c =ε,n′,m′ d, we then have ac =ε,n+n′,m+m′ bd.
With this notation, the main property of the smoothing parameter is that for all lattice L, c ∈ span(L),

σ ≥ ηε(L), we have that ρRn,σ(c + L) =ε,1,0 1/ vol(L). Thus for all overlattice L̄ ⊇ L and all c ∈ L̄,
ρ
L̄/L,σ(c) =ε,1,1

vol(L̄)
vol(L)
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A.1 Proof of Prop. 2.2

We know that for ε = 1/10, independent Gaussian samples (yi ←ε DL,si) such that
√

2ηε(L) ≤ si have
probability ≤ 9/10 to be in any fixed hyperplane (see [30, Lemma 14]). This can be adapted to any
ε > 0, so that one can extract a full-rank family F of n vectors of norm ‖F‖ ≤

√
n/2π ·max si.

Then the generalized LLL algorithm for linearly dependent vectors [29] F ∪ B returns a basis C of
length ‖C∗‖ ≤

√
n/2π ·max si in polynomial time.

A.2 Proof of Lemma 2.4 on Discrete Convolution

We now prove the dot product convolution Lemma.

The proof relies on the following equality: For α, σ ∈ Rge0, for γ =
(

1
σ2 + u2

α2

)−1/2

and Γ =
√
α2 + σ2u2

1

σ2
x2 +

1

α2
(t− ux)2

=
1

γ2

(
x− γ2tu

α2

)2

+
1

Γ2
t2

Let C = z + L be some coset of a n-dimensional lattice L, u ∈ Rn, α, σ ∈ Rge0 and ε ∈ (0, 1/2). Let
(e1, . . . , en) be an orthonormal basis of Rn such that u = u · en. A vector v ∈ Rn will be expressed as∑n
i=1 viei.

∑
v∈C
DRn,σ(v)DR,α(t− 〈u,v〉) =

∑
v∈C
DR,σ(v1) . . .DR,σ(vn)DR,α(t− uvn)

=
∑
v∈C
DR,σ(v1) . . .DR,σ(vn−1)

1

σα
exp

(
−π
(

1

σ2
v2
n +

1

α2
(t− uvn)2

))

=
1

σnα

∑
v∈C

exp

(
−π
(

1

σ
v2

1 + · · ·+ 1

σ
v2
n−1 +

1

γ2

(
vn −

γ2u

α2
t

)2

+
1

Γ2
t2

))

Let f be the affine function which maps
∑n
i=1 viei to v1

σ e1 + · · ·+ vn−1

σ en−1 + vn−γ2ut/α2

γ en. Then,

∑
v∈C
DRn,σ(v)DR,α(t− 〈u,v〉) =

1

σnα

∑
v∈C

exp

(
−π
(
‖f(v)‖2 +

1

Γ2
t2
))

=
1

σnα

∑
v′∈f(C)

exp

(
−π
(
‖v‖2 +

1

Γ2
t2
))

=
Γ

σnα
DRn,1(f(C))DR,Γ(t)

Note that the largest eigenvalue of the linear part of f is 1/γ, thus since C = z + L, f(C) = z′ + L′

where ηε(L
′) ≤ ηε(L)/γ ≤ 1. Therefore, DRn,1(f(C)) =ε,1,1 1/ vol(L′) = σn−1γ/ vol(L). We finally

obtain:

∑
v∈C
DRn,σ(v)DR,α(t− 〈u,v〉) =ε,1,1 DR,Γ(t)

Now, we can prove the lemma. First, let K = R and b ← DK,α,c+〈u,v〉 where v ← DC,σ. Then the
density of b is

∑
v∈C DK,α(b− c− 〈u,v〉)DC,σ(v) =ε,1,1 DK,Γ(b− c) = DK,Γ,c(b).
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Second, let K = 1
NZ, but assume that α ≥ ηε(K). the density of b ∈ K is

∑
v∈C

DR,α(b− c− 〈u,v〉)
DR,α(K− c− 〈u,v〉)DC,σ(v)

Since the denominator is =ε,1,0 1/ vol(K), the whole expression is nearly equal to NDR,Γ,c(b). Since
Γ ≥ α ≥ ηε(K), then the N can be viewed as 1/DR,Γ,c(K), and finally, the density of b is DK,Γ,c(b).

B Addendum on Sect. 3

B.1 Proof of Th. 3.1

Let L ∈ LG,m. Then G has rank ≤ m because L ⊆ Zm. And G is isomorphic to some product
Zq1 × · · · × Zqk of cyclic groups, where 1 ≤ k ≤ m, qi ≥ 1 and qi+1 divides qi for all i. By [26],
there exist primitive vectors z1, . . . , zk ∈ Zm s.t. L = {y ∈ Zm, 〈y, zi〉 ≡ 0 (mod qi), i ∈ [1, k]}. This
shows that there exists g = (g1, . . . , gm) ∈ Gm generating G such that L = Lg, where we recall that
Lg = {(x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G}.

Reciprocally, let g = (g1, . . . , gm) ∈ Gm generate G. Consider the morphism ψ which maps
(x1, . . . , xm) ∈ Zm to

∑m
i=1 xigi ∈ G. By definition, the image of ψ is G and its kernel is Lg, therefore

Zm/Lg ' G.

B.2 Proof of Lemma 3.2

Let g = (g1, . . . , gm) ∈ Gm be such that the gi’s generate G. Let h = (h1, . . . , hm) ∈ Gm.
Assume that Lg = Lh. Define a map ψ : G → G as follows: for any g ∈ G, there exists a

decomposition x = (x1, . . . , xm) ∈ Zm s.t. g =
∑m
i=1 xigi, and we let ψ(g) =

∑m
i=1 xihi. This map

is well-defined because if there are two decompositions of g, i.e. g =
∑m
i=1 xigi =

∑m
i=1 yigi, then

x − y ∈ Lg = Lh, thus
∑m
i=1 xihi =

∑m
i=1 yihi and ψ(g) has the same value. It can be checked that

ψ is a morphism. Since Zm/Lg ' Zm/Lh, we know that the hi’s generate G, and therefore ψ is an
automorphism of G.

Reciprocally, let ψ be an automorphism of G such that hi = ψ(gi) for all 1 ≤ i ≤ m. Then
ψ(
∑m
i=1 xigi) =

∑m
i=1 xihi for any x = (x1, . . . , xm) ∈ Zm. It follows that

∑m
i=1 xigi = 0 if and only if∑m

i=1 xihi = 0. Hence, Lg = Lh.
Finally, unicity follows from ψ(

∑m
i=1 xigi) =

∑m
i=1 xihi.

B.3 Proof of Lemma 3.4

We prove the decisional version here, and the search version is analogous. Given the Decisional-
GLWEG,m′,α(S) oracle (m′ to be specified later), we now construct an efficient algorithm B to distinguish
m samples (ai, bi)i∈[1,m] either from AG,β(ŝ) or uniform in G×T for some unknown β (≤ α) and secret ŝ

sampled from S. Let Z be the set of integer multiples of 1
m2α

2 between 0 and α2. For each z ∈ Z, B does

the following. B picks m uniform samples (ãi, b̃i)i∈[1,m] from G×T and receives m samples (ai, bi)i∈[1,m]

from his challenger. B estimates the acceptance probability of the Decisional-GLWEG,m′,α(S) oracle on

the following two inputs: The first input is of the form (ãi, b̃
′
i)i∈[1,m], where b̃′i ← DT,z,b̃i and the second

input is of the form (ai, b
′
i)i∈[1,m], where b′i ← DT,z,bi . If in any of these polynomial attempts a non-

negligible difference is observed between two acceptance probabilities, output “non-uniform”; otherwise,
output “uniform”.

Note that (ãi, b̃
′
i)i∈[1,m] is uniformly random in G×T. If (ai, bi)i∈[1,m] is uniformly random in G×T,

then the two acceptance probabilities are exactly the same. If (ai, bi)i∈[1,m] is distributed as AG,β(ŝ),
then by classical convolution, (ai, b

′
i)i∈[1,m] is distributed as A

G,
√
β2+z

(ŝ). Consider the smallest z ∈ Z
such that z ≥ α2 − β2. Clearly, z ≤ α2 − β2 + 1

m2α
2. Then

α ≤
√
β2 + z ≤

√
α2 +

1

m2
α2 ≤ (1 +

1

m2
)α.
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Therefore, the statistical distance between DT,α,ŝ(ai) and DT,
√
β2+z,ŝ(ai)

is at most O( 1
m2 ) for i ∈ [1,m].

The statistical distance of m samples from A
G,
√
β2+z

(ŝ) and m samples from AG,α(ŝ) is at most O( 1
m ).

Hence, for our choice of z, and by Chernoff bound, non-negligible (O( 1
m )) difference will be observed

with probability ≥ 1
3 , if (ai, bi)i∈[1,m] is distributed as AG,β(ŝ). Notice that we can set m′ = m3 in the

Decisional-GLWE oracle.

B.4 Discretization of GLWE

In this subsection, we discuss discrete versions of the GLWE problem, where the LWE samples (a, b) are
not taken in G× T, but b is instead chosen from a discrete subset of T.

The first option is to use the rounded Gaussian distributions, which is suitable for a floating point
representation. By convention, the distance between two numbers x, y ∈ T is minz∈Z(|x − y + z|). Let
h1, . . . , hp be p real numbers such that 0 ≤ h1 < · · · < hp < 1. We denote by H the values h1, . . . , hp
mod 1, which is a finite subset of T. We define the Rounded Discrete GLWE distribution denoted by
ArG,H,α(ŝ) the distribution of tha pair (a, b) over G × H where a is uniformly random in G and b is
sampled according to DT,α,ŝ(a) and rounded to the nearest value over H. For the decisional variant, the
uniform distribution of b over T is replaced by the distribution over H where b is sampled uniformly
at random over T and rounded to its nearest value in H. With this definition, it is clear that starting
from continuous GLWE (or uniform) samples (a, b) ∈ G×T, it suffices to take a′ = a and round b to its
nearest value b′ ∈ H to obtain a discrete and rounded sample (a′, b′). We denote by (Search) Decisional-
GLWEr(G,H,α)(S) the corresponding problems. If an oracle solves Decisional-GLWEr(G,H,α)(S)
(resp. Search), it automatically solves the underlying continuous Decisional-GLWEG,α(S) (resp. Search)
instance (provided that the solution remains unique). Reciprocally, one can turn a discrete rounded
GLWE sample into a continuous one by adding some Gaussian noise larger than the maximal distance
between two consecutive values in H:

Lemma B.1 Let h1, . . . , hp be p real numbers such that 0 ≤ h1 < · · · < hp < 1 and H their
representatives in T. By convention, we set hp+1 = 1 + h1. For all parameter β such that β ≥√

2 maxi∈[1,p](hi+1 − hi). Then there is a reduction from Decisional-GLWEr(G,H,α)(S) (resp. Search)

to Decisional-GLWE
G,
√
α2+β2(S) (resp. Search) for any distribution S over Ĝ.

The second option is to discretize GLWE over a finite subgroup K = 1
NZ/Z of the torus using

the discrete Gaussian distribution. For β > 0 and some positive integer N , we denote ĀG,β,N (ŝ) the
distribution over G×K which chooses a← G uniformly at random, sets b← DK,β,ŝ(a) and outputs (a, b).
We call (Search) Decisional-DGLWEG,α,N (S) this discretization.

Again, we show that the discrete version is at least as hard as the continuous version for some suitable
parameters:

Lemma B.2 Let G be any finite abelian group and N > 0 an integer. Let 0 < α, β < 1 be reals such
that β ≥ ηε( 1

NZ) for some negligible function ε. Then there is a reduction from Decisional-GLWEG,α(S)

(resp. Search) to Decisional-DGLWE
G,
√
α2+β2,N

(S) (resp. Search) for any distribution S over Ĝ.

Proof. The reduction does the following: given a sample (a, b) ∈ G × T, it sets a′ = a and samples
b′ ← DK,β,b. If the distribution of (a, b) is AG,α(ŝ), then b ← DT,α,ŝ(a). Since β ≥ ηε(

1
NZ), the

distribution of b′ is statistically close to DK,
√
α2+β2,ŝ(a)

by simple convolution. If (a, b) is uniformly

random over G× T, then b is uniformly random over T = R/Z and independent of a. We obtain that b′

is uniformly random over K. �

C Missing Proofs of Sect. 4

C.1 Proof of Th. 4.2

Let B be an LLL-reduced basis with factor ε
LLL

of an n-dimensional lattice L ⊆ Rn. Let α = (1 +

ε
LLL

)
√

4/3.
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Let x1, . . . , xn denote the ‖b∗i ‖’s ordered by decreasing value. Let k = min {i ∈ [1, n] st. xi/xi+1 >
(1 + ε

LLL
)
√

4/3}, where xn+1 = 0+.
Th. 4.2 follows from the following inequalities:

bl(L) ≥
(

k∏
i=1

xi

)1/k

. (5)

δbl(L)(B) ≤ αn2

8 +n2

4 (6)

δαr bl(L)(B) ≤ α (n−2r)2

8 +
(n−2r)2

4 (7)

Proof of (5) The proof follows from the following two facts: First, we have: bl(L) ≥(∏n
j=n+1−i

∥∥b∗j∥∥)1/i

for all i ∈ [1, n]. Indeed, consider the projection πn+1−i over (b1, . . . ,bn−i)
⊥

. Then

bl(L) ≥ bl(πn+1−i(L)) because projections cannot increase Gram-Schmidt norms, and bl(πn+1−i(L)) ≥
vol(πn+1−i(L)) =

(∏n
j=n+1−i

∥∥b∗j∥∥)1/i

because B[n+1−i,n] is a basis of πn+1−i(L). Second, let A = {i ∈
[1, n] s.t ‖b∗i ‖ ≥ xk}. By definition of k, i /∈ A =⇒ ‖b∗i ‖ < xk/((1 + ε

LLL
)
√

4/3). Therefore, Lovász’
condition implies that for all i ∈ A, i+ 1 ∈ A. Thus, A is necessarily the right-most integer interval with
k elements, i.e. [n+ 1− k, n] and

∏k
i=1 xi =

∏n
i=n+1−k ‖b∗i ‖. �

Proof of (6) Let σ0 =
(∏k

i=1 xi

)1/k

and j = max{i ∈ [1, k], xi ≥ σ0}. Note that δσ0(B) =
∏j
l=1

xl
σ0

=∏k
l=j+1

σ0

xl
. If j ≤ k/2, then xl/σ0 ≤ αj+1−l for all l ≤ j, therefore δσ0

(B) ≤ α(1+...+j) ≤ α
k
4 ( k2 +1). If

j > k/2, σ/xl ≤ αl−j for all l ≥ j, therefore δσ(B) ≤ α(1+...+(k−j)) ≤ α
k
4 ( k2 +1). In all cases, δσ0(B) ≤

α
k
4 ( k2 +1) ≤ α

n
4 (n2 +1). Finally, the cubicity-defect decreases with σ: since bl(L) ≥ σ0, δbl(L)(B) ≤ δσ0(B)

. �

Proof of (7) Assume by contradiction that δαr bl(L) > α(n2−r)+···+2+1. Let j = max{i s.t. xi ≥
αr bl(L)}, since δαr bl(L) ≤ xj

αr bl(L) . . .
x1

αr bl(L) ≤ αα2 . . . αj then j > n
2 − r. Thus

δbl(L)(B)

≥
j∏
i=1

xi
bl(L)

j+r∏
i=j+1

xi
bl(L)

≥ δαr bl(L)α
rjαr−1...α1

> α(n2−r+r)+···+(1+r)+(0+r)α(r−1)+···+2+1

> α
n
2 +···+1

This contradicts (6), thus δαr bl(L) ≤ α
(n−2r)2

8 +
(n−2r)

4 . �

C.2 Proof of Theorem 4.1 and Alg. 2

Let ai = max(1, ‖b∗i ‖ /σ) for i ∈ [1, n]. For each i from k− 1 downto 1, we use the suffix “old” and “new”
to denote respectively the values of the variables at the beginning and at the end of the “for” loop (line 3
of Alg. 2). Furthermore, we call xi the value ‖c∗new

i ‖ during iteration i. Note that xi is also
∥∥c∗old

i

∥∥
during the next iteration (of index i− 1 since i goes backwards).

We show by induction over i that the following invariant holds at the end of each iteration (line 3 of
Alg. 2):

aixi+1 ≤ xi ≤ aixi+1 + σai (8)

At the first iteration (i = k − 1), it is clear that xk =
∥∥c∗old

k

∥∥ = σak. At the beginning of iteration i
(line 3), there are two cases:
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1. if
∥∥c∗old

i

∥∥ ≤ σ and
∥∥c∗old

i+1

∥∥ > σ (line 9), we size-reduce and swap the two vectors, so that ‖c∗new
i ‖

satisfies: ∥∥c∗old
i+1

∥∥ ≤ ‖c∗new
i ‖ ≤

∥∥c∗old
i+1

∥∥+ σ.

Since ai = 1, xi+1 =
∥∥c∗old

i+1

∥∥ and xi = ‖c∗new
i ‖, the invariant (8) holds.

2. If
∥∥c∗old

i

∥∥ > σ and
∥∥c∗old

i+1

∥∥ > σ (line 7), we transform the block so that the norm of the first vector
satisfies

R ≤ ‖c∗new
i ‖ ≤ R+

∥∥c∗old
i

∥∥ . (9)

where R =
∥∥c∗old

i+1

∥∥∥∥c∗old
i

∥∥ /σ
This condition can always be fulfilled with a primitive vector of the form cnew

i = cold
i+1 + αcold

i for
some α ∈ Z. Since the volume is invariant, the new

∥∥c∗new
i+1

∥∥ is upper-bounded by σ. And by

construction, Equation (9) is equivalent to the invariant (8) since
∥∥c∗old

i

∥∥ = aiσ, ‖c∗new
i ‖ = xi and∥∥c∗old

i+1

∥∥ = xi+1.

By expanding, this invariant implies that

x1 ≤ σ

k∑
i=1

a1 . . . ai

= σ

k∑
i=1

δσ(B[1,i])

≤ nσδσ(B)

Note that the transformation matrix of the unbalanced reduction algorithm is

α1 · · · αk−1 1 0 · · · 0

1 0 · · · 0
...

...

0
. . .

. . .
...

...
...

0 0 1 0 0 · · · 0
0 · · · · · · 0 1 0 0
...

... 0
. . . 0

0 · · · · · · 0 0 0 1


where αi is either b−µi+1,ie or

⌈
−µi+1,i + xi+1

σ

√
1− 1

a2i

⌉
. Since each xi+1 is bounded by δσ(B[i+1,n]), all

coefficients have a size polynomial in the input basis and the overall complexity is therefore polynomial.
Now let us show (1). It suffices to prove that the following invariant holds at the beginning of each

iteration:

∀ ν ≤ σ, δν

(
Cold

[i,n]

)
≤ δν

(
Cnew

[i,n]

)
≤ ‖c∗new

i ‖
σδσ

(
Cold

[i,n]

) × δν (Cold
[i,n]

)
(10)

Since all
∥∥c∗old

j

∥∥ ≤ σ for j = i+ 2, . . . , n, δσ

(
C*

[i,n]

)
= δσ

(
C*

[i,i+1]

)
, where (*) is either old or new.

Hence, showing (10) amounts to show

∀ ν ≤ σ, δν

(
Cold

[i,i+1]

)
≤ δν

(
Cnew

[i,i+1]

)
≤ ‖c∗new

i ‖
σδσ

(
Cold

[i,i+1]

) × δν (Cold
[i,i+1]

)
(11)

Two cases can occur in the for loop of Alg. 2:

• First case:
∥∥c∗old

i

∥∥ ≤ σ and
∥∥c∗old

i+1

∥∥ ≥ σ (swap case). Since ‖c∗new
i ‖ is projected on a space of

higher dimension than
∥∥c∗old

i+1

∥∥, we have ‖c∗new
i ‖ ≥

∥∥c∗old
i+1

∥∥ ≥ ν and since the projected volume

vol
(
C[i,i+1]

)
remains unchanged, we have

‖c∗newi ‖
‖c∗oldi+1 ‖ =

‖c∗oldi+1 ‖
‖c∗newi+1 ‖ and hence

∥∥c∗new
i+1

∥∥ ≤ ∥∥c∗old
i

∥∥.
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By definition,

δν

(
Cnew

[i,i+1]

)
=
‖c∗new
i ‖
ν

×max

(
1,

∥∥c∗new
i+1

∥∥
ν

)

δν

(
Cold

[i,i+1]

)
=

∥∥c∗old
i+1

∥∥
ν

×max

(
1,

∥∥c∗old
i

∥∥
ν

)

We obtain
δν(Cnew

[i,i+1])
δν
(
Cold

[i,i+1]

) =
‖c∗new
i ‖
‖c∗oldi+1 ‖ ×

max

(
1,
‖c∗newi+1 ‖

ν

)
max

(
1,
‖c∗oldi ‖

ν

)
︸ ︷︷ ︸

≥1

. Now σδσ

(
Cold

[i,i+1]

)
=
∥∥c∗old

i+1

∥∥ proves the

right side of (11).

For the left side, it suffices to notice that
δν(Cnew

[i,i+1])
δν
(
Cold

[i,i+1]

) =
max

(
‖c∗newi ‖,

vol(C[i,i+1])
ν

)

max

(
‖c∗oldi+1 ‖,

vol(C[i,i+1])
ν

) ≤ 1.

• Second case:
∥∥c∗old

i

∥∥ ≥ σ and
∥∥c∗old

i+1

∥∥ ≥ σ. Thus we have ‖c∗new
i ‖ ≥ σ and,

∥∥c∗new
i+1

∥∥ ≤ σ. There-

fore, the two equality hold: δσ

(
Cold

[i,i+1]

)
=

vol(C[i,i+1])
σ2 , and a fortiori, δν

(
Cold

[i,i+1]

)
=

vol(C[i,i+1])
ν2 .

Since by definition, δν

(
Cnew

[i,i+1]

)
=
‖c∗newi ‖

ν ×max

(
1,
‖c∗newi+1 ‖

ν

)
, the left side of (11) easily follows.

Furthermore,

δν

(
Cnew

[i,i+1]

)
δν

(
Cold

[i,i+1]

) =
ν ‖c∗new

i ‖
σ2δσ

(
Cold

[i,i+1]

) ×max

(
1,

∥∥c∗new
i+1

∥∥
ν

)

=
ν ‖c∗new

i ‖
σδσ

(
Cold

[i,i+1]

) ×max

(
ν

σ
,

∥∥c∗new
i+1

∥∥
σ

)
︸ ︷︷ ︸

≤1

This proves the right side of Inequality (11).

C.3 Proof of Th. 4.4

We will first prove the theorem using the first condition, which is tighter than the second one. The
invariant of the main for loop is that at the beginning of ith iteration, the current basis C[i,n] satisfies:

∥∥c∗j∥∥ ≤ qjσ for all j < i and δσ(C[i,n]) ≤
k∏
j=i

qj
n+ 1− j (12)

With this invariant, it is clear that the returned B̄ at line 3 or 8 satisfies the upper-bound
∥∥B̄∗∥∥ ≤ σ.

Let us show (12) by induction on i. Clearly, the condition holds for i = 1.
At step 4, ` exists and is easy to compute, since the function ν → log(δν(C[i,n])) is a piecewise affine

positive decreasing continuous function which is zero when ν =
∥∥∥C∗[i,n]

∥∥∥ ≤ ‖B∗‖. With this `, unbalanced

reduction always produces a new basis such that ‖c∗new
i ‖ ≤ qi · σ. Then, there are two cases: either

` = σ, and in this case, δσ(Cnew
[i+1,n]) = 1. Or we have the equality `δ`(C

old
[i,n]) = qiσ/(n + 1 − i). By

replacing σ and ν by ` and σ respectively in (1), we obtain:

δσ

(
Cnew

[i,n]

)
≤
‖c∗new
i ‖ × δσ

(
Cold

[i,n]

)
`× δ`

(
Cold

[i,n]

) ≤ ‖c∗new
i ‖ ×

∏k
j=i

qj
n+1−j

qiσ
n−i+1
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Since δσ

(
Cnew

[i,n]

)
= δσ

(
Cnew

[i+1,n]

)
∗ ‖b

∗new
i ‖
σ , we have:

δσ

(
Cnew

[i+1,n]

)
≤

k∏
j=i+1

qj
n+ 1− j

To prove the theorem with the second condition, it suffices to notice that at the first iteration,
the length ` is smaller than (n ‖B∗‖n /q1)1/(n−1), because for this value, `δ`(B) ≤ `(‖B∗‖ /`)n = q1

n .

Therefore, for the next iteration,
∥∥∥B∗[2,n]

∥∥∥ ≤ ` and (`/σ)n−1 ≤ nσ
q1
‖B∗‖n /σn ≤ q2 · · · · · qn/nk−1. The

proof goes on by induction.

D Missing Proofs of Sect. 5

D.1 Proof of Th. 5.1

Calls to GSIS. Since σηε(Zn) ≥ bl(L)ηε(Zn) ≥ ηε(L), DL̄/L,σ is statistically close to the uniform

distribution over L̄/L. Therefore the vi’s are uniform mod L by Lemma 2.3. Thus, the elements
gi = ϕ(vi) (defined at Line 5) have uniform distribution over G, which allows to make calls to the GSIS
oracle at Line 6.
Correctness. It is easy to see that v =

∑m
i=1 xivi (defined in Line 7) is indeed a short vector of L,

since ϕ(v) =
∑m
i=1 xigi = 0 and

E[‖v‖] ≤ ‖x‖ × E[‖vi‖]
≤ β ×

√
n/2πηε(Zn)σ

Termination. It remains to prove that the algorithm indeed outputs n linearly independent vectors
(and in particular that the output vectors are non-zero). This part of the proof is similar to the proof
of [21]. The distribution of the output vectors v’s depends on the vi’s and on the answer x of the GSIS-
oracle, which only depends on g = (g1, . . . , gm). The distribution of (vi), (gi),x during the algorithm
can be equivalently simulated as follows: First choose (g1, . . . , gm) uniformly in G, and call the GSIS
oracle which returns a non-zero solution x with non-negligible probability. Now, for each gi, sample the
preimages vi, which necessarily have the conditional distribution of vi ← DL̄,σηε(Zn) where ϕ(vi) = gi,

i.e. the distribution Dϕ−1(gi),σηε(Zn) where ϕ−1(gi) is a coset of L. From Proposition 2.2, since σηε(Zn) ≥√
2ηε(L), one can form a full rank family from O(n) of such samples, which proves that the algorithm

terminates.

D.2 Proof of Cor. 5.2

We consider two cases, depending on the rank kn of Gn.

If kn ≤ n and #Gn ≥ nkn
(
ηε(Zn)

√
2n/πβn

)n
, then it is a direct consequence of Th. 5.1.

Now, assume that kn > n and #Gn ≥ nkn
(
ηε(Zn)

√
2n/πβn

)kn
. Consider the decomposition of Gn

into elementary divisors: Gn '
∏kn
i=1 Zqi where each qi+1 divides qi. Then:(

n∏
i=1

qi

)1/n

≥
(
kn∏
i=1

qi

)1/kn

.

Letting Hn =
∏n
i=1 Zqi , we get that #Hn ≥ #G

n/kn
n ≥ nn

(
ηε(Zn)

√
2n/πβn

)n
and Hn has rank n.

Therefore solving GSIS(Hn,mn, βn) with probability ≥ 1/poly(n) can be used to solve worst-case n-dim
ApproxSIVP

ηε(Zn)
√
n/πβn

But since Gn ' Hn × Jn for some finite abelian group Jn, we know that

solving GSIS(Hn,mn, βn) with probability ≥ 1/ poly(n) can be reduced to solving GSIS(Gn,mn, βn)
with probability ≥ 1/ poly(n).
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E Missing proofs of Section 6

E.1 Proof of Theorem 6.1

Let t, B be the BDD-β instance on the dual L(B)×, and call d0 ≤ βλ1(L×) an upper-bound

on the error norm. Like in Theorem 6.1, we suppose that β ≤
√
π/2 (2nηε(Zn))

−1
, and call

θ = β
√

2/π (2nηε(Zn)) < 1.

In Alg. 6, the parameter α ∈ [θ
√
π/2,

√
π/2) is a valid noise parameter for GLWE oracles.

The parameter σ0 = α/(
√

2d0ηε(Zn)) is larger than 2nβ/
√

2d0. Note that by Banaszczyk theorem [5],
bl(L) · λ1(L×) ≤ n, so σ0 ≥

√
2 bl(L). Since #G is larger than nk(‖B∗‖ /σ0)n, one can indeed apply

structural reduction to obtain a basis B̄ of L̄ such that
∥∥B̄∗∥∥ ≤ σ0 (line 3 of Alg. 6).

There exists a (unique) vector u ∈ L× such that t = u + w with ‖w‖ ≤ d0. We now prove that the
instance (ai, bi)i∈[1,m] generated lines 6,7 is indistinguishable from a random GLWE(G,m,≤ α) instance

of solution ŝ = ϕ×(u) ∈ Ĝ. Namely the ai’s must be uniform in G, and for each i ∈ [1,m], bi must have
distribution DT,α,ŝ(ai).

The uniformity of the ai’s in G comes from the same reason as in Section 5, since they are isomorphic
(by ϕ) to the vi mod L, and the vi’s are drawn from a Gaussian distribution of parameter σ0ηε(Zn) ≥
ηε(L). To show that the bi’s have the correct distribution, the idea is that ŝ(ai) = [ϕ×(u)](ϕ′(vi)) =
〈vi,u〉 mod 1. Suppose that ai is fixed. Then the conditional distribution of vi is Dϕ−1(ai),σ0ηε(Zn)

where ϕ−1(ai) is a coset of L. Since the distribution of b is DT,α/
√

2,〈t,vi〉 and 〈t,vi〉 = ŝ(ai) + 〈w,vi〉
where vi has a discrete Gaussian distribution over a coset of L, then by the convolution Lemma 2.4,
the distribution of bi is at distance 4ε from the distribution DT,ν,ŝ(ai) where the parameter ν is =√
α2/2 + (‖w‖σ0ηε(Zn))2 ≤ α.

Subsequent Iterations. Since the Search-GLWE oracle cannot distinguish the distribution of
(ai, bi)i∈[1,m] from random GLWE samples, it will output the solution ŝ = ϕ×(u) after a polynomial
number of trials. Unfortunately, ϕ× is not invertible, we can only recover u modulo ker(ϕ×) = L̄×. Let
u0 be one preimage in ϕ×−1(ŝ). The vector t − u0 is now at distance ≤ d0 of L̄× instead of L×. Thus
we can iterate the whole process by replacing L with L̄.

Since bl(L) has decreased, the authorized interval for α increases, so α remains a valid noise parameter,
and the same oracle may be used for all subsequent iterations.

Since the structural reduction always computes bases such that ‖B∗‖ decreases by a constant factor
compared to the previous basis, the while loop can be iterated O(log n) times, until ‖B∗‖ becomes smaller
than 1/d0. At this point, the BDD is very easy to solve exactly, for example using Babai nearest-plane
algorithm.

E.2 Proof of Cor. 6.2

Let n ∈ N, and let Qn = (1 + ε
LLL

)
√

4/3)
n−1
2

θn
√
π/2√

2αn
. Like in Cor. 5.2, the case kn ≤ n and #Gn ≥

nkn (Qn)
n
, is a direct consequence of (multiple iterations of) Th. 6.1 and Regev’s quantum connection

between BDDβn and ApproxSIVP√2n/βn
.

Now, assume that kn > n and #Gn ≥ nkn (Qn)
kn . Again, from the decomposition of Gn into

elementary divisors: Gn '
∏kn
i=1 Zqi where each qi+1 divides qi, we can decompose Gn as Hn ⊕ Jn

where the subgroup Hn =
∏n
i=1 Zqi has rank n and satisfies #Hn ≥ nn (Qn)

n
. Note that any GLWE

sample (a, b) on Hn with (unknown) secret ŝ can be combined with a randomly generated GLWE sample
(a′, b′) over Jn with a randomly chosen secret ŝ ∈ Ĵn to form a GLWE sample on G. Therefore solving
Search-GLWE(G,αn) with probability ≥ 1/ poly(n) can be used to solve Search-GLWE(Hn, αn) with
probability ≥ 1/ poly(n) which in turns can be used to solve worst-case n-dim BDDβn .

F Missing Proof of Sect. 7

F.1 Proof of Theorem 7.1

For simplicity, we denote G = Gn, k = kn, α′ = α′n and α = αn. First, observe that one can transform
a sample (a, b) from AG,α(ŝ) to a sample (a′, b′) from AG,α′(ŝ) by simply setting a′ = a and b′ =

23



D
T,
√
α′2−α2,b

.

Let ŝ =
∑k
i=1 siêi for si ∈ Zqi . We now show how to recover each coordinate s1 modulo powers of

any prime p1,j1 for j1 ∈ [1, t1] (similarly for s2, ..., sk). Let p = p1,j and µ = µ1,j1 , and for τ ∈ [0, µ] define
AτG,α′(ŝ) to be the distribution by sampling (a, b) from AG,α′(ŝ) and outputting (a, b+ r/pτ ∈ T), where

r ← Zq1 is uniformly random. Notice that when α′ ≥ ω(
√

log n)/pτ ≥ ηε(1/qτZ) for some negligible ε,
AτG,α′(ŝ) is statistically close to uniformly random in G×T and this holds at least for τ = µ by hypothesis.
Therefore, given an oracle solving Decisional-GLWEG,α′ , there exists some minimal τ ∈ [1, µ] such that
the oracle has a non-negligible advantage in distinguishing Aτ−1

G,α′(ŝ) and AτG,α′(ŝ). Note that when

p ≥ ω(
√

log n)/α ≥ ω(
√

log n)/α′ the minimal τ must be 1. We can find that τ efficiently by estimating
the behaviour of the oracle. By standard self-reduction and amplification techniques, we can assume that
the oracle accepts (respectively, rejects) the distribution Aτ−1

G,α′(ŝ) (resp. AτG,α′(ŝ)) with overwhelming
probability.

Given access to Aτ−1
G,α′(ŝ) and the oracle, we can test whether s1 = 0 mod p by invoking the oracle on

the samples defined as follows: transform each sample (a, b = DT,α′,ŝ(a) + r/pτ−1)← Aτ−1
G,α′(ŝ) into

a′ = a− (r′q1/p
τ ) · e1, b′ = b = DT,α′,ŝ(a′) + (pr + r′s1)/pτ ∈ T,

where r′ ← Zq1 is uniformly random. Observe that if s1 = 0 mod p, the transformed samples are
distributed as Aτ−1

G,α′(ŝ), otherwise they are distributed as AτG,α′(ŝ) because r is uniformly random in Zq1
and r′s1 is uniformly random in Zp. Hence, the oracle will tell us which is the case.

Using the above test, we can recover s1 mod p by shifting s1 by each of 0, 1, ..., p − 1 mod p using
standard transform that maps from AG,α′(ŝ) to AG,α′(ŝ + t̂) for known t̂ ∈ Ĝ. This procedure is
efficient since each prime factor is polynomially bounded. Furthermore, we can iteratively recover s1 mod
p2, ..., pµ−τ+1 as follows: after recovering s1 mod pi, first shift AG,α(ŝ) to AG,α(ŝ′) such that s′1 =
0 mod pi, then apply a similar procedure to recover s′1 mod pi+1 by letting a′ = a− (r′q1/p

τ+i) · e1 and
b′ = b = DT,α′,ŝ′(a′) + (pr + r′(s′1/p

i))/pτ . This procedure works as long as pτ+i divides q1, so we can
recover s1 mod pµ−τ+1.

Let τi,ji for i ∈ [1, k], ji ∈ [1, ti] be the minimal value of τ for p = pi,ji (of which at most ` of
these value > 1). Therefore, using the above reduction and Chinese remainder theorem we can recover
si mod Ti for i ∈ [1, k], where

Ti =

ti∏
ji=1

p
ui,ji−τi,ji+1

i,ji
= qi/

ti∏
ji=1

p
τi,ji−1

i,ji
.

The product of all the Ti’s satisfies

k∏
i=1

Ti =

k∏
i=1

(qi/

ti∏
ji=1

p
τi,ji−1

i,ji
) = #G/

k∏
i=1

ti∏
ji=1

p
τi,ji−1

i,ji
≥ #G · ( α′

ω(
√

log n)
)` ≥ #G · α · ω(

√
log n)

because α′ < ω(
√

log n)/p
τi,ji−1

i,ji
for all i, ji by the definition of τi,ji and the hypothesis of α′. By applying

the shift transform on AG,α(ŝ), we can assume that si = 0 mod Ti for i ∈ [1, k]. For any sample (a, b)

from AG,α(ŝ), we have that b =
∑k
i=1(aisi)/qi + δ mod 1, where ai ∈ Zqi is the coordinate of a and

δ ← DR,α. Note that each (aisi)/qi is an integer multiple of Ti/qi. Define

g , lcm(
q1

T1
, ...,

qk
Tk

) ≤
k∏
i=1

qi
Ti

=
#G∏k
i=1 Ti

≤ 1

α · ω(
√

log n)
,

and compute g · b = g · (∑k
i=1(aisi)/qi + δ + z) =

∑k
i=1 g · (aisi)/qi + gδ + gz, where z ∈ Z. Now

observe that
∑k
i=1 g · (aisi)/qi and gz are integers. Since δ ← DR,α has magnitude < (α/2) · ω(

√
log n)

except with negligible probability, we have bgbe =
∑k
i=1 g · (aisi)/qi + gz. Therefore, we can recover ŝ

by Gaussian elimination.
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F.2 Overview

The following figure represents the main components of group switching and their relationship.
Zn

L̄ L̄′

G G′

ϕ ϕ′

SampleGauss

a u v a′

Zn

L̄× L̄′×

Ĝ Ĝ′

ϕ× ϕ′×

ŝ s ŝ′

S S S ′
(K-Bounded)

(mod Zn) (mod Zn)

ϕ−1 ϕ′ ϕ×−1 ϕ′×

Dotted arrows represent overlattices. The left side are the primal extensions, the right side contains dual
overlattices. On the left of each diagram, we recognize the dual pair of surjective morphisms ϕ from L̄
(mod Zn) to G, and ϕ× from Zn (mod L̄×) to Ĝ. On the right side of each diagram, the dual morphisms
ϕ′, ϕ′× related to the second group G′.

To transform a AG,α(ŝ) sample (a, b) to a AG′,β(ŝ′) sample (a′, b′), we compute u ∈ ϕ−1(a) a preimage
in L̄ (mod Z)n, we sample a point v in L̄′ (mod Z)n close to u, and we apply ϕ′ to get a′.

On the dual side, the secret ŝ admits in general a unique preimage s by ϕ× which has small norm.
Finding this small s may in some cases be very difficult, as it requires to solve a CVP in L̄×. However,
only the existence of the small s matters. Then, the new (unknown) secret is ŝ′ = ϕ′×(s). In general, we
know the K-bounded distribution S over Zn from which S = ϕ×(S) is defined. Thus, the distribution
of secrets S ′ = ϕ′×(S) in the new GLWE is entirely determined.

Finally, note that by duality of the morphisms, ŝ(a) = 〈s,u〉 ≈ 〈s,v〉 = ŝ′(a′). We just need to add
some noise b′ = b+noise to compensate the Gaussian approximation between 〈s,u〉 and 〈s,v〉 in the
middle.

F.3 Proof of Lemma 7.4

The main idea consists in the following: given an element of G, sample randomly an element of G′ so
that the evaluations on these two elements of the corresponding characters is almost preserved. The
approximate equivalence of evaluations of characters comes from the duality of the maps ϕ′ and ϕ′×.
Given a sample (a, b) ∈ G× T, the procedure is as follows:

1: Choose one preimage u ∈ ϕ−1(a) and sample v ← DL̄′,r,u using the basis B̄′ and Lemma 2.1. The
preimage can be computed because G is fully-explicit.

2: Let a′ = ϕ′(v).
3: Choose b′ ← DT,rK,b.
4: Output (a′, b′).

We now analyze the algorithm. We first show that the distribution of a′ is nearly uniform in G′. It
suffices to show that v mod Zn ∈ L̄′/Zn is (nearly) uniformly random. We note that, if r ≥ ηε(Zn), we
have that v mod Zn is (almost) uniform (see [14]). However, this would require a very large r, which
is not suitable for our reduction. Since a is uniform in G, a much smaller r is sufficient to show the
uniformity of v mod Zn. Indeed, let A ∈ L̄ be a (finite) set containing exactly one representative of each
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class of L̄/Zn. Note that ϕ−1(a) is a uniformly random coset u + Zn where u ∈ A. Let v0 ∈ L̄′.

Pr[v = v0 mod Zn] =
1

#G

∑
a∈G
DL̄′/Zn,r,ϕ−1(a)(v0 + Zn) =

1

#G

∑
u∈A
DL̄′/Zn,r,u+Zn(v0 + Zn)

=
1

#G

∑
u∈A

∑
z∈Zn

DL̄′,r,u(v0 + z) =
1

#G

∑
(u−z)∈L̄

DL̄′,r(v0 + (z− u))

=
1

#G

∑
w∈L̄

ρRn,r(v0 + w)
ρRn,r(v0 + w + L̄′)

=2ε
1

#G
· 1/ vol(L̄)

1/ vol(L̄′)
=

1

#G
· #G

#G′
=

1

#G′
.

Clearly, if the input b is uniformly random in T, then b′ is also uniform in T. It remains to show
that given as input a sample distributed from AG,α(ŝ), the algorithm outputs a sample distributed from
AG′,β(ŝ′). Let f = v − ϕ−1(a), the distribution of f is DL̄′−ϕ−1(a),r. We also have, that ŝ′(a′) =

[ϕ′×(s)](ϕ′(v)) = 〈s,v〉 = 〈s, ϕ−1(a)〉+ 〈s, f〉 = ŝ(a) + 〈s, f〉. Assume a′ is fixed. Since b′ is sampled from
DT,rK,b where b ← DT,α,ŝ(a), by classical convolution, the distribution of b′ is DT,

√
α2+(rK)2,ŝ(a)

where

ŝ(a) = ŝ′(a′) − 〈s, f〉. Since f has Gaussian distribution over a coset, by the dot-product convolution
lemma 2.4, the distribution of b′ is statistically close to DT,

√
α2+(‖s‖r)2+(rK)2,ŝ′(a′)

G Applications: Abstracting Lattice Cryptography

We showed that GSIS and GLWE are hard under worst-case assumptions, provided that the finite
Abelian group G is sufficiently large. This suggests to abstract all lattice schemes based on SIS and/or
decisional/search-LWE using an arbitrary finite Abelian group G, and check that the security proof
carries through, under the assumption that GSIS or GLWE is hard, which holds under the same worst-
case lattice assumptions than for SIS and LWE. We believe that such an abstraction leads to a better
understanding of the scheme and a clearer presentation: lattice schemes are typically presented using
matrices and vectors, which our abstraction avoids. Furthermore, it could be that special choices of G
(other than the homocyclic group Znq ) may have other benefits.

G.1 GLWE Encryption

As a simple example of abstraction, we generalize the so-called dual version of Regev’s [31] LWE-based
encryption, which was used to build ID-based encryption from lattices [14].

Gen(1n): Takes as input a security parameter n, it chooses a Gaussian parameter 0 < α < 1, a (sufficiently
large) finite Abelian group G and m ∈ N group elements g = (g1, ..., gm) ∈ Gm chosen uniformly
at random.

The secret key is a uniformly random vector x ∈ {0, 1}m, whose corresponding public key is
y =

∑m
i=1 xigi ∈ G.

Enc(pk, b): Given as input a public key y and a message b ∈ {0, 1}, it selects ŝ ∈ Ĝ uniformly at random
and m+1 Gaussian errors (e, e1, ..., em)← Dm+1

α . Then the ciphertext is c = (c, {ci}1≤i≤m), where
c = ŝ(y) + e+ b/2 and ci = ŝ(gi) + ei for 1 ≤ i ≤ m.

Dec(sk, c): Given as input a secret key x and a ciphertext c, it first parses c = (c, {ci}1≤i≤m) and then
computes b′ = c−∑m

i=1 xici ∈ T. If b′ is closer to 0 than to 1/2, it outputs 0; otherwise, it outputs
1.

Lemma G.1 (Correctness) If 0 < α < 1/(4·
√
m+ 1·ω(

√
log n)), then the above public key encryption

scheme will decrypt correctly with probability 1− negl(n).

Proof. Hence we have:

c−
m∑
i=1

xici = ŝ(y) + e+ b/2−
( m∑
i=1

xi(ŝ(gi) + ei)
)

= e−
m∑
i=1

xiei + b/2.
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It is sufficient to show |e −∑m
i=1 xiei| < 1/4. Let k ≤ m be the Hamming weight of x, we know that

e−∑m
i=1 xiei is distributed as D√k+1α. Therefore, it implies that |e−∑m

i=1 xiei| <
√
k + 1α ·ω(

√
log n)

with probability 1 − exp(−π · ω(log n)) = 1 − negl(n). We obtain that |e −∑m
i=1 xiei| <

√
k + 1α ·

ω(
√

log n) ≤ 1/4 with probability 1− negl(n), as desired. �

Lemma G.2 (Security) If m ≥ log #G+ ω(log n) and the GLWEG,m+1,α assumption holds, then the
above scheme is IND-CPA secure.

Proof. Since m ≥ log #G + ω(log n), g ∈ Gm has distribution statistically close to uniform. Since
x ∈ {0, 1}m, the leftover hash lemma ensures that y =

∑m
i=1 xigi is statistically close to uniform

over G. Therefore, one can replace (c, {ci}mi=1) with a uniformly random vector over Tm+1 under the
GLWEG,m+1,α assumption. This proves the IND-CPA security of the above scheme. �

Similarly, one can generalize the GPV signature scheme [14] based on SIS, and by combining it with
the previous GLWE encryption, one thus generalizes the ID-based encryption of [14] using GSIS and
GLWE.

G.2 Analogy with El Gamal Encryption

The abstract presentation of GLWE encryption allows to make an easy analogy with El Gamal encryption
based on DDH. In El Gamal encryption, one works with a cyclic group G′ generated by some g′ of order
q, which we denote additively:

• The secret key is a x′ ∈ Zq chosen uniformly at random, and the public key is y′ = x′g′. Thus, the
public key y′ is the image of the secret key x′ through the DL one-way function over G′. Similarly,
in the previous GLWE encryption, the public key y is the image of the secret key x through the
GSIS one-way function over G.

• The El Gamal ciphertext of a message b′ ∈ G′ is a pair (c′, d′) ∈ G×G where c′ = b′+e′y′, d′ = e′g′

and e′ ∈ Zq is a one-time key chosen uniformly at random. The first element c′ is a one-time pad
encryption of the message b′ with the Diffie-Hellman key e′y′ = x′d′. The second element d′ is the
image of the one-time key e′ through the DL one-way function over G′. Similarly, in the previous
GLWE encryption, the first element c is a one-time pad encryption of the message b/2 with the
common (noisy) key ŝ(y) + e ≈ ŝ(y). The second element {ci}1≤i≤m is the image of the one-time
key (ŝ, e1, ..., em) through the GLWE one-way function over G.

In other words, El Gamal encryption is based on the Diffie-Hellman key exchange, which pairs two DL
one-way functions. On the other hand, GLWE encryption is based on a noisy key exchange which pairs
the GSIS one-way function with the GLWE one-way function.
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