
Structural Lattice Reduction: Generalized Worst-Case to

Average-Case Reductions and Homomorphic Cryptosystems

Nicolas Gama ∗ Malika Izabachene † Phong Q. Nguyen ‡ Xiang Xie §

Abstract

In lattice cryptography, worst-case to average-case reductions rely on two problems:
Ajtai’s SIS and Regev’s LWE, which both refer to a very small class of random lattices
related to the group G = Zn

q . We generalize worst-case to average-case reductions to all
integer lattices of sufficiently large determinant, by allowing G to be any (sufficiently large)
finite abelian group. In particular, we obtain a partition of the set of full-rank integer lattices
of large volume such that finding short vectors in a lattice chosen uniformly at random from
any of the partition cells is as hard as finding short vectors in any integer lattice. Our main
tool is a novel generalization of lattice reduction, which we call structural lattice reduction:
given a finite abelian group G and a lattice L, it finds a short basis of some lattice L̄ such that
L ⊆ L̄ and L̄/L ' G. Our group generalizations of SIS and LWE allow us to abstract lattice
cryptography, yet preserve worst-case assumptions: as an example, we provide a somewhat
conceptually simpler generalization of the Alperin-Sheriff-Peikert variant of the Gentry-
Sahai-Waters homomorphic scheme. We introduce homomorphic mux gates, which allows
us to homomorphically evaluate any boolean function with a noise overhead proportional to
the square root of its number of variables, and bootstrap the full scheme using only a linear
noise overhead.

1 Introduction

A lattice is a discrete subgroup of Rm, e.g. a subgroup of Zm. Nearly two decades after its intro-
duction, lattice-based cryptography has emerged as a credible alternative to classical public-key
cryptography based on factoring or discrete logarithm. It offers new properties (such as secu-
rity based on worst-case assumptions) and new functionalities, such as noisy multilinear maps
and fully-homomorphic encryption. The worst-case guarantees of lattice-based cryptography
come from two major problems: the short integer solution (SIS) problem dating back to Ajtai’s
breakthrough work at STOC ’96 [1], and the learning with errors (LWE) problem introduced
by Regev at STOC ’05 [38], and somewhat related to the Ajtai-Dwork cryptosystem [2]. These
two average-case problems are provably as hard as solving certain lattice problems in the worst
case, such as GapSVP (the decision version of the shortest vector problem in a lattice) and
SIVP (finding short linearly independent lattice vectors).

The SIS problem can be defined as finding short vectors in a random lattice from a class
An,m,q of m-dimensional integer lattices related to the finite abelian group G = Znq , where n
is the dimension of the worst-case lattice problem and q needs to be sufficiently large: any
g = (g1, . . . , gm) ∈ Gm chosen uniformly at random defines a lattice Lg ∈ An,m,q formed by
all x = (x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G; and SIS asks, given g, to find a short

(nonzero) x ∈ Lg. Here, the definition of Lg relies on the Z-module structure of G. The class
An,m,q has an algebraic meaning: the distribution of Lg turns out to be statistically close (for
sufficiently large m) to the uniform distribution over the finite set LG,m of all full-rank lattices
L ⊆ Zm such that Zm/L ' G. This suggests that Ajtai’s lattices are very rare among all

∗Université de Versailles and CNRS, France
†CEA LIST, France
‡INRIA, France and Tsinghua University, China
§Institute of Software, Chinese Academy of Sciences, China

1

integer lattices: in fact, Nguyen and Shparlinski [31] recently showed that the set ∪G cyclicLG,m
of all full-rank integer lattices L ⊆ Zm such that Zm/L is cyclic (unlike Znq) has natural density
1/[ζ(6)

∏m
k=4 ζ(k)] ≈ 85% (for large m), which implies that Ajtai’s classesAn,m,q form a minority

of lattices among all integer lattices.
This motivates the natural question of whether other classes of random lattices enjoy similar

worst-case to average-case reductions: in particular, if we call GSIS the generalization of SIS
to any finite abelian group G, does GSIS have similar properties as SIS for other groups than
G = Znq ? This would imply that the random lattices of the class LG,m are also hard. Ajtai
(in the proceedings version of [1]) and later Regev [37] noticed that the choice G =

∏n
i=1 Zqi

where the qi’s are distinct prime numbers of similar bit-length also worked. Micciancio [25] gave
another special choice of G: his G is actually constructed by an algorithm [25, Lemma 2.11]
given as input a very special lattice (for which solving the closest vector problem is easy); if the
input lattice is Zn, then G = (Zq)n. However, all these choices of G are arguably very special,
and it was unclear if the hardness properties held outside a small family of finite abelian groups.

A similar question can be asked for LWE, which is known as a dual problem of SIS, and
has been used extensively in lattice-based encryption. However, in order to define GLWE by
analogy with GSIS, we need to change the usual definition of LWE based on linear algebra.
Any finite abelian group G is isomorphic to its dual group Ĝ formed by its characters, i.e.
homomorphisms from G to the torus T = R/Z. We define search-GLWE as the problem
of learning a character ŝ ∈ Ĝ chosen uniformly at random, given noisy evaluations of ŝ at
(public) random points g1, . . . , gm ∈ G, namely one is given gi and a “Gaussian” perturbation
of ŝ(gi) for all 1 ≤ i ≤ m. Decisional-GLWE is defined as the problem of distinguishing
the previous “Gaussian” perturbations of ŝ(gi) from random elements in T. If G = (Zq)n,
it can be checked that GLWE is LWE. If G = Zp for some large prime p, search-GLWE is a
randomized version of Boneh-Venkatesan’s Hidden Number Problem [9] (introduced to study the
bit-security of Diffie-Hellman key exchange, but also used in side-channel attacks on discrete-log
based signatures [30]), which asks to recover a secret number s ∈ Zp, given random t1, . . . , tm
chosen uniformly from Zp and approximations of each sti mod p. Here, randomized means that
the approximations given are “Gaussian” perturbations of sti mod p. Thus, GLWE captures
LWE and the Hidden Number Problem as a single problem, instantiated with different groups.
Alternatively, GLWE can be viewed as a lattice problem: solving a randomized version of
bounded distance decoding (with “Gaussian” errors) for the dual lattice of Lg.

Our results. We show that the worst-case to average-case reductions for SIS and LWE (search
and decisional) can be generalized to GSIS and GLWE, provided that G is any sufficiently large
finite abelian group, e.g. of order nΩ(max(n,rank(G))) if n is the dimension of the worst-case
lattice problem and rank (G) denotes the minimal size of a generating set for G. For GSIS and
search-GLWE, our reductions are direct from worst-case lattice problems. And we transfer all
decisional-LWE hardness results to decisional-GLWE, by reducing decisional-LWE to decisional-
GLWE (under similar size constraints on G): we do so by generalizing the modulus-dimension
switching technique of Brakerski et al. [12].

Our reductions are based on a new tool, which we call structural lattice reduction, and which
might be of independent interest: Becker et al. [8] recently used it to design new exponential-
space algorithms for lattice problems. In lattice reduction, one is given a full-rank lattice L ⊆ Zn
and wants to find a short basis of L. In our structural lattice reduction, one is further given a
finite abelian group G of rank ≤ n, and wants to find a short basis of some overlattice L̄ of L

such that L̄/L ' G effectively, i.e. the map ϕ in the short exact sequence 0 −→ L
id−→ L̄

ϕ−→ G −→ 0
is efficiently computable. Our key point is that previous worst-case to average-case reductions
(e.g. [20, 12]) implicitly used a trivial case of structural lattice reduction: if B is a short basis of
a full-rank lattice L ⊆ Zn and q is an integer, then q−1B is a short basis of the lattice L̄ = q−1L

2

such that L̄/L ' Znq , which explains the importance of Znq in SIS and LWE.
Our GSIS reduction shows that in some sense all integer lattices are hard. Indeed, the set

of full-rank lattices L ⊆ Zm (of sufficiently large co-volume ≥ nΩ(m)) can be partitioned based
on the finite abelian group Zm/L, and the reduction implies that each partition cell LG,m has
this worst-case to average-case property: finding short vectors in a lattice chosen uniformly at
random from LG,m is as hard as finding short vectors in any integer lattice of dimension n.

Consider the special case G = Zp for a large prime p. Then our GSIS reduction provides
the first hardness results for the random lattices in LZp,m used in many experiments [18, 14]
to benchmark lattice reduction algorithms, as well as in Darmstadt’s SVP internet challenges.
And our GLWE reduction provides a general hardness result for the hidden number problem:
previously, [12, Cor 3.4] established the hardness for the hidden number problem when the large
prime p is replaced by qn where q is smooth.

Finally, our generalizations of SIS and LWE allow us to abstract (the many) lattice-based
schemes based on SIS and/or LWE, where the role of G = (Zq)n was not very explicit in most
descriptions (typically based on linear algebra). We believe such an abstraction can have several
benefits. First, it can clarify analyses and designs: the El Gamal cryptosystem is arguably better
described with an arbitrary group G, rather than by focusing on the historical choice G = Z∗p;
comparisons and analogies with “traditional” public-key cryptography based on factoring or
discrete logarithm will be easier. We illustrate this point by providing a somewhat conceptually
simpler GLWE-based generalization of the Alperin-Sheriff-Peikert variant [3] of the Gentry-
Sahai-Waters homomorphic scheme [21]: this generalization becomes essentially as simple as
trapdoor-based fully-homormophic encryption proposals such as [39]. It is based on a GLWE
variant of El Gamal encryption, which naturally generalizes Regev’s LWE encryption [38]. We
also provide a new decryption circuit based on Mux gates, which can bootstrap the system with
a polynomial noise overhead, and is arguably simpler than [3]. Second, it opens up the possibility
of obtaining more efficient schemes using different choices of G than G = (Zq)n. We do not claim
that there are better choices than G = (Zq)n, but such a topic is worth investigating, which we
leave to future work. Many factors influence efficiency: trapdoor generation, hashing, efficiency
of the security reduction, etc. For instance, hashing onto Zp can sometimes be more efficient
than onto (Zq)n for large n, which could be useful in certain settings, like digital signatures.

Related work. Baumslag et al. also introduced in [7] group generalizations of LWE, targeting
non-commutative groups, but did not obtain any hardness result. A follow-up in [17] only showed
a self-reducibility property on the problem for some special non-commutative groups.

Open problems. The recent reduction of Brakerski et al. [12] proves the hardness of decisional-
LWE for a wide range of parameters, without establishing a direct search-to-decision equivalence
for all these parameters. Similarly, our strongest hardness result for decisional-GLWE bypasses
the one for search-GLWE. It is unknown if there is a direct search-to-decision equivalence for
GLWE over all sufficiently large finite abelian groups. It would also be interesting to see if
structural lattice reduction can be adapted to the ring setting, to obtain more hardness results
based on worst-case assumptions for ideal lattices. Finally, our GSIS/GLWE reductions require
the order of G to be sufficiently large compared to the worst-case lattice dimension, and it is
interesting to reduce as much as possible this constraint: in particular, the case G = Zn2 for
GLWE corresponds essentially to LPN, whose hardness is well-known to be open; here, the order
2n does not grow quickly enough with respect to the rank n to be covered by our reduction. On
the other hand, Micciancio and Peikert [27] recently showed how to decrease q for SIS.

Roadmap. The paper is organized as follows. In Sect. 2, we recall background on lattices. In
Sect. 3, we discuss factor groups of integer lattices, and introduce our group generalizations of
SIS and LWE. In Sect. 4, we introduce structural lattice reduction, which will be used in all

3

our reductions. We show hardness of GSIS in Sect. 5 by generalizing the SIS reductions. In
Sect. 6, we show hardness of decisional-GLWE. In Sect. 7, we give an example of abstracting
lattice cryptography: El Gamal-like encryption and fully-homomorphic encryption from GLWE.
Detailed missing proofs can be found in appendix. In App. E, we generalize the classical search-
LWE hardness result to search-GLWE. In App. H, we compare precisely our structural reduction
with previous work of Ajtai [1] and Micciancio [25]. In App. I, we discuss the relationships
between GSIS, GLWE and HNP, and compare with previous work of Brakerski et al. [12].

2 Background and Notation

Zq denotes Z/qZ. We use row notation for vectors and matrices. In denotes the n× n identity
matrix. A function negl(n) is negligible, if it vanishes faster than the inverse of any polynomial
in n. For an n×m matrix B, ‖B‖ = max1≤i≤n ‖bi‖ denotes the norm of its longest row vector.

Lattices. A lattice L is a discrete subgroup of Rm: it is of the form L(B) = {∑n
i=1 αibi, αi ∈

Z} for some set B = (b1, . . . ,bn) of linearly independent vectors, called a basis. When L ⊆ Zm,
L is an integer lattice. The dimension n of span(L) is the dimension dim(L) of L. The (co)-
volume vol(L) is

√
det(BBt) for any basis B of L. For 1 ≤ i ≤ dim(L), λi(L) is the i-th minimum

of L, i.e. the smallest radius of the 0-centered ball containing at least i linearly independent
lattice vectors. The dual lattice L× is the set of all u ∈ span(L) s.t. 〈u,v〉 ∈ Z for all v ∈ L. If
B is a basis of L, its dual basis B× = (BBt)−1B is a basis of L×. For a factor γ = γ(n) ≥ 1,
GapSVPγ asks, given d ∈ R≥0 and a basis B of an n-dim lattice L, to decide if λ1(L) ≤ d or
λ1(L) > γd. ApproxSIVPγ asks a full-rank family of lattice vectors of norm ≤ γλn(L).

Gram-Schmidt Orthogonalization (GSO). Let B = (b1, ...,bn) be a lattice basis. The
GSO of B is the unique decomposition B = µ · D · Q, where µ is a lower triangular matrix
with unit diagonal, D is a positive diagonal matrix, and Q has orthonormal rows. We let
B∗ = DQ whose i-th row b∗i is πi(bi), where πi denotes the orthogonal projection of bi over
span{b1, . . . ,bi−1}⊥. We use the notation B[i,j] for the block [πi(bi), . . . , πi(bj)]. If B× is the

dual basis of B and (B×)∗ denotes its GSO matrix, then ‖(b×i)∗‖ · ‖b∗n−i+1‖ = 1 for 1 ≤ i ≤ n.

(Explicit) Finite abelian groups. Any finite abelian group G is isomorphic to a product∏k
i=1 Zqi of cyclic groups. We call rank of G the minimal number of cyclic groups in such

decompositions: this should not be confused with the rank of an abelian group, which would
be zero here. We say that G is explicit if one knows integers q1, . . . , qk and an isomorphism∏k
i=1 Zqi → G computable in polynomial time: we will assume that k is the rank and each

qi+1 divides qi, because from an arbitrary decomposition, one can always derive the rank and
such qi’s in polynomial time. The isomorphism induces k generators e1, . . . , ek ∈ G s.t. G =
〈e1〉 ⊕ · · · ⊕ 〈ek〉 and each ei has order qi. If the inverse of the isomorphism is also computable
in polynomial time, we say that G is fully-explicit.

Overlattices and exact sequences. When a lattice L̄ contains a sublattice L of the same
dimension n, L̄ is an overlattice of L. Then L̄/L is a finite abelian group of rank ≤ n and order

vol(L)/ vol(L̄). Then 0→ L
id→ L̄

ϕ→ G→ 0 is a short exact sequence for some ϕ, i.e. ϕ : L̄→ G
is a surjective morphism s.t kerϕ = L. In other words, ϕ represents the isomorphism L̄/L ' G.

Lattice reduction. Gentry et al. [20] introduced the basis length of a lattice L as bl(L) =
minbasis B ‖B∗‖. Then: λn(L) ≥ bl(L) ≥ λn(L)/

√
n, bl(L) ≥ λ1(L), and bl(L) ≥ vol(L)1/n.

4

Lattice reduction can find bases B with small ‖B∗‖. For instance, a basis B is LLL-reduced
[23] with factor ε

LLL
≥ 0 if its GSO satisfies |µi,j | ≤ 1

2 for all 1 ≤ j < i and each block

B[i,i+1] satisfies: ‖b∗i ‖2 ≤ (1 + ε
LLL

)(
∥∥b∗i+1

∥∥2
+ µi+1,i ‖b∗i ‖2). Then it is folklore that: ‖B∗‖ ≤(

(1 + ε
LLL

)
√

4/3
)(n−1)/2

bl(L). Given as input ε
LLL

> 0 and a basis B of a lattice L ⊆ Zn, the

LLL algorithm [23] outputs an LLL-reduced basis of factor ε
LLL

in time polynomial in 1/ε
LLL

and size(B). Usually, one selects ε
LLL

s.t. (1 + ε
LLL

)
√

4/3 =
√

2 or ε
LLL

= 1/poly(n).

2.1 Gaussian Measures

The statistical distance between two distributions P and Q over a domain X is ∆(P,Q) =
1
2

´
a∈X |P(a)−Q(a)|da or 1

2

∑
a∈X |P(a)−Q(a)| when X is discrete. Two distributions P and

Q are (statistically) ε-indistinguishable if ∆(P,Q) < ε. We write y ← P (resp. ←ε P) to
denote a sample from the distribution P (resp. a distribution ε-indistinguishable from P). And
the symbol ←≈ means ←ε for some negligible function ε.

Gaussian Distributions. The Gaussian Distribution (over Rn) DRn,σ,c centered at c ∈
Rn of parameter σ ∈ R≥0 is defined by a density function proportional to ρRn,σ,c(x) =
exp

(
−π‖x− c‖2/σ2

)
. If c is omitted, then c = 0. For any countable subset C ⊆ Rn (e.g.

a lattice L or a coset x + L), ρRn,σ,c(C) denotes
∑

u∈C
ρRn,σ,c(u). The discrete Gaussian dis-

tribution DC,σ,c over a lattice or a coset C ⊂ Rn is defined by DC,σ,c(x) = ρRn,σ,c(x)/ρRn,σ,c(C)
where x ∈ C. It is known how to sample efficiently the discrete Gaussian distribution over
lattices to within negligible distance [20, 35], or even exactly [12]:

Lemma 2.1 There is a polynomial-time algorithm which, given c ∈ Qn, a basis B of a lattice
L ⊆ Qn and a parameter σ ≥ ‖B∗‖ ·

√
ln(2n+ 4)/π, outputs a sample with distribution DL,σ,c.

Reciprocally, on can construct a short lattice basis from short discrete Gaussian samples:

Proposition 2.2 (Cor. of [37, Lemma 14]) Let ε > 0 and L(B) be an n-dimensional lattice.
Given a set of m = O(n) independent Gaussian samples (yi ←ε DL,si) s.t.

√
2ηε(L) ≤ si ≤ σ,

1 ≤ i ≤ m, one can compute in polynomial time a basis C of L s.t. ‖C∗‖ ≤
√
n/2π ·maxi si.

Modular Distributions and Smoothing Parameter. The continuous distribution DRn,σ,c
and discrete distribution DL̄,σ,c over an overlattice L̄ ⊇ L can be projected modulo L. Thus
DRn/L,σ,c (resp. DL̄/L,σ,c) has a density function DRn,σ,c(x +L) for x ∈ Rn/L (resp. L̄/L). Both
DRn/L,σ and DL̄/L,σ converge (uniformly) to the uniform distribution when σ increases. This
is quantified by the smoothing parameter ηε(L) (where ε > 0) introduced by Micciancio and

Regev [28] as the minimal σ > 0 s.t. ρ
Rn, 1

σ
(L×\ {0}) ≤ ε, i.e.

∥∥∥DRn/L,σ(x + L)− 1
vol(L)

∥∥∥
∞
≤

ε
vol(L) by Poisson’s summation formula, which proves:

Lemma 2.3 (see Cor 2.8 of [20]) If L̄ is an overlattice of L, ε ∈ (0, 1/2), σ ≥ ηε(L) and
c ∈ Rn, then DL̄/L,σ,c+L is within stat. distance ≤ 2ε from the uniform distribution over L̄/L.

For any n-dim basis B, ηε(L(B)) ≤ ηε(L(B∗)) ≤ ηε(Zn) · ‖B∗‖ where ηε(Zn) ≤√
log
(
2n · (1 + 1

ε)
)
/π. In particular, ηε(L) ≤ ηε(Zn) ·bl(L). Finally, we give a technical lemma

on the dot product of a discrete Gaussian (proved in App. A.2), analogous to [38, 35].

Lemma 2.4 (Dot product convolution) Let K = R or T. Let c ∈ R, u ∈ Rn, α, σ ∈
R≥0, ε ∈ (0, 1/2) and z + L be a coset of an n-dim lattice L ⊆ Rn. Assume that

5

(
1
σ2 + ‖u‖2

α2

)−1/2
≥ ηε(L). Then DK,α,c+〈u,v〉 where v ← Dz+L,σ is within statistical distance

≤ 4ε from DK,
√
α2+σ2‖u‖2,c. This still holds when K = 1

NZ or 1
NZ/Z if α ≥ ηε(1

NZ).

2.2 SIS and LWE

Let G = Znq . SIS(m,n, q, β) [1] asks, given g = (g1, . . . , gm) ∈R Gm, to find a non-zero vector

x ∈ Zm s.t.
∑m

i=1 xigi = 0 and ‖x‖ ≤ β. Such an x exists if β ≥ √mqn/m. Ajtai [1] proved that
SIS (with suitable parameters) is at least as hard as approximating SIVP in the worst case for
dimension n to within some polynomial factor: in the best reduction known [20], the factor is
Õ(n). In LWE(m,n, q, β) [38], one picks s ∈R G and (g1, . . . , gm) ∈R Gm. Let A be the m× n
matrix whose i-th row is gi. LWE asks to recover s ∈ G, given as input (A, sAt + e) where
e ∈ Zmq is chosen with distribution DZm,βq (as in [35]) or the original distribution of [38].

3 Lattice Factor Groups and Generalizations of SIS and LWE

In this section, we present our group generalizations of SIS and LWE, which are related to factor
groups of integer lattices.

3.1 Lattice Factor Groups

If L is a full-rank lattice ⊆ Zm, its factor group Zm/L is a finite abelian group of order vol(L).
For any finite abelian group G, denote by LG,m the (finite) set of full-rank lattices L ⊆ Zm such
that Zm/L ' G. The following elementary characterization of LG,m is a consequence of [33]:

Theorem 3.1 Let G be a finite abelian group and L be a full-rank lattice in Zm. Then L ∈ LG,m
if and only if G has rank ≤ m and there exists g = (g1, . . . , gm) ∈ Gm such that the gi’s generate
G and L = Lg where Lg = {(x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G}.

Given G, Alg. 1 shows how to sample efficiently lattices from the uniform distribution over
LG,m, and its correctness follows from (the trivial) Lemma 3.2. Previously, efficient sampling
was only known for G = Zp where p is a large prime (see [22]).

Algorithm 1 Sampling lattices of given factor group
Input: Integer m ≥ 1 and a finite abelian group G = Zq1 × · · · × Zqk such that 1 ≤ k ≤ m.
Output: A random lattice from the uniform distribution over LG,m.

1: Generate elements g1, . . . , gm uniformly at random from G until the gi’s generate G.
2: Return the lattice Lg where g = (g1, . . . , gm) ∈ Gm.

Lemma 3.2 Let G be a finite abelian group. Let g = (g1, . . . , gm) ∈ Gm be such that the gi’s
generate G. Let h = (h1, . . . , hm) ∈ Gm. Then Lg = Lh if and only if there is an automorphism
ψ of G such that hi = ψ(gi) for all 1 ≤ i ≤ m. In such a case, ψ is uniquely determined.

We note that several implementations of lattice-based cryptography (such as [19]) implicitly
used lattices in LG,m for some large cyclic group G. Recently, Nguyen and Shparlinski [31]
showed that such lattices are dominant: the set ∪G cyclicLG,m of all full-rank integer lattices
L ⊆ Zm such that Zm/L is cyclic has natural density 1/[ζ(6)

∏m
k=4 ζ(k)] ≈ 85% (for large m).

6

3.2 The Group-SIS Problem (GSIS)

We introduce the Group-SIS problem (GSIS), which is a natural generalization of SIS to ar-
bitrary finite abelian groups. The GSIS parameters are m ≥ 1, a finite abelian group
G and a bound β ∈ R≥0. One picks a sequence g = (g1, . . . , gm) ∈ Gm uniformly at
random. GSIS(G,m, β) asks to find a non-zero vector x ∈ Zm s.t.

∑m
i=1 xigi = 0 and

‖x‖ ≤ β. In other words, GSIS asks to find short vectors in random relation lattices
Lg = {x ∈ Zms.t.

∑m
i=1 xigi = 0}. For instance, GSIS(Znq ,m, β) is SIS, and GSIS(Zq,m, β)

is finding short vectors in random m-dimensional co-cyclic lattices of volume q. If #G denotes
the order of G, the existence of a GSIS-solution is guaranteed if β ≥ √m(#G)1/m.

GSIS is connected to LG,m as follows. It is known [24, 32] that as soon as m ≥ n +
2 log log #G+5 (resp. m > 2 log #G+2), g1, . . . , gm generate the whole group G with probability
≥ 1/e (resp. ≥ 1− 1/#G), in which case Zm/Lg ' G. In particular, if m > 2 log #G+ 2, then
the distribution of GSIS lattices Lg is statistically close to the uniform distribution over LG,m,
because it is statistically close to the distribution produced by Alg. 1, in which case, solving
GSIS is equivalent to finding short vectors in random lattices from LG,m.

Finally, we note that to establish hardness of GSIS, it suffices to focus on low-rank groups
G. Indeed, if G′ = G ×H for some finite abelian group G,H, then GSIS over G can trivially
be reduced to GSIS over G′, by “projecting”G′ to G.

3.3 The Group-LWE Problem (GLWE)

We introduce the Group-LWE problem (GLWE), which generalizes LWE. It uses the torus
T = R/Z and a finite abelian group G. Let Ĝ be the dual group of homomorphisms from G to
T: it is isomorphic to G but not canonically. If G is explicit, G = ⊕ki=1 〈ei〉 where ei has order

qi, and Ĝ is generated by ê1, . . . , êk defined as êi(
∑k

j=1 αjej) = αi/qi mod 1 where 0 ≤ αj < qj .

Let S be a known distribution over Ĝ. Search-GLWE is the problem of learning a character
ŝ ∈ Ĝ picked from S, given noisy evaluations of ŝ at (public) random points a1, . . . , am ∈ G,
namely one is given (for all i’s) ai and a “Gaussian” perturbation of ŝ(ai). Like LWE, several
noise distributions are possible. As in [38], we focus on the continuous distribution where ŝ(a)
is shifted by an error e ← DR,α. These distributions need to be discretized in order to have a
finite representation. In App. B.4, we present discrete versions of GLWE and show that they
are at least as hard as the continuous version for some suitable parameters, which explains why
we only consider the continuous GLWE problem in the rest of the article:

Definition 3.3 Let G be an explicit finite abelian group: G = ⊕ki=1 〈ei〉. Let α > 0 and ŝ ∈ Ĝ.

• AG,α(ŝ) is the distribution over G × T defined by choosing a ∈ G uniformly at random,
setting b← DT,α,ŝ(a), and outputting (a, b) ∈ G× T.

• Search-GLWEG,α(S) asks to find ŝ from AG,α(ŝ) for a fixed ŝ→ S given arbitrarily many

independent samples. By finding ŝ, we mean finding si ∈ Z s.t. ŝ =
∑k

i=1 siêi.

• Decisional-GLWEG,α(S) asks to distinguish AG,α(ŝ) from the uniform distribution over
G× T for a fixed ŝ sampled from S given arbitrarily many independent samples.

• For 0 < α < 1, (Search) Decisional-GLWEG,≤α(S) is the problem of solving (Search)
Decisional-GLWEG,β(S) for any β ≤ α respectively, i.e. when the noise parameter is
unknown yet ≤ α, by analogy with LWE.

Search-GLWEG,m,α(S) and Decisional-GLWEG,m,α(S) denote the variants where the algorithms

have a bounded number m of samples. If S is omitted, it is the uniform distribution over Ĝ.

7

If G = Znq , the canonical representation of G and Ĝ shows that GLWE is equivalent to the

fractional version of Regev’s original LWE. If G = Zp for some prime p, then Ĝ can be defined
by multiplications: ŝ is the homomorphism mapping any t ∈ Zp to ts/p mod 1. Thus, GLWE
can be viewed as a randomized version of Boneh-Venkatesan’s Hidden Number Problem [9]:
recover a secret number s mod p, given approximations of sti mod p for many random integers
ti’s. By analogy with LWE (see [38, 12]), there is a folklore reduction from (Search) Decisional-
GLWEG,≤α(S) to (Search) Decisional-GLWEG,α(S), respectively.

Lemma 3.4 (Adapted from [12, Lemma 2.13]) Let A be an algorithm for Decisional-
GLWEG,m,α(S) (resp. Search) with advantage at least ε > 0. Then there exists an algorithm
B for Decisional-GLWEG,m′,≤α(S) (resp. Search) using oracle access to A and with advantage
≥ 1/3, where both m′ and its running time are poly(m, 1/ε, log #G).

Proof. (Sketch, see App. B.3 for a detailed proof). Like in LWE, the basic idea is to add noises
in small increments to the distribution obtained from the challenger, and feed it to the oracle
solving the Decisional-GLWEG,α(S) (resp. Search) and estimate the behavior of the oracle. �

4 Structural Lattice Reduction

4.1 Overview

A basic result (following from structure theorems of finitely-generated modules over principal
ideal domains) states that for any full-rank sublattice L of a full-rank lattice L̄ ⊆ Rn, there
exists a basis B̄ = (b̄1, . . . , b̄n) of L̄ and integers q1, . . . , qn ≥ 1 such that q1 ≥ q2 ≥ · · · ≥ qn ≥ 1
and B = (q1b̄1, . . . , qnb̄n) is a basis of L. The qi’s can be made unique by selecting them as
powers of prime numbers, or by requiring each qi+1 to divide qi, in which case q1, . . . , qn are
the elementary divisors of the pair (L̄, L): for instance, if L̄ = Zn and L is a full-rank integer
lattice, the qi’s are the diagonal coefficients of the Smith normal form of L.

In this section, we introduce a lattice reduction converse, which we call structural lattice
reduction. Lattice reduction asks to find a short basis of a given full-rank lattice L ⊆ Zn. In
structural lattice reduction, one is further given a finite abelian group G of rank ≤ n, and wants
to find a short basis of some overlattice L̄ of L such that L̄/L ' G effectively. More precisely,
given a basis B of a full-rank lattice L ⊆ Zn, a suitable bound σ > 0 and integers q1 ≥ · · · ≥ qk
defining G = Zq1 × · · · × Zqk , one asks to compute a basis B̄ of an overlattice L̄ ⊇ L such
that ‖B̄∗‖ ≤ σ and B = (q1b̄1, . . . , qkb̄k, b̄k+1, . . . , b̄n) is a basis of L. Interestingly, we do not
require the input basis B to have integer or rational coefficients, as long as its Gram-Schmidt
coefficients are known with enough precision. Indeed, our structural reduction algorithm can
simply focus on finding the rational transformation matrix between B̄ and B.

Previous worst-case to average-case reductions implicitly used the homocyclic group G = Znq ,
thus L̄ = L/q. Here, finding a basis B̄ of L̄ with small ‖B̄∗‖ is the same as finding the basis
B = qB̄ of L with small ‖B∗‖, which is just classical lattice reduction. However, we obtain new
problems and applications by considering different choices of G. In the trivial case G = Znq ,

B̄ = q−1B implies that ‖B̄∗‖ = ‖B∗‖/q where the factor q is exactly #G1/n: this suggests that
in general, we might hope to reduce ‖B̄∗‖ by a factor close to #G1/n, compared to ‖B∗‖.

Another trivial case of structural lattice reduction is G = Zq1 × · · · × Zqn where the qi’s are
distinct positive integers of similar bit-length. If B = (b1, . . . ,bn) is a basis of L ⊆ Zn, then
B̄ = (q−1

1 b1, . . . , q
−1
n bn) generates an overlattice L̄ such that B̄∗ = (q−1

1 b∗1, . . . , q
−1
n b∗n), and

therefore ‖B̄∗‖ ≤ ‖B∗‖/minni=1 qi. The factor minni=1 qi is close to #G1/n if the qi’s have similar
bit-length. But if the qi’s are unbalanced, such as when minni=1 qi = 1, then the bound is much
weaker. In particular, the case G = Zp for some large prime p looks challenging, as the trivial

8

choice B̄ = (p−1b1,b2, . . . ,bn) looks useless: L̄/L ' G but ‖B̄∗‖ is likely to be essentially as
big as ‖B∗‖, because for a typical reduced basis, the first ‖b∗i ‖’s have the same size.

4.2 Co-cyclic Lattice Reduction

As a warm-up, we solve structural lattice reduction when the target group G is cyclic of order
q, which we call co-cyclic lattice reduction. Let B̄ be a solution of structural reduction on
(L(B), G, σ): C = (qb̄1, b̄2, . . . , b̄n) is a basis of L s.t. ‖c1‖ ≤ qσ and ‖c∗i ‖ ≤ σ for all i ≥ 2.

To find such a basis B̄, we first show how to transform B to ensure ‖b∗i ‖ ≤ σ for all i ≥ 2,
using a poly-time algorithm which we call unbalanced reduction (see Alg. 2). This algorithm can
be explained as follows: in dimension two, it is easy to make b∗2 arbitrarily short by lengthening
b1 (adding a suitable multiple of b2), since ‖b1‖ × ‖b∗2‖ = vol(L) is invariant. Unbalanced
reduction works by iterating this process on two-dimensional projected lattices, similarly to the
classical size-reduction process. However, one would like to make sure that the resulting first
basis vector c1 does not become too large, which is quantified by the following result:

Theorem 4.1 (Unbalanced reduction) Given an n-dim projected block B = B′[i,i+n−1] of a

lattice L ⊆ Zm and a target σ ∈ Q+, Alg. 2 outputs in polynomial time an n × n unimodular
matrix U such that C = UB satisfies ‖c1‖ ≤ nσδσ(B) and ‖c∗i ‖ ≤ σ for i ≥ 2, and:

δν(B) ≤ δν(C) ≤ ‖c1‖
σδσ (B)

× δν (B) for all ν ≤ σ (1)

where δσ(B) =
def

n∏
j=1

max
(
1,
∥∥b∗j∥∥ /σ) . (2)

We call δσ(B) the cubicity-defect of B relatively to σ: it basically measures by which amount
the hypercube of side σ should be scaled up to cover the parallelepiped spanned by b∗1, . . . ,b

∗
n.

The proofs of Th. 4.1 and Alg. 2 can be found in App. C.2. Th. 4.1 shows that Alg. 2 solves co-

Algorithm 2 Unbalanced Reduction
Input: an n ×m basis B of an integer lattice L ⊆ Zm and a target length σ ∈ Q+. More generally, B can be any

n-dimensional projected block B = B′[i,i+n−1] of some basis B′ of L ⊆ Zm.

Output: an n× n unimodular matrix U such that C = UB satisfies ‖c∗i ‖ ≤ σ for i ≥ 2 and ‖c1‖ ≤ nσδσ(B).
1: C ← B, U ← In and compute the Gram-Schmidt matrices µ and C∗

2: If ‖c∗i ‖ ≤ σ for all i, return U
3: for i = k − 1 downto 1 where k is the largest index such that ‖c∗k‖ > σ do
4: if ‖c∗i ‖ ≤ σ then
5: α← b−µi+1,ie
6: else

7: α←
⌈
−µi+1,i +

‖c∗i+1‖
‖c∗i ‖

√
(‖c∗i ‖ /σ)2 − 1

⌉
8: end if
9: (ci, ci+1)← (ci+1 + α · ci, ci), (ui,ui+1)← (ui+1 + α · ui, ui) and update the GS matrices µ and C∗.

10: end for
11: return U

cyclic lattice reduction for q ≥ nδσ(B). However, this may not be suitable for our applications,
since this lower bound depends on B and might be unbounded. To address this issue, we now
show that LLL can bound δσ(B) depending only on n for appropriate σ:

Theorem 4.2 (LLL’s cubicity-defect) Let L be a full-rank lattice in Rn and σ ≥ ((1 +
ε
LLL

)
√

4/3)r · bl(L) for some r ≥ 0. If B is an LLL-reduced basis of L with factor ε
LLL

, then

δσ(B) ≤ ((1 + ε
LLL

)
√

4/3)
(n−2r)2

8
+

(n−2r)
4 .

9

By combining Th. 4.1 and 4.2, we obtain:

Theorem 4.3 (Co-cyclic Reduction) Given an n × m basis of a lattice L ⊆ Zm, ε > 0
and a rational σ ≥ ((1 + ε

LLL
)
√

4/3)r · bl(L) for some r ≥ 0, and an integer q ≥ n((1 +

ε
LLL

)
√

4/3)
(n−2r)2

8
+

(n−2r)
4 , Alg. 3 computes a basis B̄ of an overlattice L̄ ⊇ L in time polynomial

in the basis size, σ and 1/ε, such that
∥∥B̄∗∥∥ ≤ σ and (qb̄1, b̄2, . . . , b̄n) is a basis of L. In

particular, L̄/L ' Zq.

For instance, Th. 4.3 with r = n implies that given a lattice L and any cyclic group G of
sufficiently large order (i.e. 2Ω(n2

), one can efficiently obtain a basis B̄ of some overlattice
L̄ of L such that L̄/L ' G and ‖B̄∗‖ ≤ bl(L): by comparison, an LLL-reduced basis only
approximates bl(L) to some exponential factor in the worst case.

Algorithm 3 Co-cyclic Reduction

Input: a basis of a full-rank integer lattice L ⊆ Zn, a factor ε > 0, and a rational σ ≥ ((1 + ε
LLL

)
√

4/3)r · bl(L) for

some r ≥ 0, and an integer q ≥ n((1 + ε
LLL

)
√

4/3)
(n−2r)2

8
+

(n−2r)
4

Output: a basis B̄ of an overlattice L̄ such that ‖B̄∗‖ ≤ σ and L̄/L ' Zq.
1: Apply Alg. 2 on an LLL-reduced basis with factor ε

LLL
output by the LLL algorithm.

2: return B̄ = (c1q , c2, . . . , cn) where C is the basis of L returned by Alg. 2.

4.3 Arbitrary Groups

Using unbalanced reduction, we prove that for an arbitrary sufficiently large finite abelian group
G of rank ≤ n, given any basis B of the lattice L ⊆ Zn, one can compute a basis B̄ of some
overlattice L̄ of L s.t. L̄/L ' G effectively and ‖B̄∗‖ is essentially lower than ‖B∗‖/#G1/n. In
particular, bl(L̄) is essentially #G1/n smaller than bl(L). Although this is slightly weaker than
the result we obtained (in the previous subsection) for cyclic groups G, it is sufficient for our
worst-case to average-case reductions.

Theorem 4.4 (Structural Lattice Reduction) Given an n×m basis B of a lattice L ⊆ Zn,
and k ≤ n integers q1 ≥ · · · ≥ qk defining the group G =

∏k
i=1 Zqi s.t. nk(‖B∗‖ /σ)n ≤ #G or:

. #G ≥ n!
(n−k)!δσ(B) and for all i ≤ k, ‖B∗‖ /σ ≤ qi/(n+ 1− i)

Alg. 4 outputs a basis B̄ of an overlattice L̄ ⊇ L such that
∥∥B̄∗∥∥ ≤ σ and (q1b̄1, . . . , qnb̄n) is a

basis of L where qi = 1 for i > k. In particular, L̄/L ' G.

For instance, the condition nk(‖B∗‖ /σ)n ≤ #G in Th. 4.4 means that σ (and therefore ‖B̄∗‖)
can be chosen as low as nk/n‖B∗‖/(#G)1/n. The proof of Th. 4.4 can be found in App. C.3.

Algorithm 4 Structural Lattice Reduction

Input: σ, an n×m basis B of an integer lattice L, and (q1, . . . , qk) s.t. G =
∏k
i=1 Zqi satisfies the conditions of Th. 4.4

Output: an n×m basis B̄ of an overlattice L̄ of L such that ‖B̄∗‖ ≤ σ and L̄/L ' G.
1: C ← B
2: for i = 1 to k do
3: if

∥∥∥C∗[i,n]

∥∥∥ ≤ σ return B̄ = (c1q1 , . . . ,
ck
qk
, ck+1, . . . , cn)

4: Compute the smallest ` ≥ σ such that ` · δ`(C[i,n]) = qiσ/(n− i+ 1).
5: V ← UnbalancedReduction(C[i,n], σ) using Alg. 2.
6: Apply V on (ci, . . . , cn)
7: end for
8: return B̄ = (c1q1 , . . . ,

ck
qk
, ck+1, . . . , cn)

Intuitively, Alg. 4 simply applies unbalanced reduction iteratively, cycle by cycle of G.

10

4.4 Application

Structural reduction finds a short overlattice basis, which can typically be used to sample short
(overlattice) vectors, and which provides the following effective isomorphisms:

Proposition 4.5 Let L and L̄ be two full-rank lattices such that L̄ ⊇ L and L̄/L ' G where
G = Zq1 × · · · × Zqk . Given bases B and B̄ of resp. L and L̄, one can compute in polynomial

time a morphism ϕ s.t. the sequence 0 −→ L
id−→ L̄

ϕ−→ G −→ 0 is exact, and a “dual” morphism
ϕ× : L× → Ĝ s.t.

[ϕ×(u)](ϕ(v)) = 〈u,v〉 mod 1 for all u ∈ L× and all v ∈ L̄ (3)

Furthermore, preimages of ϕ× can be computed in polynomial time.

Proof. (Sketch) Let (e1, . . . , ek) be the canonical generators of G =
∏k
i=1 Zqi . Find any basis

C of L and C̄ of L̄ such that C = (q1c̄1, . . . , qkc̄k, c̄k+1, . . . c̄n), then let ϕ be the morphism
mapping C to (e1, . . . , ek, 0, . . . , 0) and ϕ× be the mapping from C× to (ê1, . . . , êk, 0̂, . . . , 0̂). �

This proposition still holds if G is an explicit finite abelian group.

5 Hardness of Group-SIS

Our hardness result for GSIS requires that the finite abelian group G is explicit (see Sect. 2).

5.1 Overview

We first sketch how to adapt the SIS reduction to GSIS using structural lattice reduction.
The main idea behind the SIS reduction can be traced back to 1935, when Mordell [29]

published an arithmetical proof of Minkowski’s theorem. To prove the existence of short vectors
in a full-rank lattice L ⊆ Rn, Mordell implicitly presented an algorithm to find short vectors
from (exponentially many) long vectors, as follows. Let q ≥ 1 be an integer and w1, . . . ,wm ∈ L
be distinct vectors of norm ≤ R, where m > qn: for large R, m can be essentially chosen as large
as the volume of the R-radius ball divided by the volume of L. Let vi = q−1wi ∈ q−1L. Since
m > qn = [(q−1L) : L], there are i 6= j such that vi ≡ vj mod L, i.e. vi−vj = q−1(wi−wj) ∈ L
whose (nonzero) norm is ≤ 2R/q, which is short for appropriate choices of q and R.

This algorithm is not efficient since m is exponential in q, but it can be made polynomial by
reducing m to poly(n), using a SIS(m,n, q) oracle. Indeed, let L be a full-rank integer lattice
in Zn. The lattice L̄ = q−1L is an overgroup of L such that L̄/L ' Znq = G: namely, there is

an exact sequence of groups 0 −→ L
id−→ L̄

ϕ−→ G −→ 0, where ϕ is efficiently computable, e.g. for
any fixed basis (b̄1, . . . , b̄n) of L̄, let ϕ(

∑n
i=1 xib̄i) = (x1 mod q, . . . , xn mod q) ∈ G.

Furthermore, if B̄ is short enough compared to the minima of L, it is possible to sample
short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution of parameter as small as ηε(L). Fourier
analysis guarantees that for such Gaussian distributions, each projection gi = ϕ(vi) is uniformly
distributed over G. This allows us to call an SIS oracle on (g1, . . . , gm), which outputs a short
x ∈ Zm such that

∑m
i=1 xigi = 0, i.e.

∑m
i=1 xiϕ(vi) = 0 which implies that v =

∑m
i=1 xivi ∈ L.

This v can be proved to be non-zero with overwhelming probability, and it is short because the
vi’s and x are short, which concludes the reduction from worst-case SIVP to SIS.

With this formalization, we can replace the SIS oracle by a GSIS oracle, as while as we are
able to sample short vectors v1, . . . ,vm ∈ L̄ with Gaussian distribution, where L̄/L ' G. And
this is exactly what structural lattice reduction ensures. Previous SIS reductions used special
choices of L̄ and a different way to sample short vectors in the overlattice: see App. H for more
information.

11

5.2 Reducing Worst-case ApproxSIVP to GSIS

Our main result formalizes the previous sketch and states that for appropriate choices of
(G,m, β), if one can solve GSIS(G,m, β) on average, then one can approximate SIVP in the
worst case, i.e. one can efficiently find short vectors in every n-dimensional lattice:

Theorem 5.1 Let n ∈ N and ε = negl(n). Given as input a basis B of a full-rank integer
lattice L ⊆ Zn and σ ≥

√
2 bl(L), and an explicit finite abelian group G of rank k ≤ n such

that #G ≥ nk(‖B∗‖ /σ)n, Alg. 5 outputs (in random polynomial time) n linearly independent
vectors of L with norm ≤ σηε(Zn)

√
nπβ, using polynomially many calls to an oracle solving

GSIS(G,m, β) with probability ≥ 1/poly(n).

Algorithm 5 Reducing ApproxSIVP to GSIS

Input: a basis B of a full-rank integer lattice L ∈ Zn, a parameter σ ≥
√

2 bl(L), a negl. ε > 0, an explicit finite abelian
group G satisfying the condition of Th. 5.1, and an oracle O solving GSIS(G,m, β) with probability ≥ 1/poly(n).

Output: A set S of n linearly independent vectors of L of norm ≤ σηε(Zn)
√
n/2πβ.

1: S ← ∅.
2: Call structural reduction (Alg. 4) on (B,G, σ) to get B̄ s.t. ‖B̄∗‖ ≤ σ and ϕ : L̄→ G (Prop. 4.5) where L̄ = L(B̄).
3: repeat
4: Sample v1, · · · ,vm ∈ L̄ with distribution DL̄,σηε(Zn),0 using B̄.
5: gi = ϕ(vi) for 1 ≤ i ≤ m, forming a sequence g = (g1, . . . , gm) ∈ Gm.
6: Call the GSIS-oracle O on g, which returns x = (x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0.

7: v←∑m
i=1 xivi ∈ L

8: if ‖v‖ ≤ σηε(Zn)
√
nπβ and v /∈ span(S) then S ← S ∪ {v}

9: until dim(S) = n
10: Return S

In particular, by letting σ = ‖B‖∗

2ηε(Zn)
√
n/πβ

, we can obtain an incremental version of the

reduction, where the output basis is twice as short as the input. This generalizes [28, Th. 5.9]
and [20, Th. 9.2] with a GSIS oracle instead of SIS. Iterating Th. 5.1 until we reach σ =

√
2 bl(L)

allows to connect the average-case hardness of GSIS to the worst-case of ApproxSIVP.

Corollary 5.2 Let n ∈ N and ε = negl(n). Let (Gn)n∈N be a sequence of explicit fi-
nite abelian groups s.t. #Gn ≤ (βn/

√
mn)mn for mn ∈ N and Gn has rank kn. If

#Gn ≥ nkn
(
ηε(Zn)

√
2n/πβn

)max(n,kn)
, then using polynomially many calls to an oracle solv-

ing GSIS(Gn,mn, βn) with probability ≥ 1/ poly(n), one can solve worst-case n-dimensional
ApproxSIVP

ηε(Zn)
√
n/πβn

in (randomized) polynomial time.

Consider the set of all full-rank integer lattices⊆ Zm of volume≥ ωn = nm
(
ηε(Zn)

√
2n/πβn

)m
.

This set can be partitioned as ∪GLG,m where G runs over all finite abelian groups of order ≥ ωn
and rank ≤ m. Each such G satisfies the conditions of Cor. 5.2, and therefore GSIS over G is
as hard as worst-case lattice problems: for any of the partition cells LG,m, finding short vectors
in a random lattice from this cell is as hard as finding short vectors in any n-dim lattice.

6 Hardness of Decisional-Group-LWE

In this section, we show how to transfer the following Decisional-LWE hardness results to
Decisional-GLWE:

Theorem 6.1 ([38, 34]) Let n ∈ N and qn ≥ 1 be a sequence of integers, and let αn ∈ (0, 1)
be a real sequence such that αnqn ≥ 2

√
n. There exists a quantum reduction from worst-case

12

n-dimensional GapSVPÕ(n/αn) to Decisional-GLWEZnqn ,αn. If qn ≥ 2n/2 is smooth then there is
a classical reduction between them.

Theorem 6.2 ([12]) Let n ∈ N and qn ≥ 1 be a sequence of integers, and let αn ∈ (0, 1) be
a real sequence such that αn ≥ 2n1/4/2

√
n/2. There exists a classical reduction from worst-case√

n-dimensional GapSVPÕ(
√
n/αn) to Decisional-GLWEZnqn ,βn, where β2

n = 10nα2
n+ n

q2n
·ω(log n)

To do so, we reduce Decisional-LWE to Decisional-GLWE using a technique we call group
switching. This technique transforms GLWE samples over a group G to another group G′,
generalizing the modulus-dimension switching technique in [12], which is the special case G = Znq
and G′ = Zn′q′ . We believe that the group switching technique proposed below is useful to better
understand the core idea of the modulus-dimension switching technique.

Before presenting group switching, we note that the modulus-dimension switching technique
from [12] implicitly uses a special case of structural lattice reduction. More precisely, Brakerski
et al. [12] defined a special lattice Λ (see Th 3.1 of [12]) to transform LWE samples over G = Znq
to LWE samples over G′ = Zn′q′ , but the meaning of Λ may look a bit mysterious. The lattice Λ

is defined as Λ = 1
q′Z

n′ ·H + Zn where H is some n′ × n integer matrix: this matrix is actually
denoted by G in [12], but this would collide with our notation G for finite abelian groups. And
[12] provided a good basis of Λ in special cases. We note that the exact definition of Λ is not
important: the quotient Λ/Zn turns out to be isomorphic to the group G′ = Zn′q′ , as shown by

the transformation mapping 1
q′x ·H + y ∈ Λ to x mod q′ ∈ G′. Thus, finding a good basis of

Λ is actually a special case of structural lattice reduction for the lattice Zn and the group G′.
Therefore, it is natural to use structural lattice reduction directly (instead of an ad-hoc process)
to obtain a more general statement than the modulus-dimension switching technique of [12].

Since we have two groups G and G′ and two overlattices L̄ and L̄′ of Zn, we will have two
morphisms ϕ : L̄ → G and ϕ′ : L̄′ → G′ with ker(ϕ) = ker(ϕ′) = Zn. Both morphisms are
associated to their dual morphism as in Prop. 4.5, i.e. ϕ× : Zn → Ĝ and ϕ′× : Zn → Ĝ′,
satisfying [ϕ′×(u)](ϕ′(v)) = 〈u,v〉 mod 1 for all u ∈ Zn and all v ∈ L̄′ (resp. without primes).
These morphisms are summarized in Figure 1.

We say that a distribution S over Zn is K-bounded if Prs←S [‖s‖ > K] ≤ negl(n). By
extension, given a (public) morphism f from Zn to Ĝ, we say that a distribution S over Ĝ
is K-bounded (for f) if it is the image of a K-bounded distribution by f . This in particular
means, that for almost all choices of f1, every distribution on G including the uniform one are
by definition automatically #G1/n-bounded. In the following, we will choose ϕ× = f and ϕ
its dual morphism accordingly. Thus, any secret ŝ ← S has with overwhelming probability a
preimage s ∈ Zn of norm ≤ K. Note that the small s ∈ Zn may be hard to compute from ŝ,
however in this case, what matters is its existence. During group switching, the new secret in
Ĝ′ will be ϕ′×(s), and the new K-bounded distribution S ′ = ϕ′×(S).

Lemma 6.3 (Group Switching) Let G and G′ be two finite abelian groups of rank ≤ n s.t.
G is fully-explicit and G′ is explicit. Let L̄ be an overlattice of Zn such that L̄/Zn ' G. Let B̄′

be a basis of an overlattice L̄′ of Zn such that L̄′/Zn ' G′. Let ϕ,ϕ′ and ϕ′× be defined as in
Prop. 4.5. Let r ≥ max

(√
2ηε(L̄), ‖B̄′∗‖ · ηε(Zn)

)
, where ε is some negligible function. Then,

there is an efficient randomized algorithm which, given as input a sample from G× T, outputs
a sample from G′ × T, with the following properties:
- If the input sample has uniform distribution in G × T, then the output sample has uniform
distribution in G′ × T (except with negligible distance).

1Ideally, f should be collision resistant among samples from S. In the classical LWE (G = Znq), f would map

s ∈ Zn to the secret character ŝ : y → 1/q〈s,y〉 mod 1 in Ĝ.

13

Zn

L̄ L̄′

G G′

ϕ ϕ′

SampleGauss

a u v a′

Zn

L̄× L̄′×

Ĝ Ĝ′

ϕ× ϕ′×

ŝ s ŝ′

S S S ′
(K-Bounded)

(mod Zn) (mod Zn)

ϕ−1 ϕ′ ϕ×−1 ϕ′×

Figure 1: Main components of group switching and their relationship

Dotted arrows represent overlattices. The left side are the primal extensions, the right
side contains dual overlattices. On the left of each diagram, we recognize the dual pair of
surjective morphisms ϕ from L̄ (mod Zn) to G, and ϕ× from Zn (mod L̄×) to Ĝ. On the
right side of each diagram, the dual morphisms ϕ′, ϕ′× related to the second group G′.
To transform a AG,α(ŝ) sample (a, b) to a AG′,β(ŝ′) sample (a′, b′), we compute u ∈ ϕ−1(a)
a preimage in L̄ (mod Z)n, we sample a point v in L̄′ (mod Z)n close to u, and we apply ϕ′

to get a′.
On the dual side, the secret ŝ admits in general a unique preimage s by ϕ× which has small
norm. Finding this small s may in some cases be very difficult, as it requires to solve a
CVP in L̄×. However, only the existence of the small s matters. Then, the new (unknown)
secret is ŝ′ = ϕ′×(s). In general, we know the K-bounded distribution S over Zn from which
S = ϕ×(S) is defined. Thus, the distribution of secrets S ′ = ϕ′×(S) in the new GLWE is
entirely determined.
Finally, note that by duality of the morphisms, ŝ(a) = 〈s,u〉 ≈ 〈s,v〉 = ŝ′(a′). We just need
to add some noise b′ = b+noise to compensate the Gaussian approximation between 〈s,u〉
and 〈s,v〉 in the middle.

14

- If the input is distributed according to AG,α(ŝ) for some ŝ = ϕ×(s) s.t. s ∈ Zn and ‖s‖ ≤ K,

then the output distribution is statistically close to AG′,β(ŝ′), where ŝ′ = ϕ′×(s) ∈ Ĝ′ and
β2 = α2 + r2(‖s‖2 +K2) ≤ α2 + 2(rK)2.

By combining Group Switching (Lemma 6.3) with structural reduction (Th. 4.4), one obtains
the following reduction between Decisional-GLWE of two groups G and G′:

Corollary 6.4 (GLWE to GLWE) Let n ∈ N and 0 < σn < 1 be a real sequence. Let
(Gn)n∈N and (G′n)n∈N be two sequences of finite abelian groups with respective rank kn ≤ n and
k′n ≤ n s.t. #Gn ≥ nkn(

√
2/σn)n (or if Gn = Znqn where qn ≥

√
2/σn) and #G′n ≥ nk

′
n(1/σn)n.

Assume that Gn is fully-explicit and G′n is explicit. Let S be an arbitrary Kn-bounded distribution
over Zn and S = ϕ×(S) its image by some morphism ϕ× : Zn → Ĝn, αn, βn > 0 be two real
sequences and ε = negl(n) satisfying β2

n ≥ α2
n + 2(σnKn · ηε(Zn))2. Then there is an efficient

reduction from Decisional-GLWEGn,≤αn(S) to Decisional-GLWEG′n,≤βn(S ′), where S ′ = ϕ′×(S)

for some morphism ϕ′× : Zn → Ĝ′n

Proof. Given the canonical basis of Zn and the group Gn, structural reduction finds an
overlattice L̄ together with a basis C̄ s.t.

∥∥C̄∗∥∥ ≤ σn/√2. Therefore
√

2ηε(L̄) ≤ σnηε(Zn). And
structural reduction on G′n and σn gives a short basis B̄′ of length ≤ σn and defines L̄′. The
rest of the proof follows immediately from Lemma 6.3. �

Using the normal form [4] of LWE, namely, if S is the image of the αnqn
√
n-bounded

distribution DZn,αnqn , through the canonical embedding which maps s ∈ Zn to the character
ŝ = y → 1/qn〈s,y〉 mod 1, we obtain the quantum/classical hardness of Decisional-GLWE
problem for any sufficiently large finite abelian group, together with Theorems 6.1 and 6.2:

Corollary 6.5 (Quantum Hardness of GLWE) Let n ∈ N and qn ≥ 1 be a sequence of
integers and (G′n)n∈N be a sequence of any finite abelian explicit groups such that #G′n ≥
nkn(qn/

√
2)n where kn = rank (G′n) ≤ n. Let αn, βn ∈ (0, 1) be two real sequences such that

αnqn ≥ 2
√
n and βn = αn

√
n·ω(

√
log n). Then there exists a quantum reduction from worst-case

n-dimensional GapSVPÕ(n/αn) to Decisional-GLWEG′n,βn.

The lower bound on #G′n is better than for #Gn in Cor. E.2 and 5.2, because group switching
relies on structural reduction over Zn, rather than over an arbitrary lattice: the canonical basis
of Zn is orthonormal, which simplifies the bound of Sect. 4.

Corollary 6.6 (Classical Hardness of GLWE) Let n ∈ N and qn ≥ 1 be a sequence of
integers and (G′n)n∈N be a sequence of any finite abelian explicit groups such that #G′n ≥
nkn(qn/

√
2)n where kn = rank (G′n) ≤ n. Let αn, βn ∈ (0, 1) be two real sequences such that

αn ≥ 2n1/4/2
√
n/2 and β2

n = n2α2
n · ω(log n) + n2

q2n
· ω(log2 n). There exists a classical reduction

from worst-case
√
n-dimensional GapSVPÕ(

√
n/αn) to Decisional-GLWEG′n,βn.

7 Abstracting Lattice Cryptography: Fully-Homomorphic En-
cryption from GLWE

We showed that GSIS and GLWE are hard under the same worst-case assumptions as SIS and
LWE, provided that the group G is sufficiently large. This suggests to abstract lattice schemes
based on SIS and/or LWE using an arbitrary finite abelian group G, and check that the security
proof carries through under the assumption that GSIS or GLWE is hard. Such an abstraction
may lead to a better understanding of the scheme and a clearer presentation: lattice schemes
are typically described using matrices and vectors, which our abstraction avoids.

15

We illustrate this approach with fully-homomorphic encryption. First, we introduce a
GLWE-based El Gamal-like encryption scheme, which generalizes Regev’s LWE-based encryp-
tion [38] and its dual version [20]. Next, we extend this GLWE generalization of Regev’s
encryption into a somewhat-homomorphic encryption, by carefully abstracting the Alperin-
Sheriff-Peikert variant [3] of the Gentry-Sahai-Waters homomorphic scheme [21]. In particular,
we show how to evaluate any boolean function with a noise overhead proportional to the square
root of its number of variables, how to recognize any regular language with a noise overhead
proportional to the length of the tested word, and how to bootstrap the whole system with only
a linear noise overhead instead of quadratic in [3].

7.1 A GLWE Variant of El Gamal Encryption

It is folklore that El Gamal encryption combines the one-time pad with Diffie-Hellman: the
secret pad is a shared key between the person who encrypts and the holder of the secret key.

Diffie-Hellman uses a cyclic group G′ (denoted additively), generated by some g′ of order q.
Let f ′ : Zq → G′ be the “exponentiation” one-way function defined by f(x′) = x′.g′: inverting f ′

is the DL problem overG′. The Diffie-Hellman map θ′ : Zq×Zq → G′ defined by θ′(a, b) = (ab).g′

is bilinear. The pairing θ′(a, b) can be efficiently computed from (a, b), but also knowing only
(f ′(a), b) or (a, f ′(b)), which explains the DH key exchange: Alice picks a ∈R Zq and discloses
f ′(a), Bob picks b ∈R Zq and discloses f ′(b), and both can compute the shared key θ′(a, b). Its
security in the classical model covering passive adversaries is equivalent to DDH, which asks to
distinguish (f ′(a), f ′(b), θ′(a, b)) from (f ′(a), f ′(b), c) where a ∈R Zq, b ∈R Zq and c ∈R G′. In
El Gamal encryption, the secret key is x′ ∈R Zq, and the public key is y′ = f ′(x′) ∈ G′. The
ciphertext of a message µ′ ∈ G′ is (c′, d′) ∈ G′ × G′ where c′ = µ′ + z′.y′, d′ = f ′(z′) where
z′ ∈R Zq is a one-time key. The first entry c′ is a one-time pad encryption of µ′ with the DH
key z′.y′ = θ′(x′, z′). Breaking El Gamal’s semantic security is equivalent to solving DDH.

By analogy, we first present a GLWE variant of Diffie-Hellman, with different one-way func-
tions and pairing. We consider a (sufficiently large) finite abelian group G and g = (g1, ..., gm) ∈
Gm chosen uniformly at random. This defines two one-way functions:

• Let fg : Zm → G be the morphism defined by fg(x) =
∑m

i=1 xi.gi, where xi.gi is defined
by the Z-module structure of G. For suitable input distributions D, such as the uniform
distribution over {0, 1}m or some well-chosen discrete Gaussian distribution, the distribu-
tion of fg(x) becomes statistically close to uniform (e.g. see the left-over-hash lemma),
and fg becomes one-way under GSIS.

• Let f×g : Ĝ×Tm → Tm defined by f×g (ŝ, e) = (ŝ(g1)+e1, . . . , ŝ(gm)+em): if ŝ ∈R Ĝ and e is
sampled from a suitable distribution such as Dmα , then inverting f×g (ŝ, e) is search-GLWE,
and distinguishing f×g (ŝ, e) from random is decisional-GLWE.

Now, consider the bilinear map θ : Ĝ × Zm → T defined by θ(ŝ,x) = ŝ(fg(x)). Again, θ(ŝ,x)
can be efficiently computed from (ŝ,x). But it can also be computed knowing only (ŝ, fg(x))
by definition, and it can be computed approximately knowing only (f×g (ŝ, e),x) by

∑m
i=1 cixi

(where c = f×g (ŝ, e)), provided that e and x are sampled from suitable distributions.
This motivates the GLWE noisy key exchange where Alice and Bob each compute their own

approximation of θ(ŝ,x): Alice picks x ∈ Zm from some suitable distribution D, and discloses
y = fg(x); Bob picks ŝ ∈R Ĝ and e from the distribution Dmα , and discloses c = f×g (ŝ, e).
Alice computes her key as

∑m
i=1 cixi, and Bob computes his key as ŝ(y) + e where e is sampled

from Dα. Both keys are close to θ(ŝ,x). But, as opposed to Diffie-Hellman, Alice and Bob do
not have symmetric roles, which leads to two El Gamal cryptosystems by swapping Alice and
Bob: this is why Regev encryption has a so-called dual variant [20]. We now give a detailed

16

description of the main cryptosystem, which generalizes Regev’s [38], and which we use in our
fully-homomorphic encryption.

Define the group H = G× Tk where k ∈ N+ and Tk = 1
2k
Z/Z ⊆ T is a discretized torus.

GLWE.Gen(1n) : Takes as input a security parameter n, it chooses a Gaussian parameter 0 < α <
1, a (sufficiently large) finite abelian group G and m ∈ N. Choose g = (g1, ..., gm) ∈R Gm,
ŝ ∈R Ĝ and m Gaussian samples e1, ..., em ← Dα. Set the public key pk = (g,y) ∈
Gm × Tmk , where yi = ŝ(gi) + ei ∈ T, and the secret key sk = ŝ, i.e. y = f×g (ŝ, e).

GLWE.Enc(pk, µ) : Takes as input the public key pk = (g,y) ∈ Gm × Tmk and a message µ ∈
{0, 1}. It selects x = (x1, ..., xm) ∈R {0, 1}m, and returns (d, c) ∈ H, where d = fg(x) =∑m

i=1 xigi ∈ G and c =
∑m

i=1 xiyi+µ/2 ∈ Tk. Here,
∑m

i=1 xiyi is Alice’s key in the GLWE
key exchange. Both d and c use the Z-module structure of G and Tk.

GLWE.Dec(sk, (d, c)) : Returns µ = b2 · (c − ŝ(d))e mod 2 where sk = ŝ and (d, c) ∈ H is the
ciphertext.

One obtains a dual scheme by swapping the two one-way functions fg and f×g : the secret key
is x ∈ Zm ← D, and the public key is y = fg(x). The ciphertext of a message µ ∈ {0, 1} is a
pair (d, c) ∈ T × Tm where d = µ/2 + ŝ(y) + e, c = f×g (ŝ, e) where (ŝ, e, e) is a one-time key.
Here, ŝ(y) + e is the approximate shared key of the GLWE key exchange. A ciphertext (d, c) is
decrypted as b2(d−∑m

i=1 cixi)e mod 2 ∈ {0, 1}.
By analogy with El Gamal, breaking the semantic security of the main GLWE scheme

is equivalent to solving the GLWE-DDH problem of distinguishing (fg(x), f×g (ŝ, e),
∑m

i=1 cixi)

from (fg(x), f×g (ŝ, e), c) where c ∈R T, x← D, ŝ ∈R Ĝ, e← Dmα and e← D, and c = f×g (ŝ, e).
However, unlike the DL setting, one can see that GLWE-DDH is equivalent to decisional-GLWE.

Lemma 7.1 (Correctness) If 0 < α < 1/(4·√m·ω(
√

log n)), then the main GLWE public-key
encryption scheme will decrypt correctly with probability 1− negl(n).

Proof. We have: c − ŝ(d) =
∑m

i=1 xi(ŝ(gi) + ei) + µ/2 − ŝ(∑m
i=1 xigi) = µ/2 +

∑m
i=1 xiei. It is

sufficient to show |∑m
i=1 xiei| < 1/4. Let w ≤ m be the Hamming weight of x, we know that∑m

i=1 xiei is distributed as D√wα. Therefore, it implies that |∑m
i=1 xiei| <

√
wα ·ω(

√
log n) with

probability 1−exp(−π·ω(log n)) = 1−negl(n). We obtain that |∑m
i=1 xi.ei| <

√
wα·ω(

√
log n) ≤

1/4 with probability 1− negl(n), as desired. �

Lemma 7.2 (Security) If m ≥ 2(log #G + k) + ω(log n) and the GLWEG,m,α assumption
holds, then the main GLWE public-key encryption scheme is IND-CPA secure.

Proof. g ∈ Gm is uniformly distributed. By the GLWEG,m,α assumption, y ∈ Tmk is compu-
tationally indistinguishable from uniform, hence (g,y) too. Since m ≥ 2 · log #H + ω(log n)
and x ∈R {0, 1}m, the left-over-hash lemma ensures that

∑m
i=1 xi(gi, yi) is computationally

indistinguishable from uniform over H, and hence (d, c) too. This proves IND-CPA security. �

7.2 A GLWE Variant of GSW Homomorphic Encryption

We now show how to generalize the AP variant [3] of GSW [21] Homomorphic encryption. Let
GLWE(G,α) be a black-box instance of GLWE El Gamal encryption over the GLWE group
G. All noises are discretized in the torus Tk = 1

2k
Z/Z ⊆ T where 2kα ≈ ηε(Z). The group

H = G× Tk is of special interest.
First, recall that El Gamal encryption is homomorphic with respect to the group operation.

Because GLWE(G,α) is a noisy variant of El Gamal encryption, it is also homomorphic for a

17

bounded number of XOR. More precisely, any GLWE ciphertext of a message µ ∈ {0, 1} can
be written as c1 + µh1 ∈ H, where c1 =

∑m
i=1 xi(gi, yi) ∈ H is a random ciphertext of 0, and

h1 = (0, 1/2) ∈ H. Here, we use the Z-module structure of H. The GLWE secret key ŝ induces
a homomorphism Phase : H → T defined as Phase((a, b)) = b − ŝ(a). By definition of GLWE,
we have Phase((gi, yi)) ≈ 0 for all 1 ≤ i ≤ m, but Phase(h1) = 1/2. It follows that the phase of
a GLWE ciphertext of a message µ is ≈ µ/2, which explains the GLWE decryption procedure:
a ciphertext of 0 is close to the kernel of the phase, while a ciphertext of 1 is far away. Because
Phase is a homomorphism and h1 has order 2 in H, if n messages µ1, . . . , µn ∈ {0, 1} are GLWE-
encrypted, then the sum of these n ciphertexts will de decrypted as µ1⊕· · ·⊕µn, provided that
n is not too large.

To achieve more homomorphic operations, one exploits a special property of lattice problems
which is not shared by discrete logarithm problems: with special choices of generators, the SIS
one-way function can be inverted. To do so, one first extends h1 into a generating set of the
Z-module H: let h2, . . . , h` ∈ H be such that h = (h1, . . . , h`) is a generating set of H. Recall
that the GSIS function fg from Sect. 7.1 can be defined over any group: here, we use H,

so fh(x) =
∑`

i=1 xihi ∈ H for (x1, . . . , x`) ∈ Z`. Since h generates H, fh is surjective, and
thus, admits a pseudo-inverse f−1

h from H to Z`, such that fh(f−1
h (b)) = b for any b ∈ H. We

also define Fh : Z`×` → H` by Fh(X) = (fh(x1), ..., fh(x`)), where xi is the i-th row of X.
Accordingly, we define F−1

h : H` → Z`×`.
Given a target in H, finding a short fh()-preimage corresponds to the GSIS problem, which

is in general hard, but it becomes easy for special choices of h, like super-increasing knapsacks:
following [26], we call gadget such a h. We say that f−1

h () is β-bounded for h, if
∥∥f−1

h (b)
∥∥
∞ ≤ β ∈

R+ for any b ∈ H. For instance, if the group G is ZN where 2p < N < 2p+1, a suitable gadget
is h = ((0, 1

2), (0, 1
4), . . . , (0, 1

2k
), (1, 0), (2, 0), . . . , (2p, 0)), f−1

h () ∈ {0, 1}` can be computed by
binary decomposition and is 1-bounded for h. This construction can easily be generalized to
any fully-explicit G, using component-wise binary decomposition: if G = Znq , this corresponds
to the Flatten/BitDecomp algorithms proposed in [21] and [3]. However, other algorithms are
possible, such as ternary decompositions with preimages in {0,±1}`.

Given the GLWE encryption scheme (GLWE.Gen, GLWE.Enc, GLWE.Dec) described in Sect. 7.1
as a “black box”, we build homomorphic encryption using a gadget h ∈ H` whose first element
is (0, 1

2):

GSW.Gen(1n) : Takes as input a security parameter n, it runs the key generation algorithm
(pk, sk)← Gen(1n), where pk = (g,y) ∈ Gm × Tmk and sk = ŝ ∈ Ĝ.

GSW.Enc(pk, µ) : Takes as input the public key pk ∈ Gm×Tmk and a message µ ∈ {0, 1}, it first
generates ` ciphertexts c1 = GLWE.Enc(pk, 0), ..., c` = GLWE.Enc(pk, 0) of zero, and returns

c = (c1, ..., c`) + µ · h ∈ H`.

This is reminiscent of the GLWE scheme, where a GLWE-ciphertext of a message µ is of
the form c1 + µh1 ∈ H where c1 is a random GLWE-ciphertext of 0. Because the first
entry of h is (0, 1

2), the first entry of c is a GLWE encryption of µ.

GSW.Dec(sk, c) : Returns GLWE.Dec(ŝ, c1) where sk = ŝ and c1 ∈ H is the first entry of c.

The security of the scheme and the correctness of decryption follow from that of the GLWE
cryptosystem:

Lemma 7.3 Suppose (Gen, Enc, Dec) uses samples from GLWEG,m,α. If m ≥ 2(log #G+ k) +
ω(log n) and 0 < α < 1/(4 · √m · ω(

√
log n)), (GSW.Gen, GSW.Enc, GSW.Dec) is IND-CPA secure

under the GLWEG,m,α assumption, and GSW.Dec decrypts correctly with probability 1− negl(λ).

18

Proof. The proof of IND-CPA security is similar to Lemma 7.2. Since the first entry of c is a
ciphertext of µ under ŝ of the scheme (Gen, Enc, Dec), correctness follows from Lemma 7.1. �

We now describe our homomorphic operations on ciphertexts, namely how to encode Not,
And, and Mux gates. First, we note that the GSW-GLWE scheme inherits the ⊕-homomorphic
properties of the GLWE scheme. It is classical that any circuit can be built using only Not and
And elementary gates. We chose to add the Mux ternary gate, which encodes the conditional
operator Mux(a, b, c) = a?b:c, because resulting circuits are smaller than NAND-only circuits, all
binary gates can be encoded by a single Mux (and a few Not), and it is trivial to batch-convert
any truth-table to its corresponding Mux-based binary decision diagram.

Definition 7.4 (Homomorphic operations) For all ciphertexts c1, c2, c3 ∈ H`, we define:

GSW.Not(c1) = h− c1,

GSW.And(c1, c2) = Fc1

(
F−1
h (c2)

)
,

GSW.Mux(c1, c2, c3) = Fc1

(
F−1
h (c2)

)
+ Fh−c1

(
F−1
h (c3)

)
We express Xor(a, b) as Mux(a, Not(b), b).

We naturally extend the Phase homomorphism to H` as Phase : H` → T` defined as
Phase(z) = (b1 − ŝ(a1), . . . , b` − ŝ(a`)) ∈ T` where z = ((a1, b1), . . . , (a`, b`)) ∈ H`. Note that a
valid ciphertext of a bit µ is of the form c = z + µh where its homogeneous part z has a small
phase. This small Phase(z) = Phase(c− GSW.Dec(c).h) ∈ T` will be denoted by Noise(c).

By definition, the decryption function will successfully decrypt any ciphertext c ∈ H` such
that ‖Noise(c)‖∞ < 1

4 , where the max-norm in T` is taken over all coordinates centered in the
interval (−1

2 ,
1
2]. This is of course the case of fresh GSW.GLWE ciphertexts, whose Gaussian noise

has small parameter α.
We now show that the GSW.Not, GSW.And and GSW.Mux gates amplify the noise only by a small

factor if f−1
h () is β-bounded.

Lemma 7.5 (Worst-case noise of primitive gates) Suppose f−1
h () is β-bounded for some

β ∈ R+. Let c1, c2, c3 ∈ H` be three ciphertexts such that c1 = z1 + µ1 · h, c2 = z2 + µ2 · h and
c3 = z3 + µ3 · h, where ‖Phase(z1)‖∞ ≤ B and ‖Phase(z2)‖∞ , ‖Phase(z3)‖∞ < B′ for some
B,B′ ∈ R+. Then:

GSW.Not(c1) = z + NOT(µ1) · h where ‖Phase(z)‖∞ = B (4)

GSW.And(c1, c2) = z′ + (µ1 AND µ2) · h where
∥∥Phase(z′)

∥∥
∞ ≤ `βB +B′ (5)

GSW.Mux(c1, c2, c3) = z′′ + (µ1?µ2:µ3) · h where
∥∥Phase(z′′)

∥∥
∞ ≤ 2`βB +B′ (6)

Proof.
By definition of GSW, we have GSW.Not(c1) = −z1 + NOT(µ1), so z = −z1, which proves (4).

Then,

GSW.And(c1, c2) = Fc1

(
F−1
h (c2)

)
= Fz1+µ1·h

(
F−1
h (c2)

)
= Fz1(F−1

h (c2)) + µ1Fh(F−1
h (c2))

= Fz1(F−1
h (c2)) + µ1 · c2 = Fz1(F−1

h (c2)) + µ1z2︸ ︷︷ ︸
z′

+ µ1µ2 · h

Letting z′ = Fz1(F−1
h (c2)) + µ1z2, we have Phase(z′) = Phase(z1) · (F−1

h (c2))t + µ1Phase(z2),
and therefore ‖Phase(z′)‖∞ ≤ `

∥∥F−1
h (c2)

∥∥
∞ ‖Phase(z1)‖∞ + ‖Phase(z2)‖∞ ≤ `βB +

B′, which proves (5). Finally, GSW.Mux(c1, c2, c3) is expressed as GSW.And(c1, c2) plus

19

GSW.And(GSW.Not(c1), c3). By expanding, the expression takes the form z′′+(µ2µ1+µ3(1−µ1))·h
where z′′ = Fz1(F−1

h (c2)) + Fz1(F−1
h (c3)) + µ1z2 + (1 − µ1)z3. Thus, Phase(z′′) = Phase(z1) ·

(F−1
h (c2) +F−1

h (c3)) +µ1Phase(z2) + (1−µ1)Phase(z3). The norm of the first term is bounded
by 2`βB and among the last two terms, only one is non-zero, and its norm is bounded by B′.
Finally, the encoded message µ2µ1 + µ3(1− µ1) is precisely µ1?µ2:µ3. �

In the next section, we will use the worst-case recurrence equations (4), (5) and (6) to upper-
bound the noise of more complex circuits. Before that, we want to point out that similarily
to [3], if f−1

h satisfies a few additional constraints, we can prove a very natural result: if the
input ciphertexts have independent Gaussian noise, we can ensure that all other ciphertexts
which are produced by the homomorphic gates also have independent Gaussian noise, and the
square parameter of the noise follows the same recurrence as the worst-case max-norm. Thus,
with overwhelming probability, the actual noise norm is in fact the square root of what can be
predicted by the worst-case bound from Lemma 7.5.

We say that f−1
h is β-Gaussian if for each y ∈ H, f−1

h (y) returns a discrete Gaussian sample
of the coset {x ∈ Z` s.t. fh(x) = y} centered in 0 and of parameter β ≥ ηε(Lh).

Lemma 7.6 (all noises are Gaussian) Suppose that f−1
h is β-Gaussian for β ≥ ηε(Lh). In

a circuit containing solely GSW.Not, GSW.And and GSW.Mux gates, and whose inputs are either
fresh GLWE ciphertexts or the noiseless ciphertexts 0 and h, the output ciphertext of each
individual gate has the form z+µh where µ is the encoded bit and the `-coordinates of Phase(z)
are indistinguishable from independent Gaussian samples of Tk. We define the noise parameter
σ(Phase(z)) as the maximum of these ` Gaussian parameters.

Proof. (sketch) It suffices to verify by induction on the depth of the circuit for the
three gates that the noise Phase(z) of the output ciphertext could be decomposed as∑N

i=1 Phase(zi)(
∑Ni

j=1±
∏j
k=1 F

−1
h (ci,j,k) + αiI`)

t where N is bounded by the number of in-
puts, N1, . . . , NN ∈ N are bounded by the depth of the ciphertext in the circuit, where all ci,j,k
are (possibly equal) ciphertexts of the circuit, αi ∈ {−1, 0, 1} and where (z1, . . . , zN) are the
homogeneous parts of different input ciphertexts. Since the rows of each F−1

h (ci,j,k) have inde-
pendent zero-centered discrete Gaussian distributions on their respective domains, the rows of
their their product are also independent discrete Gaussian samples. The rows of the sum of such
products are also independent discrete Gaussian samples. Since all the coordinates of the input
Phase(zi) are independent zero-centered Gaussian samples of Tk, so is their total combination,
up to some negligible statistical distance. �

Note that the noise parameter of a fresh GSW.GLWE ciphertext satisfies σ(Phase(z)) ≤ α where
α is the underlying GLWE Gaussian parameter. Gaussian parameters follow Pythagorean sum-
mations: a linear combination of independent zero-centered Gaussian samples is a zero-centered
Gaussian sample whose parameter is multiplied by the Euclidean norm of the combination2.
This leads to a tighter average-case version of Lemma 7.5.

Lemma 7.7 (Average noise of primitive gates) Suppose f−1
h () is

√
β-Gaussian for some

β ≥ (ηε(Lh))2. Let c1 = z1 + µ1 · h, c2 = z2 + µ2 · h and c3 = z3 + µ3 · h ∈ H` be three
ciphertexts of a circuit satisfying the constraints of Lemma 7.6, and whose Gaussian parameters

2This is always true for continuous gaussian samples. For discrete ones, it remains true when all the parameters
are larger than the smoothing parameter of the discretization subgroup, and when the coefficients of the linear
combination are relatively prime (see Theorem 3 of [27]).

20

satisfy σ(Phase(z1))2 ≤ B and σ(Phase(z2))2, σ(Phase(z3))2 < B′ for some B,B′ ∈ R+. Then:

GSW.Not(c1) = z + NOT(µ1) · h where σ(Phase(z))2 = B (7)

GSW.And(c1, c2) = z′ + (µ1 AND µ2) · h where σ(Phase(z′))2 ≤ `βB +B′ (8)

GSW.Mux(c1, c2, c3) = z′′ + (µ1?µ2:µ3) · h where σ(Phase(z′′))2 ≤ 2`βB +B′ (9)

Proof. We saw in the proof of Lemma 7.5 that the noise of GSW.And(c1, c2) is Phase(z′) =
Phase(z1) · (F−1

h (c2))t + µ1Phase(z2). Since F−1
h (c2) and Phase(z2) are independent Gaussian

samples on their respective domains, and Phase(z1), Phase(z2) are zero-centered, then the
Gaussian parameters follow Pythagorean summation. Thus, σ(Phase(z′))2 ≤ `βB + B′ which
proves (8). We prove (9) similarly. �

Since the recurrences (7), (8) and (9) on the square noise parameter are exactly the same
as the recurrences (4), (5) and (6) on the max-norm, we will continue the analysis only on the
max-norm, whose requirements on f−1

h and on the definition of the probability space are simpler
to express. The reader has to keep in mind that all the bounds we deduce on the max-norm of
the noise also applies to its square parameter.

7.3 Homomorphically Evaluating Arbitrary Functions

The result of the following corollary was already obtained in [3]; it states that in a long chain
of And gates where one of the bits is a fresh GLWE-GSW ciphertext, the noise increases in fact
linearly instead of exponentially. Here, we invert the operands of the And gates, so the overall
noise in the resulting ciphertext is smaller if one associates long conjunctions on the right.

Corollary 7.8 (Noise of Conjunctions) Suppose f−1
h () is β-bounded for some β ∈ R+. Let

c1, . . . , ck ∈ H` be k ciphertexts such that each ci = zi + µi · h where ‖Phase(zi)‖∞ < B for
some B ∈ R+. Then:

GSW.And(c1, GSW.And(c2, . . . GSW.And(ck−1, ck))) = z + (µ1µ2 . . . µk) · h where ‖Phase(z‖∞ ≤ k`βB
(10)

Proof. Apply (5) by induction on k. �
Note that any boolean function with k inputs can always be put into disjunctive normal

form, i.e. a disjoint union of conjunctive terms, and one way to homomorphically evaluate the
result is to add the ciphertexts of all the terms, which indeed preserves the {0, 1} message space.
However, using this method, the resulting noise will be proportional to the number of terms in
the disjunctive normal form, which may still be exponential in the number of inputs.

By using Mux-gates, we obtain the following corollary, which truly reflects the homomor-
phic nature of the cryptosystem. It basically says that any function can be homomorphically
evaluated in a trivial way, where the noise grows proportionally to only the square root of the
number of inputs. We recall that the truth table of a boolean function φ with k variables is a
vector T of length 2k such that each Tj = φ(e0, . . . , ek−1) where j =

∑
ei2

k−1−i. The full binary
decision diagram (BDD) of φ is a circuit representing a binary tree of Mux-gates, of depth k.
The bottom level k consists in 2k leaves Xk,j , each one is set to Tj . At each intermediate level i,
we have 2i nodes Xk,j = Mux(µi, Xi+1,2j+1, Xi+1,2j). By definition, the root X0,0 thus contains
φ(µ0, . . . , µk−1). See Fig. 2 for an example of truth table and its associated BDD circuit.

Corollary 7.9 (Evaluating arbitrary functions) Assume that f−1
h () is β-bounded for some

β ∈ R+. Let φ be any boolean function with k inputs, and let c1, . . . , ck ∈ H` be k ciphertexts
such that each ci = zi+µi ·h where σ(zi)

2 < B for some B ∈ R+. Then, the Mux-based Binary
Decision Diagram of φ computes a ciphertext c = z + φ(µ1, . . . , µk).h where ‖z‖∞ ≤ 2k`βB.

21

Proof. To evaluate the full BDD of φ homomorphically, we just replace each leaf Xk,j by
noiseless ciphertexts Tj .h, each bit µi by their encryption ci, and each Mux gate by GSW.Mux.
Apply (6) by induction on the depth, then all nodes Xi,j at depth i have a noise bounded by
2(k − i)βB. �

In the previous corollary, the full BDD tree of the function φ contains a number of nodes
which is exponential in the number of inputs. If the output noise is indeed really small, the
time complexity to evaluate all the gates remains large when the simulated function has many
variables. For some useful functions, like the bootstrapping function in the next section, many
of the subtrees turn out to be equal, and by merging them, the complexity to evaluate the
circuit can be significantly reduced.

Corollary 7.10 (Faster Evaluation of arbitrary functions) Suppose f−1
h () is β-bounded

for some β ∈ R+. Let φ be any boolean function with k inputs, and let c1, . . . , ck ∈ H` be k
ciphertexts such that each ci = zi + µi · h where ‖Phase(zi)‖∞ < B for some B ∈ R+. We call
N (φ) the number of disctinct subtrees in the full Binary Decision Diagram of φ. Then, we can
compute a ciphertext c = z + φ(µ1, . . . , µk).h where ‖Phase(z)‖∞ ≤ 2k`βB by evaluating N (φ)
homomorphic GSW.Mux-gates.

Proof. It suffices to evaluate the ciphertext value in the root of the N (φ) subtrees by increasing
depth. There are at most two different leaves, whose ciphertext values 0 and h are given.
Whenever we need to evaluate a subtree of non zero depth i, the left and right subtrees have
by definition already been fully evaluated, since their depth i − 1 is strictly smaller. The root
of the current tree is the GSW.Mux of ci and the two subtrees roots. The last ciphertext to be
evaluated is the root of the full tree, which contains the encrypted result. �

Note that in the above corollary, Nerode’s partitioning algorithm for reducing deterministic
automata can efficiently list the N (φ) identical subtrees. It is actually not so surprising that
algorithms from automata theory appear to be useful here, since a binary decision diagram is
just the mirror graph of a deterministic accessible automata. Note that the GSW.Mux gate is all
we need to efficiently homomorphically evaluate the transitions of a deterministic automata,
which leads to the following lemma.

Lemma 7.11 (Recognizing arbitrary rational langages) Let L be an arbitrary rational
language of {0, 1}∗ and N (L̃) the number of residuals of the mirror language of L. Given k
ciphertexts c1, . . . , ck of a message w = w1, . . . , wk, one can compute a ciphertext c = z+L(w).h
where L(w) = 1 iff w ∈ L and ‖Phase(z)‖∞ ≤ 2kβB by evaluating kN (L̃) GSW.Mux-gates.

Proof. Let A = (Q, i, T0, T1, F) be a minimal deterministic automata of the mirror language L̃
where Q is the set of states, i ∈ Q is the initial state, T0, T1 are the two transitions functions
from Q to Q and F is the set of final states. Note that #Q = N (L̃). We initialize #Q
noiseless ciphertexts Xq,0 for q ∈ Q with Xq,0 = h if q ∈ F and Xq,0 = 0 otherwise. Then
for each letter we compute the transition as follow: Xq,j = GSW.Mux(cj , XT1(q),j−1, XT0(q),j−1).

And we output Xi,k. We write a ≡ b when two ciphertexts a and b ∈ H` encrypt the same
bit. Then we have Xi,k ≡ XTwk (i),k−1 ≡ . . . ≡ XTw1 (Tw2 ...(Twk (i))...),0, which encrypts 1 iff
Tw1(Tw2 . . . (Twk(i)) . . .) ∈ F , i.e. iff wk . . . w1 is accepted by A iff w1 . . . wk ∈ L. This proves
correctness.

For the complexity, each Xq,j is computed with a single GSW.Mux gate and the noise increases
as in the previous corollary since the fresh-GSW.Mux depth of the circuit is k. �

It remains an open question whether one can extend these lemmata to non-deterministic
automata, or to Turing machines. Although they correspond to simple Mux-based circuits,
the main problem is that the control bit of the Mux gates would not be a fresh ciphertext

22

0

1

1

0

1

1

0

0

0

1

?

0

1

?

0

1

?

0

1

?

0

1

?

0

1

?

0

1

?

α

α

α

α

β

β

β

β

γ

δ

γ

δ

ǫ

ζ

η

0

1

?

?

?

?

?

α

β

γ

δ

ǫ

ζ

η

0

1

0

1

0

1

0

1

0

1

a0?a1?a2?

a0?a1?a2?

0

1

1

0

1

1

0

0

0

1

0

1

0

1

0

1

0

0

1

1

0

1

1

0

0

0

0

0

1

1

1

1

a0 a1 a2 φ

Truth table of φ Full BDD of φ (Corollary 7.7)

Reduced BDD of φ (Corollary 7.8)

Figure 2: Homomorphic evaluation of an arbitrary boolean function

Any truth table (top left) can be batch-converted to a full BDD (Binary decision diagram)
circuit (top right). When evaluated homomorphically, the output noise is proportional to
the square root of the number of inputs. After merging identical subtrees, which can be
efficiently achieved using Nerode’s partitioning algorithm, one obtains the reduced BDD
circuit (bottom right), which may sometimes be much smaller. Here, the function φ was
the Xor of all inputs. In this case, there are only two different subtrees per levels, and the
reduced BDD is therefore polynomial in the number of inputs.

23

anymore, and thus, the noise would grow exponentially instead of sub-linearly, which doesn’t
seem suitable for useful applications. Luckily, it appears that the decoding function is a simple
arithmetic circuit, and that a direct application of Corollary 7.9 suffices to bootstrap the whole
system, turning it into a fully homomorphic one.

7.4 Simple Bootstrapping Circuit with Polynomial Noise

In this section, we present a very simple and generic decryption procedure, which makes the
above GLWE-GSW fully-homomorphic under the GLWE assumption with inverse polynomial
Gaussian parameter. To ease the presentation, we suppose that the gadget h of the previous
section corresponds to the binary decomposition, and thus the image of f−1

h is {0, 1}`, which is
1-bounded.

Recall that bootstrapping refers to Gentry’s homomorphic decryption, which allows to trans-
form suitable somewhat-homomorphic schemes into fully-homomorphic schemes. In our case,
the decryption procedure is simply GLWE decryption. The idea is very simple, to decrypt a
GLWE ciphertext c ∈ H, or more precisely, its decomposition x = f−1

h (c) ∈ {0, 1}`, it suffices to

evaluate the phase Phase(c) =
∑`

i=1 xiPhase(hi) ∈ T and decide whether it is closer to 0 or 1/2.
Moreover, note that only log2(`)+3 bits (we assume ` is power of 2 for simplicity) of precision in
each Phase(hi) are needed to decrypt correctly, as the contribution of all remaining bits cannot
affect the most significant bit in a sum of ` elements. This means that for bootstrapping, it is
enough be able to add ` numbers modulo 8`.

Since the Phase function involves the private key, all we need to do is to provide, as the boot-
strapping key, fresh encryptions of the first n = log2(`)+3 bits of each Phase(h1), . . . , Phase(h`).

Note that decryption is a boolean function φ with `n input bits, so Corollary 7.9 already
provides a trivial decryption circuit whose noise parameter expansion is only O(`

√
n). In fact,

a careful analysis shows that since we are evaluating a simple arithmetic circuit, each level of
the BDD tree contains at most 8` identical sub-trees, each one corresponding to a different
accumulated value modulo 8`. Thus, the number N (φ) of different subtrees is quadratic in `,
and Corollary 7.10 evaluates it in time Õ(`2).

We propose a simpler and equivalent view of the decryption circuit. Suppose that we have
a state of 8` boxes (or ciphertexts) arranged along a circle. We define adding v to the state
as circularly shifting the state by v positions to the right. Let b be an encrypted bit, adding

2kb to the state corresponds to the following operation: if b
?
= 0, then each box keeps its

previous content, else each box gets the previous content of the box 2k positions on the left.
This operation can thus be done homomorphically with one GSW.Mux-gate per box. Adding an
encrypted n-bit number to the state corresponds to performing this operation successively for
the n encrypted bits, each one associated with its corresponding power of 2. Finally, in order to
decide whether the total rotation we applied was closer to 4` than to 0, it suffices to initialize all
the boxes at positions 2` to 6` with a ciphertext of 1, all others boxes are initialized to 0, and
in the end, measuring the box at position 0 gives the result. The corresponding bootstrapping
algorithm is summarized in Alg. 6 and in Figure 4.

There are three important differences with [3].

• The first one is that the large cycle is decomposed using the CRT into smaller ones of prime
orders, which on one hand, makes the circuit size quasi-linear instead of quadratic, but
which includes a decoding phase on non-fresh ciphertexts before the final rounding. This
increases their noise in the final ciphertext by some polynomial factor. (See Lemma 7.13
below for an alternative CRT circuit).

• The second difference is that [3] does not use Mux-gates: they map a cycle into equivalent

24

0

a b

01 1

dc

0

0
0

0
1

1 1

0,

1 0 1 0 1 0 1

1

? ? ? ?

0 1 0 1 0 1 0 1

? ? ? ?

0 1 0 1 0 1 0 1

? ? ? ?

0 1 0 1 0 1 0 1

? ? ? ?

w1?

w2?

wk−1

wk?

[...]

Output

Deterministic automata of the mirror language

Homomorphic recognition of the language

Figure 3: A Mux-based circuit recognizing a regular language L and the corresponding
deterministic automata of the mirror L̃.

The automata on the top recognizes the regular expression L̃ =(110|00)∗(1|11|0). The
circuit below recognizes its mirror L =((110|00)∗(11|0))|((101)∗1). The circuit transcripts
the mirror graph of the automata: final states b, c are initialized with a noiseless ciphertext of
1, non-final states a, d with 0. All transitions are reversed and point to a GSW.Mux controlled
by the encrypted current letter. After processing all letters, the final output is the ciphertext
corresponding to the automata’s initial state a. As explained in the proof of Lemma 7.11,
The result encrypts one iff the word is in L.

25

Algorithm 6 Bootstrapping algorithm

Input: A GLWE ciphertext c ∈ H, the gadget h and its functions f−1
h , and the bootstrapping

key (BKi,j)i∈[1,`],j∈[1,n] where BKi,1, . . . , BKi,n are encryptions of the n = log2(`) + 3 most
significant bits of Phase(hi).

Output: A GLWE-GSW ciphertext c′ ∈ H` encoding the same bit as c with polynomial noise.
1: x← f−1

h (c) ∈ {0, 1}`
2: p← 0
3: Set the initial state (X0,0, ..., X0,8`−1) where Xi,j = 1 iff j ∈ [2`, 6`]
4: for each i ∈ [1, `] s.t. xi = 1 do
5: for j = 1 to n do . This loop adds Phase(hi) to the state
6: p← p+ 1
7: for k = 0 to 8`− 1 do . This loop adds 2n−j to the state iff BKi,j = 1
8: Xp,k ← GSW.Mux(BKi,j , Xp−1,k−2n−j mod 8`, Xp−1,k)
9: end for

10: end for
11: end for
12: return c′ = Xp,0 . This is the final rounding.

permutation matrices. They had to encode the matrix product as small disjunctive normal
forms, which increases the noise by the square root of the matrix dimension. In their
algorithm, this dimension remains logarithmic due to their CRT decomposition, yet, it
would have been polynomial if they had chosen the single cycle approach, and it would
be much worse in the case of a deterministic automata, compared to our Lemma 7.11.

• Finally, our circuit represents a mirrored deterministic automata, and therefore, it has a
single final state, which means that we get rounding for free. In [3], there are multiple
accepting states, and summing them induces another polynomial noise factor in the final
ciphertext.

Lemma 7.12 (Simple Bootstrapping) Given a GLWE ciphertext c ∈ H, the gadget h and
its function f−1

h , and the bootstrapping keys (BKi,j)i∈[1,`],j∈[1,n] where BKi,1, . . . , BKi,n are
encryptions of the n = log2(`)+3 most significant bits of Phase(hi) with all ‖Noise(BKi,j)‖∞ ≤
B, Alg. 6 outputs a GLWE-GSW ciphertext c′ = z′ + µh ∈ H` encoding the same bit as c with
noise ‖Phase(z′)‖∞ ≤ 2`2(log2(`) + 3)B.

Proof. Suppose BKi,j = Zi,j +µi,jh, and Xp,k = Z ′p,k +νp,kh where all Zi,j and Z ′p,k have small

noises. By Lemma 7.5 and Line 8 in Alg. 6, we have
∥∥∥Phase(Z ′p,k)

∥∥∥
∞
≤ 2` ‖Phase(Zi,j)‖∞ +

µi,j

∥∥∥Phase(Z ′
p−1,k−2n−j mod 8`

)
∥∥∥
∞

+ (1 − µi,j)
∥∥∥Phase((Z ′p−1,k)

∥∥∥
∞

. By induction on p, since

µi,j ∈ {0, 1}, it proves that each ciphertext in Xp = (Xp,0, ..., Xp,8`−1) has the same noise bound∥∥∥Phase((Z ′p,k)
∥∥∥
∞
≤ 2`pB. Alg. 6 ends with p ≤ `n = `(log2(`) + 3). Thus, the noise of the

output ciphertext is smaller than 2`2(log2(`) + 3)B. �
Remember that under the hypothesis of lemma 7.6, the max-norm of the noise can be

replaced by its square Gaussian parameter. This proves that the GLWE-GSW scheme is fully
homomorphic according to Gentry’s blueprint by design, as soon as the initial GLWE Gaussian
parameter is 1/Õ(`1.5), which represents a time versus noise trade-off compared to [3] proposal,
and has the advantage of giving the simplest possible decryption circuit as a proof of concept.

26

Overall, if we prefer to optimize the number of gates in the circuit, note that the function
φ′ which takes the k = Õ(log(`)) bits of the CRT decomposition of an integer modulo q ≈ 8`
and decides whether the encoded number is closer to q/2 than to 0 satisfies N (φ′) ≤ qk for the
exact same reason as in the whole decryption circuit. Thus, the following lemma gives an [3]-like
variant of the decryption circuit with only Õ(`) gates, and noise parameter Õ(`1.5) instead of
Õ(`2) in [3]. Note also that our CRT decomposition can be encoded in base 2, instead of being
unary-encoded as in [3], which also saves a few logarithmic noise factors. More importantly, it
expresses the whole bootstrapping as the composition of simple boolean functions, and obtains a
time versus noise trade-off. The proof is still a consequence of Lemma 7.10, which only depends
on simple intrinsic parameters of the underlying functions, i.e. the number of variables and the
number of distinct partial functions.

Lemma 7.13 (CRT variant) Given a GLWE ciphertext c ∈ H, the gadget h and its 1-
bounded function f−1

h , Let q =
∏t
i=1 pi be an integer larger than 8` where pi are t = O(log(`))

distinct primes where pi = O(log(`)). We suppose that the encryption of each individual bits
BKi,j,k of bqPhase(hi)e mod pj for i ∈ [1, `] and j ∈ [1, t], k ∈ [0, log2(pj)] are provided as
bootstrapping key with ‖Noise(BKi,j,k)‖∞ ≤ B. Then given as input a ciphertext of a bit µ,

one can compute a ciphertext c = z + µh of the same bit with noise ‖Phase(z)‖∞ = Õ(`3) by
evaluating Õ(`) homomorphic Mux gates.

Proof. Consider the following boolean functions:

• fj for j ∈ [1, t], takes ` numbers of O(log(pj)) bits and return the O(log(pj)) bits of
their sum modulo pj . (fj can be viewed as O(log(pj)) boolean functions with a single bit
output).

• φ′ takes t numbers modulo p1, . . . , pt, so O(log(`) log log(`)) input bits, and returns 1 iff
their CRT lift modulo q is closer to q/2 than to 0.

These functions correspond to simple arithmetic deterministic automata with respectively pj
and q states, whose current state after reading p bits is simply a linear combination with fixed
coefficients of these bits modulo respectively pj and q. Thus, the full BDD of fj contains at
most pj nodes per level and the full BDD of φ′ contains at most q nodes per level. Therefore,
N (fj) = O(`pj log(pj)) = Õ(`) and N (φ′) = O(qt log(pj)) = Õ(`). To decrypt a GLWE

ciphertext c′ =
∑`

k=1 xihi ∈ H, it suffices to homomorphically evaluate y = φ′(y1, . . . , yt) where
each yj = f(x1.BK1,j , . . . , x`.BK`,j). By lemma 7.10, the homomorphic ciphertext of each bit
of yj has noise norm Õ(`2), and thus, the output noise norm of y is Õ(`3). The total number of
homomorphic Mux gates is

∑t
j=1 log(pj)N (fj) +N (φ′) = Õ(`) �

We also give comparisons of our FHE scheme to previous ones in Table 1. In that table, the
group in GLWE is taken as Znq , which makes our scheme base on standard LWE assumption.
In this case, we could take ` = O(n log q).

References

[1] M. Ajtai. Generating hard instances of lattice problems. In STOC, pages 99–108, 1996.

[2] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equivalence. In
Proc. of 29th STOC, pages 284–293. ACM, 1997. Available at [16] as TR96-065.

[3] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In CRYPTO, pages
297–314, 2014.

27

Figure 4: Schematics of the Mux-based decryption circuit

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

0 0 1 1 1 1 0

a0?

a1?

a2?

b0?

b1?

b2?

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1

Output

This circuit homomorphically sums two bitwise encrypted numbers a = a0a1a22
and b =

b0b1b22
of n = 3 bits modulo ` = 7, and returns 1 iff (a+ b)/` mod 1 is closer to 1/2 than

to 0. At each step, we choose to rotate or to preserve the state depending on the input
encrypted bit value. The noise of each ciphertext, represented as gray levels, increases only
linearly at each step, and remains polynomial in the last step.

28

Schemes Primitive Gates #Gates in Boots. Boots. noise overhead

BGV12 [11] And, Xor, Const. Õ(n2) nO(logn)

Bra12 [10] And, Xor, Const. Õ(n2) nO(logn)

GSW13 [21] And, Xor, Nand, Const. Õ(n2) nO(logn)

BV14 [13] And, Xor, Const. Õ(n6/ε) Õ(nε)

AP14 [3] And, Not, Const. Õ(n) Õ(n2)

DM15 [15] Nand, Const. Õ(n) Õ(n1.5)

Ours Mux, Not, Const. Õ(n2) Õ(n)

Ours (with CRT) Mux, Not, Const. Õ(n) Õ(n1.5)

Table 1: Comparisons of LWE-based FHE Schemes

This table compares the primitive gates considered in the corresponding schemes, the
number of homomorphic operations used to bootstrap, and the approximation factor of
the underlying lattice problem. Note that Const. means a constant gates (i.e. noiseless
ciphertexts) and ε > 0 is an arbitrarily small real number. The bootstrapping noise
overhead is the ratio between the noise parameter of the refreshed ciphertext and the
(fresh) noise of the bootstrapping key. This ratio must be multiplied by O(

√
n) to

allow the evaluation of one additional primitive gate in a fully homomorphic scheme,
and gives the required initial LWE inverse-error rate. It has to be multiplied by an
additional O(n) to get worst-case SIVP approximation parameters, under the quantum
worst-case to average case reduction. The hidden constants or poly-logarithmic factors
in [15] are smaller than in [3], but the underlying hard problem in [15] relies on ideal
lattices. The group in our scheme is taken as Znq .

[4] B. Applebaum, D. Cash, C. Peikert, and A. Sahai. Fast cryptographic primitives and circular-secure
encryption based on hard learning problems. In Proc. of Crypto ’09, LNCS 5677, pages 595–618.
IACR, Springer-Verlag, 2009.

[5] L. Babai. On Lovász lattice reduction and the nearest lattice point problem. Combinatorica, 6:1–13,
1986.

[6] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathe-
matische Annalen, 296(1):625–635, 1993.

[7] G. Baumslag, N. Fazio, A. Nicolosi, V. Shpilrain, and W. E. Skeith. Generalized learning problems
and applications to non-commutative cryptography. In Proc. ProvSec ’11, volume 6980 of Lecture
Notes in Computer Science, pages 324–339. Springer, 2011.

[8] A. Becker, N. Gama, and A. Joux. A sieve algorithm based on overlattices. LMS J. Comput. Math.,
17(A):49–70, 2014. See also Cryptology ePrint Archive, Report 2013/685.

[9] D. Boneh and R. Venkatesan. Hardness of computing the most significant bits of secret keys in
Diffie-Hellman and related schemes. In Proc. of Crypto ’96, LNCS. IACR, Springer-Verlag, 1996.

[10] Z. Brakerski. Fully homomorphic encryption without modulus switching from classical gapsvp. In
CRYPTO, pages 868–886, 2012.

[11] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. In ITCS, pages 309–325, 2012.

[12] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D.Stehlé. Classical hardness of learning with
errors. In Proc. of 45th STOC, pages 575–584. ACM, 2013.

[13] Z. Brakerski and V. Vaikuntanathan. Lattice-based FHE as secure as PKE. In ITCS, pages 1–12,
2014.

29

[14] Y. Chen and P. Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Proc. of Asiacrypt, pages
1–20, 2011.

[15] L. Ducas and D. Miccaincio. FHEW: Bootstrapping homomorphic encryption in less than a second.
In EUROCRYPT, pages ??–??, 2015.

[16] ECCC. http://www.eccc.uni-trier.de/eccc/. The Electronic Colloquium on Computational
Complexity.

[17] N. Fazio, K. Iga, A. R. Nicolosi, L. Perret, and W. E. Skeith III. Hardness of learning problems
over burnside groups of exponent 3. Designs, Codes and Cryptography, pages 1–12, 2013.

[18] N. Gama and P. Q. Nguyen. Predicting Lattice Reduction. In Proc. of Eurocrypt, 2008.

[19] C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption scheme. In Advances
in Cryptology - Proc. EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
129–148. Springer, 2011.

[20] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In STOC, 2008.

[21] C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, pages 75–92, 2013.

[22] D. Goldstein and A. Mayer. On the equidistribution of Hecke points. Forum Math., 15(2):165–189,
2003.

[23] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Ann., 261:513–534, 1982.

[24] A. Lubotzky. The expected number of random elements to generate a finite group. J. Algebra,
257(2):452–459, 2002.

[25] D. Micciancio. Almost perfect lattices, the covering radius problem, and applications to Ajtai’s
connection factor. SIAM J. Comput., 34(1):118–169, 2004.

[26] D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In Proc.
EUROCRYPT ’12, LNCS. IACR, Springer-Verlag, 2012.

[27] D. Micciancio and C. Peikert. Hardness of SIS and LWE with small parameters. In Proc. CRYPTO
’13, volume 8042 of Lecture Notes in Computer Science, pages 21–39. Springer, 2013.

[28] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures.
In SIAM J. Comput., 2007.

[29] L. J. Mordell. On some arithmetical results in the geometry of numbers. Compositio Mathematica,
1:248–253, 1935.

[30] P. Q. Nguyen and I. E. Shparlinski. The insecurity of the digital signature algorithm with partially
known nonces. J. Cryptology, 15(3):151–176, 2002.

[31] P. Q. Nguyen and I. E. Shparlinski. Counting co-cyclic lattices. Preprint, 2013.

[32] I. Pak. On probability of generating a finite group. Preprint, 1999.

[33] A. Paz and C.-P. Schnorr. Approximating integer lattices by lattices with cyclic factor groups. In
Proc. of ICALP, pages 386–393, 1987.

[34] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In Proc. of
STOC ’09, pages 333–342. ACM, 2009.

[35] C. Peikert. An efficient and parallel gaussian sampler for lattices. In Proc. of Crypto ’10, LNCS
6223, pages 80–97. Spinger-Verlag, 2010.

[36] M. Pohst. A modification of the LLL reduction algorithm. J. Symbolic Comput., 4(1):123–127, 1987.

[37] O. Regev. Lattices in computer science #12: Average-case hardness. Regev’s webpage, 2004.

30

[38] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC,
pages 84–93, 2005.

[39] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic encryption over the
integers. In EUROCRYPT, pages 24–43, 2010.

A Missing Proofs of Sect. 2

In order to ease the proofs of indistinguishability between two distributions, we introduce an
approximate equality which will also be used in App. F: for ε ∈]0, 1

2] and n,m ∈ N, the

notation a =ε,n,m b means b · (1−ε)n
(1+ε)m ≤ a ≤ b · (1+ε)n

(1−ε)m , which implies b =ε,m,n a and also

a = b(1 + (m+ n)ε+O(ε2)). If a =ε,n,m b and c =ε,n′,m′ d, we then have ac =ε,n+n′,m+m′ bd.
With this notation, the main property of the smoothing parameter is that for all lattice L,

c ∈ span(L), σ ≥ ηε(L), we have that ρRn,σ(c + L) =ε,1,0 1/ vol(L). Thus for all overlattice

L̄ ⊇ L and all c ∈ L̄, ρL̄/L,σ(c) =ε,1,1
vol(L̄)
vol(L)

A.1 Proof of Prop. 2.2

We know that for ε = 1/10, independent Gaussian samples (yi ←ε DL,si) such that
√

2ηε(L) ≤ si
have probability ≤ 9/10 to be in any fixed hyperplane (see [37, Lemma 14]). This can be
adapted to any ε > 0, so that one can extract a full-rank family F of n vectors of norm
‖F‖ ≤

√
n/2π ·max si.

Then the generalized LLL algorithm for linearly dependent vectors [36] F ∪B returns a basis
C of length ‖C∗‖ ≤

√
n/2π ·max si in polynomial time.

A.2 Proof of Lemma 2.4 on Discrete Convolution

We now prove the dot product convolution Lemma.

The proof relies on the following equality: For α, σ ∈ Rge0, for γ =
(

1
σ2 + u2

α2

)−1/2
and

Γ =
√
α2 + σ2u2

1

σ2
x2 +

1

α2
(t− ux)2 =

1

γ2

(
x− γ2tu

α2

)2

+
1

Γ2
t2

Let C = z + L be some coset of a n-dimensional lattice L, u ∈ Rn, α, σ ∈ Rge0 and
ε ∈ (0, 1/2). Let (e1, . . . , en) be an orthonormal basis of Rn such that u = u · en. A vector
v ∈ Rn will be expressed as

∑n
i=1 viei.

∑
v∈C
DRn,σ(v)DR,α(t− 〈u,v〉) =

∑
v∈C
DR,σ(v1) . . .DR,σ(vn)DR,α(t− uvn)

=
∑
v∈C
DR,σ(v1) . . .DR,σ(vn−1)

1

σα
exp

(
−π
(

1

σ2
v2
n +

1

α2
(t− uvn)2

))

=
1

σnα

∑
v∈C

exp

(
−π
(

1

σ
v2

1 + · · ·+ 1

σ
v2
n−1 +

1

γ2

(
vn −

γ2u

α2
t

)2

+
1

Γ2
t2

))

Let f be the affine function which maps
∑n

i=1 viei to v1
σ e1 + · · ·+ vn−1

σ en−1 + vn−γ2ut/α2

γ en.
Then,

31

∑
v∈C
DRn,σ(v)DR,α(t− 〈u,v〉) =

1

σnα

∑
v∈C

exp

(
−π
(
‖f(v)‖2 +

1

Γ2
t2
))

=
1

σnα

∑
v′∈f(C)

exp

(
−π
(
‖v‖2 +

1

Γ2
t2
))

=
Γ

σnα
DRn,1(f(C))DR,Γ(t)

Note that the largest eigenvalue of the linear part of f is 1/γ, thus since C = z +L, f(C) =
z′ + L′ where ηε(L

′) ≤ ηε(L)/γ ≤ 1. Therefore, DRn,1(f(C)) =ε,1,1 1/ vol(L′) = σn−1γ/ vol(L).
We finally obtain:

∑
v∈C
DRn,σ(v)DR,α(t− 〈u,v〉) =ε,1,1 DR,Γ(t)

Now, we can prove the lemma. First, let K = R and b ← DK,α,c+〈u,v〉 where v ← DC,σ.
Then the density of b is

∑
v∈C DK,α(b− c− 〈u,v〉)DC,σ(v) =ε,1,1 DK,Γ(b− c) = DK,Γ,c(b).

Second, let K = 1
NZ, but assume that α ≥ ηε(K). the density of b ∈ K is

∑
v∈C

DR,α(b− c− 〈u,v〉)
DR,α(K− c− 〈u,v〉)DC,σ(v)

Since the denominator is =ε,1,0 1/ vol(K), the whole expression is nearly equal to NDR,Γ,c(b).
Since Γ ≥ α ≥ ηε(K), then the N can be viewed as 1/DR,Γ,c(K), and finally, the density of b is
DK,Γ,c(b).

B Addendum on Sect. 3

B.1 Proof of Th. 3.1

Let L ∈ LG,m. Then G has rank ≤ m because L ⊆ Zm. And G is isomorphic to some product
Zq1 × · · · × Zqk of cyclic groups, where 1 ≤ k ≤ m, qi ≥ 1 and qi+1 divides qi for all i. By [33],
there exist primitive vectors z1, . . . , zk ∈ Zm s.t. L = {y ∈ Zm, 〈y, zi〉 ≡ 0 (mod qi), i ∈ [1, k]}.
This shows that there exists g = (g1, . . . , gm) ∈ Gm generating G such that L = Lg, where we
recall that Lg = {(x1, . . . , xm) ∈ Zm s.t.

∑m
i=1 xigi = 0 in G}.

Reciprocally, let g = (g1, . . . , gm) ∈ Gm generate G. Consider the morphism ψ which maps
(x1, . . . , xm) ∈ Zm to

∑m
i=1 xigi ∈ G. By definition, the image of ψ is G and its kernel is Lg,

therefore Zm/Lg ' G.

B.2 Proof of Lemma 3.2

Let g = (g1, . . . , gm) ∈ Gm be such that the gi’s generate G. Let h = (h1, . . . , hm) ∈ Gm.
Assume that Lg = Lh. Define a map ψ : G → G as follows: for any g ∈ G, there exists a

decomposition x = (x1, . . . , xm) ∈ Zm s.t. g =
∑m

i=1 xigi, and we let ψ(g) =
∑m

i=1 xihi. This
map is well-defined because if there are two decompositions of g, i.e. g =

∑m
i=1 xigi =

∑m
i=1 yigi,

then x − y ∈ Lg = Lh, thus
∑m

i=1 xihi =
∑m

i=1 yihi and ψ(g) has the same value. It can be

32

checked that ψ is a morphism. Since Zm/Lg ' Zm/Lh, we know that the hi’s generate G, and
therefore ψ is an automorphism of G.

Reciprocally, let ψ be an automorphism of G such that hi = ψ(gi) for all 1 ≤ i ≤ m. Then
ψ(
∑m

i=1 xigi) =
∑m

i=1 xihi for any x = (x1, . . . , xm) ∈ Zm. It follows that
∑m

i=1 xigi = 0 if and
only if

∑m
i=1 xihi = 0. Hence, Lg = Lh.

Finally, unicity follows from ψ(
∑m

i=1 xigi) =
∑m

i=1 xihi.

B.3 Proof of Lemma 3.4

We prove the decisional version here, and the search version is analogous. Given the Decisional-
GLWEG,m′,α(S) oracle (m′ to be specified later), we now construct an efficient algorithm B to
distinguish m samples (ai, bi)i∈[1,m] either from AG,β(ŝ) or uniform in G×T for some unknown

β (≤ α) and secret ŝ sampled from S. Let Z be the set of integer multiples of 1
m2α

2 between 0

and α2. For each z ∈ Z, B does the following. B picks m uniform samples (ãi, b̃i)i∈[1,m] from
G × T and receives m samples (ai, bi)i∈[1,m] from his challenger. B estimates the acceptance
probability of the Decisional-GLWEG,m′,α(S) oracle on the following two inputs: The first input
is of the form (ãi, b̃

′
i)i∈[1,m], where b̃′i ← DT,z,b̃i and the second input is of the form (ai, b

′
i)i∈[1,m],

where b′i ← DT,z,bi . If in any of these polynomial attempts a non-negligible difference is observed
between two acceptance probabilities, output “non-uniform”; otherwise, output “uniform”.

Note that (ãi, b̃
′
i)i∈[1,m] is uniformly random in G×T. If (ai, bi)i∈[1,m] is uniformly random in

G×T, then the two acceptance probabilities are exactly the same. If (ai, bi)i∈[1,m] is distributed
as AG,β(ŝ), then by classical convolution, (ai, b

′
i)i∈[1,m] is distributed as A

G,
√
β2+z

(ŝ). Consider

the smallest z ∈ Z such that z ≥ α2 − β2. Clearly, z ≤ α2 − β2 + 1
m2α

2. Then

α ≤
√
β2 + z ≤

√
α2 +

1

m2
α2 ≤ (1 +

1

m2
)α.

Therefore, the statistical distance between DT,α,ŝ(ai) and DT,
√
β2+z,ŝ(ai)

is at most O(1
m2) for

i ∈ [1,m]. The statistical distance of m samples from A
G,
√
β2+z

(ŝ) and m samples from AG,α(ŝ)

is at most O(1
m). Hence, for our choice of z, and by Chernoff bound, non-negligible (O(1

m))
difference will be observed with probability ≥ 1

3 , if (ai, bi)i∈[1,m] is distributed as AG,β(ŝ). Notice
that we can set m′ = m3 in the Decisional-GLWE oracle.

B.4 Discretization of GLWE

In this subsection, we discuss discrete versions of the GLWE problem, where the LWE samples
(a, b) are not taken in G× T, but b is instead chosen from a discrete subset of T.

The first option is to use the rounded Gaussian distributions, which is suitable for a floating
point representation. By convention, the distance between two numbers x, y ∈ T is minz∈Z(|x−
y + z|). Let h1, . . . , hp be p real numbers such that 0 ≤ h1 < · · · < hp < 1. We denote by
H the values h1, . . . , hp mod 1, which is a finite subset of T. We define the Rounded Discrete
GLWE distribution denoted by ArG,H,α(ŝ) the distribution of tha pair (a, b) over G×H where
a is uniformly random in G and b is sampled according to DT,α,ŝ(a) and rounded to the nearest
value over H. For the decisional variant, the uniform distribution of b over T is replaced by the
distribution over H where b is sampled uniformly at random over T and rounded to its nearest
value in H. With this definition, it is clear that starting from continuous GLWE (or uniform)
samples (a, b) ∈ G×T, it suffices to take a′ = a and round b to its nearest value b′ ∈ H to obtain a
discrete and rounded sample (a′, b′). We denote by (Search) Decisional-GLWEr(G,H,α)(S) the
corresponding problems. If an oracle solves Decisional-GLWEr(G,H,α)(S) (resp. Search), it

33

automatically solves the underlying continuous Decisional-GLWEG,α(S) (resp. Search) instance
(provided that the solution remains unique). Reciprocally, one can turn a discrete rounded
GLWE sample into a continuous one by adding some Gaussian noise larger than the maximal
distance between two consecutive values in H:

Lemma B.1 Let h1, . . . , hp be p real numbers such that 0 ≤ h1 < · · · < hp < 1 and H their
representatives in T. By convention, we set hp+1 = 1 + h1. For all parameter β such that
β ≥

√
2 maxi∈[1,p](hi+1 − hi). Then there is a reduction from Decisional-GLWEr(G,H,α)(S)

(resp. Search) to Decisional-GLWE
G,
√
α2+β2(S) (resp. Search) for any distribution S over Ĝ.

The second option is to discretize GLWE over a finite subgroup T′ = 1
NZ/Z of the torus using

the discrete Gaussian distribution. For β > 0 and some positive integer N , we denote ĀG,β,N (ŝ)
the distribution over G×T′ which chooses a← G uniformly at random, sets b← DT′,β,ŝ(a) and
outputs (a, b). We call (Search) Decisional-DGLWEG,α,N (S) this discretization.

Again, we show that the discrete version is at least as hard as the continuous version for
some suitable parameters:

Lemma B.2 Let G be any finite abelian group and N > 0 an integer. Let 0 < α, β < 1 be
reals such that β ≥ ηε(

1
NZ) for some negligible function ε. Then there is a reduction from

Decisional-GLWEG,α(S) (resp. Search) to Decisional-DGLWE
G,
√
α2+β2,N

(S) (resp. Search)

for any distribution S over Ĝ.

Proof. The reduction does the following: given a sample (a, b) ∈ G×T, it sets a′ = a and samples
b′ ← DT′,β,b. If the distribution of (a, b) is AG,α(ŝ), then b ← DT,α,ŝ(a). Since β ≥ ηε(

1
NZ),

the distribution of b′ is statistically close to DT′,
√
α2+β2,ŝ(a)

by simple convolution. If (a, b) is

uniformly random over G×T, then b is uniformly random over T = R/Z and independent of a.
We obtain that b′ is uniformly random over T′. �

C Missing Proofs of Sect. 4

C.1 Proof of Th. 4.2

Let B be an LLL-reduced basis with factor ε
LLL

of an n-dimensional lattice L ⊆ Rn. Let

α = (1 + ε
LLL

)
√

4/3.
Let x1, . . . , xn denote the ‖b∗i ‖’s ordered by decreasing value. Let k = min {i ∈ [1, n] st.

xi/xi+1 > (1 + ε
LLL

)
√

4/3}, where xn+1 = 0+.
Th. 4.2 follows from the following inequalities:

bl(L) ≥
(

k∏
i=1

xi

)1/k

. (11)

δbl(L)(B) ≤ αn2

8
+n2

4 (12)

δαr bl(L)(B) ≤ α
(n−2r)2

8
+

(n−2r)2

4 (13)

Proof of (11) The proof follows from the following two facts: First, we have: bl(L) ≥(∏n
j=n+1−i

∥∥∥b∗j∥∥∥)1/i
for all i ∈ [1, n]. Indeed, consider the projection πn+1−i over

(b1, . . . ,bn−i)
⊥. Then bl(L) ≥ bl(πn+1−i(L)) because projections cannot increase Gram-

Schmidt norms, and bl(πn+1−i(L)) ≥ vol(πn+1−i(L)) =
(∏n

j=n+1−i

∥∥∥b∗j∥∥∥)1/i
because B[n+1−i,n]

34

is a basis of πn+1−i(L). Second, let A = {i ∈ [1, n] s.t ‖b∗i ‖ ≥ xk}. By definition of k,
i /∈ A =⇒ ‖b∗i ‖ < xk/((1 + ε

LLL
)
√

4/3). Therefore, Lovász’ condition implies that for all
i ∈ A, i + 1 ∈ A. Thus, A is necessarily the right-most integer interval with k elements, i.e.
[n+ 1− k, n] and

∏k
i=1 xi =

∏n
i=n+1−k ‖b∗i ‖. �

Proof of (12) Let σ0 =
(∏k

i=1 xi

)1/k
and j = max{i ∈ [1, k], xi ≥ σ0}. Note that δσ0(B) =∏j

l=1
xl
σ0

=
∏k
l=j+1

σ0
xl

. If j ≤ k/2, then xl/σ0 ≤ αj+1−l for all l ≤ j, therefore δσ0(B) ≤
α(1+...+j) ≤ α

k
4

(k
2

+1). If j > k/2, σ/xl ≤ αl−j for all l ≥ j, therefore δσ(B) ≤ α(1+...+(k−j)) ≤
α
k
4

(k
2

+1). In all cases, δσ0(B) ≤ α
k
4

(k
2

+1) ≤ α
n
4

(n
2

+1). Finally, the cubicity-defect decreases with
σ: since bl(L) ≥ σ0, δbl(L)(B) ≤ δσ0(B) . �

Proof of (13) Assume by contradiction that δαr bl(L) > α(n
2
−r)+···+2+1. Let j =

max{i s.t. xi ≥ αr bl(L)}, since δαr bl(L) ≤ xj
αr bl(L) . . .

x1
αr bl(L) ≤ αα2 . . . αj then j > n

2 − r.
Thus

δbl(L)(B) ≥
j∏
i=1

xi
bl(L)

j+r∏
i=j+1

xi
bl(L)

≥ δαr bl(L)α
rjαr−1...α1

> α(n
2
−r+r)+···+(1+r)+(0+r)α(r−1)+···+2+1 > α

n
2

+···+1

This contradicts (12), thus δαr bl(L) ≤ α
(n−2r)2

8
+

(n−2r)
4 . �

C.2 Proof of Theorem 4.1 and Alg. 2

Let ai = max(1, ‖b∗i ‖ /σ) for i ∈ [1, n]. For each i from k − 1 downto 1, we use the suffix “old”
and “new” to denote respectively the values of the variables at the beginning and at the end of
the “for” loop (line 3 of Alg. 2). Furthermore, we call xi the value ‖c∗new

i ‖ during iteration i.
Note that xi is also

∥∥c∗old
i

∥∥ during the next iteration (of index i− 1 since i goes backwards).
We show by induction over i that the following invariant holds at the end of each iteration

(line 3 of Alg. 2):
aixi+1 ≤ xi ≤ aixi+1 + σai (14)

At the first iteration (i = k − 1), it is clear that xk =
∥∥c∗old

k

∥∥ = σak. At the beginning of
iteration i (line 3), there are two cases:

1. if
∥∥c∗old

i

∥∥ ≤ σ and
∥∥c∗old

i+1

∥∥ > σ (line 9), we size-reduce and swap the two vectors, so that
‖c∗new
i ‖ satisfies: ∥∥∥c∗old

i+1

∥∥∥ ≤ ‖c∗new
i ‖ ≤

∥∥∥c∗old
i+1

∥∥∥+ σ.

Since ai = 1, xi+1 =
∥∥c∗old

i+1

∥∥ and xi = ‖c∗new
i ‖, the invariant (14) holds.

2. If
∥∥c∗old

i

∥∥ > σ and
∥∥c∗old

i+1

∥∥ > σ (line 7), we transform the block so that the norm of the
first vector satisfies

R ≤ ‖c∗new
i ‖ ≤ R+

∥∥c∗old
i

∥∥ . (15)

where R =
∥∥c∗old

i+1

∥∥∥∥c∗old
i

∥∥ /σ
This condition can always be fulfilled with a primitive vector of the form cnew

i = cold
i+1+αcold

i

for some α ∈ Z. Since the volume is invariant, the new
∥∥c∗new

i+1

∥∥ is upper-bounded by σ.
And by construction, Equation (15) is equivalent to the invariant (14) since

∥∥c∗old
i

∥∥ = aiσ,
‖c∗new
i ‖ = xi and

∥∥c∗old
i+1

∥∥ = xi+1.

35

By expanding, this invariant implies that

x1 ≤ σ
k∑
i=1

a1 . . . ai = σ

k∑
i=1

δσ(B[1,i]) ≤ nσδσ(B)

Note that the transformation matrix of the unbalanced reduction algorithm is

α1 · · · αk−1 1 0 · · · 0

1 0 · · · 0
...

...

0
. . .

. . .
...

...
...

0 0 1 0 0 · · · 0

0 · · · · · · 0 1 0 0
...

... 0
. . . 0

0 · · · · · · 0 0 0 1

where αi is either b−µi+1,ie or

⌈
−µi+1,i + xi+1

σ

√
1− 1

a2i

⌉
. Since each xi+1 is bounded by

δσ(B[i+1,n]), all coefficients have a size polynomial in the input basis and the overall complexity
is therefore polynomial.

Now let us show (1). It suffices to prove that the following invariant holds at the beginning
of each iteration:

∀ ν ≤ σ, δν

(
Cold

[i,n]

)
≤ δν

(
Cnew

[i,n]

)
≤ ‖c∗new

i ‖
σδσ

(
Cold

[i,n]

) × δν (Cold
[i,n]

)
(16)

Since all
∥∥∥c∗old

j

∥∥∥ ≤ σ for j = i+ 2, . . . , n, δσ

(
C*

[i,n]

)
= δσ

(
C*

[i,i+1]

)
, where (*) is either old

or new.
Hence, showing (16) amounts to show

∀ ν ≤ σ, δν

(
Cold

[i,i+1]

)
≤ δν

(
Cnew

[i,i+1]

)
≤ ‖c∗new

i ‖
σδσ

(
Cold

[i,i+1]

) × δν (Cold
[i,i+1]

)
(17)

Two cases can occur in the for loop of Alg. 2:

• First case:
∥∥c∗old

i

∥∥ ≤ σ and
∥∥c∗old

i+1

∥∥ ≥ σ (swap case). Since ‖c∗new
i ‖ is projected on a

space of higher dimension than
∥∥c∗old

i+1

∥∥, we have ‖c∗new
i ‖ ≥

∥∥c∗old
i+1

∥∥ ≥ ν and since the

projected volume vol
(
C[i,i+1]

)
remains unchanged, we have

‖c∗newi ‖
‖c∗oldi+1 ‖ =

‖c∗oldi+1 ‖
‖c∗newi+1 ‖ and hence∥∥c∗new

i+1

∥∥ ≤ ∥∥c∗old
i

∥∥.

By definition,

δν

(
Cnew

[i,i+1]

)
=
‖c∗new
i ‖
ν

×max

(
1,

∥∥c∗new
i+1

∥∥
ν

)

δν

(
Cold

[i,i+1]

)
=

∥∥c∗old
i+1

∥∥
ν

×max

(
1,

∥∥c∗old
i

∥∥
ν

)

36

We obtain
δν
(
Cnew

[i,i+1]

)
δν
(
Cold

[i,i+1]

) =
‖c∗newi ‖
‖c∗oldi+1 ‖ ×

max

(
1,
‖c∗newi+1 ‖

ν

)
max

(
1,
‖c∗oldi ‖

ν

)
︸ ︷︷ ︸

≥1

. Now σδσ

(
Cold

[i,i+1]

)
=
∥∥c∗old

i+1

∥∥ proves

the right side of (17).

For the left side, it suffices to notice that
δν
(
Cnew

[i,i+1]

)
δν
(
Cold

[i,i+1]

) =
max

(
‖c∗newi ‖, vol(C[i,i+1])

ν

)

max

(
‖c∗oldi+1 ‖,

vol(C[i,i+1])
ν

) ≤ 1.

• Second case:
∥∥c∗old

i

∥∥ ≥ σ and
∥∥c∗old

i+1

∥∥ ≥ σ. Thus we have ‖c∗new
i ‖ ≥ σ and,

∥∥c∗new
i+1

∥∥ ≤ σ.

Therefore, the two equality hold: δσ

(
Cold

[i,i+1]

)
=

vol(C[i,i+1])
σ2 , and a fortiori, δν

(
Cold

[i,i+1]

)
=

vol(C[i,i+1])
ν2

. Since by definition, δν

(
Cnew

[i,i+1]

)
=
‖c∗newi ‖

ν × max

(
1,
‖c∗newi+1 ‖

ν

)
, the left side

of (17) easily follows. Furthermore,

δν

(
Cnew

[i,i+1]

)
δν

(
Cold

[i,i+1]

) =
ν ‖c∗new

i ‖
σ2δσ

(
Cold

[i,i+1]

) ×max

(
1,

∥∥c∗new
i+1

∥∥
ν

)

=
ν ‖c∗new

i ‖
σδσ

(
Cold

[i,i+1]

) ×max

(
ν

σ
,

∥∥c∗new
i+1

∥∥
σ

)
︸ ︷︷ ︸

≤1

This proves the right side of Inequality (17).

C.3 Proof of Th. 4.4

We will first prove the theorem using the first condition, which is tighter than the second one.
The invariant of the main for loop is that at the beginning of ith iteration, the current basis
C[i,n] satisfies:

∥∥c∗j∥∥ ≤ qjσ for all j < i and δσ(C[i,n]) ≤
k∏
j=i

qj
n+ 1− j (18)

With this invariant, it is clear that the returned B̄ at line 3 or 8 satisfies the upper-bound∥∥B̄∗∥∥ ≤ σ.
Let us show (18) by induction on i. Clearly, the condition holds for i = 1.
At step 4, ` exists and is easy to compute, since the function ν → log(δν(C[i,n])) is a piecewise

affine positive decreasing continuous function which is zero when ν =
∥∥∥C∗[i,n]

∥∥∥ ≤ ‖B∗‖. With

this `, unbalanced reduction always produces a new basis such that ‖c∗new
i ‖ ≤ qi · σ. Then,

there are two cases: either ` = σ, and in this case, δσ(Cnew
[i+1,n]) = 1. Or we have the equality

`δ`(C
old
[i,n]) = qiσ/(n+ 1− i). By replacing σ and ν by ` and σ respectively in (1), we obtain:

δσ

(
Cnew

[i,n]

)
≤
‖c∗new
i ‖ × δσ

(
Cold

[i,n]

)
`× δ`

(
Cold

[i,n]

) ≤ ‖c∗new
i ‖ ×

∏k
j=i

qj
n+1−j

qiσ
n−i+1

37

Since δσ

(
Cnew

[i,n]

)
= δσ

(
Cnew

[i+1,n]

)
∗ ‖b

∗new
i ‖
σ , we have:

δσ

(
Cnew

[i+1,n]

)
≤

k∏
j=i+1

qj
n+ 1− j

To prove the theorem with the second condition, it suffices to notice that at the first iteration,
the length ` is smaller than (n ‖B∗‖n /q1)1/(n−1), because for this value, `δ`(B) ≤ `(‖B∗‖ /`)n =
q1
n . Therefore, for the next iteration,

∥∥∥B∗[2,n]

∥∥∥ ≤ ` and (`/σ)n−1 ≤ nσ
q1
‖B∗‖n /σn ≤ q2 · · · · ·

qn/n
k−1. The proof goes on by induction.

D Missing Proofs of Sect. 5

D.1 Proof of Th. 5.1

Calls to GSIS. Since σηε(Zn) ≥ bl(L)ηε(Zn) ≥ ηε(L), DL̄/L,σ is statistically close to the

uniform distribution over L̄/L. Therefore the vi’s are uniform mod L by Lemma 2.3. Thus,
the elements gi = ϕ(vi) (defined at Line 5) have uniform distribution over G, which allows to
make calls to the GSIS oracle at Line 6.
Correctness. It is easy to see that v =

∑m
i=1 xivi (defined in Line 7) is indeed a short vector

of L, since ϕ(v) =
∑m

i=1 xigi = 0 and

E[‖v‖] ≤ ‖x‖ × E[‖vi‖] ≤ β ×
√
n/2πηε(Zn)σ

Termination. It remains to prove that the algorithm indeed outputs n linearly independent
vectors (and in particular that the output vectors are non-zero). This part of the proof is similar
to [28]. The distribution of the output vectors v’s depends on the vi’s and on the answer x of
the GSIS-oracle, which only depends on g = (g1, . . . , gm). The distribution of (vi), (gi),x during
the algorithm can be equivalently simulated as follows: First choose (g1, . . . , gm) uniformly in
G, and call the GSIS oracle which returns a non-zero solution x with non-negligible probability.
Now, for each gi, sample the preimages vi, which necessarily have the conditional distribution
of vi ← DL̄,σηε(Zn) where ϕ(vi) = gi, i.e. the distribution Dϕ−1(gi),σηε(Zn) where ϕ−1(gi) is a

coset of L. From Proposition 2.2, since σηε(Zn) ≥
√

2ηε(L), one can form a full rank family
from O(n) of such samples, which proves that the algorithm terminates.

D.2 Proof of Cor. 5.2

We consider two cases, depending on the rank kn of Gn.

If kn ≤ n and #Gn ≥ nkn
(
ηε(Zn)

√
2n/πβn

)n
, then it is a direct consequence of Th. 5.1.

Now, assume that kn > n and #Gn ≥ nkn
(
ηε(Zn)

√
2n/πβn

)kn
. Consider the decomposi-

tion of Gn into elementary divisors: Gn '
∏kn
i=1 Zqi where each qi+1 divides qi. Then:(

n∏
i=1

qi

)1/n

≥
(
kn∏
i=1

qi

)1/kn

.

Letting Hn =
∏n
i=1 Zqi , we get that #Hn ≥ #G

n/kn
n ≥ nn

(
ηε(Zn)

√
2n/πβn

)n
and Hn has

rank n. Therefore solving GSIS(Hn,mn, βn) with probability ≥ 1/ poly(n) can be used to solve
worst-case n-dim ApproxSIVP

ηε(Zn)
√
n/πβn

But since Gn ' Hn × Jn for some finite abelian

group Jn, we know that solving GSIS(Hn,mn, βn) with probability ≥ 1/ poly(n) can be reduced
to solving GSIS(Gn,mn, βn) with probability ≥ 1/ poly(n).

38

E Direct reduction from BDD to Search-Group-LWE

By group switching (Sect. 6), there is a (quantum) reduction for Decisional-GLWEG,α from
worst-case GapSVP with approximation factor roughly Õ(n1.5/α). This trivially gives us a
quantum reduction for Search-GLWEG,α from the same worst-case problem.

In this section, we show a direct classical reduction from BDD to Search-GLWE with slightly
better approximation factors than the quantum one in Sect. 6.

Like GSIS, our hardness result for GLWE requires that the finite abelian group G is explicit.
The main result of this section states that for appropriate choices of (G,m,α), if one can
solve Search-GLWEG,m,≤α on average with probability ≥ 1/ poly(n), then one can quantumly
approximate SIVP in the worst case, i.e. one can (quantum)-efficiently find short vectors in
every n-dimensional lattice, which generalizes Regev’s quantum Search-LWE reduction [38]. To
do this, we only need to modify the classical part of Regev’s proof, not the quantum part. More
precisely, we only need to prove that a GLWE-oracle allows us to approximate bounded distance
decoding (BDD) for dual lattices in the worst-case for some factor β: given a basis B× of a dual
lattice L×, and a target t ∈ span(L×) within distance ≤ βλ1(L×) to L×, find the lattice point
u ∈ L× closest to t.

Let us first explain the main difference with LWE. In previous proofs, the LWE-oracle is
used to transform any β-BDD on L× into an β/q-BDD over the same lattice L×. One iterates
this process k times until the distance β/qk becomes smaller than 2−O(n)λ1(L×), at which point
Babai’s nearest plane algorithm [5] solves the BDD instance in polynomial time. To allow
arbitrary structures G, we reinterpret this as reducing β-BDD on L× to β-BDD over L̄×, where
L̄ = L/q. Thus, instead of reducing the distance, we modify the lattice to increase λ1(L×)
until the BDD instance can be solved by Babai’s algorithm. This approach allows arbitrary
overlattices L̄, just like in our GSIS reduction.

More precisely, consider a BDD instance over L×: we have a target t ∈ span(L×) close to
some secret u ∈ L×. Let ŝ = ϕ×(u) ∈ Ĝ. Remember that structural lattice reduction gives an

exact sequence of groups 0 −→ L
id−→ L̄

ϕ−→ G −→ 0, where ϕ is efficiently computable. Let ϕ×

be as in Prop. 4.5. Like in the GSIS reduction, we sample short vectors v1, . . . ,vm ∈ L̄ with
Gaussian distribution, in such a way that each projection gi = ϕ(vi) is uniformly distributed
over G. Then: ŝ(gi) = [ϕ×(u)](ϕ(vi)) ≡ 〈u,vi〉 (mod 1). Since t is close to u, each 〈t,vi〉 is
therefore close to ŝ(gi) mod 1, namely 〈t,vi〉− ŝ(gi) ≡ 〈t−u,vi〉 (mod 1). By adding a suitable
noise, it is possible to simulate the distribution of the GLWE noisy approximation of ŝ(gi) (using
Lemma 2.4). Then one can recover the character ŝ by calling a Search-GLWE oracle: this allows
to compute u′ ∈ L× s.t. ϕ×(u′) = ϕ×(u). One can compute t − u′, which is a target equally
close to u − u′ ∈ L̄×, as t was close to u ∈ L×. Hence, we have transformed a BDD-instance
over L× into a BDD-instance over L̄× with exactly the same error t − u. By iterating this
process, one is eventually able to solve the BDD instance efficiently. Formally, we have:

Theorem E.1 Let n ∈ N, ε = negl(n), a BDD factor β ≤
√
π/2 (2nηε(Zn))−1 and θ =

β
√

2/π (2nηε(Zn)). Let α ∈
]
θ
√
π/2,

√
π/2

]
and an explicit finite abelian group G of rank

k ≤ n. Given as input a basis B of an n-dimensional lattice L and t ∈ span(L×) such that
the BDD instance (B×, t) admits a unique solution t − w ∈ L× with ‖w‖ ≤ βλ1(L×), and a
Search-GLWEG,m,≤α oracle satisfying

#G ≥ nk
(
‖B∗‖
bl(L)

θ
√
π/2√
2α

)n
, (19)

Alg. 7 finds in time polynomial in n and log(1/ε) a basis B̄ of some overlattice L̄ such that
L̄/L ' G, and a target t̄ ∈ span(L̄×) such that the BDD instance (B̄×, t̄) have the same

39

error w, namely t̄ − w ∈ L̄×. If B is LLL-reduced with factor ε
LLL

, we can replace ‖B
∗‖

bl(L) by

((1 + ε
LLL

)
√

4/3)
n−1
2 in (19).

The proof of Th. E.1 is essentially summarized by Alg. 7, which makes a few simplifying
assumptions.

Algorithm 7 Reducing BDD to GLWE
Input: A dimension n and a negligible probability ε = negl(n), a basis B of a n-dimensional integer lattice L, an

average-oracle O for Search-GLWEG,m,≤α satisfying the conditions of Th. E.1, a BDD factor β, a target t and an
upper-bound d0 ≤ βλ1(L×) on the error norm.

Output: a basis B̄ of length
∥∥B̄∗∥∥ ≤ ‖B∗‖ /2 of some (G-)overlattice L̄ and a target t̄ ∈ span(L̄×) such that the BDD

instance (B̄×, t̄) has the same error w of norm ≤ d0 than (B×, t)

1: σ0 ← α√
2d0ηε(Zn)

≥ α
√

2

θ
√
π/2

bl(L) ≥
√

2 bl(L).

2: Call structural lattice reduction (Alg.4) on (B,G, σ0) to get (B̄, L̄) and ϕ : L̄→ G, ϕ× : L× → Ĝ (Prop. 4.5)
3: repeat
4: Sample m random points (v1, · · · ,vm) ∈ L̄ with distribution DL̄,σ0ηε(Zn) using B̄.
5: Let ai = ϕ(vi) and bi ← DT, α√

2
,〈t,vi〉, to form (ai, bi)i∈[1,m] ∈ (G× T)m.

6: Call the Search-GLWEG,m,≤α oracle on (ai, bi)i∈[1,m] to find ŝ ∈ Ĝ.
7: until Search-GLWEG,m,≤α finds a solution
8: t̄← t− u where u ∈ ϕ×−1(ŝ) (take any preimage modulo L̄×)
9: return B̄, t̄

In Step. 6 of Alg. 7, the Search-GLWEG,m,α oracle is called directly on the (ai, bi)i∈[1,m],
whereas, strictly speaking, we should actually randomize these inputs to make sure that the
solution s follows the right distribution: in the classical LWE reduction, one also uses the
self-reducibility of LWE. To make sure that the input has the right distribution, the key step
is Step. 5. Note that 〈t,vi〉 = 〈u,vi〉 + 〈t − u,vi〉 mod 1, where the first term is equal to
ŝ(ai) = 〈ϕ×(u), ϕ(vi)〉. Since bi ← DT,

√
α/2,ŝ(ai)+〈t−u,vi〉 where vi ← DL,σ0ηε(Zn), Lemma 2.4

proves that bi has the requested distribution DT,α′,ŝ(ai) for some α′ ≤ α
By iterating Alg. 7 and Th. E.1 a polynomial number of times, as the length of the input basis

geometrically decreases, then λ1(L×) geometrically increases. Eventually, the BDD instance
becomes easy, and the error w can be retrieved using for instance Babai nearest plane algorithm.
Thus we deduce the following result on the hardness of Search-LWE.

Corollary E.2 Let n ∈ N, ε = negl(n) and two real sequences βn ≤
√
π/2 (2nηε(Zn))−1,

and αn ∈
]
θn
√
π/2,

√
π/2

]
where θn = βn

√
2/π (2nηε(Zn)). Let (Gn)n∈N be a sequence of

explicit finite abelian groups of rank kn. If #Gn ≥ nkn
(

(1 + ε
LLL

)
√

4/3)
n−1
2

θn
√
π/2√

2αn

)max(n,kn)

,

then using polynomially many calls to an oracle solving Search-GLWEGn,≤αn with probability
1/poly(n), one can solve worst-case n-dimensional BDDβn in (randomized) polynomial time
and ApproxSIVP√2n/βn

in quantum polynomial time.

F Missing proofs of Section E

F.1 Proof of Theorem E.1

Let t, B be the BDD-β instance on the dual L(B)×, and call d0 ≤ βλ1(L×) an upper-bound
on the error norm. Like in Theorem E.1, we suppose that β ≤

√
π/2 (2nηε(Zn))−1, and call

θ = β
√

2/π (2nηε(Zn)) < 1.
In Alg. 7, the parameter α ∈ [θ

√
π/2,

√
π/2) is a valid noise parameter for GLWE oracles.

40

The parameter σ0 = α/(
√

2d0ηε(Zn)) is larger than 2nβ/
√

2d0. Note that by Banaszczyk
theorem [6], bl(L) · λ1(L×) ≤ n, so σ0 ≥

√
2 bl(L). Since #G is larger than nk(‖B∗‖ /σ0)n, one

can indeed apply structural reduction to obtain a basis B̄ of L̄ such that
∥∥B̄∗∥∥ ≤ σ0 (line 3 of

Alg. 7).
There exists a (unique) vector u ∈ L× such that t = u + w with ‖w‖ ≤ d0. We now

prove that the instance (ai, bi)i∈[1,m] generated lines 6,7 is indistinguishable from a random

GLWE(G,m,≤ α) instance of solution ŝ = ϕ×(u) ∈ Ĝ. Namely the ai’s must be uniform in G,
and for each i ∈ [1,m], bi must have distribution DT,α,ŝ(ai).

The uniformity of the ai’s in G comes from the same reason as in Section 5, since they are
isomorphic (by ϕ) to the vi mod L, and the vi’s are drawn from a Gaussian distribution of
parameter σ0ηε(Zn) ≥ ηε(L). To show that the bi’s have the correct distribution, the idea is
that ŝ(ai) = [ϕ×(u)](ϕ′(vi)) = 〈vi,u〉 mod 1. Suppose that ai is fixed. Then the conditional
distribution of vi is Dϕ−1(ai),σ0ηε(Zn) where ϕ−1(ai) is a coset of L. Since the distribution of b is
DT,α/

√
2,〈t,vi〉 and 〈t,vi〉 = ŝ(ai) + 〈w,vi〉 where vi has a discrete Gaussian distribution over a

coset of L, then by the convolution Lemma 2.4, the distribution of bi is at distance 4ε from the
distribution DT,ν,ŝ(ai) where the parameter ν is =

√
α2/2 + (‖w‖σ0ηε(Zn))2 ≤ α.

Subsequent Iterations. Since the Search-GLWE oracle cannot distinguish the distribution
of (ai, bi)i∈[1,m] from random GLWE samples, it will output the solution ŝ = ϕ×(u) after a
polynomial number of trials. Unfortunately, ϕ× is not invertible, we can only recover u modulo
ker(ϕ×) = L̄×. Let u0 be one preimage in ϕ×−1(ŝ). The vector t− u0 is now at distance ≤ d0

of L̄× instead of L×. Thus we can iterate the whole process by replacing L with L̄.
Since bl(L) has decreased, the authorized interval for α increases, so α remains a valid noise

parameter, and the same oracle may be used for all subsequent iterations.
Since the structural reduction always computes bases such that ‖B∗‖ decreases by a constant

factor compared to the previous basis, the while loop can be iterated O(log n) times, until ‖B∗‖
becomes smaller than 1/d0. At this point, the BDD is very easy to solve exactly, for example
using Babai nearest-plane algorithm.

F.2 Proof of Cor. E.2

Let n ∈ N, and let Qn = (1 + ε
LLL

)
√

4/3)
n−1
2

θn
√
π/2√

2αn
. Like in Cor. 5.2, the case kn ≤ n and

#Gn ≥ nkn (Qn)n, is a direct consequence of (multiple iterations of) Th. E.1 and Regev’s
quantum connection between BDDβn and ApproxSIVP√2n/βn

.

Now, assume that kn > n and #Gn ≥ nkn (Qn)kn . Again, from the decomposition of Gn
into elementary divisors: Gn '

∏kn
i=1 Zqi where each qi+1 divides qi, we can decompose Gn as

Hn ⊕ Jn where the subgroup Hn =
∏n
i=1 Zqi has rank n and satisfies #Hn ≥ nn (Qn)n. Note

that any GLWE sample (a, b) on Hn with (unknown) secret ŝ can be combined with a randomly
generated GLWE sample (a′, b′) over Jn with a randomly chosen secret ŝ ∈ Ĵn to form a GLWE
sample on G. Therefore solving Search-GLWE(G,αn) with probability ≥ 1/ poly(n) can be
used to solve Search-GLWE(Hn, αn) with probability ≥ 1/poly(n) which in turns can be used
to solve worst-case n-dim BDDβn .

G Missing Proof of Sect. 6

G.1 Proof of Lemma 6.3

The main idea consists in the following: given an element of G, sample randomly an element
of G′ so that the evaluations on these two elements of the corresponding characters is almost

41

preserved. The approximate equivalence of evaluations of characters comes from the duality of
the maps ϕ′ and ϕ′×. Given a sample (a, b) ∈ G× T, the procedure is as follows:

1: Choose one preimage u ∈ ϕ−1(a) and sample v ← DL̄′,r,u using the basis B̄′ and Lemma
2.1. The preimage can be computed because G is fully-explicit.

2: Let a′ = ϕ′(v).
3: Choose b′ ← DT,rK,b.
4: Output (a′, b′).

We now analyze the algorithm. We first show that the distribution of a′ is nearly uniform in
G′. It suffices to show that v mod Zn ∈ L̄′/Zn is (nearly) uniformly random. We note that, if
r ≥ ηε(Zn), we have that v mod Zn is (almost) uniform (see [20]). However, this would require
a very large r, which is not suitable for our reduction. Since a is uniform in G, a much smaller r
is sufficient to show the uniformity of v mod Zn. Indeed, let A ∈ L̄ be a (finite) set containing
exactly one representative of each class of L̄/Zn. Note that ϕ−1(a) is a uniformly random coset
u + Zn where u ∈ A. Let v0 ∈ L̄′.

Pr[v = v0 mod Zn] =
1

#G

∑
a∈G
DL̄′/Zn,r,ϕ−1(a)(v0 + Zn) =

1

#G

∑
u∈A
DL̄′/Zn,r,u+Zn(v0 + Zn)

=
1

#G

∑
u∈A

∑
z∈Zn

DL̄′,r,u(v0 + z) =
1

#G

∑
(u−z)∈L̄

DL̄′,r(v0 + (z− u))

=
1

#G

∑
w∈L̄

ρRn,r(v0 + w)
ρRn,r(v0 + w + L̄′)

=2ε
1

#G
· 1/ vol(L̄)

1/ vol(L̄′)
=

1

#G
· #G

#G′
=

1

#G′
.

Clearly, if the input b is uniformly random in T, then b′ is also uniform in T. It remains to
show that given as input a sample distributed from AG,α(ŝ), the algorithm outputs a sample
distributed from AG′,β(ŝ′). Let f = v − ϕ−1(a), the distribution of f is DL̄′−ϕ−1(a),r. We also

have, that ŝ′(a′) = [ϕ′×(s)](ϕ′(v)) = 〈s,v〉 = 〈s, ϕ−1(a)〉 + 〈s, f〉 = ŝ(a) + 〈s, f〉. Assume
a′ is fixed. Since b′ is sampled from DT,rK,b where b ← DT,α,ŝ(a), by classical convolution,
the distribution of b′ is DT,

√
α2+(rK)2,ŝ(a)

where ŝ(a) = ŝ′(a′) − 〈s, f〉. Since f has Gaussian

distribution over a coset, by the dot-product convolution lemma 2.4, the distribution of b′ is
statistically close to DT,

√
α2+(‖s‖r)2+(rK)2,ŝ′(a′)

H Comparison with Previous Work of Ajtai and Micciancio

H.1 (G)SIS Reductions Based on Overlattices

Ajtai [1] and Micciancio [25] presented early reductions to (G)SIS, which are interesting to
compare. Although their reductions are presented in a different manner, it turns out that they
can both be recast in our simple overlattice framework:

1. Let L ⊆ Zn be the “worst-case” lattice given by a basis B.

2. One constructs some overlattice L̄ of L. This defines an exact sequence 0 −→ L
id−→ L̄

ϕ−→
G −→ 0, where ϕ is efficiently computable and G is some finite abelian group ' L̄/L.

3. One has a sampling algorithm over L̄ according to some distribution D, such that its
output v ∈ L̄ is short and ϕ(v) has distribution statistically close to uniform over G.

42

4. One calls the sampler m times to obtain random short vectors v1, . . . ,vm ∈ L̄. Then
one calls the GSIS oracle on (g1, . . . , gm) where gi = ϕ(vi) has uniform distribution over
G. This gives a short non-zero x ∈ Zm such that

∑m
i=1 xigi = 0, which implies that

s =
∑m

i=1 xivi ∈ L. One analyzes the distribution of s to show that with non-negligible
probability, s is non-zero, short (of norm significantly less than ‖B‖) and does not lie in
some hyperplane.

5. By iterating sufficiently many times this process, one eventually obtains a family of linearly
independent short lattice vectors in L.

What differs among all such reductions is the choice of L̄, sampler and distribution D: in
particular, the distribution dictates how short will be the solution vector s.

H.2 Ajtai’s SIS Reduction

We rewrite Ajtai’s original reduction [1] in our framework.
Let L be the worst-case lattice given by a basis B. Ajtai constructs (see [1, Lemma 3]) a

basis B′ of a full-rank sublattice L′ ⊆ L such that B′ is nearly-orthogonal, and ‖B′‖ is not much
bigger than ‖B‖ (say, at most by some polynomial factor).

Here, the overlattice is L̄ = q−1L with L̄/L ' Znq = G. But the sampling distribution
D is not some discrete Gaussian distribution over L̄ like in our GSIS reduction: instead, it
is the uniform distribution over L̄ ∩ P(B′/q), where P(B′/q) is the parallelepiped spanned by
B′/q. Ajtai’s sampler is very simple: pick random integers yi in some large interval [0, T]
with uniform distribution, and reduce

∑n
i=1 yibi/q ∈ L̄ inside the parallelepiped P(B′/q) using

Babai’s rounding algorithm, which implies that the sample has norm ≤ √n‖B′‖/q. What is
difficult is proving that the distribution obtained is statistically close to the uniform distribution
over L̄ ∩ P(B′/q), and that its image by ϕ is uniformly distributed over G.

H.3 Micciancio’s GSIS Reduction

We rewrite Micciancio’s reduction [25] in our framework: this is fairly different from the original
description, and hopefully simpler.

Let L ⊆ Zn be the worst-case lattice given by a basis B. Micciancio [25] considers a special
lattice L ⊆ Zn for which CVP can be solved in polynomial time, and uses this CVP subroutine
to construct (see [25, Lemma 2.11]) a nearly-orthogonal basis M of a full-rank sublattice L′
of L: for instance, if L = Zn, then M = qIn. This defines a finite abelian group G′ = L/L′.
Similarly, using Babai’s nearest plane algorithm instead of a CVP subroutine, Micciancio also
constructs a nearly-orthogonal basis C of a full-rank sublattice L′ of L.

Let ψ be the (non-singular) linear transformation over Rn mapping M to C, i.e. ψ(x) =
xM−1C, then ψ(L′) = L′. L′ is a sublattice of both L and ψ−1(L), and similarly, L′ is a
sublattice of both L and ψ(L). Notice that L/L′ ' ψ(L)/ψ(L′) = ψ(L)/L′ so ψ(L)/L′ ' G′.

Here, the overlattice is L̄ = L − ψ(L) formed by all sums of the form v + w where v ∈ L
and w ∈ ψ(L): one can check that L̄ is indeed an overlattice of L. By the second and third
isomorphism theorems, we have:

L̄/L ' ψ(L)/(ψ(L) ∩ L) ' (ψ(L)/L′)/((ψ(L) ∩ L)/L′) ' G′/G′′,

for some subgroup G′′ ' (ψ(L) ∩ L)/L′ of G′. So the target group is G = G′/G′′. Note that a
GSIS-oracle for G′ implies a GSIS-oracle for G.

The sampler has support L̄ ∩ k(n)W where W = ψ(V) and V is the (closed) Voronoi cell
of L and k(n) is some integer function growing logarithmically. In fact, the sampler is based

43

on a “local” sampler given in [25]: the output v of the global sampler is formed by adding k(n)
vectors of the form v′j − ψ(wj), where (v′j ,wj) ∈ L̄ × L is an output for the local sampler
given in [25, Lemma 6.6]. This is because the local sampler [25, Lemma 6.6] only produces a
nearly-uniform distribution, so one sums k(n) vectors to guarantee a distribution sufficiently
close to uniform for ϕ(v).

The local sampler given by [25, Lemma 6.6] is a bit technical: compared to Ajtai’s, the
main idea is to use the CVP-solver of L to reduce the norm of the sample, which is why ψ(V)
matters. By analyzing carefully the distribution of the local sampler, Micciancio shows that the
expectation of the norm of the final linear combination s is o(‖B‖).

H.4 Comparison with Structural Reduction

Both Ajtai’s reduction and Micciancio’s reduction involve the construction of a good basis of
some sublattice: we note that this is reminiscent of structural reduction. Indeed, recall that
given a basis B of a lattice L and a (sufficiently large) finite abelian group G, structural reduction
finds a basis B̄ of some overlattice L̄ such that L̄/L ' G and ‖B̄∗‖ is much smaller than ‖B∗‖.
By duality, structural reduction also allows to find a basis B′ of some sublattice L′ of L such
that L/L′ ' G and mini ‖b′∗i ‖ is much larger than mini ‖b∗i ‖. In other words, finding a good
basis of some sublattice with prescribed structure is equivalent to structural lattice reduction.
However, the sublattice constructions of Ajtai [1, Lemma 3] and Micciancio [25, Lemma 2.11]
do not allow to choose the structure of the sublattice, which is not as powerful as structural
reduction.

Furthermore, although Ajtai’s reduction and Micciancio’s reduction both allow to sample
short lattice vectors in some overlattice, it must be stressed that the target group G of the
overlattice cannot be arbitrarily chosen. The restrictions for G in Ajtai’s reduction are the
same as in the GPV reduction [20]: G = (Zq)n or G =

∏n
i=1 qi where the qi’s are prime numbers

of similar size. In Micciancio’s reduction, G is implicitly defined by the CVP algorithm and the
sublattice algorithm of [25, Lemma 2.11]: in principle, if we ignore technical issues regarding
the distribution of ϕ(v), we could select L = Zn to have more freedom over G, but we would
need a procedure to find a good basis of some integer lattice L′ ⊆ Zn such that Zn/L′ ' G,
which is missing in [25]. In particular, for both Ajtai’s reduction and Micciancio’s reduction,
the case of a cyclic group G of large prime order looks unreachable, unlike structural reduction.

I Relationships Between GSIS, GLWE and HNP

We clarify the relationships between GSIS, GLWE and the Hidden Number Problem (HNP).

I.1 From Decisional-GLWE to GSIS

There is a folklore reduction from Decisional-GLWEG,α to GSIS(G,m, β) when 0 < αβ ·√m < 1.
Given samples (ai, bi) ∈ G×T for 1 ≤ i ≤ m from Decisional-GLWEG,α, use the GSIS(G,m, β)
oracle on (a1, ..., am) to find a non-zero vector x = (x1, ..., xn) ∈ Zm such that

∑m
i=1 xiai = 0 ∈ G

and ‖x‖ ≤ β. Now consider the summation t ,
∑m

i=1 xibi ∈ T. If bi = ŝ(ai) + ei for some ŝ ∈ Ĝ
and ei ← DT,α, then t = ŝ(

∑m
i=1 xiai) +

∑m
i=1 xiei =

∑m
i=1 xiei ∈ T. Since ‖x‖ ≤ β and

‖e = (e1, ..., em)‖ ≤ α · √m (with overwhelming probability), we have that |t| ≤ αβ
√
m. On

the other hand, if the bi’s are uniform in T, then t will also be uniform over T. Therefore, the
distinguisher for Decisional-GLWEG,α simply looks at t and answers that the input (ai, bi)’s are
a GLWE sample if the absolute value is at most αβ

√
m, and answers uniform otherwise. The

distinguisher will succeed with advantage ≥ 1− αβ√m.

44

For simplicity, one can choose αβ
√
m = 1/2. Since the underlying worst-case n-

dimensional GapSVP in the quantum reduction for Decisional-GLWEG,α has approximation
factor Õ(n1.5/α), the analysis above gives us a quantum reduction from worst-case GapSVP
with approximation factor Õ(n1.5√mβ) to GSIS(G,m, β). On the other hand, the result in
Sect. 5 shows a direct classical reduction from worst-case GapSVP with approximation factor
Õ(
√
nβ) to GSIS(G,m, β), which is better.

I.2 Relations betweens HNP and LWE

Cor. 6.4 reduces GLWE from one group to another. Since GLWE over a cyclic prime-order
group is exactly a randomized version of the Hidden Number Problem (HNP), Cor. 6.4 shows
that this randomized version of HNP is equivalent to decisional-LWE (using both directions of
Cor. 6.4). We now compare this general HNP hardness result to previous results of Brakerski
et al. [12].

First, as we mentioned in the introduction, [12, Cor 3.4] established the hardness for the
hidden number problem when the large prime p is replaced by qn where q is smooth: the nice
modulus-dimension switching technique of [12, Cor 3.4] allows to transfer LWE samples to HNP
samples with a power modulus.

Though this is not explicitly mentioned in [12], it turns out that one can prove that
decisional-LWE can be reduced to HNP by combining [12, Cor 3.3] and [12, Cor 3.4], albeit
with worse bounds than our general result.

In the other direction, surprisingly, one can also establish a reduction from HNP to
decisional-LWE by carefully combining several results of [12]. More precisely, taking k = 1
in [12, Th. 4.1] reduces HNP to LWE with binary secret and large modulus. Next, one could
switch to a small modulus and use self-reduction to obtain normal LWE samples. However, this
reduction is again indirect, and requires to work with a large intermediate group.

More generally, [12, Th. 4.1] is indirect, and Cor. 3.2, 3.3, 3.4 and Th. 4.1 of [12] are all
particular cases of our Cor. 6.4: in fact, any combination of these statements can be achieved
with a“single pass”of our Cor. 6.4, which therefore leads to a better output noise. One key point,
compared to [12], is that for each n and each classical secret space of GLWE containing less than
Kn elements (e.g.: Gaussian, interval, full space, etc.), there exists at least one morphism ϕ×

on Zn so that the secret space is
√
n ·K bounded (An explicit example is to take the morphisms

corresponding to the decomposition of coordinates in base K.). Because of this, a single pass
of our theorem is sufficient to prove the equivalence between HNP and LWE, without having to
go through the long and technical proof of [12], without requiring a large intermediate group,
and without having to care about arithmetic complications related to the modulus as in [12,
Th. 4.1].

45

