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Abstract

We show how to construct a O(1)-round resettably-sound zero-knowledge argument of
knowledge based on one-way functions where additionally the construction and proof of se-
curity is black-box. Zero-knowledge proofs (ZK) are fundamental cryptographic constructs
used in numerous applications. Formalized using a “simulation” paradigm, ZK requires that
for every malicious verifier there exists a “simulator” that can indistinguishably reproduce the
view of the verifier in an interaction with the honest prover. Resettable-soundness introduced
by Barak, Goldreich, Goldwasser and Lindell (FOCS 01) additionally demands the soundness
property to hold even if the malicious prover is allowed to “reset” and “restart” the verifier.
Using the breakthrough non-black-box technique of Barak (FOCS 01) they also provided a
constant-round construction of a resettably-sound ZK argument relying on the existence of
collision-resistance hash-functions. This construction and subsequent constructions all rely
on the underlying cryptographic primitive in a non black-box way. Recently, Goyal, Ostro-
vsky, Scafuro and Visconti (STOC 14) showed how to extend the Barak’s technique to obtain
a construction and proof of security that relies on the collision-resistant hash-function in a
black-box manner while still having a non black-box simulator. Such a construction is referred
to as semi black-box. From the work of Chung, Pass and Seth (STOC 13) we know that the
minimal assumption required to construct resettably-sound ZK argument is the existence of
one-way functions.

In this work we close the gap between (semi) black-box and non black-box constructions by
showing a black-box (round-efficient) resettably-sound argument relying on one-way functions
only.

1 Introduction

Zero-knowledge (ZK) interactive protocols [GMR89] allow one player (called the Prover) to con-
vince another player (called the Verifier) of the validity of a mathematical statement x ∈ L, while
providing zero additional knowledge to the Verifier. We are here interested in a stronger notion
of zero-knowledge arguments known as resettably-sound zero-knowledge. This notion, first intro-
duced by Barak, Goldwasser, Goldreich and Lindell (BGGL)[BGGL01], additionally requires the
soundness property to hold even if the malicious prover is allowed to “reset” and “restart” the ver-
ifier. This model is particularly relevant for cryptographic protocols being executed on embedded
devices, such as smart cards. BGGL provided a construction of a resettably-sound zero-knowledge
argument for NP based on the existence of collision-resistant hash-functions. More recently, Bi-
tansky and Paneth [BP12] presented a resettably-sound zero-knowledge argument based on the
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existence of an oblivious transfer (OT) protocol. Finally, Chung, Pass and Seth (CPS) [CPS13]
showed how to construct based on the minimal assumption of the existence of one-way functions
(OWFs).

It was shown in [BGGL01] that resettably-sound ZK arguments inherently require non-black-
box simulation. In this work we are interested in understanding how the underlying cryptographic
primitive is used. Constructions based on general cryptographic assumptions such as existence of
OWFs or CRHs come in two flavors: black-box or non-black-box. The former requires that the
construction refer to only the input/output behavior of the underlying primitive, while the latter
requires to use the code of the functionality implementing the primitive.

An important theoretical question is to understand the power and limitations of black-box
constructions in cryptography. A long line of work starting from the seminal work of Impagliazzo
and Rudich [IR88] have tried to understand this for various primitives. Besides strong theoretical
motivation, a practical reason is related to efficiency. Typically, non-black-box usage results in
inefficient constructions due to inefficient NP-reductions, and this impacts both the computational
and communication complexity. As such, non-black-box constructions are used only to demon-
strate “feasibility” results. The first step towards efficiency would be to achieve the same result
with a construction that makes only black-box usage of the underlying primitives.

Most of the previous constructions of resettably-sound ZK arguments crucially make non black-
box usage of the underlying primitive. Very recently, [GOSV14] showed how to construct a public-
coin ZK argument of knowledge based on CRHs in a black-box manner. They provide a non
black-box simulator but a black-box construction and proof of security based on CRHs. Such
a reduction is referred to as a semi black-box construction (see [RTV04] for more on different
notions of reductions). Applying the [BGGL01] transformation to this protocol yields the first
(semi) black-box construction resettably-sound ZK argument that relies on CRHs. In this paper,
we address the following open question:

Can we construct resettably-sound ZK arguments under minimal assumptions where
the underlying primitive is used in a black-box way?

1.1 Our Results

We resolve this question and provide a black-box construction for resettably-sound ZK argument
based on the minimal assumption of the existence of one-way function. More formally, we prove
the following theorem.

Theorem 1 (Informal). There exists a (semi) black-box construction of an O(1)-round resettably-
sound zero-knowledge argument of knowledge for every language in NP based on one-way functions.

We know from the lower bound of [BGGL01] that constructing such protocols inherently re-
quires non-black-box simulation. Hence the best we can hope for is a semi black-box construction.

It might seem that achieving such result is just a matter of combining techniques from [GOSV14]
and [CPS13]. However, it turns out that the two works have conflicting demands on the use of
the underlying primitive which make the two techniques “incompatible”.

In more detail, the construction presented in [GOSV14] crucially requires the honest prover to
use the collision-resistant hash-function for generating its messages. In particular, it uses the ability
of the prover of evaluating the hash function on its own, based on the partial transcript of messages
exchanged. The resettably-sound zero-knowledge protocol proposed in [CPS13], roughly, replaces
the hash function with digital signatures (which can be based on one-way functions). However,
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the construction of [CPS13] requires that the honest prover never has to use the signatures for
generating its messages, as it cannot compute signatures on it own.

Our starting point will be the constant-round resettably-sound ZK argument of [GOSV14]
based on CRHs. Our central contribution is to show how to adapt the techniques of [CPS13] to
obtain an analogous construction relying on one-way functions only.

1.2 Previous works and why they don’t work

We briefly review some of the relevant previous works that rely on Barak’s non black-box approach.

Barak’s ZK simulation and protocol [Bar01]. Barak’s ZK protocol for an NP language L
is based on the following idea: a verifier is convinced if one of the two statements is true: 1) the
prover commits to a machine that predicts the verifier’s next message, or 2) x ∈ L. By definition
the (non-black-box) ZK simulator knows the code of the next-message function of the verifier
V ∗ which is a witness for statement 1, while the honest prover has the witness for statement 2.
Soundness follows from the fact that no adversarial prover can predict the next-message without
knowing the code/randomness of the verifier. The main bottleneck in translating this beautiful
idea to a concrete construction is the size of the statement 1. Since zero-knowledge demands
simulation of arbitrary malicious non-uniform PPT verifiers, there is no a priori bound on the
size of the verifier’s next-message circuit and hence no strict-polynomial bound on the size of the
witness for statement 1. Barak and Goldreich [BG02] in their seminal work show how to construct
a ZK proof that can hide the size of the witness. More precisely, they rely on Universal Arguments
(UARG) which they show can be constructed based on collision-resistant hash-functions (CRHs)
via Probabilistically Checkable Proofs (PCPs) and Merkle hash trees (based on [Kil92]). PCPs
allow rewriting of proofs of NP statements in such a way that the verifier needs to check only a
few bits to be convinced of the validity of the statement. Merkle hash-trees on the other hand
allow committing to strings of arbitrary length with the additional property that to verify the bit
in any position of the string only a small amount of supplementary decommitment information
needs to be provided to verify the bit. In a UARG, on a high-level, the prover first commits to
the PCP-proof via a Merkle hash-tree. The verifier responds with a sequence of locations in the
proof that it needs to check and the prover responds with the bits in the respective locations along
with the supplementary information. For those familiar with Merkle hash-trees, the additional
information is called authentication path and consists of all nodes and their sibling in the path
from the leaves to the root. This approach reveals the size of the proof as the tree size can
be determined from the length of the path. While this approach allows constructing arguments
for statements of arbitrary polynomial size, it is not zero-knowledge because the authentication
path reveals more information about the proof. To get ZK, Barak’s construction requires that
the prover never reveals the supplementary information in the clear, but instead only commit
to the supplementary information and prove via standard ZK that there are valid openings to
the commitments that prove consistency of the bits revealed in the PCP. A standard ZK can be
employed as the size of this statement is strictly polynomial. However, since Merkle-hash trees rely
on CRHs, proving consistency in zero-knowlege inherently relies on the code of the hash function
and is thus non black-box.

Summing up, the two ingredients required in Barak’s ZK protocol are: (1) the proof can
be compressed so that the running time required to verify the proof is polynomial and (2) the
supplementary information required to verify bits in the proof must be hidden.

Black-box implementation of Barak’s NBB simulation [GOSV14]. Recently, Goyal, Os-
trovsky, Scafuro and Visconti in [GOSV14] showed how to implement Barak’s simulation technique
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using the hash function in a black-box manner.
The first observation in [GOSV14] is that in order to use a hash function as a black-box, the

prover must unfold each path of the Merkle tree corresponding to the PCP queries and let the
verifier check the hash consistency of the path with the committed root by recomputing the hash
values on its own. However, as mentioned before, we can not hope to achieve ZK if we reveal the
path, since the size of the revealed path reveals the size of the proof.

To tackle this, they introduce the concept of extendable Merkle tree, where the honest prover
will be able to extend any path of the tree on the fly, if some conditions are met. Intuitively, this
solves the problem of hiding the size of the tree— and therefore the size of the proof—because a
prover can show a path for any possible proof length.

To implement this idea using the hash function in a black-box manner, they construct the tree
in a novel manner, as a sequence of “LEGO” nodes, namely nodes that can be connected to the
tree on the fly.

More concretely, recall that to prove consistency of a leaf of the tree, one has to reveal all
the nodes along the path between the leaf and the root, and prove their connections. This can
be viewed as locally verifying for each node the connection with its two children. Consider any
parent node, verifying a connection with its 2 children in the hash-tree entails: (1) computing
the hash of the two children; (2) verifying that the parent node “corresponds” to the hash value
just computed. In the standard Merkle tree, the parent node is computed as the hash of the
children. Hence, to verify (2) it is sufficient to check that the hash computed in (1) is equal to
the value of the parent node. In [GOSV14], the parent node instead of being simply the hash of
its children, is a redundant representation of it (looking ahead, it is the secret-sharing of it). The
crucial observation of [GOSV14] is that while checking (1) requires the use of the hash function
and the verifier directly checking the hash-computations, condition (2) can be proved indirectly
using a black-box ZK protocol. With this abstraction of nodes, to allow an honest prover (and
the simulator) to create new nodes on the fly, it is sufficient to provide them with a trapdoor to
cheat in the ZK proof for (2). For the honest prover, which does not actually compute the PCP
proof, the trapdoor is the witness for the theorem “x ∈ L”. For the simulator, which is honestly
computing the PCP proof and hence the Merkle tree, the trapdoor is the size of the real tree (that
is committed at the very beginning). Namely, the simulator is allowed to cheat every time he is
required to answer to PCP queries that are greater than the size of the committed PCP. The actual
construction of [GOSV14] uses VSS for the representation of the nodes, and the MPC-in-the-head
due to Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS07] for the ZK proof for condition (2).

The final piece of their construction deals with committing the actual code of the verifier
which also can be of an arbitrary polynomial size. This can be achieved by using the same LEGO
approach to commit to the code. However, a minor issue here is that to verify a PCP the verifier
needs to read the statement (in this case the code of the machine) or at least the size of the
statement to process the queries. But revealing the size will invalidate ZK again. [GOSV14] get
around this problem by relying on PCP of Proximity (PCPP) instead of PCPs which allow the
verifier to verify any proof and arbitrary statement by querying only a few bits of the statement
as well as the proof.

Summing up, some of the key ideas that allow [GOSV14] for a black-box use of the hash
function are: (1) the prover unfolds the paths of the Merkle tree so that the verifier can directly
check the hash consistency, (2) the prover/simulator can arbitrarily extend a path on the fly by
computing fake LEGO nodes and cheat in the proof of consistency using their respective trapdoors.

The work of [GOSV14] retains all the properties of Barak’s ZK protocol, namely, is public-coin
and constant-round (therefore resettable sound due to [BGGL01]), and relies on the underlying
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CRH in a black-box manner. A detailed overview of the approach can be found in App. B.

Non black-box simulation using OWFs [CPS13]. Chung, Pass and Seth [CPS13] showed
how to implement the non black-box simulation technique of Barak using OWFs. We recall some
of the ideas from this work. Recall that hash functions are needed in two locations in Barak’s
protocol. First, since there is no a-priori polynomial upper-bound of the length of the code of
V ∗, the simulator needs to commit to the hash of the code of V ∗. Secondly, since there is no
a-priori polynomial upper-bound on the running-time of V ∗, the use of universal arguments is
required (and such constructions are only known based on the existence of collision-resistant hash
functions).

The main idea of CPS is to notice that digital signature schemes—which can be constructed
based on one-way functions—share many of the desirable properties of CRHs, and to show how to
appropriately instantiate (a variant of) Barak’s protocol using signature schemes instead of using
CRHs. More precisely, CPS show that by relying on strong fixed-length signature schemes, one
can construct signature tree analogous to the Merkle hash-tree that could be used to compress
arbitrary length messages into a signature of fixed length and satisfies an analogue collision-
resistance property.

The soundness of such a construction will have to rely on the unforgeability (i.e. collision-
resistance) of the underlying signature scheme. Hence it must be the case that the verifier generates
the secret key and provide signatures of messages to the prover. Towards this, CPS adds a signature
slot at the beginning of the protocol. More precisely, in an initial stage of the protocol, the verifier
generates a signature key-pair sk, vk and sends only the verification key vk to the prover. Next, in
a “signature slot”, the prover sends a commitment c of some message to the verifier, and the verifier
computes and returns a valid signature σ of c (using sk). This is used by the simulator to construct
a signature tree through rewinding the (malicious) verifier as a fake witness for WIUARG in an
analogous way as before. While the simulator can use the signature slot to construct the signature
tree, we cannot require the honest prover to construct any tree since it is not allowed to rewind the
verifier. To address this, CPS uses a variant of Barak’s protocol due to Pass and Rosen [PR05],
which relies on a special-purpose WIUARG, in which the honest prover never needs to perform
any hashing (an early version of Barak’s protocol also had this property). The idea here is that
since we can construct public-coin UARG, the prover can first engage in a shadowed UARG where
the prover merely commits to its messages and then in a second phase proves that either x ∈ L
or the messages it committed to consistute a valid UARG proving that the prover knows a fake
witness. This will allow the honest prover to “do nothing” in the shadowed UARG and use the
witness corresponding to x in the second phase while the simulator will commit to valid messages
in the UARG by first obtaining signatures from the signature slot through rewinding and then use
the generated UARG messages as the witness in the second phase.

Formalizing this idea turns out to be tricky. First, a malicious verifier might fail to provide
signatures for specific messages thereby preventing the simulator from generating the signature
tree. To address this, following the works of Lin and Pass [LP12], they consider signatures of
commitments of messages thereby preventing the verifying from aborting based on the messages.
Second this protocol is not public-coin, CPS nevertheless shows that it suffices to apply the PRF
transformation of BGGL to obtain a protocol that is resettably-sound.

It seems inherent in the work of CPS that they need the shadowed UARG and hence proving
anything regarding this shadowed argument will rely on the underlying OWF in a non black-box
manner.

Competing requirements of [GOSV14] and [CPS13]. Recall that in [GOSV14], in
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order to use the CRH in a black-box manner, the prover is required to actually show the paths
corresponding to the PCPP queries to the verifier. To preserve size-hiding, the prover needs the
ability to arbitrarily extend the paths of the tree, by “secretly” generating fake nodes and new
connections, and this is possible because the prover can compute the hash function on its own. In
contrast, in [CPS13] the honest prover never uses signatures.

Therefore, there are competing requirements between the works of [GOSV14] and [CPS13].
While [GOSV14] requires the honest prover to generate hash-computations on-the-fly, [CPS13]
requires the honest prover to not rely on any signatures as the only way it can obtain one is
through the verifier. The contribution of our work is to come up with a technique that will allow
us to use benefits of the signature while relying on the underlying OWF in a black-box manner
and we explain this in the next section.

1.3 Our Techniques

At the core of the issue of combining the techniques of [GOSV14] and [CPS13] there is the require-
ment in [GOSV14] that the prover collects the signatures required to compute any tree (which can
not be previously bounded), while in [CPS13] the prover must not use the signatures, as it cannot
obtain an unbounded number of signatures from the verifier (without rewinding).

The first observation we make is that the number of paths that are actually revealed in
[GOSV14] is bounded, in fact, poly-logarithmic. Also, the prover of [GOSV14] does not really
need to compute the entire tree, but he needs to compute only the paths that later must be re-
vealed. Therefore, the number of signatures that the prover needs to get from the verifier is fixed
and known in advance. Now, given that the LEGO technique of [GOSV14] allows the prover to
cheat in the proof of consistency of the node connections, one could envision the following ap-
proach. In the signature slot, which is placed at the very beginning of the protocol, the prover
sends all the nodes1 required to construct the paths that will be used later to answer to the PCPP
queries. Then, once the PCPP queries are revealed, the prover proves that exactly those nodes
(sent at the very beginning), form accepting paths for the PCPP queries just asked, cheating in
the proof using its trapdoor (i.e., the knowledge of the witness).

However, this approach introduces the following problem. In an execution with the honest
prover, the verifier sees a bunch of nodes in the first slot, then after the PCPP queries are revealed,
it sees the proof of consistency of exactly those nodes. Indeed, the honest prover can prove the
consistency of any path using its witness as a trapdoor, and he is not actually proving that those
paths are consistent to the PCPP queries.

Now, the same thing should happen in the simulated transcript, namely, the simulator should
be able to prove consistency of exactly the same nodes that appear in the signature slot. However,
the simulator cannot pass the proof of consistency using the witness for x ∈ L, as the prover does.
Instead in order to provide an accepting proof, he needs to open paths that are actually consistent
with the PCPP queries and the real tree. But, the simulator will know such paths only after the
PCPP queries are revealed, namely, only after he is already committed with the nodes shown in
the signature slot.

To get around this problem, we could propose to place the signature slot in a suitable place so
that we can achieve both these requirements. Suppose, we placed it right after the PCPP queries.
The honest prover can still obtain the required signatures, while the simulator can place the
relevant nodes after seeing the PCPP queries. The problem of this approach is that the simulator
needs to play with fake prover messages (i.e., to compute a fake tree) to reach the signature slot,

1More precisely, the commitments to the nodes.
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and then rewind all the way up before the commitment of the root and change such commitment.
At first, this seems to be possible since the verification key is fixed in the first message and the
signatures are unique. However, the simulator in two random continuations can have different, or
worse, correlated strategies to abort in the signature slot. This means that the messages for which
it received signatures in one continuation might not be accepted in another continuation. While
[CPS13] uses commitments to avoid the aborting issue in their protocol, it is not applicable here
as the aborting strategy could depend on the commitment itself. Before we explain this problem
in more detail, we explain our approach since we will encounter the same issue again.

Our approach is to use two signature slots: one at the very beginning, where the verifiers
signs only one message, and one after the PCPP queries are revealed, where the verifier signs the
bounded number of messages corresponding to the number of nodes to be shown in the paths.
The honest prover obtains its signatures in the second slot. The simulator on the other hand will
use the first slot to generate the entire tree, while in the second signature slot, after the PCPP
queries are known, he re-submits the same nodes used to compute the real tree (note that for the
queries that are beyond the real tree, the simulator will just compute fake nodes on the fly as
in [GOSV14]).

As mentioned before, this approach also suffers the correlated attack. Consider a malicious
verifier that aborts on all messages that start with bit 0 in the first slot and aborts on all sets
of messages in the second slot if more than half of them start with bit 1. The honest prover
will succeed with probability close to a 1/2 since the verifier will abort in the first message with
probability 1/2 and not abort with high probability in the second slot.2 The simulator on the
other hand can only obtain signatures of commitments that start with bit 1 in the first slot and
has to use the same commitments in the second slot. This means that all the commitments sent
by the simulator in the second slot will begin with the bit 1 and the verifier will always abort.
Hence the simulator can never generate a view.

The way out is to come up with a simulation strategy ensuring that the distribution fed in the
second slot is indistinguishable to the honest prover’s messages.

Our final approach is the following. First we amplify the probability that the verifier gives a
signature in the first slot. We will ask the prover to provide T = O(nc+1) random commitments to
the same message in the first slot. Using a Yao-type hardness-amplification, we can argue that if
the verifier provides valid signatures with non-negligible probability then we can obtain signatures
for at least 1 − 1

nc fraction of random tapes for the commitment. Lets call these random tapes
good. Now if k << nc commitments are sent in the second slot, with probability at least 1 − k

nc

over random commitments made in the second slot, all of them will be good. This is already
promising since the verifier at best will try to detect good messages in the second slot and with
high probability all of them are good. However there is still a non-negligible probability (i.e. k

nc )
that the verifier could abort in this simulation strategy.

The final piece of the puzzle is to amplify the success probability. Towards this we recall that
in [GOSV14], to ensure size hiding, the verifier supplies PCPP queries corresponding to every
possible depth of the tree (this is at least 1 and at most log2 n). Hence, the prover will be required
to commit to the actual depth of the tree along with the commitment of the root node and the
simulator will have to provide correct responses to the PCPP queries only for this depth. In our
final approach:

• The simulator will choose a random i and j from {0, . . . , log n} and use a modified version
of the code of the verifier whose size is 2i bigger and whose running time is 2j slower. This

2We assume here that random commitments are equally likely to have their first bits 0 or 1.
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it does through padding the description and adding no-op instructions and commit to the
appropriate depth.

• In the second signature slot, for all tree depths that are not the actual depth, the paths
corresponding to the PCPP queries will be answered with fake paths, computed on the fly,
while the path corresponding to the actual depth needs to be the commitments the simulator
used to generate the tree earlier. Plugging in the actual commitments directly might skew
the distribution and could be detected by the verifier. Instead, it will “test the waters”
first: it will first generate random commitments and swap these commitments with the
actual commitments if the following condition is met: More precisely, the simulator, for each
random commitment, will rewind the verifier to first signature slot and feed this commitment
in the first slot to check if it returns a signature. If for any of these commitments the first slot
fails to produce a signature then the simulator rewinds the verifier to end of first signature
slot and starts all over again, but now with new values for i and j.

Roughly the intuition is that if the first slot provided a signature for all these random commitments,
the simulator can swap them with the actual commitment and then feed them to the verifier. This
swapping argument ensures that the distribution fed in the second message is identically distributed
to randomly generated commitments because we replace one good commitment with the other.
Making this preceeding argument work requires a little more effort. First, we need to show that
the simulator does not have to repeat several times. Second, the running time analysis requires
combining the Yao-amplification with the rewinding strategy of CPS (that in turn, relies on the
Goldreich-Kahan [?] strategy). The formal proof can be found in Appendix D

Finally, we remark that in [GOSV14], CRHs are required for constructing commitment scheme
that are secure against selective-opening attacks (SOA). SOA-security is necessary in their con-
struction (and in ours) for the following reason. At some point of the protocol, the verifier will ask
the prover to reveal t out of n commitments, and the security proof crucially relies on the hiding
of the remaining unopened commitments. Statistically-hiding commitments satisfy a (weaker)
notion of hiding in presence of selective opening attacks which is sufficient for [GOSV14] (and
for us). Unfortunately, we do not know how to construct constant-round statistically-hiding com-
mitments from OWFs. To avoid this round complexity, we observe that we can workaround the
selective opening issue by using equivocal commitments. In our final construction, we use instance-
dependent equivocal commitment schemes, introduced by Lindell and Zarosim [LZ11] which can
be constructed based on one-way functions. On a high-level, such commitment schemes, will al-
low a witness-holder to equivocate but is computationally-binding to any adversary that does not
have the witness. In our case, the honest prover will possess a witness to equivocate all com-
mitments, while the cheating prover (and the simulator) cannot equivocate all commitments. We
also require extractable (equivocal) commitments to allow for extraction in proving soundness and
proof-of-knowledge property of our protocol.

2 Protocol

Interestingly, our ZK protocol is not designed for the prover to prove that “x ∈ L”. The entire
protocol is instead designed for the simulator to prove knowledge of the next-message-function of
the verifier (also called the trapdoor theorem).

Our protocol consists of a sequence of steps in which the prover sends instance-dependent
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equivocal commitments3 – which essentially are commitments to 0 – except for the last step,
where P is required to open some of the commitments in a convincing manner.

The key idea is that, by the time the prover reaches the last step, it knows exactly what the
verifier expects to see. Specifically, the (equivocal) commitments sent in the previous rounds were
supposed to be nodes of the extendable Merkle tree along with their relative proof of consistency.
In an extendable Merkle tree4, a node is vector of VSS shares, and a proof of consistency is a
vector of views of MPC-in-the-head executions. Therefore, the verifier expects to see t accepting
and consistent views of VSS and MPC players.

The prover successfully passes the last step as follows. First, it computes t accepting views by
running the simulator guaranteed by the t-privacy of the underlying MPC/VSS protocol. Second,
it equivocates the necessary commitments to open to such views, using the knowledge of the
witness.

We now proceed with an high-level description of the protocol. A detailed description of the
protocol is provided in App. C, while the detailed description of the simulator and the proof of
security are shown in App. D.

Zero-knowledge Argument of Knowledge.

Common Input: An instance x of a language L ∈ NP with witness relation RL.

Auxiliary input to P : A witness w such that (x,w) ∈ RL.

V0: (sk, vk)← Gen(1n). Send vk to P

Stage One (Signature Slot 1):

• P1: Send T = O(nc) commitments to 0n (for some constant c).

• V1: Signs each commitment.

Stage Two (Commitment to the extendable Merkle Tree of the Trapdoor theorem)

P2: Send equivocal commitments (i.e., commitments to nothing), which are supposed to
be the commitments to the root of the extendable Merkle tree for the trapdoor theorem
(i.e., ECC(M)), and the commitments to VSS of the depth of such tree.

V2: Send a random string r ∈ {0, 1}n. Let (r, t) be the public theorem for the PCPP for
the language: LP = {(a = (r, t), (Y )), ∃M ∈ {0, 1}∗ s.t. Y ← ECC(M), M(z) → r
within t steps} (where ECC(·) is a binary error correcting code tolerating a constant
fraction δ > 0 of errors, and δ is the proximity factor of PCPP).

Stage Three (Proof):

• P3: (Commitment to the extendable Merkle Tree of the PCPP proof) Send
equivocal commitments (i.e., commitments to nothing) which are supposed to be the
commitments of the root of the extendable Merkle tree representing the PCPP proof,
and the VSS of its depth.

3Instance-dependent equivocal commitments for an instance x can be equivocated using the witness for x ∈ L;
such commitments can be constructed for instances of the Graph Hamiltonicity language, and black-box use of a
OWF (see Section A.3).

4See App. B for more details on extendable Merkle tree.
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• V3: Send the random tapes for the PCPP queries.
V and P obtain queries (qji , p

j
i ) for i ∈ [k], j ∈ [log2 n], where j represents each possible

length of the trapdoor theorem/PCPP proof, and k is the query complexity of the
PCPP system. Each of such queries defines a path of a virtual tree. For example, qji
identifies a path of virtual depth j in the tree of the trapdoor theorem (i.e., ECC(M)),
while pji identifies a path of virtual depth j in the tree of the PCPP proof. A path is
a sequence of nodes. In the extendable Merkle tree, a node is a concatenation of VSS
shares.
• P4: Send equivocal commitments which are supposed to be the commitments of the

nodes (i.e., the VSS shares ) along the paths defined by the PCPP queries.
• V4: (Signature Slot 2) Sign each commitment received from P .
• P5: The obtained signatures are the labels of the nodes sent in step P4. Therefore,

now each path previously committed is completed with labels, which makes the path
“canonical”. At this point it is possible to provide a proof of consistency for each path.
A proof of consistency for a path of the extendable Merkle tree, consists of a sequence
of MPC-in-the-head computations, executed on top of the VSS of each node. Thus, a
proof of consistency for a path consists of an MPC-in-the-head execution for each node.
Such MPC-in-the-head are committed to using an extractable equivocal commitments
(See Fig. 3).
However, again P instead of sending commitments of views of MPC players proving
consistency of the nodes previously sent, it sends a sequence equivocal commitments,
i.e., commitments to nothing.
• V5: Select t among n players to check out, namely, p1, . . . , pt.
• P6: P now computes all the VSS shares and the views of the MPC protocols that will

make the verifier accept the proof. This can be done thanks to the knowledge of the t
players that V wants to check. Indeed, P at this point runs the simulator guaranteed by
the perfect t-privacy of the MPC protocols used in the proof of consistency. Using the
simulator P obtains the views for players p1, . . . , pt, that will make the verifier accept
the proof. Finally, P uses the witness w to equivocate every commitment of the views
corresponding to the players in positions p1, . . . , pt.

Completeness essentially follows from the perfect simulatability of the semi-honest parties in
the MPC-in-the-head protocols and equivocability of the equivocal commitment scheme. Sound-
ness relies on the collision-resistance of the signature scheme and the soundness of the PCPP.
We rely on ideas from [GOSV14, CPS13, BG02] to prove argument of knowledge. However, for
proving both soundness and argument of knowledge, we require commitments to be extractable.
More specifically, we require that only the commitments sent in step P5 are extractable and equiv-
ocal. There reason it is sufficient that only commitments in P5 are extractable is that they are
commitments of MPC views which contain also the values of the nodes (the VSS).

Obtaining Resettable-soundness. The protocol above is a (semi) black-box construction of an
“almost” public-coin ZK argument of knowledge. It is public-coin except for the signature slots. We
can obtain resettable-soundness by applying the BGGL transformation to the protocol presented
above. Just as in [CPS13], we transform the protocol (P, V ) described in the previous section as
follows. The verifier will initially pick a seed for a pseudo-random function family (PRF), then
apply the PRF on the partial transcript to generate each verifier message except the messages in
the signature slot. The only difference between this and the original protocol is in how the verifier

10



challenges are chosen. Arguing that the protocol is a resettably-sound zero-knowledge argument
of knowledge essentially follows from [BGGL01].
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A Definitions

A.1 Computational Indistinguishability

The following definition of computational indistinguishability originates in the seminal paper of
Goldwasser and Micali [GM84]. Let X be a countable set of strings. A probability ensemble
indexed by X is a sequence of random variables indexed by X. Namely, any element of A =
{Ax}x∈X is a random variable indexed by X.

Definition 1 (Indistinguishability). Let X and Y be countable sets. Two ensembles {Ax,y}x∈X,y∈Y
and {Bx,y}x∈X,y∈Y are said to be computationally indistinguishable over X, if for every
probabilistic machine D (the distinguisher) whose running time is polynomial in its first input,
there exists a negligible function ν(·) so that for every x ∈ X, y ∈ Y :

|Pr [D(x, y,Ax,y) = 1]− Pr [D(x, y,Bx,y) = 1]| < ν(|x|)

(In the above expression, D is simply given a sample from Ax,y and Bx,y, respectively.)
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A.2 Interactive Arguments

Definition 2 (Interactive Arguments). A pair of interactive algorithms (P, V ) is an interactive
argument for a NP language L with witness relation RL if it satisfies the following properties:

• Completeness: There exists a negligible function µ(·), such that for all x ∈ L, if w ∈ RL(x),

Pr[(P (w), V )(x) = 1] = 1− µ(|x|)

• Soundness: For all non-uniform polynomial-time adversarial prover P ∗, there exists a negli-
gible function µ(·) such that for every all x /∈ L,

Pr[(P, V )(x) = 1] ≤ µ(|x|)

If the following condition holds, (P, V ) is an argument of knowledge:

• Argument of knowledge: There exists an expected PPT algorithm E such that for every
polynomial-size P ∗, there exists a negligble function µ(·) such that for every x,

Pr[w ← EP
∗(x)(x);w ∈ RL(x)] ≥ Pr[(P ∗, V )(x) = 1]− µ(|x|)

A.3 Instance Dependent Equivocal Commitments

Let Com be a non-interactive commitment scheme. Such a commitment scheme can be constructed
from OWF.

Let L be an NP-Language and RL, the associated NP-relation. Since the language L ∈ NP,
we can reduce L to the NP-complete problem Hamiltonian Cycle. Thus, given the public input
x (which may or may not be in L), we can use a (deterministic) Karp reduction to a graph G
which contains a Hamiltonian cycle. Moreover, finding a Hamiltonian cycle H in the graph G,
implies finding a trapdoor w such that RL(x,w) = 1. Let Φ denote the deterministic mapping
from strings x to a graphs G induced by the Karp reduction.

The protocol is specified in Figures 1, 2 and has appeared before in [CLOS02]. For complete-
ness, we present it again here and show that it satisfies the properties of an equivocal commitment
scheme.

A.4 Extractable commitment schemes.

Informally, a commitment scheme is said to be extractable if there exists an efficient extractor that
having black-box access to any efficient malicious sender ExCom∗ that successfully performs the
commitment phase, is able to efficiently extract the committed string. We first recall the formal
definition from [PW09] in the following.

Definition 1 (Extractable Commitment Scheme). A commitment scheme ExCom = (ExCom,ExRec)
is an extractable commitment scheme if given an oracle access to any ppt malicious sender
ExCom∗, committing to a string, there exists an expected ppt extractor Ext that outputs a pair
(τ, σ∗), where τ is the transcript of the commitment phase, and σ∗ is the value extracted, such that
the following properties hold:

• Simulatability: the simulated view τ is identically distributed to the view of ExCom∗ (when
interacting with an honest ExRec) in the commitment phase.
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Commitment

Comx(β, τ) is defined as:

To commit to β = 1: Choose an n × n adjacency matrix H of a random n-node Hamiltonian
cycle. Commit to each bit of the adjacency matrix H using ExCom.

To commit to β = 0: Choose an n × n adjacency matrix I which corresponds to a random
isomorphism of G = Φ(x). Commit to each bit of the adjacency matrix I using ExCom.

Decommitment:

To decommit to a 0: Open the commitments in M where Mi,j is a commitment to 1 and shows
that these correspond to a random Hamiltonian cycle.

To decommit to a 1: Open the commitments in M to obtain adjacency matrix I and shows an
isomorphism from G = Φ(x) to this graph.

Figure 1: Non-interactive, instance-dependent equivocal commitment scheme.

• Extractability: the probability that τ is accepting and σ∗ correspond to ⊥ is negligible.
Moreover the probability that ExCom∗ opens τ to a value different than σ∗ is negligible.

Let Com = (C,R) any commitment scheme with non-interactive opening, which uses one-way-
function in a black-box manner. One can construct an extractable commitment scheme ExCom =
(ExCom,ExRec) as shown in Fig. 3.

The extractor can simply run as a receiver, and if any of the k commitments is not accepting,
it outputs σ∗ = ⊥. Otherwise, it rewinds (Step 2) and changes the challenge until another k well
formed decommitments are obtained. Then it verifies that for each decommitment, the XOR of all
pairs corresponds to the same string. Then the extractor can extract a value from the responses
of these two distinct challenges. Due to the binding of the underlying commitment, the value
extracted by the extractor will correspond to the value opened later by the malicious committer.
The extractor by playing random challenges in each execution of Step 2 is perfectly simulating
the behavior of the receiver. The running time of the extractor is polynomial (as can be argued
following arguments similar to [PW09])

Remark 1. In the extractable commitment used in our protocol, we instantiate the underlying
commitment scheme Com with EQComx, the instance-dependent Equivocal Commitment shown in
Fig. 1.

A.5 Zero Knowledge

We start by recalling the definition of zero knowledge from [GMR89].

Definition 3 (Zero-knowledge [GMR89]). An interactive protocol (P, V ) for language L is zero-
knowledge if for every PPT adversarial verifier V ∗, there exists a PPT simulator S such that the
following ensembles are computationally indistinguishable over x ∈ L:

{ViewV ∗〈P, V ∗(z)〉(x)}x∈L,z∈{0,1}∗ ≈ {S(x, z)}x∈L,z∈{0,1}∗
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Equivocal Commitment

Define EQComx(·) = Comx(0)

Adaptive Opening

Adapt(x,w, c, v), where c = EQComx(·)

Decommit v = 0 as follows: Open all the commitments in the matrix M to reveal adjacency
matrix I and shows an isomorphism from G = Φ(x) to this graph.

Decommit v = 1 as follows: Use w to open the commitments in the matrixM that correspond to
the Hamiltonian cycle in G = Φ(x) and shows that these correspond to a random Hamiltonian
cycle.

Figure 2: Equivocation.

Extractable Commitment

Commitment Phase:

1. (Commitment) ExCom on input a message σ, generates k random strings {r0
i }i∈[k] of

the same length as σ, and computes {r1
i = σ⊕r0

i }i∈[k], therefore {σ = r0
i ⊕r1

i }i∈[k]. Then
ExCom uses Com to commit to the k pairs {(r0

i , r
1
i )}i∈[k]. That is, ExCom and ExRec

produce {c0
i =

〈
C(r0

i , ω
0
i ), R

〉
, c1
i =

〈
C(r1

i , ω
1
i ), R

〉
}i∈[k].

2. (Challenge) ExRec sends a random k-bit challenge string r′ = (r′1, . . . , r
′
k).

3. (Response) ExCom decommits {cr
′
i
i }i∈[k] (i.e., non-interactively opens k of previous com-

mitments, one per pair) ExRec verifies that commitments have been opened correctly.

Decommitment Phase:

1. ExCom sends σ and non-interactively decommits the other k commitments {cr̄
′
i
i }i∈[k],

where r̄′i = 1− r′i.
2. ExRec checks that all k pairs of random strings {r0

i , r
1
i }i∈[k] satisfy {σ = r0

i ⊕ r1
i }i∈[k]. If

so, ExRec takes the value committed to be σ and ⊥ otherwise.

Figure 3: Extractable Commitment.

A.6 Resettably Sound Zero Knowledge

Let us recall the definition of resettable soundness due to [BGGL01].

Definition 4 (Resettably-sound Arguments [BGGL01]). A resetting attack of a cheating prover
P ∗ on a resettable verifier V is defined by the following two-step random process, indexed by a
security parameter n.

1. Uniformly select and fix t = poly(n) random-tapes, denoted r1, . . . , rt, for V , resulting in
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deterministic strategies V (j)(x) = Vx,rjdefined by Vx,rj (α) = V (x, rj , α),5 where x ∈ {0, 1}n

and j ∈ [t]. Each V (j)(x) is called an incarnation of V .

2. On input 1n, machine P ∗ is allowed to initiate poly(n)-many interactions with the V (j)(x)’s.
The activity of P ∗ proceeds in rounds. In each round P ∗ chooses x ∈ {0, 1}n and j ∈ [t],
thus defining V (j)(x), and conducts a complete session with it.

Let (P, V ) be an interactive argument for a language L. We say that (P, V ) is a resettably-
sound argument for L if the following condition holds:

• Resettable-soundness: For every polynomial-size resetting attack, the probability that in some
session the corresponding V (j)(x) has accepted and x /∈ L is negligible.

Just as in [CPS13, COP+14] we will consider the following weaker notion of resettable sound-
ness, where the statement to be proven is fixed, and the verifier uses a single random tape (that
is, the prover cannot start many independent instances of the verifier).

Definition 5 (Fixed-input Resettably-sound Arguments [PTW09]). An interactive argument
(P, V ) for a NP language L with witness relation RL is fixed-input resettably-sound if it
satisfies the following property: For all non-uniform polynomial-time adversarial prover P ∗, there
exists a negligible function µ(·) such that for every all x /∈ L,

Pr[R← {0, 1}∞; (P ∗VR(x,pp), VR)(x) = 1] ≤ µ(|x|)

This is sufficient because it was shown in [CPS13] that any zero-knowledge argument of knowl-
edge satisfying the weaker notion can be transformed into one that satisfies the stronger one, while
preserving zero-knowledge (or any other secrecy property against malicious verifiers.

Claim 1. Let (P, V ) be a fixed-input resettably sound zero-knowledge (resp. witness indistinguish-
able) argument of knowledge for a language L ∈ NP . Then there exists a protocol (P ′, V ′) that
is a (full-fledged) resettably-sound zero-knowledge (resp. witness indistinguishable) argument of
knowledge for L.

A.7 Strong Signature

In this section, we define strong, fixed-length, deterministic secure signature schemes that we rely
on in our construction. Recall that in a strong signature scheme, no polynomial-time attacker
having oracle access to a signing oracle can produce a valid message-signature pair, unless it
has received this pair from the signing oracle. The signature scheme being fixed-length means
that signatures of arbitrary (polynomial-length) messages are of some fixed polynomial length.
Deterministic signatures don’t use any randomness in the signing process once the signing key has
been chosen. In particular, once a signing key has been chosen, a message m will always be signed
the same way.

Definition 6 (Strong Signatures). A strong, length-`, signature scheme SIG is a triple (Gen, Sign,Ver)
of PPT algorithms, such that

1. for all n ∈ N ,m ∈ {0, 1}∗,

Pr[(sk, vk)← Gen(1n), σ ← Signsk(m);Vervk(m,σ) = 1 ∧ |σ| = `(n)] = 1

5Here, V (x, r, α) denotes the message sent by the strategy V on common input x, random-tape r, after seeing
the message-sequence α.
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2. for every non-uniform PPT adversary A, there exists a negligible function µ(·) such that

Pr[(sk, vk)← Gen(1n), (m,σ)← ASignsk(·)(1n);Vervk(m,σ) = 1 ∧ (m,σ) /∈ L] ≤ µ(n),

where L denotes the list of query-answer pairs of A’s queries to its oracle.

Strong, length-`, deterministic signature schemes with `(n) = n are known based on the
existence of OWFs; see [NY89, Rom90, Gol01] for further details. In the rest of this paper,
whenever we refer to signature schemes, we always means strong, length-n signature schemes.

Let us first note that signatures satisfy a “collision-resistance” property.

Claim 2. Let SIG = (Gen, Sign,Ver) be a strong (length-n) signature scheme. Then, for all non-
uniform PPT adversaries A, there exists a negligible function µ(·) such that for every n ∈ N ,

Pr[(sk, vk)← Gen(1n), (m1,m2, σ)← ASignsk(·)(1n, vk);Vervk(m1, σ) = Vervk(m2, σ) = 1] ≤ µ(n)

A.8 Secure Multiparty Computation.

A secure multi-party computation (MPC) [BOGW88, AL11] scheme allows n players to jointly
and correctly compute an n-ary function based on their private inputs, even in the presence of t
corrupted players. More precisely, let n be the number of players and t denotes the number of cor-
rupted players. Under the assumption that there exists a synchronous network over secure point-
to-point channels, [BOGW88] shows that for every n-ary function F : ({0, 1}∗)n → ({0, 1}∗)n,
there exists a t-secure MPC protocol Πf that securely computes F in the semi-honest model for
any t < n/2, and in the malicious model for any t < n/3, with perfect completeness and security.
That is, given the private input wi of player Pi, after running the protocol Πf , an honest Pi
receives in output the i-th component of the result of the function F applied to the inputs of the
players, as long as the adversary corrupts less than t players. In addition, nothing is learnt by the
adversary from the execution of Πf other than the output.

More formally, we denote by A the real-world adversary running on auxiliary input z, and
by SimMpc the ideal-world adversary. We then denote by REALπ,A(z),I(x̄) the random variable
consisting of the output of A controlling the corrupted parties in I and the outputs of the honest
parties. Following a real execution of π where for any i ∈ [n], party Pi has input xi and x̄ =
(x1, . . . , xn). We denote by IDEALf,SimMpc(z),I(x̄) the analogous output of SimMpc and honest
parties after an ideal execution with a trusted party computing F .

Definition 2. Let F : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and let Π be a protocol.
We say that Π (n, t)-perfectly securely computes F if for every probabilistic adversary A in the real
model, there exists a probabilistic adversary S of comparable complexity6 in the ideal model, such
that for every I ⊂ [n] of cardinality at most t, every x̄ = (x1, . . . , xn) ∈ ({0, 1}∗)n where |x1| =
. . . = |xn|, and every z ∈ {0, 1}∗, it holds that: {IDEALf,SimMpc(z),I(x̄)} ≡s {REALπ,A(z),I(x̄)}.

Theorem 2 (BGW88). Consider a synchronous network with pairwise private channels. Then,
for every n-ary functionality f, there exists a protocol πf that (n, t)-perfectly securely computes
F in the presence of a static semi-honest adversary for any t < n/2, and there exists a protocol
that (n, t)-perfectly securely computes F in the presence of a static malicious adversary for any
t < n/3.

6Comparable complexity means that SimMpc runs in time that is polynomial in the running time of A.
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In an MPC protocol, the view of a player includes all messages received by that player during
the execution of the protocol, and the private inputs and the randomness used by the player. The
views of two players are consistent if they satisfy the following definition.

Definition 3 (View Consistency). The view of an honest player during an MPC computation
contains input and randomness used in the computation, and all messages received/sent from/to
the communication tapes. We have that two views (viewi, viewj) are consistent with each other if,
(a) both the players Pi and Pj individually computed each outgoing message honestly by using the
random tapes, inputs and incoming messages specified in viewi and viewj respectively, and, (b)
all output messages of Pi to Pj appearing in viewi are consistent with incoming messages of Pj
received from Pi appearing in viewj, and vice versa.

A.9 Verifiable Secret Sharing (VSS).

A verifiable secret sharing (VSS) [CGMA85] scheme is a two-stage secret sharing protocol for
implementing the following functionality. In the first stage, denoted by Share(s), a special player
referred to as dealer, shares a secret s among n players, in the presence of at most t corrupted
players. In the second stage, denoted by Recon, players exchange their views of the share stage,
and reconstruct the value s. We use notation Recon(Si, . . . ,Sn) to refer to this procedure. The
functionality ensures that when the dealer is honest, before the second stage begins, the t corrupted
players have no information about the secret. Moreover, when the dealer is dishonest, at the end
of the share phase the honest players would have realized it through an accusation mechanism
that disqualifies the dealer.

A VSS scheme can tolerate errors on malicious dealer and players on distributing inconsistent
or incorrect shares, indeed the critical property is that even in case the dealer is dishonest but
has not been disqualified, still the second stage always reconstructs the same string among the
honest players. In this paper, we use a (n, t)-perfectly secure VSS scheme with a deterministic
reconstruction procedure [GIKR01].

Definition 4 (VSS Scheme). An (n + 1, t)-perfectly secure VSS scheme consists of a pair of
protocols VSS = 〈Share, Recon〉 that implement respectively the sharing and reconstruction phases
as follows.

Share(s). Player Pn+1 referred to as dealer runs on input a secret s and randomness rn+1,
while any other player Pi, 1 ≤ i ≤ n, runs on input a randomness ri. During this phase players
can send (both private and broadcast) messages in multiple rounds.

Recon(S1, . . . , Sharen). Each shareholder sends its view vi of the sharing phase to each other
player, and on input the views of all players (that can include bad or empty views) each player
outputs a reconstruction of the secret s.

All computations performed by honest players are efficient. The computationally unbounded
adversary can corrupt up to t players that can deviate from the above procedures. The following
security properties hold.

• Commitment: if the dealer is dishonest then one of the following two cases happen: 1)
during the sharing phase honest players disqualify the dealer, therefore they output a special
value ⊥ and will refuse to play the reconstruction phase; 2) during the sharing phase honest
players do not disqualify the dealer, therefore such a phase determines a unique value s∗ that
belongs to the set of possible legal values that does not include ⊥, which will be reconstructed
by the honest players during the reconstruction phase.
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• Secrecy: if the dealer is honest then the adversary obtains no information about the shared
secret before running the protocol Recon.

• Correctness: if the dealer is honest throughout the protocols then each honest player will
output the shared secret s at the end of protocol Recon.

Implementations of (n + 1, bn/3c)-perfectly secure VSS schemes can be found in [BOGW88,
CDD+99]. We are interested in a deterministic reconstruction procedure, therefore we adopt the
scheme of [GIKR01] that implements an (n+ 1, bn/4c)-perfectly secure VSS scheme.

MPC-in-the-head. MPC-in-the-head is a breakthrough technique introduced by Ishai at al.
in [IKOS07] to construct a BB zero-knowledge protocol. Let FZK be the zero-knowledge function-
ality for an NP language L, that takes as public input x and one share from each player Pi, and
outputs 1 iff the secret reconstructed from the shares is a valid witness. Let MPCZK be a perfect
t-secure MPC protocol implementing FZK .

Very roughly, the “MPC-in-the-head” idea is the following. The prover runs in his head an
execution of MPCZK among n imaginary players, each one participating in the protocol with a
share of the witness. Then it commits to the view of each player separately. The verifier obtains t
randomly chosen views, and checks that such views are consistent (according to Def. 3) and accepts
if the output of every player is 1. Clearly P ∗ decides the randomness and the input of each player
so it can cheat at any point and make players output 1. However, the crucial observation is that
in order to do so, it must be the case that a constant fraction of the views committed are not
consistent. Thus by selecting the t views at random, V will catch inconsistent views whp.

One can extend this technique further (as in [GLOV12]), to prove a general predicate φ about
arbitrary values. Namely, one can consider the functionality Fφ in which every player i participates
with an input that is a view of a VSS player Si. Fφ collects all such views, and outputs 1 if and
only if φ(Recon(S1, . . .Sn)) = 1. This idea is crucially used in [GOSV14].

Error-correcting codes. A pair (ECC,DEC) is an error-correcting code with polynomial expan-
sion if ECC and DEC are polynomial-time computable functions that satisfy the following three
properties.

Correctness: DEC(ECC(x), r) = x where r is a sufficiently long random string.

Polynomial expansion: there exists some function `(·) such that `(k) < kc for some constant
c > 0, and for every string x ∈ {0, 1}∗, |ECC(x)| = `(|x|).

Constant distance: there exists some constant δ > 0 such that for every x 6= x′ ∈ {0, 1}k, |{i|ECC(x)i 6=
ECC(x′)i}| ≥ δ`(k).

A.10 Probabilistically Checkable Proof (PCP)

The following definition is taken verbatim from [BG08]. A probabilistically checkable proof (PCP)
system consists of a probabilistic polynomial-time verifier having access to an oracle which rep-
resents a proof in redundant form. Typically, the verifier accesses only a few of the oracle bits,
and these bit positions are determined by the outcome of the verifier’s coin tosses. It is required
that if the assertion holds, then the verifier always accepts (i.e., when given access to an adequate
oracle); whereas if the assertion is false, then the verifier must reject with high probability (as
specified in an adequate bound), no matter which oracle is used.
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Definition 5 (PCP - basic definition.). A probabilistically checkable proof (PCP) system with
error bound ε : N → [0, 1] for a set S is a probabilistic polynomial-time oracle machine (called
verifier), denoted by V satisfying the following:

Completeness. For every x ∈ S there exists an oracle πx such that V , on input x and access to
oracle πx, always accepts x.

Soundness. For every x /∈ S and every oracle π, machine V , on input x and access to oracle π,
rejects x with probability at least 1− ε(|x|).

Let r and q be integer functions. The complexity class PCPε[r(·), q(·)] consists of sets having
a PCP system with error bound ε in which the verifier, on any input of length n, makes at most
r(n) coin tosses and at most q(n) oracle queries.

Definition 6 (PCP – auxiliary properties).). Let V be a PCP verifier with error ε : N → [0, 1]
for a set S ∈ NEXP , and let R be a corresponding witness relation. That is, if S ∈ Ntime(t(·)),
then we refer to a polynomial-time decidable relation R satisfying x ∈ S if and only if there exists
w of length at most t(|x|) such that (x,w) ∈ R. We consider the following auxiliary properties:

Relatively efficient oracle construction. This property holds if there exists a polynomial-time
algorithm P such that, given any (x,w) ∈ R, algorithm P outputs an oracle ?x that makes
V always accept (i.e., as in the completeness condition).

Nonadaptive verifier. This property holds if the verifier’s queries are determined based only on
the input and its internal coin tosses, independently of the answers given to previous queries.
That is, V can be decomposed into a pair of algorithms Qpcp and Dpcp that on input x and ran-
dom tape r, the verifier makes the query sequence Qpcp(x, r, 1),Qpcp(x, r, 2), . . . ,Qpcp(x, r, p(|x|)),
obtains the answers b1, . . . , bp(|x|), and decides according to Dpcp(x, r, b1, . . . , bp(|x|)), where p
is some fixed polynomial.

Efficient reverse sampling. This property holds if there exists a probabilistic polynomial-time algo-
rithm S such that, given any string x and integers i and j, algorithm S outputs a uniformly
distributed r that satisfies Qpcp(x, r, i) = j, where Qpcp is as defined in the previous item.

A proof-of-knowledge property. This property holds if there exists a probabilistic polynomial-time
oracle machine E such that the following holds: for every x and π, if Pr[V π(x) = 1] > ε(|x|),
then there exists w = w1, · · · , wt such that (x,w) ∈ R and Pr[Eπ(x, i) = wi] > 2/3 holds for
every i ∈ [t].

It can be verified that any S ∈ NEXP has a PCP system that satisfies all of the above
properties [BG08].

A.10.1 Probabilistically Checkable Proofs of Proximity

A “PCP of proximity” (PCPP, for short) proof [BSGH+06] is a relaxation of a standard PCP,
that only verifies that the input is close to an element of the language. The advantage of such
relaxation is that the verifier can check the validity of a proof without having to read the entire
theorem, but just poking few bits. More specifically, in PCPP the theorem is divided in two parts.
A public part, which is read entirely by the verifier, and a private part, for which the verifier has
only oracle access to. Therefore, PCPP is defined for pair languages, where the theorem is in the
form (a, y) and the verifier knows a and has only oracle access to y.
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The soundness requirement of PCPP is relaxed in the sense that V can only verify that the
input is close to an element of the language. The PCP Verifier can be seen as a pair of algorithms
(Qpcpx,Dpcpx), where Qpcpx(a, r, i) outputs a pair of positions (qi, pi): qi denotes a position in the
theorem y, pi denotes a position in the proof π. Dpcpx decides whether to accept (a, y) by looking
at the public theorem a, and at positions y[qi], π[pi].

Definition 7 (Pair language [DSK12].). A pair language L is simply a subset of the set of string
pairs L ⊆ {0, 1}∗ × {0, 1}∗. For every a ∈ {0, 1}∗ we denote La = {y ∈ {0, 1}∗ : (a, y) ∈ L}.

Definition 8 (Relative Hamming distance). Let y, y′ ∈ {0, 1}K be two strings. The relative
Hamming distance between y and y′ is defined as ∆(y, y′) = |{i ∈ [K] : yi 6= y′i}|/K. We say that
y is δ-far from y′ if ∆(y, y′) > δ. More generally, let S ⊆ {0, 1}K ; we say y is δ-far from S if
∆(y, y′) > δ for every y′ ∈ S.

Definition 9 (PCPP verifier for a pair language). For functions s, δ : N → [0, 1], a verifier V is a
probabilistically checkable proof of proximity (PCPP) system for a pair language L with proximity
parameter δ and soundness error s, if the following two conditions hold for every pair of strings
(a, y):

• Completeness: If (a, z) ∈ L then there exists π such that V (a) accepts oracle y ◦ π with
probability 1. Formally:

∃πProb(Q,D)←V (a)[D((y ◦ π)|Q) = 1] = 1.

• Soundness: If y is δ(|a|)-far from L(a), then for every π, the verifier V (a) accepts oracle
y ◦ π with probability strictly less than s(|a|). Formally:

∀πProb(Q,D)←V (a)[D((y ◦ π)|Q)] = 1 < s(|a|).

It is important to note that the query complexity of the verifier depends only on the public
input a.

Theorem 3 ((Theorem 1 of [DSK12])). Let T : N → N be a non-decreasing function, and let L
be a pair language. If L can be decided in time T then for every constant ρ ∈ (0, 1) there exists
a PCP of proximity for L with randomness complexity O(log T ), query complexity q = O(1/ρ),
perfect completeness, soundness error 1/2, and proximity parameter ρ.

We note that the soundness error 1
2 can be reduced to 1

2u by running V with independent coins
u times. This blows up the randomness, query, and time complexity of V by a (multiplicative)
factor of u (but does not increase the proof length).

We also assume that the PCP of Proximity satisfies the efficient-resampling property [BSCGT12].

B The extendable Merkle Tree of [GOSV14]

For completeness, in this section we provide an overview of the techniques introduced in [GOSV14]
to achieve black-box construction for Barak’s ZK simulation strategy.

The main contribution of [GOSV14] is to provide a black-box size-hiding commit-and-prove
scheme. In nutshell, this primitives allows one to commit to an arbitrary long string (with size
upper bounded by nlogn), and later prove some property about a subset of bits of the string in a
succinct and size-hiding manner.
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This primitive is extremely useful in Barak’s ZK protocol where the simulator first has to
commit to the code of V ∗, which cannot be bounded by any polynomial, then it has to compute
to the PCP proof, which cannot be bounded as well. Then, one uses the black-box proof phase to
prove to a verifier that the PCP verifier would have accepted the string committed.

The main ingredient to achieve BB commit-and-prove, is a novel construction of the Merkle
tree, called extendable Merkle tree. In this tree, each node is represented as a pair [label, V SS],
where V SS is the vector of the n shares of label computed using VSS. This redundant represen-
tation allows the prover to partially open every node over a committed path, by revealing t out of
n shares of the VSS, and letting V verify the correctness of the share, and the hash consistency
with the parent node. We provide more details on the construction of the extendable merkle tree
in Sec. B.1.

Finally, the ZK protocol of [GOSV14] uses PCP of Proximity instead of regular PCP. This is
necessary to avoid that the decision function of the PCP verifier reads the entire theorem, as the
size of such function depends on the size of the theorem. Instead, with PCP of Proximity, the
PCPP verifier needs to read only few bits of the theorem as well, therefore allowing for size-hiding
proof of the PCPP predicate.

B.1 Extendable Merkle Tree

The crucial building block that we use also in our construction is the extendable Merkle Tree. An
extendable merkle tree allows to commit to a string of arbitrary size and then prove a property
about some bits of such string without revealing anything about the string, not even the size.

The extendable Merkle tree is built according to the following key ideas:

Value representation. Any value v involved in the proof (e.g., a node of the tree, the depth of
the real tree) is represented as a vector of views of VSS players. Specifically let v be any string
that P will use in the proof. Instead of working directly with v, P will execute (in his head) a VSS
protocol among n+ 1 players in which the dealer shares the string v. The result of this process is
a vector of n views of VSS players, with the property that (n− t) views allow the reconstruction
of value v, but any subset of only t views does not reveal anything about v. This vector of views
is the “VSS representation” of v.

Definition 10 (VSS representation). The VSS representation of a string s ∈ {0, 1}∗, is the vector
[S[1], . . ., S[n]], where S[i] is the view of player i, participating in the protocol Share(s). In the
paper we use Sγtree[i] to denote the i-th share of the VSS representation of the label of a node γ,
along the tree tree, or Sstring[i] to denote the i-th share of the VSS of the value string.

Definition 11 (innode property of a node). A node in position γ is the pair [labelγ , Sγlabel[1], . . .,
Sγlabel[n]]. The innode property of γ is satisfied iff Recon(Sγlabel[1], . . ., Sγlabel[n]) = labelγ.

Node connection. In a standard Merkle tree, the label of a node is computed as the hash of
the labels of the children. In the extendable Merkle tree, the label of a parent node is computed
as the hash of only the VSS part of the children, discarding the label part. The innode property
guarantees that the label of the parent is still virtually connected to the label part of the children.
This virtual connection introduces a soft link between labels, that can be broken when necessary.

Definition 12 (Node Connection). Let VSSγ1 = {Sγ0[i]}i∈[n] and VSSγ1 = {Sγ1[i]}i∈[n] then the
label for node γ is the vector: Lγ = [h(Sγ0[1]) | · · · | h(Sγ0[n)| h(Sγ1[1]) | · · · |h(Sγ1[n])]. Each VSS
view is hashed separately.
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Proving a predicate about a node. To prove any predicate φ about a node [labelγ ,Sγ [1], . . . ,Sγ [n]],
the prover computes an MPC-in-the-head for a functionality that takes in input the shares of each
players Sγ [i], reconstructs their secret labelγ and outputs 1 iff φ(labelγ) is satisfied. For an example
of such functionality, the reader is referred to Fig. 4 and Fig. 5.

This technique of computing MPC on top of VSS (already used in [GLOV12]), allows the
prover to prove any statement about the nodes in a BB manner: the prover commits to the views
of such MPC (along with the VSS shares that were possibly committed earlier), then the verifier
checks the validity of the statement by looking at only t views of the MPC.

We stress that the computation of any proof concerning the nodes, can be done independently
from the computation of the node itself. Namely, the prover can compute a bunch of nodes, and
only when required, it proves that they are consistent to each other, or that they satisfy some
predicate.

Achieving input size-hiding. The size of the string committed, and hence the depth of the
corresponding tree is not known to the verifier. Therefore, when there verifier wants to test some
bits of the string, it will send a set of position to test for each possible depth of the tree.

For instance, in the ZK protocol of [GOSV14] and of ours, V will send one set PCPP queries
for each possible depth j of the tree of the PCPP. Namely, V sends {qji , p

j
i}i∈k.

C Details of our resettable-sound ZK protocol

In this section we provide more details on the protocol shown in Section 2
Recall that, in our protocol the prover commits to the root of two (extendable) Merkle Trees,

one for the code of a machine, the other for the PCPP proof. Later, after the PCPP queries are
revealed, the prover sends the paths of the trees corresponding to the PCPP queries.

Finally, recall that in an extendable Merkle tree (Sec. B.1), the label of a node is represented as
a vector of VSS shares, and a proof of consistency of a node consists of a vector of MPC-in-the-head
views.

We start with setting up some useful notation.

Notation for VSS views. We use S to denote a view of a VSS player, that we call share. The
notation Sγtree[i] refers to the share of the i-th player, participating in the VSS for the label
of node in position γ, in the tree tree. For instance: SγM [i] denotes the view of the VSS player
Pi sharing the label of node γ, of the tree compute for the string M .

Notation for MPC-in-the-head views. We use P γprot[i] to denote the view of player Pi par-
ticipating in the MPC protocol prot, executed to prove some property of the node γ. For
example, P γin[i] denotes the view of player Pi, participating in protocol MPC-Innode, which
is executed on top of the VSS of node γ.

Queries of the PCPP verifier. Size-hiding demands that V has no information on the actual
size of the theorem/proof committed by P . Consequently, V must compute a set of PCPP
queries for each possible size. Thus, following [GOSV14], in our protocol V asks for sets
{qji , p

j
i}i∈k, where k is the soundness parameter of the PCPP, and j = 1, . . . , `d.

Parameters. Let `d = log2 n be the upper bound on the size of a PCPP proof. For every query of
the PCPP verifier, the prover P must exhibit a path, i.e., a sequence of nodes. We denote by
N the total number of nodes that the prover has to prepare in Step 4 (see Protocol described
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in Sec. 2) to answer to the queries of the verifier. V sends a set of 2k queries for each possible
depth of the Machine/PCPP. Therefore, formally N=

∑j=`d
j=1

∑i=k
i=1 log qji · log pji .

Trapdoor theorem and PCPP. We use PCP of Proximity for the following pair language:
LP = {(a = (r, t), (Y )), ∃M ∈ {0, 1}∗ s.t. Y ← ECC(M), M(z)→ r within t steps}
(where ECC(·) is a binary error correcting code tolerating a constant fraction δ > 0 of
errors). Where a is the public theorem, and will be known to both P and V by the end of
the trapdoor-generation phase. In our case a = (r, t).

C.1 MPC-in-the-head used

We now define more in details the MPC-in-the-head that are computed by the Simulator/Prover.
For each node γ, P executes an MPC protocol (that we define below) on top of the VSS represen-
tation of the label of node γ.

Recall that, in the proof, for every node, P prepares a proof to convince the verifier that any
internal node either it is “consistent” or that some trapdoor condition holds. For any leaf node,
P proves that either the value of the leaf is accepted by the PCPP Verifier, or some trapdoor
condition holds.

Namely, P proves to the verifier the following two properties (such properties are used already
in [GOSV14]).

• Node consistency. For every node γ, over a path of length j, P wants to prove that either
j 6= depth, where depth is the size of the real tree committed; or that the j = depth and the
innode property (see Def. 11) for node γ is satisfied.

P proves the consistency of a node running in its head the protocolMPC-Innode. MPC-Innode
is a perfectly t correct, perfectly t private (n, t) MPC protocol for the functionality Finnode

depicted in Fig. 4.

• PCPP Verifier acceptance. For every queries (qji , p
j
i )i∈[k], P proves that either j is not

the real depth of the committed trees, or the PCPP Verifier accepts the values of the tree
in positions (qji , p

j
i )i∈[k].

P proves this property by running in its head protocol MPC-PCPVer. Protocol MPC-PCPVer
is a perfectly t correct, perfectly t private (n, t) MPC protocol for the functionality FVerPCPP

depicted in Fig. 5.

C.2 Our “public-coin” ZK Protocol

In this section we describe the protocol of Section 2 in greater details. This protocol will be “public-
coin” except for the signature slots. Let (Comx,EQComx) be an instance-dependent equivocal
commitment as defined in Sec. A.3, defined on the instance x ∈ L. Let ExCom = (ExCom,ExRec)
be an extractable commitment instantiated with the nstance-dependent equivocal commitment
(Comx,EQComx) (as shown in Fig. 3). Let T def

= polylogn, let `d = log2 n, and v be the size of a
view of a VSS player. We denote by (Qpcpx,Dpcpx) a PCPP verifier (as defined in App. A.10.1),
with query complexity k and proximity parameter δ.

Common Input: An instance x of a language L ∈ NP with witness relation RL.

Auxiliary input to P : A witness w such that (x,w) ∈ RL.
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Functionality Finnode.
Parameter: Node γ, for some query qji , label L

γ
tree = σγtree[1], . . . , σγtree[n].

Secret Inputs: views {Sγtree[i],Sdepth[i]}i∈[n].

Functionality:

1. run d = Recon(Sdepth[1], . . . ,Sdepth[n]). If the reconstruction fails output 0 to all players
and halt. Else, if j 6= d output 1 and halt.

2. run v = Recon(Sγtree[1], . . . ,Sγtree[n]). If the reconstruction fails output 0 to all players and
halt. If v = Lγ , output 1 to all players and halt.

3. Else output 0 and halt.

Figure 4: The Finnode functionality.

Functionality FVerPCPP.
Parameters: Queries qji , p

j
i , a.

Secret inputs: Sq
j
i
M [i], Sp

j
i
π [i], Sdπ[i].

Functionality:

1. for i = 1 to n: obtain the secret input Sq
j
i
M [i], Sp

j
i
π [i], Sdπ[i].

2. run d= Recon(SdM [1], . . ., SdM [n]). If the reconstruction fails output 0 to all players and
halt. Else, if j 6= d output 1 and halt.

3. run mj
i = Recon(S

qji
M [1], . . . ,S

qji
M [n]) and πji = Recon(S

pji
π [1], . . . ,S

pji
π [n]). If any of the recon-

structions fails output 0 to all players and halt. If Dpcpx(a,m
j
i , π

j
i , q

j
i , p

j
i ) = 1 output 1 to

all players. Else output 0.

4. Else output 0 and halt.

Figure 5: The FVerPCPP functionality.
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V0: (sk, vk)← Gen(1n). Send vk to P .

Stage One (Signature Slot 1):

P1: For all i ∈ [T], ci ← Comx(0v, τi). Send c1, . . . , cT to V .

V1: Send σ1, . . . , σT to P where σi = Signsk(ci). P aborts if any of the σi’s is not a valid
signature of ci.

Stage Two (Trapdoor theorem):

P2: Equivocal commitments to the root of the tree of the machine and its depth.
Send tc0

M [i] = EQComx(·) (root’s left child); tc1
M [i] = EQComx(·) (root’s right child),

tcdM [i] = EQComx(·) (depth of the tree) for i ∈ [n] to V .
Set LλM = {tcbM [i]}i∈[n],b∈{0,1} as the root of the tree of the machine.

V2: Send r
$←{0, 1}n to P .

P and V set the public theorem as a = (r, t).

Stage Three (Proof):

P3: Equivocal commitments to the root of the tree of the PCPP proof and its
depth.
Send tc0

π[i] = EQComx(·) (root’s left child); tc1
π[i] = EQComx(·) (root’s right child),

tcdπ[i] = EQComx(·) (depth of the tree) for i ∈ [n]. Let Lλπ = {tcbπ[i]}i∈[n],b∈{0,1} be the
root of the tree of the PCP proof.

V3: Pick a uniformly chosen random tape rj for every possible depth j of the PCPP proof.
Send r1, . . . , r`d to P .
P and V compute the queries of the PCPP Verifier: (qji , p

j
i ) = Qpcpx(a, rj , i) with i ∈ [k]

(k is the soundness parameter for the PCPP).

P4: Commitments to fake nodes. Let N be the number of nodes required to answer to
the PCPP queries {qji , p

j
i}j∈[`d],i∈[k]. For every node γ to be shown on the paths of the

tree of the machine, and for every node β to be shown on the paths of the tree of the
PCPP proof, P sends: tcγM [i] = EQComx(·), tcβπ [i] = EQComx(·) to V .

V4: Sign every commitment for P . Send σγM = Sign(sk, tcγM [i]) and σβπ = Sign(sk, tcβπ [i]).

P5: Commitment to the fake MPC-in-the-head that prove consistency/PCPP
acceptance. For every node γ, P prepares commitments to views of the MPC-in-the-
head MPC-Innode: P sends tcγin[p] = ExCom(·) to V , with p ∈ [n].
For the nodes in position (qji , p

j
i ), which represent the bits of the machine/PCP queried

by V for level j, P sends commitment to the views of the MPC-in-the-headMPC-PCPVer:
tcj,iPCPVer[p] = ExCom(·), with p ∈ [n]. Where ExCom is an extractable and equivocal com-
mitment scheme.

V5: Randomly choose t players: p1, . . . , pt and send them to P .

P6: Equivocation using the witness as trapdoor.

1. Equivocate views of MPC-Innode.
For each node γ, β computed above:
1) Compute valid shares of 0 for the VSS of depths. Namely run:
{SdM [1], . . . ,SdM [n]} ← Share(0n) and {Sdπ[1], . . . ,Sdπ[n]} ← Share(0n).
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2) Compute valid shares of 0 for each node γ on the tree of the machine (resp. β
for the tree of the PCPP) that was revealed as follows.

{SγM [1], . . . ,SγM [n]} ← Share(0n); {Sβπ [1], . . . ,Sβπ [n]} ← Share(0n)

3) Equivocate commitments in position pj so that they open to the shares just
generated. Compute

Adapt(x,w, τ, tcγM [pj ], S
γ
M [pj ])

with j ∈ [t], for any node γ in the tree of the machine (resp., Adapt(x,w, τ, tcβπ [pj ],Sβπ [pj ]
for any β on the tree of the PCPP proof).
4) Compute accepting views for players p1, . . . , pt by using the Semi-honest MPC
Simulator SimMpc associated to the MPC protocols. For every γ, β along the paths
for queries qji , p

j
i : Run

SimMpc(p1, . . . , pt, γ, q
j
i ,S

γ
M [p], SdM [p], σγM [p], 1)

and obtains views
P γin[p1], . . . , P γin[pt]

(resp., for β, use share Sβπ [p], β, pji , Sdπ and σβπ [pj ] and obtain views {P γin[pj ]}j∈[t]).
5) Equivocate the commitments for the MPC views in position pj so that they open
to the above generated views as follows:

Adapt(x,w, τ, tcγin[pj ], P
γ
in[pj ])

with j ∈ [t] (resp., for node β).
2. Equivocate views for MPC-PCPVer on public input a = (r, t). For each set of

queries (qj1, p
j
1, . . . , q

j
k, p

j
k) asked for level j:

Run SimMpc(p1, . . . , pt, S
qji
M [p1], S

pji
π [p1], . . ., Sq

j
i
M [pt],S

pji
π [pt], 1) for i ∈ [k], and obtain

views P jPCPVer[p1], . . . , P jPCPVer[pt].
Equivocate commitments for views of MPC-PCPVer in position p by running:
Adapt(x,w, τ, tcj,iPCPVer[p], P

j,i
in [p]), with p ∈ [t].

V6: Verification. For p ∈ p1, . . . , pt performs checks:

1. Node consistency.
For every node γ, β, for every player p check that the view P γin[p] (resp. β) is con-
sistent, has in input the value SγM [p], SdM [p] (resp., Sβπ [p], Sdπ[p]) and in output
1.

2. PCPP verifier acceptance. For every set of nodes (qji , p
j
i )i∈[k], check that the view

P jPCPVer[p] is consistent, has in input S
qji
M [p], S

pji
π [p], Sdπ[p] (for i ∈ [k]) and the

output is 1.

D Security Proof

In this section we provide the formal proof of security of our protocol. We begin with a protocol
that is a (semi) black-box construction of a zero-knowledge argument of knowledge that is almost
public-coin. Every message except the signature slots will be public-coin. Finally we argue that
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applying the BGGL transformation to this protocol will yield a resettably-sound zero-knowledge
argument of knowledge.

Completeness of (P, V ) follows directly from simulatability of semi-honest adversary in the
MPC protocol.

Soundness. We argue soundness of our protocol by breaking the unforgeability of the underlying
signature scheme. Our proof essentially follows from Barak and Goldreich [BG08]. More precisely,
we will show that if there exists non-uniform PPT adversary P ∗ and x ∈ {0, 1}n\L such that P ∗

convinces V on input x with probability 1
p(n) there exists an oracle algorithm CF that violates the

unforgeability of the underlying signature scheme given oracle access to the signing oracle.
We show how to construct CF using P ∗. First we note that since x 6∈ L, all the commitments

made with Comx by P ∗ have to be statistically binding. In particular this means that the length
of the code and the running times committed to by the prover are fixed and there has to exist an
i∗ ∈ [`d] corresponding to this length and running-time such that MPC functionality corresponding
to the nodes in the paths obtained from query ri∗ can only be satisfied by providing all parties with
VSS shares that reconstruct the value of the node for internal nodes and VSS shares for values
for leaves that is the convincing response for the PCPP verifier. Furthermore, the t-correctness of
the MPC-in-the-head protocol and statistically-binding property of the commitments using Comx

ensures that P ∗ can only commit to correct VSS shares corresponding to these nodes in P4.
This means that for independently drawn PCPP-queries in V3, either the proofs are the same

or different, i.e. P ∗ replies consistently or not. If it does not reply consistently with non-negligible
probability over the PCPP-queries of the verifier, then we know that we can find a collision to the
underlying signature scheme since we have already established that the VSS shares are consistent
with the label of the node and the root commitments in P3 are the same for independent PCPP
queries.

If the PCPP responses are consistent, we look at two executions for independently drawn r and
r̃ by the verifier in V2. Now, it must be the case that with overwhelming property the underlying
proofs Π and Π̃, circuit descriptions M and M̃ must be different. Since we use error-correcting
codes ECC with constant min-distance, if Π 6= Π̃, then for a randomly chosen i, the ith bit in
the description of M and M̃ are different with constant probability. Again, since the VSS shares
corresponding to every node in the Signature Tree corresponding to M and M̃ are consistent with
the label of the node and the root commitment in P1 are the same, it must be the case that P ∗

can find a collision in the signature scheme. We remark that the views of the MPC-in-the-head
players committed in P5 contain as input all the information regarding the nodes, in particular,
the signatures and the VSS views corresponding to the current node. Since this commitment is an
extractable commitment scheme (and the prover cannot equivocate since x 6∈ L), we can extract
all values from leaf to the root.

Since the underlying signature scheme is unforgeable, we can construct CF that with a signing
oracle internally emulates P ∗ on input x feeding the signatures requested by P ∗ by forwarding it
to the signing oracle. Since CF is guaranteed to find a collision with non-negligible probability
either by forking in message V3 with independent PCPP queries or forking in message V2 with
independent random strings, CF breaks the unforgeability of the signature scheme. This concludes
the proof of soundness.

Argument of Knowledge. Proving that this protocol is an argument of knowledge essentially
relies on [GOSV14, CPS13, BG02]. The idea here is that weak argument of knowledge property
(introduced by [BG08]) of universal arguments says that we can extract each bit of the PCP proof
as long as the prover cannot find collisions. We implicitly have a Merkle Tree that serves as the
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universal argument. Suppose we have a non-uniform PPT prover P ∗ that for infinitely many n,
convince a verifier on statement y sampled by the prover with probability 1

p for some polynomial
p, then we can extract every bit of the witness used with non-negligible probability. We provide
a proof sketch next.

Suppose P ∗ equivocates any commitment for random continuations from messages P2, P3,
P4 or P5 in a random execution then we can immediately obtain the witness using the trapdoor
property of our commitments. Second we can assume that since P ∗ is efficient it cannot violate the
unforgeability of the underlying signature scheme. Implicit in Lemma 3.5 [BG02] is an extractor
algorithm that can extract the proof bit by bit from the Merkle hash tree. Following the same
approach we can extract the PCPP proof if P ∗ never equivocates or violates unforgeability and
this will be a contradiction just as in [BG02]. We remark that, the subtle issue here is that we
require that the extractor be able to open all the VSS shares in the leaf nodes (as opposed to just
t of them) to learn the value of the leaves. This is possible since the views of the MPC-in-the-head
players are committed to using an extractable commitments scheme in P5 and the views together
contain all the VSS shares required.

Zero-Knowledge. The zero-knowledge simulator starts by honestly emulating the signature slot
for the malicious verifier V ∗. V ∗ provides accepting signatures, the simulator sets up a procedure
to obtain signatures for commitments of arbitrary messages. In [CPS13], they achieve this by
appropriately rewinding the malicious verifier during the signature slot. The verifier may not
always answer, but by “rewinding” an appropriate number of times and sending fresh commitments
each time [CPS13], a Goldreich-Kahan type argument guarantees that the simulator will succeed
with very high probability. More precisely, they show that if V ∗ did provide a valid signature
during the first pass, then in expectation, by the hiding property of the commitment scheme, a
polynomial number of rewindings will be enough. However this approach will not work here due
to the second signature slot. Looking ahed, that the simulation strategy will be to first obtain the
required signatures from the first slot and then repeat the signature queries corresponding to the
PCPP queries in the second slot. To prevent the verifier from correlating the aborting probability
across the two slots, we need to ensure that the distribution of the messages in the second slot
are “uniformly” generated. Towards this we consider the first signature slot that provides not just
one signature but polynomially many signatures. Then using a simple amplification via parallel-
repetition argument we can show that for most random tapes τ we can obtain a signature for
c = Comx(m, τ) a commiment to message m. Next, we show how to modify the distribution of
the messages in the second signature slot to achieve our result.

More precisely, Sim internally emulates the code of V ∗ and proceeds as follows:

Verifier move V0 : Sim receives vk from V ∗.

Prover move P1: Sim generates and sends to V ∗ honest commitments to 0v with uniformly
chosen randomness just as the honest prover.

Verifier move V1: V ∗ either aborts or produces signatures for all T commitments.

• If V ∗ aborts or any of the signatures are invalid, then the simulation halts immediately
and outputs the transcript up to that point.
• Otherwise, Sim stalls the current execution and repetitively queries V ∗ at the Signing

Slot with fresh commitments to 0v (where v is the size of a VSS share), until it obtains
2n sets of valid signatures (i.e. 2n rewindings where the verifier did not abort in the
signing slot or return any invalid signature). Let t be the number of queries Sim makes.
If t ≥ 2n/2, then Sim aborts outputting fail1.
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• Next, it sets up a sub-procedure GetSign (analogous to the sig-com oracle in [CPS13])
that will return a signature for any commitment c to message m.
Procedure GetSign(c,m): c is a commitment to message m ∈ {0, 1}v

– For i = 1 to 2ntT 2

Select a random i and T−1 uniformly random commitments tom, say c1, . . . , ci−1,
ci+1, . . . cT , set ci = c and query V ∗ at the first Signing Slot with c1, . . . , cT . If
V ∗ replies a valid signature σ for ci, then O outputs σ.

– If O never output anything, then return ⊥.

FORLOOP: For trials = 1 to n log2 n

Prover move P2: Choose i ← [log n], j ← [log n]. Create a machine V ∗∗ that is functionally
equivalent to V ∗ but is made to perform some no-op’s at the end of the computation and the
description is padded with an appropriate number of 0’s so that, the running time of V ∗∗ is
slower than V ∗ by a factor of 2j and the size of the description of V ∗∗ is exactly 2i times
the size of V ∗. Create a Signature Tree for ECC(V ∗∗). To create the Signature Tree, the
simulator needs to obtain signatures of commitments to actual messages. For any message
m, Sim obtains the signature of m as follows:

• Sim makes T calls to GetSign(c,m) each time with a random commitment c to m. If
any of the T trials succeed then it has obtained a valid signature of a commitment to
m. Otherwise Sim aborts outputting fail2.

Then Sim commits to the VSS shares of the left and right child of the root of this Signature
Tree and the shares obtained by running VSS on input tcdM = log|V ∗|+ i

Verifier move V2: Sim receives a random string r ∈ {0, 1}n.

Prover move P3: Create a Signature Tree for the PCPP proof that V ∗∗ predicts r. To build this
tree, the simulator needs to obtain signatures of commitments to string and uses the same
idea as in the Prover-move P2. Then Sim commits to the VSS shares of the left and right
child of the root of this Signature Tree. Additionally, Sim commits to the depth log |V ∗|+ j
using VSS.

Verifier move V3: Sim receives random strings r1, . . . , r`d ∈ {0, 1}n from V ∗, and computes
queries: (qji , p

j
i ) = Qpcpx(a, rj , i) with i ∈ [k].

Prover move P4: V expects to see a sequence of nodes, for paths defined by queries qji , p
j
i . As

each node is a sequence of VSS share, let N be the total number of shares that Sim must
prepares for V .

We know that there exists a j∗ ∈ [`d] which is the depth of the real tree committed in
(tcdM , tcdπ), sent respectively in step P2 and P3. For the queries (qj

∗

i , p
j∗

i )i∈[k], Sim needs to
provide a sequence of nodes which are consistent with the tree committed in steps P2, P3.
Let us denote by VS the set of indexes of the commitments that must be taken from the
real tree in order to consistently answer to the queries (qj

∗

i , p
j∗

i )i∈[k]. Let us denote by c a
commitment that is part of the real tree.

For the remaining queries (qκi , p
κ
i )i∈[k], with κ 6= j∗, Sim freshly generates nodes by computing

VSS of 0. Let us denote by c′ a commitment that is freshly generated.
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Now, let us consider c′1, . . . , c′N as a sequence of all freshly generated commitments.

Sim proceeds as follows.

• CHECK GOOD: For every i ∈ VS run GetSign(c′i, s
′
i) and see if it returns a valid

signature. Even if there exists one index on which GetSign did not return a signature,
then we say this trial fails and return to FORLOOP just before P2.

Otherwise, replace c′i with ci and feed c′1, . . . , c′n to V ∗. Exit FORLOOP.

Verifier move V4: V ∗ either aborts or produces signatures for all T commitments. If V ∗ aborts
or supplies an invalid share, Sim halts outputting the transcript upto that point.

Prover move P5: Sim generates valid views for the MPC-in-the-head computation for every node
of the paths corresponding to queries (qji , p

j
i ){j∈[`d],i∈[k]}. For every node belonging to the

path of queries (qj
∗

i , p
j∗

i ), Sim computes the MPC-in-the-head for Finnode proving that nodes
are consistent, and thus satisfy condition 2 of Finnode in Fig. 4. For every other node, Sim
successfully computes views of players of MPC-Innode for Finnode by using the views of VSS of
the depth j∗ to prove condition 1 of Finnode. Sim acts similarly to compute views of protocol
MPC-PCPVer for FVerPCPP.

Verifier move V5: Sim receives {p1, . . . , pt} ⊆ [n].

Prover move P6: Sim opens the commitments to reveal the respective t views for every VSS,
MPC-Innode and MPC-PCPVer.

To analyze Sim, we introduce some notation. Let p(m) be the probability that Ṽ ∗ on query a
random commitment c = Com(m, τ) of m ∈ {0, 1}l at the Signing Slot, returns a valid signature
of c. Let p = p(0l).

Running time of the simulator: We first argue that the simulator runs in expected polynomial
time. To start, note that Sim aborts at the end of the Signature Slot I with probability 1 − p,
and in this case, Sim runs in polynomial time. With probability p, Sim emulates V ∗ only a
strictly polynomial number of times and size of V ∗ is bounded by TṼ ∗ . Thus, Sim runs in some
T ′ = poly(TṼ ∗) time and makes at most T queries to its GetSign procedure, which in turn runs
in time t · poly(n) to answer each query. Also note that Sim runs in time at most 2n, since Sim
aborts when t ≥ 2n/2. Now, we claim that t ≤ 10n/p with probability at least 1− 2−n, and thus
the expected running time of Sim is at most

(1− p) · poly(n) + p · T ′ · (10n/p) · poly(n) + 2−n · 2n ≤ poly(TṼ ∗ , n).

To see that t ≤ 10n/p with overwhelming probability, let X1, . . . , X10n/p be i.i.d. indicator
variables on the event that V ∗ returns valid signatures for a random commitments to 0s. If
t ≤ 10n/p then via a standard Chernoff bound, we can conclude that

∑
iXi ≤ 2n happens with

probability at most 2−n.

Indistinguishability of simulation:
Towards proving indistinguishability of the transcripts generated respectively by P and Sim,

we will consider a sequence of intermediate hybrids H0, H1, . . . ,H8; starting from H0, the view
of the verifier V ∗ in the real interaction with the honest prover to H8, the view output by the
simulator Sim.
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Hybrid H1: This hybrid experiment proceeds identically to H0 (the real interaction), i.e. the
hybrid simulator using the witness to the statement follows the honest prover’s strategy
to generate all the prover messages with the exception that after receiving the verifiers V1

message (i.e. signatures to a commitments to 0v) it performs some additional computation.
If the verifier provides valid signatures in V1, it stalls the main simulation and then proceeds
like Sim would after receiving V1. More precisely, it will try to obtain 2n sets of valid
signatures of commitments to 0v, compute t and abort if t ≥ 2n/2. As shown in the running
time analysis, using a Chernoff bound this happens with negligible probability. Since H1

outputs a distribution identical to H0 except when it aborts outputting fail1, the distribution
of the views output in H0 and H1 are statistically close. The running time of the hybrid
simulator in this hybrid (and subsequent hybrids) is expected polynomial time following the
same argument made for the actual simulator.

Hybrid H2: This hybrid experiment proceeds exactly as the previous hybrid, with the exception
that the hybrid simulator follows Sim’s strategy in P2 with a slight modification (described
below). More precisely, to generate the message in P2, it samples random i, j and sets up
the verifier’s code V ∗∗ using V ∗, computes the error-correcting code M = ECC(desc(V ∗∗))
and generates the Merkle hash tree corresponding toM using the GetSign procedure just like
Sim. The slight modification here is that instead of using Comx the hybrid simulator will use
EQComx for generating the tree. First, we note that P2 generated by the hybrid simulator
in this step is identically distributed to the hybrid simulator of H1 since the distribution of
the root node is identical when using EQComx. Second the rest of the messages are (and
can be) generated according to the honest prover’s strategy since all the later commitments
are equivocated and revealed (only in P6) according to the honest prover’s strategy.

However, this hybrid could abort more often than H1 because the hybrid simulator in H2

could fail to get some signatures when generating the Merkle hash tree, i.e. fail2. We show
that this happens with negligible small probability in Claim 3. In essence, this follows using
a standard Yao-type parallel- repetition theorem, where we can show that if an adversary
can answer T repetitions with probability 1/p for some polynomial p then we can answer one
repetition with probability 1−n/T . Hence, the views output in H2 and H1 are statistically-
close.

Hybrid H3: This experiment proceeds identically to H2 with the exception that we compute
the PCPP proof and generate the Merkle-hash tree corresponding to it. As in H2 the tree
generated uses EQComx instead of Comx. It follows exactly as before that the view output
in H3 and H2 are statistically-close.

Hybrid H4: This experiment proceeds exactly as H3 with the exception that P4 is generated
according to Sim and as before all commitments for this message are generated using EQComx

instead of Comx. More precisely, in step P4, the hybrid simulator will sample random
commitments of 0v using EQComx and then check if the commitments corresponding to
relevant paths are “good”, i.e. passes the CHECK. If it does, then the hybrid simulator
replaces these commitments with the actual commitments used to generate the trees in step
P2 and P3. To argue that the view output by H4 is statistically close to H3 we will rely on the
fact that the condition for using a commitment to generate the Merkle Hash tree is the same
condition for replacing the commitments in message P4. More precisely, in Claim 4, we show
that conditioned on not outputting fail3 the distributions output by the hybrid simulator in
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H4 and H3 are identically distributed. Then in Claim 5 we show that probability that the
simulator outputs fail3 is negligible.

Hybrid H5: We proceed identically to the previous hybrid with the exception of what values the
equivocal commitments are revealed to in P6. The honest prover reveals the VSS shares
for any node as the t views generated by sharing 0v and the MPC views generated by
using the semi- honest simulator. In this hybrid, we instead will use Sim’s strategy. More
precisely, for the relevant paths, the simulator has generated the entire tree, it can reveal
the corresponding values. For the irrelevant paths, the simulator will use the trapdoor (i.e.
the length/running-time) to generate the MPC views. From the perfect t-privacy of the
MPC protocols and VSS-sharing scheme, it will follow that the view output by this hybrid
is distributed identically to the previous hybrid.

We remark that in this hybrid for random continuations from P2 as well as P4, the values
revealed for any commitment made using EQComx is unique. This is because we use the
Sim’s strategy to assign values to commitments and Sim never equivocates.

Hybrid H6: Observe that Hybrid H5 is essentially the Sim’s strategy with the exception that
all commitments generated for messages P2 through P6 are made using EQComx instead of
Comx. In hybrid H6 we will change all these commitments to Comx and the indistinguisha-
bility will follow from the hiding property of the commitment scheme. The slight technicality
here is that since our simulator is expected polynomial time, we might have to switch su-
perpolynomially many commitments and indistinguishability will fail to hold. However, we
employ the standard technique of considering the truncated experiments of H5 and H6 where
we cut-off the simulation if it runs for more than 4t(n)/p steps where p is the distinghuishing
probability of the hybrids and t(n) is a bound on the expected running time of the simu-
lator. By Markov inequality and a Union bound, we can conclude that the distinguishing
probability of the truncated experiments is at least p

2 .Now we use the truncated experiments
as they run in strict polynomial time. This essentially follows the same argument used in
[DSMRV13] and relies on the fact the knowing the witness we can generate a commitment
to 0 and 1 from a distribution of commitments to 0 and commitments to 1.

Claim 3. The probability that hybrid simulator in H2 outputs fail2 is negligible.

Proof. First, the computational hiding property of Comx implies that there exists some negligible
ν(·) such that |p(m) − p| ≤ ν(n) for every m ∈ {0, 1}l. Now we consider two cases. If p ≤ 2ν,
then the indistinguishability trivially holds since the interaction aborts at the end of the Signature
Slot (in this case, the view is perfectly simulated) with all but negligible probability. On the other
hand, if p ≥ 2ν, we show that Sim obtains a signature for any message m with high probability
and the distribution of the prover message P4 is indistinguishable.

Recall that the simulator makes T calls to GetSign to obtain a signature to m. To see that
the hybrid simulator obtains a signature with high probability, we first note that by applying
a Chernoff bound (just as in the analysis of the running time of Sim) n/p ≤ t ≤ 2n/2 with
probability at least 1−2−Ω(n). In this case, for every m ∈ {0, 1}s, p(m) ≥ p−ν ≥ p/2 implies that
t ≥ n/2p(m). Define Gn to be the set of random tapes τ such that the probability that V ∗ returns
a signature on (c, c−i) where i← [n], c = Comx(m; τ) and c−i are random T − 1 commitments for
m is at least 1

2tT 2 . This means that for any τ ∈ Gn, the probability that GetSign fails to return
a signature is e−n since GetSign tries 2ntT 2 times. It only remains to argue that Gn contains
sufficiently many tapes τ and this follows using a standard Yao-amplification type proof. More
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precisely, if we can show that the probability that a random τ is in Gn with probability at least
1 − n

T , then since Sim makes T attempts, the probability it misses a τ from Gn is at most e−n.
Overall the probability that Sim fails to obtain a signature is at most 2−O(n) and this concludes
the proof of the claim.

The only thing remaining to argue is that a random τ is in Gn with probability at least 1− n
T .

Assume for contradiction the fraction of tapes in Gn was smaller than 1 − n
T . We now estimate

the probability that V ∗ returns a signature on random commitments. There are two cases:

Case 1: For a random set of commitments to 0v, some commitment is not in Gn. Conditioned
on this event, the probability that V ∗ honestly provides signatures is at most T 2

2tT 2 .

Case 2: All commitments are in Gn. The probability this occurs is at most (1− n
T )T ≤ e−n.

Overall the probability that V ∗ answers is at most 2
t +e−n < 1

t which is a contradiction. Therefore
Gn must contain at least 1− n

T fraction of the tapes

Claim 4. The distribution of message P4 in hybrids H4 and H3 are identicaly distributed condi-
tioned on the hybrid simulator not outputting fail3.

Proof. Here we argue that the message P4 is identically distributed in H3 and H4 conditioned on
the hybrid simulator not We first note that all commitments except the ones in the relevant paths
are independently and identically distributed. For the relevant paths, we replace them with the
commitments obtained from before, only if the current commitment for the relevant paths passes
the CHECK. On a high-level this does not affect the distribution because the condition to select
a commitment for generating the Merkle Hash Tree is the same as the condition to choose the
commitments to replace in P4. More precisely, this condition is that, a commitment c for message
m using a particular random tape τ is selected only if GetSign(c,m) procedure returns a signature
for c. We now prove this formally.

Among theN commitments sent in P4 letR ⊂ [N ] contain the indices for relevant commitments
and IR ⊂ [N ] contain the indices for irrelevant commitments. Let ~cR and ~cIR be length |R| and
|IR| vectors of commitments respectively. We want to prove that conditioned on not outputting
fail3, the probability that the hybrid simulators inH3 andH4 send ~c = (~cR,~cIR) as P4 are identical.

For a commitment c, let Xc denote the random variable representing if GetSign produced a
signature to c in a single call to the procedure. Let Ci denote r.v. representing the commitment
in index i in H3.

The probability that the simulator in H3 sends ~c as P4 is

Pr[~C = ~c |¬fail3] = Pr[~C = ~c | XCi ∀i ∈ R] = Pr[(~CR, ~CIR) = (~cR,~cIR) | XCi ∀i ∈ R]

Let C ′i be the r.v. representing the commitments first selected and C∗i be the relevant com-
mitments obtained using Signature Slot 1. The probability that the simulator in H4 sends ~c
is

Pr[(~C∗R,
~C ′IR) = (~cR,~cIR) | XC′i

∀i ∈ R ∧ XC∗i
∀i ∈ R] = Pr[(~C∗R,

~C ′IR) = (~cR,~cIR) | XC∗i
∀i ∈ R]

since the commitments are sampled independently. We now conclude that the probabilities are
identical because the distribution of C∗i and Ci are identical and independent of C ′i.

Claim 5. The probability that the simulator outputs fail3 in H4 is negligible.
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Proof. Recall that we rewind n log2 n times from P2. If we show that the probability a random
continuation from P2 passes the CHECK is at least 1

log2 n
then it follows that fail3 will be output

only with probability at most e−n. Recall that the distributions of messages from P2 to P4 do
not reveal the choices i and j made in hybrid H3. From Claim 4 above, we can conclude that the
same holds in H4. We will show that for any random continuation from P2 with high probability
there exists a i∗, j∗ ∈ [log n] such that if i = i∗ and j = j∗ then the CHECK passes. Since the
messages do not reveal the choices, this happens with probability at least 1

log2 n
.

To show the existence of i∗, j∗ we first show that for any particular i (analogously any j)
the probability that GetSign fails to return the signature for some commitment corresponding to
the path in the Merkle Hash Tree for length |V ∗| + i (analogously proof tree for running time
tV ∗ + j) is at most npolylog

T ≤ 1
n . Therefore, the probability that all pairs i, j fail to pass CHECK

is negligible.

It suffices to argue that in one of the n3 trials CHK returns true. This is because the probability
that GetSign fails to return a signature for a random commitment to a message is at most n

T (since
this happens only if the chosen random tape τ lies outside Gn). Using an union bound, the
probability that CHK fails is at most n|S|

T < 1
n (by setting T appropriately). This means that

among the n2 choices, the set of commitments corresponding to one of the depths must pass
the CHK with high probability and the probability that Sim picked that depth when simulating
message P2 is at least 1

log2 n
. Since Sim rewinds at least n log2 n times, the probability that the

Sim outputs fail3 is at most e−n.

Obtaining Resettable-soundness We can obtain resettable-soundness by applying the BGGL
transformation to the protocol presented above. Just as in [CPS13], our new protocol (P̃ , Ṽ ) will
proceed exactly like (P, V ) described in the previous section, with the exception that the verifier
will initially pick a seed for a pseudo-random function family (PRF), then apply the PRF on
the partial transcript to generate each verifier message except the messages in the signature slot.
Arguing that the protocol is a resettably-sound zero-knowledge argument of knowledge essentially
follows from [BGGL01]. Therefore, we have the following theorem

Theorem 4. There exists a (semi) black-box construction of a resettably-sound zero-knowledge
argument of knowledge based on one-way functions.

36


	Introduction
	Our Results
	Previous works and why they don't work
	Our Techniques

	Protocol
	Acknowledgment
	Definitions
	Computational Indistinguishability
	Interactive Arguments
	Instance Dependent Equivocal Commitments
	Extractable commitment schemes.
	Zero Knowledge
	Resettably Sound Zero Knowledge
	Strong Signature
	Secure Multiparty Computation.
	Verifiable Secret Sharing (VSS).
	Probabilistically Checkable Proof (PCP)
	Probabilistically Checkable Proofs of Proximity


	The extendable Merkle Tree of GOSV14
	Extendable Merkle Tree

	Details of our resettable-sound ZK protocol
	MPC-in-the-head used
	Our ``public-coin'' ZK Protocol

	Security Proof

