
1

Active and Passive Side-Channel Attacks on Delay
Based PUF Designs

Georg T. Becker, Raghavan Kumar

Abstract—Physical Unclonable Functions (PUFs)
have emerged as a lightweight alternative to traditional
cryptography. The fact that no secret key needs to be
stored in non-volatile memory makes PUFs especially
well suited for embedded systems in which securely
generating and storing secret keys is difficult and ex-
pensive. Compared to traditional cryptography, PUFs
are often believed to be more resistant to implementa-
tion attacks.
In this paper we will take a closer look at this

assumption. Using a controlled Arbiter PUF as an
example, we show that just like traditional cryptog-
raphy strong PUFs are susceptible to implementation
attacks. By combining machine learning with with side-
channel analysis we are able to attack designed based on
Arbiter PUFs that on are resistant to normal machine
learning attacks. We use two different side-channels for
our attacks: a passive power side-channel and an active
fault attack based on altering the supply voltage of the
controlled PUF. Even in the presence of considerable
noise both attacks can accurately model the Controlled
Arbiter PUF. Hence, the assumption that PUFs are
generally more resistant against side-channel attacks is
not necessarily true and side-channel resistance needs
to be considered when PUF designs are evaluated.

Index Terms—Side-channel analysis, machine learn-
ing, Physical Unclonable Function, Arbiter-PUF, fault
attack, CPA

I. Introduction
Physical Unclonable Functions (PUF) have gained

widespread attention in the research community as a
new cryptographic primitive for hardware security ap-
plications. PUFs make use of the fact that two manu-
factured computer chips are never completely identical
due to process variations. A PUF exploits these process
variations to ensure that each chip has a unique behavior
so that each chip can be uniquely identified. There are
many applications for which PUFs can be used. Two
prominent examples are the use in challenge-and-response
protocols as well as for secure key generation and storage.
The advantage of using a PUF to generate cryptographic
keys is that the PUF ensures that each chip will have
its own unique secret without the need to program it
first. Furthermore, securely storing a cryptographic key
in embedded devices in a way that they are resistant to
physical attacks such as probing and reverse-engineering
is extremely difficult. In PUFs on the other hand, no key

G.T. Becker is with the Horst Görtz Institute for IT-Security at
the University of Bochum and R. Kumar is with the Department of
Electrical and Computer Engineering, University of Massachusetts
at Amherst. The results presented here can also be found in Becker’s
PhD dissertation [3].

needs to be stored in non-volatile memory since the secret
is instead derived from physical characteristics which are
hard to monitor.

PUFs can be classified into two categories: weak PUFs
and strong PUFs. In a weak PUF, the number of challenges
the PUFs can accept is very limited so that an attacker
can try all possible challenges and store the responses. This
way an attacker could easily forge the PUF by replacing
the PUF with a simple memory look-up. A strong PUF on
the other hand has a challenge space that is large enough
so that it is computationally infeasible to try and store all
possible challenges. Strong PUFs can be used in challenge-
and-response protocols as well as for key generation. A
weak PUF on the other hand cannot be used for challenge-
and-response protocols. But they can still be used for
key generation since it is usually sufficient to generate a
limited number of different keys for each chip. Note that
the terminology strong PUF and weak PUF might falsely
give the impression that a strong PUF is “better” than
a weak PUF. However, this terminology only defines the
challenge space without judging the PUFs performance or
other security properties.

Current PUF designs face two big problems that are
related: they suffer from unreliability and are prone to
machine learning attacks. In an ideal case, a PUF always
generates the same response for a given challenge. How-
ever, due to environmental effects and thermal noise, the
response to the same challenge can vary. Therefore, error
correction codes are usually needed if the PUF is used for
key generation and challenge-and-response protocols need
to allow a few false response bits. The second problem is
that even strong PUFs can be modeled in software and the
needed parameters to model a specific PUF instance can
be determined using machine learning techniques if chal-
lenge and response pairs are known to the attacker [21].

The use of strong PUFs in challenge-and-response pro-
tocols has gained a lot of attention despite their weak-
ness towards machine learning attacks. PUFs have be-
come cryptographic building blocks and many protocols
have been proposed including protocols with theoretical
security proofs [20]. Usually three possible advantages
are listed for the use of PUFs in challenge-and-response
protocols: One argument for PUFs is that some PUFs
have a lower area or power overhead compared to cryp-
tographic algorithms, especially if the PUFs are compared
to cryptographic algorithms that include countermeasures
against hardware attacks. Secondly, the secret (key) does
not need to be programmed first, ensuring that every PUF
instance has a unique key even before the first power-up.

2

This is especially useful if the PUF is used in a piracy
protection scheme. And last but not least, PUFs are often
believed to be more secure against implementation at-
tacks (physical attacks) such as probing and side-channel
attacks. Resistance against implementation attacks is an
extremely interesting property as it has been shown many
times how difficult it is to protect embedded systems
against these types of attacks. A very careful design and
the combination of different countermeasures is needed
to ensure a reasonable resistance against implementation
attacks. But this increases development costs and design
overhead significantly. If PUFs would indeed be very re-
sistant towards these implementation attacks, this would
make them a very promising alternative to traditional
cryptography. However, this resistance has never been
thoroughly analyzed and proven.

A. Related Work
It has already been shown that PUFs, when used for

key generation, can be attacked with side-channel attacks
by attacking the digital error-correction used in these
systems [12], [16]. These attacks do not directly attack
the used PUF itself but the digital post-processing. Nev-
ertheless, they still indicate that using PUFs does not
necessarily solve the problem of implementation attacks
as other parts of the system might still be vulnerable.
Recently, Merli et al. successfully attacked a ring-oscillator
(RO) PUF using an EM attack that directly targeted the
PUF and not the error correction [15]. RO-PUFs only
have a limited number of challenges and responses and
are therefore weak PUFs. The only side-channel attacks
that directly targets a strong PUF is the recent work by
Delvaux et al. [6]. The authors used the large unreliability
of the PUF as side-channel leakage and for the first time
modeled an arbiter PUF based on this information. How-
ever, for the attack to work, the attacker needs to know
the unreliability of single response bits in the presence of
thermal noise. This means that the attack actually not
only uses the reliability information but also directly the
response bit, i.e. whether a response is biased towards 1 or
0. But if the response bits are known, traditional machine
learning algorithms can be used, which are still more
efficient [6]. Hence, while the paper is interesting from
a theoretical point of view, it has only limited practical
relevance.

In parallel to our work, Rührmair et al. [22] have also
proposed a combined machine learning and side-channel
attack using the power and timing side-channel. In their
work they chose an XOR-Arbiter PUF as their target
architecture. However, their assumed power model is very
idealistic. They assume that they can directly read out
the number of responses that are “one” from the power
traces without any noise. However, such a power model is
very unrealistic in practice as discussed in Section III-A.
How their approach works in a noisy environment which
resembles a more realistic environment is still an open
question. Besides the power side-channel they have also

propose the use of a timing side-channel. This timing side-
channel is very interesting. In their proof of concept imple-
mentation they used a dedicated circuit in the FPGA to
measure the timing differences. In practice such an on-chip
measurement mechanism won’t be present. However, their
approach could be extended to be used as a fault attack
for XOR-Arbiter PUFs. In [22] the authors also propose
some countermeasures how this timing side-channel attack
can be prevented.

B. Contribution and Organization
In this paper we will take a closer look at the side-

channel resistance of strong PUFs against passive and
active attacks. In particular, two different classes of im-
plementation attacks are considered, power side-channel
analysis and fault attacks. As our target we chose the
Arbiter PUF, as it is the most widely discussed strong
PUF in the literature. We show that it is possible to
attack the Arbiter PUF even in scenarios where machine
learning attacks are infeasible, i.e. when the attacker does
not directly have access to the individual response bits.
We performed a hybrid machine learning power side-
channel attack on a controlled PUF design based on an
Arbiter PUF on simulated traces and showed that the
attack is successful in the presence of considerable noise.
By comparing our power side-channel attack on PUFs
with successful CPA attacks on block ciphers from the
literature, we show that with comparable noise levels a
power side-channel attack on the controlled PUF would
be successful as well. Furthermore, we propose a fault
attack on the same design that is based on changing the
supply voltage. We use the information which challenges
become unreliable to perform a hybrid fault and machine
learning attack that can accurately model a controlled
Arbiter PUF.

Hence, our results raise doubt whether the assumption
that PUFs are less prone to implementation attacks than
traditional cryptographic algorithms holds true in general.

A detailed description of how Arbiter PUFs work and
how they can be modeled is presented in the beginning
of the next Section. In Subsection II-C a controlled PUF
designed based on an Arbiter PUF is introduced under
the assumption that the PUF achieves a reliability close
to 100%. This secure design will be used as the target
design for the power side-channel attacks in Section III
and the fault attacks in Section V. In the last Section
the implications of the results presented in this paper are
discussed.

II. Target PUF Design
Arbiter-PUFs are the most popular strong PUF design

in the literature. However, they can easily be modeled
using machine learning attacks if the attacker knows
challenge and response pairs. To overcome this problem,
controlled PUFs [7] were proposed in which the direct
challenge and response pairs of the Arbiter PUF are never
revealed. Therefore controlled PUFs are secure against

3

machine learning attacks. In this paper we chose such a
controlled PUF as our target. However, our method is
sufficiently general to be applied to other designs based
on an Arbiter PUF.

A. Arbiter PUF
The basic idea of the Arbiter PUF is to apply a race

signal to two identical paths and determine which of the
two paths is faster. The two paths have an identical layout
so that the delay difference ∆D between the two signals
mainly depends on process variations. This dependency
on process variations ensures that each chip will have a
unique delay behavior. The Arbiter PUF gets a challenge
as its input which defines the exact paths the race signal
takes. Figure 1 shows the schematic of an Arbiter PUF.
It consists of a top and bottom signal that is fed through
delay stages. Each individual delay stage consists of two
2-bit multiplexers (MUX) that have identical layouts and
that both get the bottom and top signals as inputs. If the
challenge bit for the current stage is ’1’ the multiplexers
switch the top and bottom signals, otherwise the two
signals are not switched. Each individual transistor in the
multiplexers has a slightly different delay characteristic
due to process variations and hence the delay difference
between the top and bottom signal are different for a
’1’ and a ’0’. This way the race signal can take many
different paths: an n-stage Arbiter PUF has 2n different
paths the race signals can take. However, challenges that
only differ in a few bits have a very similar behavior so
that an Arbiter PUF does not necessarily have 2n unique
challenges. An Arbiter at the end of the PUF determines
which of the two signals was faster. The Arbiter consists
of two cross-coupled AND gates which form a latch and
will have an output of ’1’ if the top signal arrives first and
’0’ if the bottom signal is the first to arrive. The Arbiter
can have a slight bias so that the PUF result might be
slightly biased towards ’0’ or ’1’.

Fig. 1. Schematic of an n-bit Arbiter PUF.

B. Modeling an Arbiter PUF
Arbiter PUFs can easily be modeled in software if the

delays that are added by each individual stages are known.
Each stage has four delay values: the delay for the top and
bottom signal for challenge bit ’1’ and for challenge bit
’0’. Since we are actually not interested in the total delay
but only in the delay difference, we can reduce these four
values to two values per stage i, the delay difference δ1,i

between the top and bottom signal for challenge bit ’1’
and the delay difference δ0,i for the challenge bit ’0’. The
delay difference is positive if the top signal is faster and

negative if the bottom signal is faster. The total delay
difference ∆D for a given challenge ~C = c1, ...cn can
be computed easily by adding up the individual delays
for each stage. If the challenge bit is ’1’ the wires are
switched and the top signal becomes the bottom signal
and vice versa. The switching of the wires can be modeled
by simply multiplying the current delay difference with
minus one. The time difference ∆Di between the top
and bottom signal after stage i can therefore easily be
expressed recursively with the following equation:

∆Di = ∆Di−1 ∗ (1− 2 ∗ ci) + δci,i

The final time difference between the two signals is
simply time difference ∆Dn after the last stage n and the
response bit r is defined by:

r =
{

1 if ∆Dn > 0
0 if ∆Dn < 0

This way the PUF can be modeled with 2 ∗ n delay
values. However, a more efficient approach to model an n-
stage Arbiter PUF that only requires n+ 1 parameters is
used in practice. A PUF instance is described by the delay
vector ~w = (w1, ..., wn+1) with:

w1 = δ0,1 − δ1,1

wi = δ0,i−1 + δ1,i−1 + δ0,i − δ1,i for 2 ≤ i ≤ n

wn+1 = δ0,n + δ1,n

The delay difference ∆Dn at the end of the Arbiter is the
result of the scalar multiplication of the transposed delay
vector ~w with a feature vector ~Φ that is derived from the
challenges:

∆Dn = ~wT ~Φ

The feature vector ~Φ is derived from the challenge vector
~c as follows:

Φi =
n∏

l=i

(1− 2cl) for 1 ≤ i ≤ n

Φn+1 = 1

Modeling a PUF in this way can significantly decreases
the simulation time and also reduces the parameters that
need to be known to n + 1. It was shown in the past
how these parameters can be computed (or approximated)
easily using different machine learning techniques. In prac-
tice, only a few hundred challenge and response pairs are
needed to model an Arbiter PUF with a predication rate
very close to the reliability of the attacked PUF [11]. To
make machine learning attacks more difficult, some designs
try to add a non-linear component to the Arbiter PUF e.g.
by using feed-forwards or by XORing the responses of sev-
eral Arbiter PUFs. These designs make machine learning
attacks more difficult, but not necessarily computational
infeasible. It has been shown that it is still possible to
achieve a prediction accuracy of above 98% percent using
machine learning techniques such as Evolution Strate-
gies (ES) or Linear Regression (LR) against feed-forward

4

PUFs, lighweigth PUFs and XOR arbiter PUFs[21]. How-
ever, with increasing parameter sizes the attack becomes
increasingly difficult and in [21] the authors report that
XOR-Arbiter PUFs with at least 8 XORs were out of the
reach with their attack.

C. Controlled PUF Design
Since current PUF designs can be attacked using ma-

chine learning if the attacker has access to challenge
and response pairs, so called Controlled PUFs have been
proposed to prevent these attacks. The term controlled
PUF was introduced by Gassend et al. in [7] and the main
idea is to add additional circuitry that prevents an attacker
to apply arbitrary challenges and, most importantly, hides
the individual response bits from the attacker. The main
idea of most controlled PUFs is to instead of applying
the challenges to the PUF directly, a master challenge
is sent to the chip. From this master challenge, a chal-
lenge generator generates n individual challenges that are
applied to the PUF. The n individual response bits of
this PUF are not directly returned as outputs but instead
are first applied to a cryptographically secure one-way
function (e.g. a hash function). Figure 2 shows an example
implementation of a Controlled PUF design and which is
used as a case study in the remainder of this chapter. By

Fig. 2. The controlled PUF design. An 80-bit master challenge
is applied to the controlled PUF from which 80 individual sub-
challenges are derived using the challenge generator. These 80 sub-
challenges are applied to the 128-bit Arbiter PUF and the 80 PUF
responses are stored in a shift register. This 80-bit string is hashed
using a cryptographically secure one-way function and the resulting
64-bit hash value is provided as the final response of the controlled
PUF.

never revealing the individual response bits to the outside,
machine learning attacks are not feasible any longer1.
Please note that such a design only works if the used

PUF is very reliable as a single false response bit will
cause the current authentication attempt to fail. If the
PUF is reliable enough, one can simply repeat the authen-
tication process several times in case the authentication
failed. Another option is to use error correction codes
as mentioned in the original controlled PUF proposal.
Since there already have been side-channel attacks on
error correction codes we omit these error corrections in
our analysis. Error correction does not have much impact
on the power side-channel attack discussed in this paper.

1This assumes that n is chosen sufficiently large and the PUF has
enough entropy that brute-force attacks are not possible.

How error correction will affect the active attack will be
discussed in Section V-B.

Of course, the proposed design adds a non negligible
overhead to the PUF design, as a challenge generator and
one-way function is needed. However, there exist several
secure lightweight encryption algorithms that could be
used for this purpose. The challenge generator generates
n sub-challenges for a single master challenge. There are
two main requirements for the challenge generator:

1) A master challenge should not generate sub-
challenges that are similar i.e. sub-challenges that
have large sequences of bits that are equal between
these sub-challenges.

2) Two master challenges should not generate sub-
challenges that are similar to each other.

An example of a secure challenge generator would be a
block cipher in counter mode with the key as the master
challenge. The fact that the same design can be used as
a challenge generator and as a one-way function greatly
reduces the introduced area overhead of a controlled PUF.
Many lightweight block ciphers exist such as PRESENT [4]
or NSA’s lightweight block ciphers [2] that could be used
for this purpose. However, the results presented in this
paper are sufficiently general that other approaches such as
using a hash function or LFSRs as the challenge generator
can be used instead.

It is also important to note that the physical security
requirements for the challenge generator and the one-way
function are much lighter than for the case that they
are used with a traditional secret key that needs to be
protected. The challenge generator only processes known
values, hence it does not need to be resistant against in-
formation leakage. The one-way function also has reduced
physical security requirements since it does not process
a constant secret. For each master challenge, the input to
the one-way function is different and unpredictable. Hence,
differential attacks such as DPA and CPA are not feasible.
Therefore only implementation attacks that can reveal in-
formation with a single input, e.g. a simple power analysis,
need to be considered. But defending against these types of
side-channel attacks is much easier than defending against
differential side-channel attacks and most hardware block-
ciphers are secure against simple power analysis. Hence, to
attack such a system using implementation attacks, the
attacker would need to directly attack the Arbiter PUF
and not the digital post-processing.

In the following we will assume that a design as depicted
in Figure 2 is used with a block cipher such as PRESENT
as the challenge generator and one-way functions as well as
an 80-bit shift register to store the 80 individual response
bits. However, since our attacks will actually directly tar-
get the 128-bit Arbiter (or the registers storing the Arbiter
response) and not the digital pre- or post-processing the
results are also valid for other designs that use an Arbiter
PUF with known challenges.

5

III. Power Side-Channel Attack on Arbiter
PUFs

In this section we will take a closer look at the resis-
tance of Arbiter PUFs towards passive power side-channel
attacks. We assume that the attacker does not have access
to the challenge and response pairs because a controlled
PUF design as described in section II-C is used. The
question is if the attacker can gain enough information
out of power side-channel measurements of the PUF to
successfully model it. In the following we will first take
a closer look at the power consumption of the Arbiter
PUF and then show how this information can be used
to attack controlled PUFs in a combined machine learning
and power side-channel attack.

A. Power Consumption of Arbiter PUFs

To evaluate information leakage of an Arbiter PUF in
the power consumption we performed some simulations
to test the power behavior of an 128-bit Arbiter PUF.
Figure 3 shows the power consumption of the tested 128-
Bit Arbiter PUF in 45nm technology. The PUF is the same
design as described in Section II-C with one addition: the
result of the PUF is stored in a register. It is a reasonable
assumption to assume that the response bit is stored in a
register, since the PUF response needs to be processed
further. There are two points of interest in the power
traces. One point of interest is when the Arbiter at the end
of the PUF determines whether the output is 1 or 0 and
the second point of interest is when the result is stored in
the register. In this simulation the register was reset before
the PUF execution. Figure 4 shows the correlation of 2000
power traces with the correct response bits as well as the
correlation with response bits with a prediction accuracy
between 50% to 90%. There is a strong correlation of the
correct response bits and the power traces at two time
instances. At around 1350 ns when the PUF evaluates the
response the power traces show a correlation of -0.32 and
when the response bit is stored in the flip flop at 1600 ns
the correlation is close to 1.

The reason why the correlation is negative at 1350 ns
is because the power consumption is actually higher if the
response bit is 0 instead of 1 in this design due to the
implementation details of the Arbiter PUF. The fact that
a correlation of close to 1 is achieved during the storing of
the result in the register is not very surprising since it is
well known that a register has a large power consumption
when the output value changes. For prediction accuracies
below 100% the correlation coefficient decreases linearly.
Hence, the correlation coefficient directly relates to the
model accuracy and it is possible to distinguish PUF
models with a high accuracy from PUF models with a
low accuracy using the correlation coefficient.

In this noise-free simulations it is actually possible to
directly read out the response bit from the power traces.
However, in practice this will not be possible due to various
noise sources.

Fig. 3. Two power traces of an 128-bit Arbiter PUF for two different
challenges, one challenge with a response of 1 and one with a response
of 0.

Fig. 4. The correlation of responses with different accuracies with
2000 simulated power traces of a 128-bit Arbiter PUF.

In our controlled PUF design the response of the PUF is
stored in an 80-bit shift register. The assumption that the
result of the arbiter is stored in a n-bit shift-register is very
reasonable if a design is used in which the PUF is called n
times before the result is processed. Using a shift-register
is the most common and most efficient approach to store
data in this case. The power consumption of a shift register
follows a Hamming distance model: If two consecutive bits
are different, then the stored values in the registers change
and generate a large power consumption. On the other
hand, if two consecutive bits are the same then the values
do not change and hence consume only a small amount
of power. The power consumption of the shift-register is
therefore directly proportional to the Hamming distance
between the current state of the shift register with the
previous state.

During the evaluation of the Arbiter on the other hand
the power consumption is independent of the previous
response bit. This is due to the fact that the PUF is always
set to the same state before the race signal is applied.
Hence, the data-dependent power consumption during the
end of the evaluation phase of the Arbiter PUF depends
on a Hamming weight model. We have actually omitted
a third time instance in which the power consumption
directly depends on the response bit. When the Arbiter
PUF is reset to the initial state to prepare for the next race
signal there is again a data-dependent power consumption
comparable to the power consumption during evaluation.

6

It should also be noted that after the power-up the
shift register will contain all zeros. In this specific case
the power consumption of storing the first response bit
also follows the Hamming weight model. An attacker could
power off the device between each measurement if he
wanted to use the Hamming weight power model together
with the power consumption of the register. In our attack,
the Hamming distance power model on the shift register
outperformed the Hamming weight power model so that
this seems to be unnecessary or counter-productive for
most attacks.

In practice, the side-channel measurements will contain
noise from various sources. The different noise sources
are typically physical noise, measurement noise, model
matching noise, and algorithmic noise. Physical noise sums
up noise sources such as supply noise, thermal noise, and
temperature differences. Measurement noise is added by
the measurement setup and includes noise added by the
digital sampling or low pass filters that are inevitably
added by the measurement setup. The assumed power
model such as Hamming distance or Hamming weight is
only an approximation of the real power consumption of
the device. For example, in the Hamming distance power
models it is assumed that a switching of 1 to 0 has the
same power consumption as the switching from 0 to 1.
In practice, a switching from 1 to 0 might have a slightly
different power consumption than the switching from 0
to 1. This mismatch between the real power consumption
and the used power model is called model matching noise.
Algorithmic noise describes the power consumption caused
by parts of the chip that are not part of the power model of
the attack but run in parallel. In the case of the controlled
PUF design, algorithmic noise could for example be the
power consumption of the challenge generator if it runs in
parallel to the PUF, state machines or unrelated parts of
the chip such as communication logic.

It is usually assumed that each of these noise sources
are independent and there is an additive effect between
all the noise sources so that their overall effect can be
approximated by a Gaussian distribution [23]. Physical
noise and measurement noise can be reduced by averaging
over several measurements. Algorithmic noise and model
matching noise on the other hand can often not be reduced
using averaging since the noise is usually constant for a
given input. Only if the algorithmic noise is independent
from the input to the target IP core, e.g. a global counter,
can averaging be applied to reduce the signal-to-noise
ratio.

Predicting the added noise level is very difficult since
it depends on too many factors. Therefore different noise
levels are used in the experiments to show that even in
the presence of substantial noise a side-channel attack is
possible. The power traces in the remainder of this work
are simulated as follows: At first the power traces with
the (idealized) used power model are computed. In a 1-
bit Hamming distance power model this means that if the
current response is different from the previous response a 1
is assigned as the power value, otherwise a 0. To this noise-

free power model Gaussian noise with a mean value of µ
and standard deviation of σ, denoted as N (µ, σ2), is added
to simulate the various noise sources. Note that the mean
value µ does not have any influence on the correlation
coefficient and therefore in the following N (0, σ2) is used.
The metric N (0, σ2) might not be very intuitive to the

reader and therefore a second metric is used as well. The
power consumption during the rising edge of the clock
is in many designs roughly proportional to the number
of switching registers. To get a rough idea of how much
noise N (0, σ2) is we also represent the noise as the amount
of switching registers that would add algorithmic noise
equivalent to N (0, σ2). The amount of noise added by
n independently and randomly (with a probability of
50%) switching registers with an idealized power model
is approximately Gaussian with a mean of µ = n∗1/2 and
a standard deviation of σ =

√
(n ∗ 1/4).

The question is how much noise is reasonable. Since
there are so many factors influencing the power consump-
tion and measurements it is difficult to predict the noise
level and one will encounter many different noise levels in
practice. To give the reader an idea of how much noise can
roughly be expected we used results from successful CPA
attacks on various different platforms as a comparison.
Assuming a Gaussian noise distribution, it is possible to
compute the approximate noise level in these attacks from
the provided correlation coefficients (seee Appendix A for
details).

To give the reader an idea of the typical amount of noise
in a side-channel attack, Table I gives an overview of some
successful CPA attacks found in the literature and their
corresponding correlation coefficients and noise levels.

B. Combining CPA with Machine Learning
The previous section showed that we can distinguish

PUF models that have a high model accuracy from PUF
models with a lower model accuracy using the correlation
coefficient as a metric. This indicates that power measure-
ments can be useful in attacking a PUF. However, due to
noise it is not possible to directly read out specific response
bits from the power measurements. Therefore machine
learning techniques such as SVM that require challenge
and response pairs do not work. But there exists a machine
learning technique that can easily be combined with corre-
lation power analysis: Evolution Strategies (ES). The idea
of ES is to randomly generate PUF models with different
delay values and then test which of these models perform
best, i.e. which are the fittest. The fittest models are then
kept as parents for the next generation, while the other
models are discarded. In the next generation, children are
derived from these parents by randomly modifying the
delay values of the parent models. In the next step the
fitness of these children is evaluated and new parents for
the next generation are chosen from these children. The
idea behind this approach is that by always keeping only
the best PUF models, the PUF models gradually become
more accurate. This process is repeated and eventually the
PUF models model the PUF with a very high accuracy.

7

Target Design Power Model cc N (µN , σ
2
N), Noise Registers Used Traces

PIC16F886 [18] 8-bit HD ≈ 0.75 ≈ N (0, 5.1) ≈ 12.5 100
Yubikey 2 [18] (EM) 8-bit HW ≈ 0.3 ≈ N (0, 42) ≈ 161 300
Virtex-4 Bitstream [17] 1-bit HD ≈ 0.08 ≈ N (0, 39) ≈ 155 60000
Virtex-5 Bitstream [17] 1-bit HD ≈ 0.04 ≈ N (0, 156) ≈ 623 90000
SHA-1 EEPROM [18] 8-bit HW ≈ 0.1 ≈ N (0, 400) ≈ 1600 2500
Kintex-7 FPGA [10] 8-bit HW ≈ 0.1 ≈ N (0, 400) ≈ 1600 6000
Yubikey 2 [18] (Power) 8-bit HW ≈ 0.06 ≈ N (0, 1110) ≈ 4430 6400
Stratix II Bitstream [18] 8-bit HD ≈ 0.05 ≈ N (0, 1600) ≈ 6400 400000
Mifare DesFire [19] (EM) 4-bit HD ≈ 0.01 ≈ N (0, 10000) ≈ 40000 250000

TABLE I
Example correlation coefficients (cc) and corresponding noise levels, depicted as N (µN , σ

2
N) and the number of

corresponding noise register, of CPA attacks on different architectures: a PIC16F886 microcontroller that is used in an
RFID access control system [18], the Yubikey One-Time Password Token that uses AES [18], the DS2432 and DS28E01 SHA-1
HMAC protected EEPROM from Maxim Integrated [18], Virtex-4 and Virtex-5 bitstream encryption based on AES-256 [17],
an AES-128 implementation on a 22nm Kintex-7 FPGA [10], and an EM attack on the contactless Mifare Desfire smartcard
(potentially with some side-channel countermeasures) [1]. Please note that the noise levels are only approximations based
on the CPA values provided by the cited papers and are only meant to give the reader a rough idea of the expected noise

levels in a side-channel attack.

Using ES to attack PUFs is not new and ES has already
been successfully applied to attack feed-forward Arbiter
PUFs [21]. The advantage of ES is that it is not based on
solving any equations. For ES to work it is only necessary
to have a way to distinguish which PUF models from a
given set of PUF models are the fittest. Typically, this
is done by comparing the modeled response bits with
the measured response bits. The models with the highest
match rate (accuracy) are the fittest. But any other fitness
test that can distinguish good PUF models from bad
PUF models with a high probability can be used. As
discussed, it is possible to use power measurements and the
correlation coefficient to distinguish PUF models that have
a high model accuracy from models with a small model
accuracy. Therefore, correlation power analysis and ES
can easily be combined: ES is used to generate potential
PUF models and correlation power analysis is used to test
the fitness of these models. ES also has the advantage
that its random nature makes it quite resistant to noise.
If a good PUF model is falsely discarded and instead
a worse PUF model is chosen as a parent for the next
generation, this will slow down the convergence to the
optimal solution. But as long as more good PUF models
are chosen as parents than bad models, the ES still works
and can converge to a near optimal solution. This property
is very helpful for noisy environments such as the discussed
power side-channel.

There are many different variants of ES that mainly dif-
fer in how the child instances are derived from the parent
instances. We tested several different methods and param-
eters. The optimal strategy depends on many aspects such
as number of stages of the PUF, noise, available traces
and the computation environment. We tested the (µ/γ)-
ES approach without recombination with and without self-
adoption. This approach has previously been successfully
applied to feed-forward Arbiter PUFs in [21]. However, in
our experiments the CMA-ES outperformed the (µ/γ)-ES
and performed very well among all ranges of noise level.
CMA-ES uses a weighted recombination approach with
self-adoption. Details of this machine learning attack can

be found e.g. in [8]. The same parameters as proposed
in [8] were used with the exception that we increased the
child-population since we are dealing with a very noisy
environment.

C. Results
As mentioned in Section III-A the design can be at-

tacked using two different power models: A 1-bit Hamming
weight (HW) power model in which each challenge is
independent from the previous challenge and a Hamming
distance power model (HD) that targets the shift registers
where the responses are stored. Figure 5 shows the result of
a combined correlation CMA-ES (referred to as CCMA-ES
from here after) using a 1-bit HW power model and a noise
of N (0, 25) which is equivalent to roughly 100 randomly
switching registers. In Figure 6 the same attack is shown
with a 1-bit HD power model. The CCMA-ES is a non-
deterministic method, hence, if run with the same inputs,
it can yield different results. In the figures 100 independent
runs with the same PUF instance and power simulations
were executed. The best run achieved an accuracy of 93.5%
for the 1-bit HW power model compared to an accuracy
of 95.6% for the 1-bit HD power model. However, while
all runs converged to a solution close to the maximum
with the 1-bit HW power model, with the 1-bit HD power
model several runs did not converge to a solution close to
the maximum. Hence, while the HD power model achieves
higher accuracies if a run converges, there is a much higher
chance that a run does not converge for the HD power
model compared to the HW power model.

The reason for this is that a single miss-predicted re-
sponse bit actually influences two bits in the HD power
model(the current and next value). This leads to a re-
lation between the prediction accuracy and correlation
coefficient that unlike the Hamming weight power model
is not linear. Figure 8 shows the relationship of accuracy
versus correlation coefficient for the HW as well as HD
power model. It is still true for the HD power model that
a higher accuracy yields a higher correlation coefficient.
However, this correlation coefficient increases slower for

8

Fig. 5. Result of a CMA-ES with a 1-bit HW power model, 150k
challenges and a noise ofN (0, 25) which is equivalent to 100 switching
registers.

Fig. 6. Result of a CMA-ES with a 1-bit HD power model, 150k
challenges and a noise ofN (0, 25) which is equivalent to 100 switching
registers.

low accuracies compared to higher accuracies. What this
means in practice is that the HD power model does
not perform as good as the HW power model while the
prediction accuracy is fairly low. But for higher accuracies
the HD model actually outperforms the HW model since
for higher accuracies the correlation coefficient increases
faster in the HD model compared to the HW model. This
trend is independent of how many bits are used for the
HW power model, but an 80-bit HD model shows a higher
variance from the ideal curve than a 1-bit HD model. This
explains why the HD model achieves higher accuracies
while simultaneously having a lower rate of runs that
converge.

If we assume that the result is stored in an 80-bit shift
register then the power consumption during the storing
of a response bit follows an 80-bit HD power model, not
a 1-bit HD model. Using an 80-bit power model greatly
increases the signal to noise ratio. Figure 7 shows the same
attack as before with the 80-bit HD power model. In this
case accuracies of up to 99.9% are achieved. Therefore this
power model is recommended in practice, assuming the
design allows it. It is also important to note that in the
controlled PUF a single execution of the protocol requires
80 responses, hence, a single measurement actually con-
tains 80 challenges. For the example of 150k challenges this
means that only around 150,000/80=1875 measurements
are needed.

Figure 9 shows the result for the CMA-ES attack with
different noise levels and different number of traces with
this 80-bit HD power model. One can see that noise can be
counteracted by increasing the number of used challenges.
Model accuracy is only one metric to determine the success
of the attack. Another valid metric is the number of times
the correct 80-bit string is predicted. The output of the

Fig. 7. Result of a CMA-ES with an 80-bit HD power model, 150k
challenges and a noise ofN (0, 25) which is equivalent to 100 switching
registers.

Fig. 8. Relation between the correlation coefficient and the pre-
diction accuracy for the Hamming weight power model as well as
the Hamming distance power model. For this simulation 1 million
random response bits were used and no noise was added.

controlled PUF is the hash value of 80 response bits and
therefore an attacker can verify if he has predicted the
correct 80-bit string. To correctly predict these strings is
the ultimate goal of the attacker since this will enable him
to impersonate the PUF device.

Furthermore, if the attacker manages to predict the
PUF with a high enough accuracy to find a single 80-bit
match, the attacker can perform a second machine learning
attack that uses this success metric to achieve accuracy
exceeding 99%. The idea of this second machine learning
attack is simple: Instead of still relying on the (noisy)
power side-channel to evaluate the fitness of the PUF
models, the attacker uses the number of string matches to
determine the fitness. Otherwise the same CMA-ES is used
as with the power model. Since this string match analysis
is noise free, much larger accuracies can be achieved than
with the power side-channel. Given enough challenges,
accuracies beyond 99.99% are achieved. However, you
cannot use this model until your PUF models have reached
accuracies large enough that at least one string match is
found. Hence, it is not possible to directly use this metric
to attack the PUF without using a side-channel attack
first.

The most effective attack is therefore a two step ap-
proach: In the first stage a combined machine learning and
power side-channel attack is performed to model the PUF
with a large enough accuracy to predict some of the 80-bit

9

Fig. 9. Result of of 100 runs of an 80-bit CCMA-ES attack with
different levels of noise. The noise level is expressed by the number of
randomly switching registers that would generate the same amount
of noise. On the left the maximum achieved accuracy with 100 runs
is shown while on the right the number of runs that achieved an
accuracy high enough to find at least one string match is shown.

Fig. 10. The number of needed strings so that the probability of a
match is at least 50%.

strings. In the second step, a machine learning attack using
the number of string matches as a fitness function is used
to achieve prediction accuracies beyond 99%. Figure 10
shows the required number of 80-bits strings for different
PUF accuracies to find a match with a probability of at
least 50%. This figure can be used to roughly determine
the needed model accuracy that needs to be achieved using
the power side-channel attack so that in a second step a
CMA-ES based on string matches can be performed. For
example, with an accuracy of 90% only about 10k traces
are needed to find a string match.

We tested this two-step approach by adding noise to
the power measurement equivalent to a million random
switching registers and the first step based on the power

Noise Registers Challenges Traces Accuracy
100 30,000 375 97

1,000 50,000 625 95
10,000 150,000 1,875 93
100,000 1,000,000 12,500 93.6

1,000,000 10,000,000 125,000 88.2

TABLE II
Required number of challenges for different noise levels

to achieve an accuracy large enough to find a string match
with an 80-Bit HD power model. With such a string match a

second machine learning algorithm achieved accuracies
beyond 99%.

Noise Registers Challenges Traces Accuracy
100 80,000 1,000 89
500 450,000 5,625 90

1,000 750,000 9,375 89
5,000 4,000,000 50,000 87
10,000 7,500,000 93,750 88

TABLE III
Required number of challenges for different noise levels

to achieve an accuracy large enough to find a string match
with a 1-Bit HW power model. With such a string match a

second machine learning algorithm achieved accuracies
beyond 99%.

consumption achieved a model accuracy of 88%, which
was enough to launch a second machine learning attack
based on string matches. This second attack then was
able to model the PUF with an accuracy of 99.99%. For
this attack 10 million challenges, for which only 128k
measurements are needed, were used. Table II gives an
overview of the required number of traces for different
noise levels so that at least one string match is found. In
each case it was then possible to achieve accuracies beyond
99% with the second machine learning attack. Table III
shows the same analysis for the 1-bit HW power model.
These noise levels are very large while the required number
of traces are comparably small for a side-channel attack
(see Table]I for comparison). Hence, it is reasonable to
say that power side-channel attacks on controlled PUFs
are successful even in the presence of considerable noise.

IV. Attacking other PUF designs
The main goal of this paper is to show that Arbiter-

PUFs are indeed vulnerable to side-channel attacks. To
do this, we used controlled PUFs as our main motiva-
tion example. Nevertheless, the same or similar methods
can be applied to other constructs that rely on Arbiter-
PUFs as a building block. For example, this attack is
directly transferable to the PUF protocol proposed by
van Herrewege et.al. [9]. In this protocol individual PUF
responses are generated and then applied to a reverse fuzzy
extractor to build a mutual authentication protocol. The
only difference from an attacker’s perspective is that the
individual response bits are not applied to a hash function
but to a reverse fuzzy extractor. Therefore, the attack can
directly be applied to the reverse fuzzy extractor PUF
protocol.

To a certain degree the attack can also be applied to the

10

Lightweight PUFs proposed in [14] and with large draw-
backs to XOR-Arbiter PUFs [13]. In these PUF designs k
individual Arbiter PUFs are present and then combined
with each other using XORs. If the responses from the
individual PUFs are stored in a register before they are
combined, we can again use a hamming-distance power
model. However, if the outputs of the Arbiters are directly
combined through combinatorial logic the power model
changes. How exactly needs to be evaluated, but it is likely
that the power model follows a Hamming Weight model,
mainly due to glitches.

The biggest difference between Lightweight PUFs and
XOR-Arbiter PUFs from an power side-channel attack
perspective is that in the Lighweight PUFs each of the
k Arbiter PUF gets a different challenge. This allows a
divide-and-conquer approach to attack the Lightweight
PUF. We can attack each PUF individually and consider
the responses of the other PUFs as noise. Due to its high
noise resistance, it should therefore be possible to attack
Lighweight PUFs using CCMA-ES. Increasing the number
k of used PUF instances only has a small impact on the
number of needed traces since we attack one PUF at a
time.

However, this divide-and-conquer approach cannot be
used for an XOR-Arbiter PUF, since every PUF instance
gets the same challenge.When an attacker wants to attack
a single PUF from an XOR-Arbiter PUF with n XORs,
the responses of the other k − 1 PUFs cannot be seen
as independent noise. All n PUFs get the same challenge
and hence the n responses are all related to each other.
Hence, one needs to model all n PUF instances at the
same time and therefore the attack complexity grows
considerably when n is increased. The optimal strategy
to attack XOR-Arbiter PUFs using a power side-channel
attack is therefore an interesting research problem.

V. Fault Attack on Arbiter PUFs
So far we have seen that Arbiter PUFs are vulnerable to

passive side-channel attacks. In this section we will take
a closer look at their resistance against active attacks. It
was often assumed that the fact that the PUF changes its
behavior if it is being tampered with increases the security
of PUFs against implementation attacks. However, in this
Section we will see that the unreliability information can
instead be used to successfully model a PUF.

A. Impact of Noise and Environmental Conditions on
Arbiter PUFs

Arbiter PUFs have a problem with unreliability in
practice, which means that the same challenge does not
always generate the same response. There are two sources
that can cause an Arbiter PUF to change its response bit:
thermal noise and changes in environmental conditions.
Thermal noise adds approximately Gaussian noise to the
delay value of each individual execution of the PUF. If the
delay difference between the top and bottom signal is small
for a given challenge, this noise can switch the response bit

by changing a previously positive delay difference into a
negative delay difference and vise versa. The closer the
delay difference is to zero, the more likely it is that the
response bit changes.

The second reason why a response bit might flip is due to
changes in the environment. For example, it is well known
that changing the supply voltage or operation temperature
changes the propagation delay and rise and fall time of a
CMOS transistor. The magnitude of this change depends
directly on the transistor sizing as well as the process
variations. Hence, the Arbiter PUF behaves differently
at different supply voltages. For each challenge the delay
difference will either increase or decrease when the supply
voltage is reduced. The amount of the increase or decrease
depends on the PUF instance as well as the challenge.

This has some interesting implications. First of all, the
attack by Delvaux et.al. [6] does not work with environ-
mental noise in the same way as it does with thermal
noise. The added delay is not a Gaussian random variable
but a deterministic function of the supply voltage (or
other environmental conditions) whose slope depends on
the PUF instance as well as the challenge. Since the
slope of the function is different for each challenge, two
challenges that have the same delay difference might be-
have differently when the supply voltage is altered. One
challenge might flip while the other does not. Nevertheless,
if the delay difference is close to 0 it is much more likely
that the response bit flips than if the absolute delay
difference is large. In Figure 11 the delay differences for
an 128-bit Arbiter PUF is shown. The delay difference is
approximately Gaussian and ranges between -150ps and
+150ps. When the supply voltage was altered from the
nominal voltage of 1.1V to 1V and 1.2V roughly 6% of
the response bits flipped. In Figure 11 the delay difference
of the challenges that flipped are depicted in black. Only
traces that were close to zero (between -12ps and +13
ps) flipped. The distribution of the delay difference of the
flipped traces is again approximately Gaussian and the
closer to zero the more likely that the response flipped.
However, while a trace who’s absolute delay difference was
larger than 13ps never flipped, a lot of traces whose delay
difference were less than 13ps did not flip. Hence, it is not
possible to directly read out the delay difference from the
information when a challenge flips. But we still get enough
information to reliably model the PUF as we will see in
the following.

For the controlled PUF design from Section II-C to be
useful an Arbiter PUF with a high reliability is needed.
Ideally, the PUF should be resistant to thermal noise and
changes in the environmental conditions. However, this
is very difficult to achieve for all possible environmental
conditions. Therefore, it is much more likely that the PUF
will be designed to be reliable under normal operation
conditions as defined in the specifications. For example,
techniques such as the one described in [5] can help
to counteract changes in temperature or supply voltage.
Usually, these techniques are optimized for a small range
of operating conditions and will not work outside the spec-

11

Fig. 11. The delay difference in pico seconds between the top and
bottom signal after the last stage for 49k traces. Colored in blue are
the delay differences of all traces and in black are the delay differences
for the traces whose output flipped when the supply voltage was
changed from 1.1V to 1V and 1.2V.

ification of the device. Furthermore, it is likely that the
controlled PUF will depend on a stable voltage source or
that the protocol allows to collect challenges and responses
for different working conditions. Hence, even if a controlled
PUF might be very reliable under normal working con-
ditions, it is reasonable to assume that an attacker with
access to the device can alter the environmental conditions
to make the PUF unreliable. In particular, it is likely that
an attacker with physical access to the PUF is able to
apply a supply voltage that is outside of the specifications.

In the following, we will again assume that a controlled
PUF design as described in Section II-C is used. We
furthermore assume that the attacker can alter the voltage
supply in a way that the chip is still functioning but some
PUF responses will flip. The advantage of changing the
supply voltage compared to e.g. changing the temperature
is that it can be done easily in a fast and automatic
fashion. It is possible to build a set-up that will alter the
supply voltage of the chip for only a few clock cycles.
This has the advantage that only one or a few sub-
challenges of the controlled PUF design will be subject to
the altered supply voltage. Other environmental changes,
e.g. generating a strong magnetic field might have the same
or similar effects. What kind of faults are feasible and
effective besides voltage manipulations is an interesting
future research direction. Basically any change to the PUF
that can be applied to a single sub-challenge (or few sub-
challenges) and that changes the delay difference so that
only a subset of response bits flip can be used for our fault
attack.

We performed Monte Carlo simulations using HSpice for
an 128-bit Arbiter PUF in 45nm technology with a nomi-
nal voltage of 1.1V and with 1V and 1.2V and compared
the response bits to determine which responses flipped
when the voltage was altered. It turns out that when
reducing the voltage from 1.1V to 1V only 1.9% of the
responses flipped while increasing the voltage from 1.1V
to 1.2V resulted in 4.5% of flipped bits. One reason why
increasing the voltage had larger effects on the responses
is that the standard cells we used were optimized for usage

of 1.1V and 1V but not for 1.2V2. In total 6% of the
challenges flipped and only 0.4% of the challenges flipped
for both a voltage reduction as well as voltage increase. In
the following, data from these simulations are used to test
our fault attack.

B. Combined Machine Learning Fault Attack
The same CMA-ES machine learning method as in the

hybrid power side-channel and machine learning attack
is used for the combined machine learning fault attack.
Recall that it is necessary to be able to distinguish
PUF models that have a high model accuracy from PUF
models with a low model accuracy for an ES machine
learning attack to work. In Section III-B this was done
using the power side-channel. Instead, in this attack the
reliability information of the PUF under supply voltage
manipulations is used to judge the PUF models. The basic
idea is to take measurements of the same challenges with
different supply voltages and check for which challenges
the response changed. If the response bit for challenge i
flipped we assign Fi = 1 otherwise Fi = 0. From Figure 11
we know that if a response bit flipped it is very likely that
the corresponding delay difference was close to zero i.e.
|∆D| < τ . To test a PUF model we compute the delay
difference ∆D̂i for each challenge i and assign:

F̂i =
{

1 if |∆D̂i| < τ̂

0 if |∆D̂i| > τ̂

One way to check the fitness of the PUF model is to
compare the hypothesis vector F̂ with the measured vector
F by counting how often the two vectors are equal, i.e.,∑
|Fi − F̂i| . Intuitively, the correct PUF model should

have the smallest difference between the two vectors.
However, using the number of mismatches is not very good
to measure the fitness of the PUF instances. The number
of flipped bits is relatively small and as seen in Figure 11,
and not all bits flip if |∆D| < τ . Hence, even for the
correct PUF model there is a mismatch between F and
F̂ , i.e.

∑
|Fi − F̂i| > 0. A PUF model that results in

a vector F̂i = 0 for all i might therefore have a smaller
mismatch between F̂ and F than a PUF model with
a high model accuracy. Therefore, using the number of
mismatches as the fitness test does not work in practice.
Using the correlation coefficient between F and F̂ on
the other hand works very well. Hence, the correlation
coefficient is used again to determine the fitness of the
PUF models. Compared to the CMA-ES based on power
side-channels, the fault based CMA-ES needs to model
the parameter τ in addition to the n+ 1 delay values. But
otherwise there is not much difference between the two
attacks.

Figure 12 shows the result of the fault CMA-ES with 8k
traces and +/- 0.1V supply voltage variation. The attack
can model the PUF reliably with an accuracy of 97.7%.

2Note that this can also be due to the fact that the HSpice
simulations are more accurate the closer you simulate to the nominal
operation conditions.

12

Fig. 12. The result of 100 runs of the CMA-ES Fault attack with
8k traces and +/− 0.1V supply voltage variation without additional
noise. On the left the accuracy of the resulting PUF models are
shown. On the right side the number of 80-bit strings that were
correctly predicted by the PUF models are shown.

Fig. 13. The result of 100 runs of the CMA-ES Fault attack with
45k traces and +/− 0.1V supply voltage variation with 20% faulty
responses.

From 100 runs 56 runs achieved an accuracy of at least
97%. These results represent an ideal case without any
noise. However, when performing this attack in practice
there might be measurement errors in the fault trace F .
In the controlled PUF case we assume that we can alter
the operating conditions for only a single sub-challenge
while keeping the operating conditions constant for the
other 79 sub-challenges. Since the 80 response bits are
fed through a hash function we can see if at least one
response bit flipped by checking if the hash value changed.
But since a hash function is used, it is not possible to
determine which response bit has changed or how many.
It can therefore happen that a response bit flip is detected
although it actually corresponds to a flip in one of the
79 sub-challenges that are not targeted. We call this case
a “false positive” since Fi is set to one although no flip
actually happened for the targeted challenge.

Besides a “false positive” there could also be a “false
negative” in which a response bit that is supposed to flip
does not flip, e.g. because the fault setup did not work
correctly. It is likely that the closer |∆D| is to zero the
more unlikely it is that a false negative happens for this
challenge. False negatives as well as false positives can be
reduced by repeating the measurement several times. It
could also happen that the targeted challenge flips due
to noise instead of the voltage alteration. However, if a
challenge flips due to noise it is likely that the delay
difference is close to zero as well. Hence, whether the
response flips due to noise or voltage alteration does not
matter.

C. Results
We tested how the attack works in the presence of

these noise sources. We randomly changed 20% of the

bits of F which represents a false positive rate of 20%
and a false negative rate of 20%3. Figure 13 shows the
result of a CMA-ES attack with 45k challenges with 20%
overall noise. The attack still works and achieves the same
accuracy as the noiseless case. However, the number of
challenges needed to attack the PUF increased from 8k
challenges to 45k challenges and more runs do not converge
than in the noise-free case. Nevertheless, the number of
challenges is still fairly low considering the rather large
amount of noise added. Figure 14 shows the success of the
attack with different noise levels and different numbers of
challenges.

Fig. 14. Result of a Fault CMA-ES attack with 200 independent
runs for different levels of overall-noise and for different numbers of
challenges. On the left the highest achieved model accuracy is shown
while the right figure shows the number of runs that had at least one
string match.

As can be seen, the attack still works in the presence
of considerable noise. Hence, fault attacks on controlled
PUFs based on Arbiter PUFs are feasible. The presumed
strength, that tampering with the PUF results in different
responses, turns out to actually be a security vulnerability.
One can therefore no longer state that Arbiter PUFs are
more resistant to implementation and probing attacks
than traditional cryptography.

D. Error Correction and Fault attacks
So far we have assumed that the used Arbiter-PUF is

reliable enough that no error correction is needed. Current
PUF design however are not reliable enough to be used
without error correction. Therefore in many controlled
PUF designs error correction codes are used to correct
errors before the response bits are fed into the hash
functions. In this case the described fault attack does not
work, since the introduced error would be corrected again.
However, if error correction is used, the controlled PUF
does not only get a challenge c but also helper data h.
This helper data is used to correct the response r before
it is applied to the hash function. Error correction codes
can correct up to d errors in the response. If there are more
than d errors, the error correction fails.
To be able to perform a fault attack on a controlled

PUF that uses error correction, the attacker therefore
needs to manipulate h, so that an error at the targeted
response bit does not get corrected. So an attacker needs
to send a manipulated helper data h′ instead of h that
does not correct the introduced error. How easy it is to

3Since we change the bits independent of |∆D| this can be seen as
a worst case scenario.

13

send such manipulated helper data h′ strongly depends
on the used error correction and it is likely that the false-
negative rate increases for such an attack. Furthermore,
h′ needs to be determined for every challenge. Hence, the
attack complexity increases and much more challenge and
responses need to be exchanged.

Hence, error correction increases the complexity of
the attack but does not necessarily prevent the attack.
Studying fault attacks in the presence of different error
correction codes is therefore an interesting future research
direction.

VI. Conclusion and implications of
Side-Channel Attacks on Arbiter PUFs

The results presented in this paper show that — unlike
often believed — Arbiter PUFs are not necessarily more re-
sistant against side-channel attacks than traditional cryp-
tographic algorithms. By combining side-channel analysis
with machine learning techniques it is possible to attack
controlled PUFs reliably even in the presence of consider-
able noise. This hybrid side-channel and machine learning
approach works with passive power side-channels as well
as with active fault attacks. Hence, controlled Arbiter
PUFs are vulnerable to both active as well as passive
side-channel attacks. It is therefore very important to
also consider side-channel attacks when evaluating PUFs
and protocols based on PUFs. Even designs that from a
theoretical perspective would be secure against machine
learning attacks are not necessarily secure once they are
implemented. Which PUF structures and protocols are
more resistant against side-channel attacks and how ef-
ficient side-channel countermeasures for PUFs look like is
therefore an interesting new research area.

References
[1] L. Batina, B. Gierlichs, and K. Lemke-Rust. Comparative

evaluation of rank correlation based dpa on an aes prototype
chip. In Information Security, volume 5222 of Lecture Notes in
Computer Science, pages 341–354. Springer Berlin Heidelberg,
2008.

[2] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers. The simon and speck families of lightweight
block ciphers. Cryptology ePrint Archive, Report 2013/404,
2013. http://eprint.iacr.org/.

[3] G. T. Becker. Intentional and unintentional side-channels in em-
bedded systems. PhD Dissertation, University of Massachusetts
Amherst, February 2014.

[4] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar,
A. Poschmann, M. J. Robshaw, Y. Seurin, and C. Vikkelsoe.
Present: An ultra-lightweight block cipher. In Cryptographic
Hardware and Embedded Systems-CHES 2007, pages 450–466.
Springer, 2007.

[5] A. Cortez, V. van der Leest, R. Maes, G. Schrijen, and S. Ham-
dioui. Adapting voltage ramp-up time for temperature noise
reduction on memory-based pufs. In IEEE International Sympo-
sium on Hardware-Oriented Security and Trust (HOST 2013),
pages 35–40, 2013.

[6] J. Delvaux and I. Verbauwhede. Side channel modeling attacks
on 65nm arbiter pufs exploiting cmos device noise. In 6th IEEE
International Symposium on Hardware-Oriented Security and
Trust (HOST 2013), June 2013.

[7] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas. Controlled
physical random functions. In Computer Security Applications
Conference, 2002. Proceedings. 18th Annual, pages 149–160,
2002.

[8] N. Hansen. The cma evolution strategy: A comparing review. In
Towards a New Evolutionary Computation, volume 192 of Stud-
ies in Fuzziness and Soft Computing, pages 75–102. Springer
Berlin Heidelberg, 2006.

[9] A. Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R.
Sadeghi, I. Verbauwhede, and C. Wachsmann. Reverse fuzzy
extractors: Enabling lightweight mutual authentication for puf-
enabled rfids. In A. Keromytis, editor, Financial Cryptography
and Data Security, volume 7397 of Lecture Notes in Computer
Science, pages 374–389. Springer Berlin Heidelberg, 2012.

[10] Y. Hori, T. Katashita, A. Sasaki, and A. Satoh. Sasebo-giii:
A hardware security evaluation board equipped with a 28-nm
fpga. In Consumer Electronics (GCCE), 2012 IEEE 1st Global
Conference on, pages 657–660. IEEE, 2012.

[11] G. Hospodar, R. Maes, and I. Verbauwhede. Machine learning
attacks on 65nm arbiter pufs: Accurate modeling poses strict
bounds on usability. In IEEE International Workshop on In-
formation Forensics and Security (WIFS), pages 37–42. IEEE,
2012.

[12] D. Karakoyunlu and B. Sunar. Differential template attacks on
puf enabled cryptographic devices. In Information Forensics
and Security (WIFS), 2010 IEEE International Workshop on,
pages 1–6. IEEE, 2010.

[13] D. Lim. Extracting secret keys from integrated circuits. Master’s
thesis, Massachusetts Institute of Technology, USA, May 2004.

[14] M. Majzoobi, F. Koushanfar, and M. Potkonjak. Lightweight
secure pufs. In Proceedings of the 2008 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, pages 670–673.
IEEE Press, 2008.

[15] D. Merli, J. Heyszl, B. Heinz, D. Schuster, F. Stumpf, and
G. Sigl. Localized electromagnetic analysis of ro pufs. In
Hardware-Oriented Security and Trust (HOST), 2013 IEEE
International Symposium on, pages 19–24, 2013.

[16] D. Merli, D. Schuster, F. Stumpf, and G. Sigl. Side-channel anal-
ysis of pufs and fuzzy extractors. In J. McCune, B. Balacheff,
A. Perrig, A.-R. Sadeghi, A. Sasse, and Y. Beres, editors, Trust
and Trustworthy Computing, volume 6740 of Lecture Notes in
Computer Science, pages 33–47. Springer Berlin Heidelberg,
2011.

[17] A. Moradi, M. Kasper, and C. Paar. Black-box side-channel
attacks highlight the importance of countermeasures — an
analysis of the xilinx virtex-4 and virtex-5 bitstream encryp-
tion mechanism. In Topics in Cryptology Ű– CT-RSA 2012,
volume 7178 of Lecture Notes in Computer Science, pages 1–18.
Springer Berlin Heidelberg, 2012.

[18] D. Oswald. Implementation attacks: From theory to
pratice. Dissertation, Ruhr-Universität Bochum, Septem-
ber 2013. http://www.emsec.rub.de/media/attachments/files/
2013/10/diss_david_oswald_2.pdf.

[19] D. Oswald and C. Paar. Breaking Mifare DESFire MF3ICD40:
Power analysis and templates in the real world. In Cryptographic
Hardware and Embedded Systems (CHES), Lecture Notes in
Computer Science, pages 207–222, 2011.

[20] U. Rührmair and M. van Dijk. Pufs in security protocols:
Attack models and security evaluations. In IEEE Symposium
on Security and Privacy 2013 (SP 2013), 2013.

[21] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber. Modeling attacks on physical unclonable func-
tions. In Proceedings of the 17th ACM conference on Computer
and communications security, CCS ’10, pages 237–249, New
York, NY, USA, 2010. ACM.

[22] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, F. Koushanfar,
and W. Burleson. Power and timing side channels for pufs and
their efficient exploitation. Cryptology ePrint Archive, Report
2013/851, 2013. http://eprint.iacr.org/.

[23] F.-X. Standaert, E. Peeters, C. Archambeau, and J.-J.
Quisquater. Towards security limits in side-channel attacks. In
Cryptographic Hardware and Embedded Systems - CHES 2006,
volume 4249 of Lecture Notes in Computer Science, pages 30–
45. Springer Berlin Heidelberg, 2006.

14

Appendix A
Computing the corresponding noise level for a

given correlation coefficient
The Pearson correlation coefficient is used to test the

linear relation between two signals, in the case of a CPA
the measured power values ~x and some computed hypo-
thetical power values ~h:

p = cov(~h, ~x)√
var(~h)var(~x)

with var indicating the sample variance and con the
sample covariance. The correlation coefficient is directly
related to signal-to-noise ratio of the measured signal.
This makes comparing different attacks and measurement
setups easy. Assuming an approximately with a Gaussian
noise distribution N (µN , σ

2
N)[23], the power consumption

follows a random variable X with X = H + N (µN , σ
2
N),

where H is the random variable of the assumed power
model. In this specific case the correlation coefficient can
be written as:

p = cov(H,H +N (µN , σ
2
N))√

var(H)var(H +N (µN , σ2
N)

= cov(H,H) + cov(H,N (µN , σ
2
N))√

var(H)2 + var(H)var(N (µN , σ2
N))

= var(H)√
var(H)2 + var(H)σ2

N

Hence, it is possible to compute the expected correlation
coefficient for a given noise distribution N (µN , σ

2
N) and

power model H. Similarly, it is also possible to derive the
noise level given the measured correlation coefficients and
the used power model H.

