
Resilient Aggregation in Simple Linear Sensor Networks

Kevin J. Henry · Douglas R. Stinson

Abstract A sensor network is a network comprised of many small, wireless, resource-
limited nodes that sense data about their environment and report readings to a base
station. One technique to conserve power in a sensor network is to aggregate sensor read-
ings hop-by-hop as they travel towards a base station, thereby reducing the total number
of messages required to collect each sensor reading. In an adversarial setting, the ability of
a malicious node to alter this aggregate total must be limited. We present three aggrega-
tion protocols inspired by three natural key pre-distribution schemes for linear networks.
Assuming no more than k consecutive nodes are malicious, each of these protocols limits
the capability of a malicious node to altering the aggregate total by at most a single valid
sensor reading. Additionally, our protocols are able to detect malicious behavior as it oc-
curs, allowing the protocol to be aborted early, thereby conserving energy in the remaining
nodes. A rigorous proof of security is also given for each protocol.

Keywords wireless sensor network · resilient aggregation · linear network · key
pre-distribution

1 Introduction

A wireless sensor network is an ad-hoc network comprised of many computationally limited
wireless sensor nodes whose job is to collect readings about their environment. These
readings are periodically forwarded to one or more sinks or base stations, which are often
assumed to be far more powerful than a typical sensor node. The severe resource constrains
on sensor nodes makes many cryptographic tools, such as public-key cryptography, too
expensive to rely on in many settings. Thus, protocols that rely solely on symmetric-key
schemes are often preferable.

Martin and Paterson [17] have provided a framework which summarizes the various
types of sensor networks, motivated by how symmetric keys are distributed among nodes.
Their framework separates nodes into categories based on the expected topology of the
network, the capabilities of the individual nodes, and what the expected patterns of com-
munication are within the network. One important distinction is a homogeneous sensor
network, where all nodes are identical, versus a hierarchical network, where there are
nodes of varying capability. Hierarchical networks provide a natural tree structure with
the capabilities of individual nodes increasing when moving from a leaf towards the root.

Cheriton School of Computer Science
University of Waterloo
Waterloo, Ontario, Canada
Tel.: +1-519-888-4567
E-mail: {k2henry,dstinson}@uwaterloo.ca

2 Kevin J. Henry, Douglas R. Stinson

In this paper we consider the problem of increasing network efficiency by aggregating
sensor readings on a hop-by-hop basis for a special class of sensor networks, known as
linear sensor networks, in the presence of an active adversary. As the name implies, a
linear network topology contains many sensor nodes arranged along a straight line. This
matches many natural deployment models for sensor networks, such the monitoring of
subway tunnels, pipelines, or perimeter monitoring. Although several solutions have been
proposed for secure aggregation in sensor networks, most of them assume a high node
density or a hierarchical node structure, and are therefore poorly suited to linear networks.

Our goal is to investigate what assumptions are necessary to achieve resilient aggrega-
tion in linear sensor networks in the presence of an active adversary for a variety of linear
network settings. Protocols for three different settings are given, based on three different
symmetric key pre-distribution schemes. Each of these protocols limits the capability of
an adversary to providing a single valid reading to an aggregate total, or terminates early
upon detection of a maliciously modified reading.

1.1 Linear Sensor Networks

Linear networks are a natural deployment model for sensor networks. Applications such
as pipeline, subway, border, or perimeter monitoring are inherently linear. Jawhar and
Mohamed [14] give a classification of linear sensor networks that focuses on the topology
of the network (thin, thick, or very thick), as well as a hierarchical classification of nodes
according to capability and role within the network.

The simplest linear network is a thin / one-level network of uniformly distributed
identical sensor nodes deployed along a straight line. Such a network may also be referred
to as a simple linear network or a one-dimensional network.

Definition 1 A simple linear network is a connected non-cyclic graph where each node
has exactly one neighbor, or two distinct neighbors. The two nodes with only one neighbor
are referred to as the endpoints of the network.

Although the physical arrangement of nodes is linear, the fact that nodes communicate
wirelessly means that a node may be able to communicate with more than just its direct
neighbors in the physical network. Thus, the communication graph may have additional
edges not present in the physical network graph.

Definition 2 A (N, d)-linear network is a linear network containing N nodes, each able
to communicate with nodes up to d hops away. The nodes of such a network are denoted by
n1, n2, . . . , nN where nodes n1 and nN are the endpoints, and node ni is located between
nodes ni−1 and ni+1 for 1 < i < N .

Fig. 1 An (8, 2)-linear sensor network. The left diagram shows the physical layout of the network
along with dotted circles denoting the communication range of each node. The right diagram shows the
communication graph for the same network

Fig. 1 shows an example of an (8, 2)-linear network.
We refer to nodes that are directly adjacent to each other as neighbors, and neighbors

at distance d if there are d− 1 nodes in between them.
In terms of the framework given in [17], a simple linear network is:

Resilient Aggregation in Simple Linear Sensor Networks 3

– Homogeneous - All nodes that are not endpoints are identical.
– Fixed - Nodes are not mobile.
– Full control - Given the sequential deployment nature of linear networks, it is reasonable

to assume that the order nodes are deployed in is fully controlled.

These properties, in particular, the high degree of control over the deployment of nodes,
allow for the use of very efficient key pre-distribution schemes to facilitate secure commu-
nication.

An important factor that distinguishes linear sensor networks from more general net-
works is the expected difference in node density. In general, sensor networks are modeled
as nodes deployed on a flat plane, with each node having a given communication radius.
Because linear networks are one-dimensional, it is expected that far fewer nodes will be
located within any given node’s communication range. In the extreme case, each node in
a linear network may at most two neighbors within its communication range.

Although the linear problem setting differs from that of most general networks, linear
sub-networks are often utilized in general networks, such as simply routing a single mes-
sage between two nodes. Therefore, depending on the specific setting, protocols for linear
networks can serve as building blocks for protocols in more general settings.

1.2 Aggregation

In general, the job of each sensor node is to collect and forward sensor readings to a
base station. However, transmitting a message is extremely expensive in terms of energy
use. In settings where an aggregate reading (e.g. the sum of all the individual readings
of the nodes) is sufficient, an aggregation protocol can be used to collect aggregate sensor
readings using significantly less network communication than if each node reported their
results individually. At the most basic level, such protocols involve passing an aggregate
sum hop-by-hop toward one of the endpoints of the network, with each node adding its
individual reading into the aggregate sum before passing it on.

In an adversarial setting, a malicious node may:

– Report an invalid sensor reading.
– Arbitrarily alter the aggregate total.
– Deviate from the aggregation protocol (i.e., refuse to forward messages).

Our goal is to construct a secure aggregation protocol in which a malicious node can
modify the aggregate total by at most a single valid sensor reading. That is, any attempt to
otherwise alter the aggregate total can be detected by other nearby nodes. Note that unless
additional assumptions are made about the distribution of nodes or the environment, such
as the property that any given reading will be sensed and reported by at least two nodes,
it is impossible to force a malicious node to report its true reading, as opposed to a valid
possible reading.

Secure aggregation protocols that are concerned only with the integrity of the aggregate
total are often referred to as resilient data aggregation protocols [25]. In some settings it
may be desirable to not only ensure the integrity of the aggregate total, but also the secrecy
of the aggregate total and of each individual node’s sensor readings. Such aggregation
protocols are referred to as concealed data aggregation protocols (CDA) [10] or private
data aggregation protocols (PDA) [11] depending on the aggregation topology and the
privacy goals of the protocol [6].

Like other sensor network topologies, a linear sensor network usually contains one or
more distinguished nodes, known as base stations. A base station is often assumed to have
more power and greater computational and communication abilities than a regular sensor
node, and in the linear setting the base station will generally be one or both endpoints
of the network. Our protocols will assume a single base station at one endpoint of the
network.

4 Kevin J. Henry, Douglas R. Stinson

1.3 Related Work

The general problem of aggregation in ad-hoc networks and sensor networks without any
security considerations has been well studied. Fasolo et al. [8] provide a good survey of
existing approaches. In terms of secure aggregation, protocols can generally be categorized
into resilient, concealed, and private protocols.

Wagner [25] formally investigated which aggregation functions are possible to securely
compute, demonstrating that in some settings even simple aggregate functions, such as the
sum or average, are insecure without certain assumptions in place. More recently. Manulis
and Schwenk [16] have provided a formal security model and framework for resilient ag-
gregation, alongside a protocol that is secure in their model. Other examples of resilient
aggregation protocols include SIA by Przydatek et al. [21] and improvements in [9], as
well as protocols by Roy et al. [24] and Hu and Evans [13]. Each of these protocols relies
on a hierarchical aggregation topology, and are therefore unsuited to a linear setting. We
do note that one of our protocols is similar in structure to the approach in [13]; however,
our assumptions about key pre-distribution and the means by which we achieve security
are completely different. Other approaches to providing resilient aggregation include [4],
which is based on detecting statistical anomalies with the assumption that nearby nodes
are likely to have correlated readings, and [15], which provides multiple homomorphic
MAC constructions based on both symmetric-key and public-key approaches.

Chan and Castelluccia [6] provide a formal security framework for concealed and pri-
vate aggregation. Peter et al. [20] provides a survey of concealed data aggregation pro-
tocols, while Bista and Chang [3] provide a survey of private data aggregation protocols
separated into three categories: perturbation-based, shuffling-based, and homomorphism-
based. Perturbation-based approaches work by scrambling individual sensor readings be-
fore sending them to an aggregator who is able to recover the aggregate, but not individual
readings. Examples of such approaches include CPDA [11] and PRDA [19]. Shuffling-based
approaches break individual sensor readings into multiple pieces that are sent to multi-
ple destinations. Examples include SMART [11] and improvements on it [26], and iPDA
[12], with the latter also focusing on integrity/resiliency as well. Homomorphism-based ap-
proaches utilize homomorphic cryptosystems to allow the aggregation of encrypted data.
Examples include Girao et al. [10], Armknecht et al. [1], and Castelluccia et al. [5].

1.4 Our Contributions

Although the problem of secure aggregation is well-studied, most approaches are hierar-
chical in nature, with each node forwarding readings to an aggregator node higher up
in the tree. Non-tree based approaches generally rely on nodes to collaboratively select
a clusterhead that performs aggregation for all other nearby nodes. The nature of linear
networks makes these general approaches less useful, as traffic naturally flows in one direc-
tion towards the base station, and nodes are not expected to have very many neighbors.
In some cases, such as the protocol presented in Sect. 3, nodes are only capable of com-
munication with their two direct neighbors in the network. Hierarchical or cluster-based
approaches provide no benefit in this setting. In general, by exploiting precise knowledge
about both the topology and distribution of cryptographic keys, we are able to construct
resilient aggregation protocols for simple linear networks that are both efficient, and allow
the detection of malicious nodes locally within the network.

We present three protocols for resilient data aggregation built specifically for simple
linear sensor networks, inspired by three natural key pre-distribution protocols for linear
networks, as described in the next section. Although two of our protocols are similar to
the approach in [13], we exploit the higher degree of control over key distribution in sensor
networks to detect malicious node behavior as it occurs, rather than during a separate
verification phase after the main protocol is finished. This allows the remaining nodes in

Resilient Aggregation in Simple Linear Sensor Networks 5

(a) Optimal (N, r)-KPS

(b) Pairwise (N, r)-KPS

(c) Group-based (N, r)-KPS

Fig. 2 Optimal and pairwise KPS for a (10, 3)-linear network, and group-based KPS for a (10, 2)-linear
network. In (a) and (b), shared keys are denoted by a link between two nodes, whereas in (c) each circled
group of nodes possess a unique key

the network to conserve energy instead of completing the aggregation protocol. Complete
formal proofs of correctness are provided for each protocol.

2 Preliminaries

2.1 Key Pre-Distribution

It is common practice in sensor networks to ensure that two nodes communicate only if
they possess or can establish a shared key. To facilitate secure communication, nodes are
pre-loaded with cryptographic keys using a key pre-distribution scheme (KPS). Although
key pre-distribution schemes are well studied for a variety of sensor network settings, the
simplicity of a (N, d)-linear sensor network (e.g., fixed, full-control) lends itself well to
three specific key pre-distribution schemes:

1. Optimal (N, r)-KPS - Each node shares a pairwise key with nodes at distance 1 and
distance r.

2. Pairwise (N, r)-KPS - Each node shares a distinct key with each neighbor at distance
j, for 1 ≤ j ≤ r.

3. Group-based (N, r)-KPS - Each consecutive subset of r + 1 nodes shares a distinct
group key.

The optimal scheme (item 1 in the above list) was introduced by Martin and Paterson
[18], and it is optimal with respect to the number of keys necessary to maintain secure
connectivity in a network when d = r and up to r−1 nodes are unavailable. If r consecutive
nodes are unavailable, then the network becomes disconnected regardless of the underlying
KPS. Additionally, each key in the optimal scheme is possessed by exactly two nodes, thus
minimizing the number of nodes affected by the compromise of any given key.

The above schemes can be combined, for example, by issuing both pairwise keys and
group keys to nodes. Additionally, these basic schemes may be augmented with additional
specialized keys, such as each node sharing a unique pairwise key with a base station. In
most settings, it is natural to choose r = d, although depending on the network setting and
requirements, the value of r used for key pre-distrubtion need not match the maximum
communication range d of the network.

2.2 Problem Setting

Our goal is to establish resilient data aggregation protocols for linear networks under
pairwise, group-based, and optimal key pre-distribution. We assume that aggregation be-
gins at one endpoint of the network and propagates toward a base station at the other
endpoint, with each node ni contributing a single reading ri from a pre-specified set of
possible readings R = {0, 1, . . . , R − 1}. A reading ri ∈ R will be referred to as a valid
sensor reading, while a reading not in the set R is invalid.

6 Kevin J. Henry, Douglas R. Stinson

Definition 3 Let N = {n1, n2, . . . , nN} be a (N, d)-linear network, let M ⊆ N be the
set of malicious nodes in N , and let

T =
N∑
i=1

ri

be the actual correct aggregate total of all readings in N . An aggregation protocol is secure
if it either outputs an aggregate total T ′ such that∣∣T − T ′

∣∣ ≤ |M|(R− 1),

or identifies the presence of one or more malicious nodes.

Definition 3 states that an aggregation protocol is secure if each malicious node can
modify the aggregate total by at most a single valid sensor reading. That is, a malicious
node can lie about its own reading, but cannot otherwise alter another honest node’s
reading within the aggregate total. Should the adversary modify the aggregate total by
more than a single valid sensor reading, then the base station will be alerted to this fact.

Our model is identical to that of Chan, Perrig, and Song [7], who introduced the
notion of a direct data injection attack, as an attack where a malicious entity controlling
one or more nodes may submit a false reading for each node that it controls, with the
constraint that false readings must be valid. This leads to the definition of an optimally
secure aggregation protocol as a protocol where the base station will not accept any
maliciously modified aggregate total, except for what can be achieved using a direct data
injection attack.

We assume the presence of an adversary that can eavesdrop on all communication and
that can selectively compromise a subset of nodes, but cannot compromise the base station.
The adversary learns all key information from compromised nodes and may reprogram
or alter the behavior of compromised nodes, but it cannot otherwise alter the physical
capabilities of any node. The goal of an adversary controlling k nodes is to modify the
aggregate total by more than k valid sensor readings without detection. Attacks such as
jamming communication, refusing to participate in the protocol, or other denial-of-service
attacks are outside the scope of our threat model. However, such attacks can be detected
and addressed through other means, such as placing an upper bound on the running time
of the protocol.

3 Secure Aggregation using Optimal KPS

The optimal (N, d)-KPS for (N, d)-linear networks given in [18] specifies that each node
shares unique keys with each neighbor at distance 1 and each neighbor at distance d, for a
total of four keys per node when d > 1, except that nodes less than distance d−1 from an
endpoint possess only two keys. This scheme is optimal with respect to the number of keys
possessed by each node to maintain secure connectivity even if up to d − 1 consecutive
nodes fail. In this section, we present a technique for secure aggregation using a KPS
inspired by the optimal KPS.

As a starting point, consider a (N, 1)-linear network N = {n1, . . . , nN}, where each
node is capable of communication only with nodes at distance 1. This is the most restrictive
case possible, as each node can only speak to its direct neighbors in the network. We
assume that some nodes in N are malicious, but that no more than k consecutive nodes
are malicious. Note that we still allow multiple disjoint sets of up to k consecutive malicious
nodes, as long as there is at least one honest node in between them. In the same way that
the optimal (N, r)-KPS provides resilience against r − 1 node failures by ensuring nodes
distance r apart have a shared key, we can provide resilience during aggregation against
up to k consecutive malicious nodes by ensuring that nodes at distance k+1 have a shared

Resilient Aggregation in Simple Linear Sensor Networks 7

key, even if they are not capable of direct communication. More specifically, although N
is a (N, d)-linear network, we distribute keys using the optimal (N, k + 1)-KPS. That is,
each node shares a distinct key with nodes at distance 1 and nodes at distance k + 1. The
key shared between two nodes ni and nj will be referred to by ki,j where |i − j| = 1 or
k + 1.

3.1 Aggregation when k = 1

To begin, let us consider the case when k = 1, i.e., where no two consecutive nodes in
N are both malicious. In order to prevent a single malicious node, say mi = ni from
contributing an invalid sensor reading, we have node ni−1 tag the aggregate total Xi−1

from the first i− 1 nodes using a message authentication code (MAC) under key ki−1,i+1.
Node ni+1 proceeds if and only it receives from mi the value Xi−1 along with a MAC
to verify it is unaltered, as well as the updated aggregate Xi (or, equivalently, the sensor
reading ri). Thus, ni+1 can verify that both Xi−1 and ri are correct, and, if so, node
ni+1 can correctly compute Xi+1 = Xi−1 + ri + ri+1. Fig. 3 demonstrates this process
in three cases. The first case demonstrates the beginning of the protocol, the second case
demonstrates non-endpoint nodes, and the third cases demonstrates the termination of
the protocol.

The protocol in Fig. 3 is resilient as long as no two malicious nodes are neighbors
within the network, because single malicious nodes are forced to pass their reading, along
with an authenticated aggregate sum from its previous neighbor, on to an honest node.
The honest node verifies the validity of the received reading, adds it into the aggregate
sum, and then forwards the sum, its own reading, and an authentication tag on to the
next node so the process can be repeated. The protocol terminates either when a node
outputs reject, or when the base station nN receives and validates the values XN−2 and
rN−1. The resilience of the protocol is proven in Theorem 1.

Theorem 1 Suppose that the protocol in Fig. 3 is being used for data aggregation, that
node ni is honest, that no two neighbors are both dishonest, and that nodes n1, . . . , ni−1

do not output reject. Then, ni either outputs reject, or node ni correctly computes
Xi =

∑i
j=1 rj where r1, . . . , ri ∈ {0, . . . , R− 1}.

Proof We prove this by strong induction on i, first considering i = 1 as a base case.
If node n1 is honest, then it knows the correct value of r1 = X1, and it can compute
t1,3 = MACk1,3

(X1). If node n1 is dishonest, then node n2 must be honest. Node n2

has knowledge of r2 and receives X1 = r1 directly from n1, with which it can verify
that r1 ∈ {0, . . . , R − 1}. Therefore, node n2 can correctly compute X2 = r1 + r2 and
t2,4 = MACk2,4

(X2).
For the purpose of strong induction, assume that all honest nodes nj for 1 ≤ j ≤ i− 1

can correctly compute

Xj−1 =

j−1∑
l=1

rl,

where rl ∈ {0, . . . , R− 1}, as well as correctly compute tj−1,j+1.
Suppose that node ni−1 is honest, and that node ni−2 is possibly dishonest. Then, by

induction,

Xi−1 =

i−1∑
l=1

rl

and ri−1 ∈ {0, . . . , R − 1}. If ti−2,i 6= MACki−2,i
(Xi−2), then node ni outputs reject.

Otherwise, Xi−2 = Xi−1 − ri−1 and node ni can correctly compute Xi = Xi−1 + ri and
ti,i+2 = MACki,i+2

(Xi).

8 Kevin J. Henry, Douglas R. Stinson

n1 n2 n3

X1 ← r1
t1,3 ← MACk1,3

(X1)

X1, t1,3
//

verify X1 = r1 ∈ {0, . . . , R− 1},
else reject
X2 ← r1 + r2
t2,4 ← MACk2,4

(X2)

X1, X2

t1,3, t2,4
//

ni−1 ni ni+1

Xi−2, Xi−1

ti−2,i, ti−1,i+1

//
verify ti−2,i, else reject
ri−1 ← Xi−1 −Xi−2

verify ri−1 ∈ {0, . . . , R− 1}, else reject
Xi ← Xi−1 + ri
ti,i+2 ← MACki,i+2

(Xi)

Xi−1, Xi

ti−1,i+1, ti,i+2

//

nN−2 nN−1 nN

XN−2, XN−1

tN−2,N
//

verify tN−3,N−1, else reject
rN−2 ← XN−2 −XN−3

verify rN−2 ∈ {0, . . . , R− 1}, else reject
XN−1 ← XN−2 + rN−1

XN−2, XN−1

tN−2,N
//

Fig. 3 A resilient data aggregation protocol for (N, 1)-linear networks where k = 1 using optimal KPS

Next, suppose that node ni−1 is dishonest, then node ni−2 must be honest. By induc-
tion,

Xi−2 =

i−2∑
l=1

rl

is the correct aggregate total and ti−2,i is a valid MAC for Xi−2. If either of these values
are modified by ni−1, then node ni will output reject, unless node ni−1 can forge a
MAC using key ki−2,i. Node ni receives the value Xi−1 from node ni−1, computes ri−1 =
Xi−1 −Xi−2, and can verify directly that ri−1 ∈ {0, . . . , R − 1}. Therefore, node ni can
correctly compute Xi = Xi−2 + ri−1 + ri and ti,i+2 = MACki,i+2

(Xi). ut

Although the protocol presented in Fig. 3 allows the detection of the presence of active
malicious nodes, it does not allow us to precisely identify which node is malicious. If a
node ni fails to verify the tag tki−2,i

there are three possibilities:

1. Node ni is malicious and falsely claims that tki−2,i
is invalid;

2. Node ni−1 is malicious and altered the value tki−2,i
; or

3. Node ni−2 is malicious and forwarded an invalid tki−2,i
.

As these three nodes are the only nodes to handle the value tki−2,i
, they are the only nodes

that could have possibly altered it. The limited key information and communication range

Resilient Aggregation in Simple Linear Sensor Networks 9

of each node makes detecting which of these cases occurred difficult, if not impossible,
without additional assumptions or the assistance of the base station. As our goal is simply
to prevent an incorrect aggregate total from being reported, precise adversarial detection
and how to respond to it is left as future work.

3.2 Analysis

As a baseline for comparison, we note that any hop-by-hop aggregation protocol requires
each node to send at least one message to propagate the aggregate total. Adding an
integrity check, such as a MAC, would add an aditional message per node. Therefore, we
can assume a lower bound of two messages per node and 2N messages total in the absence
of any malicious nodes.

The communication cost of the k = 1 protocol is straightforward to compute. Each
non-endpoint node ni forwards four messages: the current aggregate total Xi and a MAC
to be verified by node ni+2, and the previous hop’s aggregate total Xi−1 along with
the received MAC to be verified by node ni+1. Therefore, the total communication cost
is slightly less than 4N messages. Note that in a (N, 1)-linear network, communication
between nodes at distance 1 is implicitly authenticated when traffic flows in one direction,
as there is only one possible source for a received message. A malicious node attempting
to impersonate a different honest node would result in duplicate messages, which is readily
detected. The protocol could be altered to explicitly authenticate messages between nodes
at distance 1, either by adding an additional MAC (yielding a total of five messages per
node), or by utilizing an authenticated mode of encryption. The latter case is preferable,
as it does not require an additional message to be sent.

3.3 An Attack Against a Naive k > 1 Protocol

The protocol in the previous section can be naturally extended to larger values of k simply
by distributing keys using the optimal (N, k + 1)-KPS. Each node would then receive an
authenticated aggregate sum from k+ 1 hops back, along with readings from the previous
k hops to verify directly.

Fig. 4 demonstrates such an approach for k = 2. Unfortunately, this method is not
adequate to protect against colluding malicious nodes.

ni−1 ni ni+1

Xi−1, ti−1,i+2

Xi−2, ti−2,i+1

Xi−3, ti−3,i

//
verify ti−3,i, else reject
ri−1 ← Xi−1 −Xi−2

ri−2 ← Xi−2 −Xi−3

verify ri−1, ri−2 ∈ {0, . . . , R− 1}
else reject

Xi ← Xi−1 + ri
ti,i+3 ← MACki,i+3

(Xi)

Xi, ti,i+3

Xi−1, ti−2,i+2

Xi−2, ti−2,i+1

//

Fig. 4 A flawed data aggregation protocol for (N, 1)-linear networks where k = 2

Although this approach is the natural generalization of the secure k = 1 protocol
presented in the previous section, it is now possible for a pair of malicious nodes to alter

10 Kevin J. Henry, Douglas R. Stinson

the aggregate total by more than two valid sensor readings. This attack arises due to the
fact that, in the k > 1 setting, an honest node immediately preceding a malicious node is
not guaranteed to have its aggregate total verified by an honest node. For example, if node
ni is honest, it is possible that nodes ni+1 and ni+3 are both dishonest. If this occurs, it
is possible for node ni+1 to alter the total without being detected, as malicious node ni+3

would normally be the node to detect such an attack. This situation could not arise in
the k = 1 case, as any malicious node always has an honest node on either side of it. In
other words, this approach works to defend against two consecutive malicious nodes, but
no longer protects against colluding non-consecutive malicious nodes.

To illustrate an attack against the naive k = 2 protocol, consider a network where the
honest reading of node ni is ri = 0. A pair of malicious nodes should be able to modify
the total by at most 2(R − 1). Consider a connected subset of the network {ni, mi+1,
ni+2, mi+3, ni+4}, where nk denotes an honest node and mk denotes a malicious node.
The attack proceeds as follows:

1. Node ni sends the following to node mi+1:

Xi−2 = Xi−1 = Xi = 0
ti−2,i+1, ti−1,i+2, ti,i+3.

2. Node mi+1 replaces Xi with X ′i = R − 1, adds the reading ri+1 = R − 1 to the total
such that Xi+1 = 2(R−1), and computes the MAC ti+1,i+4 on this total. The following
is forwarded to node ni+2:

Xi−1 = 0, X ′i = R− 1, Xi+1 = 2(R− 1)
ti−1,i+2, ti,i+3, ti+1,i+4.

3. Node ni+2 verifies the unaltered value Xi−1 = 0 and accepts, forwarding the following
to node mi+3:

X ′i = R− 1, Xi+1 = 2(R− 1), Xi+2 = 2(R− 1)
ti,i+3, ti+1,i+4, ti+2,i+5

4. Node mi+3 is supposed to verify that ti,i+3 is a valid MAC (on Xi = 0), but ignores
the fact that the malicious node mi+1 has replaced it with X ′i = R − 1. Node mi+3

sets ri+3 = R − 1, computes Xi+3 = 3(R − 1), and computes a MAC ti+3,i+6 on this
value. The following is forwarded to node ni+4:

Xi+1 = Xi+2 = 2(R− 1), Xi+3 = 3(R− 1)
ti+1,i+4, ti+2,i+5, ti+3,i+6

5. Node ni+4 verifies that ti+1,i+4 is a valid MAC on Xi+1 and accepts Xi+1 as valid. At
this point, the malicious nodes have managed to modify the total by 3(R− 1) without
being detected.

This attack can be avoided if any MAC generated by an honest node is always verified
by an honest node, however this requires a much stronger assumption on the distribution
of malicious nodes when working in the optimal KPS setting, that is unlikely to apply in
any practical setting. The next section demonstrates how this problem can be overcome if
additional keys are distributed to nodes, such as in the pairwise KPS model.

4 Aggregation Using Pairwise KPS

The previous section presented a protocol for detecting non-consecutive malicious nodes
during aggregation and demonstrated the difficulty in extending it to detecting coalitions
of malicious nodes. In this section we extend the protocol to protect against a coalition
of up to k consecutive malicious nodes when k > 1. The goal of this protocol remains the
same: to prevent a malicious node from altering the aggregate total by more than a single

Resilient Aggregation in Simple Linear Sensor Networks 11

n1 n2 n3

X1 ← r1
t1,2 ← MACk1,2

(Xi)

t1,3 ← MACk1,3
(Xi)

t1,4 ← MACk1,4
(Xi)

X1, t1,2, t1,3, t1,4
//

verify t1,2, else reject
verify ri−1 = X1 ∈ {0, . . . , R− 1},
else reject
X2 ← X1 + r2
t2,3 ← MACk2,3

(X2)

t2,4 ← MACk2,4
(X2)

t2,5 ← MACk2,5
(X2)

X1, t1,3, t1,4
X2, t2,3, t2,4, X2,5

//

ni−1 ni ni+1

Xi−3, ti−3,i

Xi−2, ti−2,i, ti−2,i+1

Xi−1, ti−1,i, ti−1,i+1, ti−1,i+2

//
verify ti−1,i, ti−2,i, ti−3,i

else reject
ri−1 ← Xi−1 −Xi−2

ri−2 ← Xi−2 −Xi−3

verify ri−1 ∈ {0, . . . , R− 1}, else reject
verify ri−2 ∈ {0, . . . , R− 1}, else reject
Xi ← Xi−1 + ri
ti,i+1 ← MACki,i+1

(Xi)

ti,i+2 ← MACki,i+2
(Xi)

ti,i+3 ← MACki,i+3
(Xi)

Xi−2, ti−2,i+1

Xi−1, ti−1,i+1, ti−1,i+2

Xi, ti,i+1, ti,i+2, ti,i+3

//

nN−2 nN−1 nN

XN−4, tN−4,N−1

XN−3, tN−3,N−1, tN−3,N

Xi−1, tN−2,N−1, tN−2,N ,
//

verify tN−2,N−1, tN−3,N−1, tN−4,N−1

else reject
rN−2 ← XN−2 −XN−3

rN−3 ← XN−3 −XN−4

verify rN−2 ∈ {0, . . . , R− 1}, else reject
verify rN−3 ∈ {0, . . . , R− 1}, else reject
XN−1 ← XN−2 + rN−1

tN−1,N ← MACkN−1,N
(Xi)

XN−3, tN−3,N

XN−2, tN−2,N

XN−1, tN−1,N
//

Fig. 5 A resilient data aggregation protocol for k = 2. Each node receives the aggregate sum from the
three nodes preceding it, along with a MAC from neighbors at distance d = 1, 2, 3 to ensure that the
sums are unaltered by any potentially malicious intermediate nodes

valid sensor reading. A coalition of consecutive malicious nodes should therefore only be
able to modify the aggregate total by no more than k valid sensor readings.

12 Kevin J. Henry, Douglas R. Stinson

The basic idea behind the single-node protocol is to exploit the existence of honest
nodes on either side of any malicious node. The first honest node computes and forwards
an authenticated aggregate total that the next honest node can verify. If the malicious
node in the middle misbehaves, one of the next two hops will detect it. The k-resilient
version of the protocol is based on the same idea using the pairwise (N, k + 1)-KPS. Any
coalition of up to k consecutive nodes must have an honest node on either side of it.
Thus, authentication information from k + 1, k, . . . , 2 hops back will be forwarded at each
hop to ensure that none of the preceding k nodes have altered the aggregate total in an
invalid manner. Therefore, the extended protocol requires that any two nodes ni and nj

within distance d ≤ k + 1 of each other must have a unique pairwise key, ki,j , shared with
each other. Fig. 5 demonstrates a 2-resilient aggregation protocol, broken into three cases
demonstrating the beginning, general case, and termination of the protocol. A security
proof when k = 2 follows.

The protocol presented here assumes a (N, 1)-linear network with a pairwise (N, k+1)-
KPS. In an (N, k+1)-linear network, the protocol can be made much more efficient by node
i forwarding the value ti,i+k+1 directly to node ni+k+1. In general, for any communication
range r where 1 < r < k + 1, each node will forward messages directly to any node at
distance d ≤ r, or r hops further in the network for nodes at distance d > r. As in the
k = 1 protocol, if the communication range of nodes is only 1 (i.e., a (N, 1)-linear network),
then a separate MAC may not be necessary to authenticate messages between nodes at
distance d = 1.

Theorem 2 Suppose the protocol in Fig. 5 is being used for data aggregation, that node ni

is honest, that at most k = 2 consecutive nodes are dishonest, and that nodes n1, . . . , ni−1

do not output reject. Then, ni either outputs reject, or node ni correctly computes
Xi =

∑i
j=1 rj where r1, . . . , ri ∈ {0, . . . , R− 1}.

Proof We prove this by strong induction on i, first considering i = 1, 2, 3 as base cases.

– If node n1 is honest, then it knows the correct value of r1 = X1, and it can correctly
compute

t1,4 = MACk1,4
(X1),

t1,3 = MACk1,3
(X1), and

t1,2 = MACk1,2
(X1).

– If node n1 is dishonest, then node n2 may be honest. If so, node n2 receives X1 = r1
directly from n1, with which it can verify t1,2 is valid and that r1 ∈ {0, . . . , R − 1},
outputting reject if not. Therefore, node n2 can correctly compute

X2 = r1 + r2,

t2,5 = MACk2,5
(X2),

t2,4 = MACk2,4
(X2), and

t2,3 = MACk2,3
(X2),

or outputs reject.
– If both nodes n1 and n2 are dishonest, then node n3 must be honest. Node n3 receives

X1, t1,3, t1,4, X2, t2,3, t2,4, t2,5. From these values, node n3 can verify that t1,3 and t2,3
are valid and compute r1 = X1 and r2 = X2−X1, verifying that r1, r2 ∈ {0, . . . , R−1},
and outputting reject if not. Therefore, node n3 can correctly compute

X3 = r1 + r2 + r3,

t3,6 = MACk3,6
(X3),

t3,5 = MACk3,5
(X3), and

t3,4 = MACk3,4
(X3),

or outputs reject.

Resilient Aggregation in Simple Linear Sensor Networks 13

For the purpose of strong induction, assume an honest node nj for 1 ≤ j ≤ i − 1 can
correctly compute

Xj−1 =

j−1∑
l=1

rl,

where rl ∈ {0, . . . , R− 1}, as well as correctly compute ti−1,i+2, ti−1,i+1, ti−1,i.
Suppose that node ni−1 is honest, and that nodes ni−2 and ni−3 are possibly dishonest.

Then, by induction,

Xi−1 =

i−1∑
l=1

rl,

where rl ∈ {0, . . . , R − 1}. If ti−3,i, ti−2,i, and ti−1,i are not valid MACs, then node
ni outputs reject. Otherwise, the received values Xi−3, Xi−2, and Xi−1 are the same
values forwarded by nodes ni−3, ni−2, and ni−1 respectively. Because node ni−1 is honest,
ri−1 = Xi−1 −Xi−2 ∈ {0, . . . , R− 1}, and node ni can correctly compute

Xi = Xi−1 + ri,

ti,i+1 = MACki,i+1
(Xi),

ti,i+2 = MACki,i+2
(Xi), and

ti,i+3 = MACki,i+3
(Xi).

Next, suppose that node ni−1 is dishonest and that node ni−2 is honest. Then, by induc-
tion,

Xi−2 =

i−2∑
l=1

rl

is the correct aggregate sum at node ni−2, and ti−2,i is a valid MAC for Xi−2. If ti−3,i,
ti−2,i, or ti−1,i are invalid, then node ni outputs reject. Otherwise, the received values
Xi−3 and Xi−2 are the same values forwarded by nodes ni−3 and ni−2 respectively.
Therefore, node ni can correctly compute ri−1 = Xi−1 − Xi−2 and verify that ri−1 ∈
{0, . . . , R− 1}, outputting reject if not. If node ni does not output reject, then Xi−1 is
correct and node ni can compute

Xi = Xi−1 + ri,

ti,i+1 = MACki,i+1
(Xi),

ti,i+2 = MACki,i+2
(Xi), and

ti,i+3 = MACki,i+3
(Xi).

Finally, suppose that both nodes ni−1 and ni−2 are dishonest. Then, by assumption,
node ni−3 must be honest, and, by induction,

Xi−3 =

i−3∑
l=1

rl

is the correct aggregate sum at node ni−3, and ti−3,i is a valid MAC for Xi−3. If ti−3,i,
ti−2,i, or ti−1,i are invalid, then node ni outputs reject. Otherwise, node ni can compute
ri−2 = Xi−2 − Xi−3 and ri−1 = Xi−1 − Xi−2 and verify ri−2, ri−1 ∈ {0, . . . , R − 1},
outputting reject if not. If node ni does not output reject, then Xi−1 and Xi−2 are
correct and node ni can compute

Xi = Xi−1 + ri,

ti,i+1 = MACki,i+1
(Xi),

ti,i+2 = MACki,i+2
(Xi), and

ti,i+3 = MACki,i+3
(Xi).

ut

14 Kevin J. Henry, Douglas R. Stinson

This protocol generalizes naturally to larger values of k. Each node receives the ag-
gregate total for each of the preceding k + 1 nodes, along with a MAC on each of them
to very authenticity. From this information, a node can compute the previous k sensor
readings, verify that they are valid, and compute the updated aggregate total. The node
then computes a MAC on the updated aggregate total for each of the k + 1 nodes at
distance 1, 2, 3, . . . , k + 1. The security proof is similar to the k = 2 case.

4.1 Analysis

The communication cost of each node is dependent on both the maximum number of
consecutive malicious nodes k, and the maximum communication range of each node d.

To begin, assume that d = 1, and each message must be routed hop-by-hop. Each
node ni must forward the current aggregate total, as well as authentication information
for k + 1 nodes at distance 1, 2, . . . k + 1 nodes further in the network. Therefore, node ni

creates and sends Xi as well as k MACs on Xi to the next hop (giving a total of k + 2
messages).

In addition to the messages node ni generates, it is also responsible for forwarding
authentication information from the previous k hops:

– The aggregate total Xi−k along with one MAC to be forwarded for node ni+1 (two
messages).

– The aggregate total Xi−k+1 along with two MACs to be forwarded for nodes ni+1 and
ni+1 (three messages).

–
...

– The aggregate total Xi−1 along with k MACs to be verified by nodes ni+1 through
ni+k (k + 1 messages).

Therefore, in addition to the k + 2 messages node ni generates, it also forwards

2 + 3 + . . . + k + 1 =
(k + 1)(k + 2)

2
− 1

=
(k2 + 3k + 2)

2
− 1

=
1

2
(k2 + 3k)

messages from previous hops. Therefore, the total communication cost when d = 1 for
node ni is

1

2
(k2 + 3k) + k + 2 =

1

2
(k2 + 5k + 4)

messages.

Max cons. malicious nodes Communication cost (per node)

k = 1 1
2

(k2 + 5k + 4)

k < d and k | d k2+3kd+2k+3d+1
2d

k < d and k - d k2+3kd+2k+3d+1
2d

+ (d k+1
d
e)(k + 1 mod d)

k = d− 1 2k + 2

Fig. 6 Per node communication cost for resilient aggregation using the pairwise KPS

Next, assume that 1 < d ≤ k + 1. In this case, each message is forwarded to the
correct node if it is within communication range, or d hops further in the network towards
its destination. In order to approximate the total communication cost, we consider the

Resilient Aggregation in Simple Linear Sensor Networks 15

amount of network traffic a single node not near an endpoint generates when forwarding
authentication information to the next k + 1 nodes in the network.

For ease of presentation, assume k + 1 is a multiple of d. Then messages may need to
travel up to h = k+1

d hops in the network during aggregation.

– Authentication information sent to nodes up to distance d away is sent directly (d
messages in total).

– Authentication information sent to nodes between distance d + 1 and 2d travels two
hops (2d messages in total).

–
...

– Authentication information sent to nodes between distance (h− 1)d and hd travels h
hops (hd messages in total).

Therefore, the authentication information generated by a node incurs a communication
cost of

d + 2d + . . . + hd =
h(h + 1)

2
d

=
k+1
d

(
k+1
d + 1

)
2

d

=
(k + 1)(k + d + 1)

2d

=
k2 + kd + 2k + d + 1

2d

If k + 1 is not a multiple of d, then there are an additional k + 1 mod d authentication
messages that must travel dk+1

d e hops.
Each node also forwards the aggregate total for itself to the next k+1 hops, generating

an additional k + 1 messages. Therefore, the total communication cost incurred by each
node is

k2 + 3kd + 2k + 3d + 1

2d
+ (dk + 1

d
e)(k + 1 mod d).

Because each node sends and receives the same number of messages (except for those
within k + 1 hops of an endpoint), the amount of traffic a non-endpoint node generates
is identical to the number of messages it is responsible for forwarding during a run of
the protocol. Therefore, the expression above describes the total number of messages each
non-endpoint node must send, as well as providing an upper-bound on the number of
messages nodes near an end-point must send.

The communication cost of aggregation using the pairwise KPS is summarized in Fig.
6.

5 Aggregation Using Group-Based KPS

In group-based key pre-distribution, each node is a member of one or more groups, and each
group has an associated group key to allow secure communication among group members.
In an (N, d)-linear network, it is natural to divide the network into connected groups of
size d + 1, as this is the largest group size such that all members of a group are within
each other’s communication range. We refer to the group containing nodes ni, . . . , ni+d as
group gi, the members of which all possess the shared group key ki.

Let N be a (N, d)-linear network where d > 1 and group keys are distributed as
described above. For ease of presentation, assume d is odd and N is a multiple of d + 1.
This allows N to be uniquely partitioned into disjoint connected subgroups of size d+1

2 :

N = s1 ∪ s2 ∪ . . . ∪ s2 N
d+1

,

16 Kevin J. Henry, Douglas R. Stinson

S1 S2 S3 S4 S5 S6 S7 S8

G1 G5 G9 G13

G3 G7 G11

Fig. 7 A (16, 3)-linear network partitioned into groups and subgroups

where

si =
{
n (i−1)(d+1)

2
+1

, n (i−1)(d+1)

2
+2

, . . . , n i(d+1)

2

}
and si ∪ si+1 is a group in the underlying group-based KPS possessing some group key

ski,i+1 = k (i−1)(d+1)

2
+1

.

For example, consider a (16, 3)-linear network partitioned under this scheme. The 16
nodes are partitioned into four groups of adjacent nodes:

g1 = {n1, n2, n3, n4} g5 = {n5, n6, n7, n8}
g9 = {n9, n10, n11, n12} g13 = {n13, n14, n15, n16}.

Each subroup is further partioned into two subgroups:

s1 = {n1, n2} s2 = {n3, n4} s3 = {n5, n6}
s4 = {n7, n8} s5 = {n9, n10} s6 = {n11, n12}
s7 = {n13, n14} s8 = {n15, n16}.

In this scheme, s1 ∪ s2 = g1 in the underlying group-based KPS, so all members of s1 ∪ s2
share the key sk1,2 = k1. Similarly, s2 ∪ s3 = g3 in the underlying KPS, with members of
both subgroups possessing the key sk2,3 = k3.

Because all members of a group (or subgroup) share a common key, aggregation within
a group (or subgroup) is trivial. Each member can simply broadcast its reading using the
group key, and all members of the group can independently verify the validity of each
sensor reading, as well as compute the aggregate total for the group. If any sensor reading
is out of range, then the result of the protocol is reject. This is accomplished using only a
single message from each node within the group. We refer to this sub-protocol as in-group
aggregation.

Each nj ∈ si performs the following:

1. broadcast (nj , rj) encrypted under key ski,i+1

2. set Ysi ← rj
3. for each nl ∈ si − {nj} do

(a) receive (nl, rl) encrypted under key ski,i+1

(b) if rl ∈ R then Ysi ← Ysi + rl
4. resolve duplicate readings / bad readings
5. output Ysi (the aggregate total of all non-rejected readings)

Fig. 8 In-group aggregation for subgroup si. Upon completion, each node in si correctly learns the
subgroup aggregate Ysi or outputs reject for one or more nodes

Next, to perform aggregation across the entire network, each subgroup of nodes si first
computes its in-group aggregate total Ysi . Aggregation then occurs subgroup by subgroup

Resilient Aggregation in Simple Linear Sensor Networks 17

for each si ∈ N do

for each nj ∈ si
1. receive (nl, Xi−1) for nl ∈ si−1

2. Xi−1 ← SELECT{(nl, Xi−1)|nl ∈ si−1}
3. Ysi ← In-Group-Agg(si)
4. Xi ← Xi−1 + Ysi
5. Broadcast (nj , Xi) encrypted under key ski,i+1

Fig. 9 Group-based aggregation protocol

along the network, with each node from a subgroup updating the aggregate total with
the current subgroup aggregate, and then forwarding the result to the next subgroup.
When passing the aggregate total Xi from subgroup si to subgroup si+1, the key ski,i+1

is used, ensuring that all members of si+1 receive the aggregate total. This also allows
all other members of si to independently verify that the correct aggregate value was
passed on by each node. As long as a majority of nodes within each subgroup are honest,
a malicious coalition of nodes will not be able to forward an incorrect aggregate total
without detection. Fig. 9 demonstrates this process. In the case that malicious behavior is
detected, the honest nodes could choose to continue and re-run the protocol, with those
nodes that did not agree with the majority omitted during the second run. An alternative
approach is to halt aggregation and forward the labels of the detected malicious nodes to
the base station.

The protocol in Fig. 9 is broken into several steps. During the first step, nodes in
subgroup si are informed of the aggregate total Xi−1 by each node in si−1. In the second
step, each node applies a SELECT function to determine the correct value of Xi−1 in the
case that all readings are not identical. A possible SELECT function is discussed below.
Next, nodes in subgroup si perform in-group aggregation to determine Ysi . Finally, each
node computes the updated aggregate total Xi and broadcasts the result, thereby allowing
the next subgroup to continue with the protocol.

In step 1 it is possible that a malicious node ml may choose to forward an incorrect
aggregate total (ml, X

′
i−1). The job of the SELECT function is to take all received (nl, Xi−1)

tuples and output the correct value of Xi−1. A simple and natural choice for the SELECT

function is to choose the aggregate total that a majority of nodes agree on, or output
REJECT if no majority exists. With such a SELECT function, the correct aggregate total can
be computed with complexity O(d), and it can be shown that the group-based aggregation
protocol output the correct aggregate total whenever a majority of nodes in each subgroup
is not malicious. This is demonstrated in Theorem 4.

Both the in-group aggregation and group-based aggregation protocols are vulnerable to
message flooding or node spoofing attacks, where a malicious node submits more than one
reading for itself or while pretending to be another node. Without additional shared keys or
assumptions, defending against such an attack in this setting is impossible. Techniques for
mitigating these attacks are discussed in Sect. 5.1. The proofs below demonstrate security
in the absence of spoofing attacks.

Theorem 3 If nodes cannot spoof their identity, then the in-group aggregation protocol in
Fig. 8 allows each node in a subgroup si to correctly compute the subgroup aggregate total
Ysi , such that Ysi contains a valid reading from each honest node in si, and at most one
valid sensor reading for each dishonest node in si. If any invalid readings are received, the
protocol also outputs reject.

Proof Suppose each node in nj ∈ si broadcasts a valid sensor reading rj using the key
ki,i+1. Therefore, each node in si receives rj directly, verifies rj ∈ R, and adds rj to
Ysi . On the other hand, if a dishonest nj broadcasts rj /∈ R, then it is omitted from the

18 Kevin J. Henry, Douglas R. Stinson

aggregate total and the node nj is marked as malicious. Thus, only valid readings from
dishonest nodes are included in Ysi . ut

Theorem 4 Suppose a majority of nodes in each subgroup are honest, nodes cannot spoof
their identity, and subgroups s1, . . . , si−1 do not output reject. Then, using the protocol
in Fig. 9 with the SELECT function choosing the majority answer, each node in si learns
the correct aggregate total Xi =

∑i
j=1 Ysj .

Proof Nodes in s1 can run the in-group aggregation protocol, and, by Theorem 3, they
correctly learn the aggregate total Ys1 = X1.

For the purpose of induction, assume nodes in si−1 can correctly compute Ysi−1 and
Xi−1, where Ysi−1 is the subgroup aggregate for si−1 and Xi−1 is the aggregate total∑i−1

j=1 Xsj .
If a node nj ∈ si−1 is honest, then it broadcasts the correct message Xi−1 using key

ki,i+1, which is received by each node in si. Because a majority of nodes in si−1 are honest,
the output of SELECT{(nj , Xi−1)|nj ∈ si−1} is the correct aggregate total Xi−1. Therefore,
each node in si will accept the correct value Xi−1. By Theorem 3, each node in si can
correctly compute Ysi . Therefore, each node can correctly compute Xi = Xi−1 + Ysi . ut

5.1 Reacting to Node Spoofing Attacks

The in-group aggregation and group-based aggregation protocols in this section rely on
the assumption that each node can contribute only a single reading or aggregate total
in each protocol. In particular, the protocols are not secure if a malicious node mi can
pretend to be an honest node nj . In this case, the malicious node can spoof nj ’s identity
by broadcasting a message of the form (nj , r

′
j), causing all nodes to receive readings of

both rj and r′j for node nj . Therefore, a mechanism to react to duplicate readings must
be in place.

The node spoofing attack is possible due to the lack of source authentication when
sending messages using group keys. There are several approaches that can be used to mit-
igate this, depending on the individual capabilities of each node. Some potential solutions
are discussed below.

5.1.1 Pairwise Keys

Assume that each pair of nodes in any group possess a unique shared key. If two or more
readings are received for a given node ni, then then node ni can prove which reading is
correct by sending a MAC on (ni, ri) to each member of the subgroup individually using
its pairwise keys instead of the group key. Thus, each node learns the correct value ri
and can continue with the protocol. If multiple valid MACs are received, then it can be
assumed that node ni is compromised or malicious.

5.1.2 Wireless Fingerprinting

Wireless fingerprinting [22] allows one node to generate a deterministic identifier from
the physical characteristics of any received message from another node. If fingerprinting is
available, then two identical messages from different senders are distinguishable. There are
two approaches to using fingerprinting: pre-shared fingerprints, and discovered fingerprints.
In the former case, each node is pre-loaded with the fingerprint of each other node in the
group, while in the latter, each node learns the fingerprint of a node after deployment.

In the case of pre-shared fingerprints, determining the true reading from a set of du-
plicates is trivial. If multiple messages match a single fingerprint, it can be assumed that
the node is malicious. When fingerprints are not pre-loaded, during the first run of the
protocol each node can record the fingerprint associated with the received message for

Resilient Aggregation in Simple Linear Sensor Networks 19

each node. Because fingerprints are unique, each node can commit to at most one iden-
tity within the network. If one fingerprint is associated with multiple nodes, then it can
be assumed that the fingerprint belongs to a malicious node. If two different fingerprints
commit to the same identity there may be no possible way to tell which one is honest. In
this case, both nodes can be marked as malicious as a precaution. This limits the impact
of a malicious node to knocking out a single honest node.

5.1.3 Directional Antennae and Distance Bounding

Directional antennae [2] allow a node to estimate the direction of the sender of a message,
which is easier to accomplish in a linear network than in a two-dimensional network. If
duplicate messages are received, any message that does not originate from the correct side
of the network (i.e., left or right) cannot possibly be from an honest node.

Similarly, distance bounding [23] allows a node to put an upper bound on the distance
of a sender. If nodes are homogeneous, uniformly spaced, and broadcast at fixed power
levels, precise distance location, rather than just an upper bound, may also be available. If
duplicate messages are received, any message that does not originate from a node within
the correct distance cannot possibly be from an honest node.

On their own, neither direction nor distance bound information is sufficient to de-
termine which message from a set of duplicates came from the correct sender. However,
direction and precise distance trivially solve the problem, as only a single node can be at
a given distance and direction. Precise distance on its own is sufficient as well, however,
determining the correct message requires all nodes in a group to participate in the process.
This is possible due to the fact that all nodes in the next subgroup are always located later
in the network, and, by assumption, this subgroup contains an honest majority of nodes.
If nodes in the next subgroup also confirm the measured distances of a given message,
there will be an honest majority of nodes agreeing on a specific location.

6 Concluding Remarks

Malicious nodes Communication cost (per node)

Optimal KPS
k = 1 4

Pairwise KPS

k = 1 1
2

(k2 + 5k + 4)

k < d and k | d k2+3kd+2k+3d+1
2d

k < d and k - d k2+3kd+2k+3d+1
2d

+ (d k+1
d
e)(k + 1 mod d)

k = d− 1 2k + 2

Group-based KPS
honest majority (per subgroup) 2

Fig. 10 Summary of communication costs

In a non-adversarial setting, resilient hop-by-hop aggregation in a simple linear net-
work can be performed using N messages to aggregate each reading hop-by-hop, and an
additional N messages to include a single homomorphic MAC to detect any errors. There-
fore, we can use a baseline of 2N messages as a point of comparison for our protocols. Our
results are summarized in Fig. 10.

Using the optimal KPS, we presented a protocol that protects against any number of
malicious nodes, provided that no two malicious nodes are side by side in the network. This

20 Kevin J. Henry, Douglas R. Stinson

is achieved with only four keys per node, and requires each node to send two messages
(a single reading, and the aggregate reading), along with two authentication tags. The
total cost of this protocol is 4N messages, with two MACs being computed by each node.
The limited number of keys in this setting makes extending such an approach to a larger
number of adjacent malicious nodes difficult.

Using the pairwise KPS, we presented a protocol that protects against k adjacent
malicious nodes within the network. The cost of this protocol scales with the value of k.
As k grows, information from k + 1 hops back, along with the associated authentication
information, must be passed along the network and verified by each node. Depending
on the communication range of the nodes, the total communication complexity of the
protocol is between 2(k + 1)N messages when nodes can send authentication information
directly to the intended recipient, and

(
1
2 (k2 + 5k + 6)− 2

)
N messages when d = 1 and

all authentication information must be routed hop-by-hop.
Our final protocol utilized shared group keys and protects against localized clusters

of malicious nodes. The network is divided into subgroups, and the protocol can proceed
as long as there is an honest majority of nodes in each subgroup. The communication
overhead in this protocol is minimal, however it may require specialized tools to protect
against certain attacks. Each node broadcasts its own reading, and later broadcasts the
updated aggregate, but must be active to listen to and record the messages of other
nodes within its subgroup. The communication complexity of this protocol during regular
operation is therefore 2N messages.

Our focus was providing resilient data aggregation and early termination in the pres-
ence of an active adversary. Future work on aggregation in linear networks should focus on
adapting protocols to other linear settings, such as thick linear networks, and determining
if full private or concealed aggregation can be achieved in such a restricted problem setting
without sacrificing early termination or requiring a significant increase in communication
complexity.

Acknowledgements This research was supported by the Natural Sciences and Engineering Research
Council of Canada (NSERC) through the grant NSERC-RGPIN #203114-06.

References

1. Frederik Armknecht, Dirk Westhoff, Joao Girão, and Alban Hessler. A lifetime-optimized end-to-end
encryption scheme for sensor networks allowing in-network processing. Computer Communications,
31(4):734–749, 2008.

2. Joshua Ash and Lee Potter. Sensor network localization via received signal strength measure-
ments with directional antennas. Proceedings of the Forty-Second Annual Allerton Conference on
Communication, Control, and Computing, pages 1861–1870, Champaign-Urbana , IL, Sep 2004.

3. Rabindra Bista and Jae-Woo Chang. Privacy-preserving data aggregation protocols for wireless
sensor networks: A survey. Sensors, 10(5):4577–4601, 2010.

4. Levente Buttyán, Péter Schaffer, and István Vajda. Cora: Correlation-based resilient aggregation
in sensor networks. Ad Hoc Networks, 7(6):1035–1050, 2009.

5. Claude Castelluccia, Aldar C-F. Chan, Einar Mykletun, and Gene Tsudik. Efficient and provably
secure aggregation of encrypted data in wireless sensor networks. ACM Trans. Sen. Netw., 5:20:1–
20:36, June 2009.

6. Aldar C.-F. Chan and Claude Castelluccia. A security framework for privacy-preserving data
aggregation in wireless sensor networks. TOSN, 7(4):29, 2011.

7. Haowen Chan, Adrian Perrig, and Dawn Song. Secure hierarchical in-network aggregation in sensor
networks. In Proceedings of the 13th ACM conference on Computer and communications security,
CCS ’06, pages 278–287, New York, NY, USA, 2006. ACM.

8. Elena Fasolo, Michele Rossi, Jörg Widmer, and Michele Zorzi. In-network aggregation techniques
for wireless sensor networks: a survey. IEEE Wireless Commun., 14(2):70–87, 2007.

9. Keith B. Frikken and Joseph A. Dougherty, IV. An efficient integrity-preserving scheme for hierar-
chical sensor aggregation. In Proceedings of the first ACM conference on Wireless network security,
WiSec ’08, pages 68–76, New York, NY, USA, 2008. ACM.

10. J. Girao, D. Westhoff, and M. Schneider. CDA: concealed data aggregation for reverse multicast
traffic in wireless sensor networks. In Communications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 5, pages 3044 – 3049 Vol. 5, may 2005.

Resilient Aggregation in Simple Linear Sensor Networks 21

11. Wenbo He, Xue Liu, Hoang Nguyen, Klara Nahrstedt, and Tarek F. Abdelzaher. PDA: Privacy-
preserving data aggregation in wireless sensor networks. In INFOCOM, pages 2045–2053. IEEE,
2007.

12. Wenbo He, Hoang Nguyen, Xue Liu, Klara Nahrstedt, and Tarek Abdelzaher. iPDA: an Integrity-
Protecting private data aggregation scheme for wireless sensor networks. In Proceedings of the 2008
Military Communications Conference (MILCOM 2008), 2008.

13. Lingxuan Hu and David Evans. Secure aggregation for wireless network. In SAINT Workshops,
pages 384–394. IEEE Computer Society, 2003.

14. Imad Jawhar and Nader Mohamed. A hierarchical and topological classification of linear sensor
networks. In Proceedings of the 2009 conference on Wireless Telecommunications Symposium,
WTS’09, pages 72–79, Piscataway, NJ, USA, 2009. IEEE Press.

15. Zhijun Li and Guang Gong. Data aggregation integrity based on homomorphic primitives in sen-
sor networks. In Proceedings of the 9th international conference on Ad-hoc, mobile and wireless
networks, ADHOC-NOW’10, pages 149–162, Berlin, Heidelberg, 2010. Springer-Verlag.

16. Mark Manulis and Jörg Schwenk. Security model and framework for information aggregation in
sensor networks. TOSN, 5(2), 2009.

17. Keith M. Martin and Maura Paterson. An application-oriented framework for wireless sensor
network key establishment. Electron. Notes Theor. Comput. Sci., 192:31–41, May 2008.

18. Keith M. Martin and Maura B. Paterson. Ultra-lightweight key predistribution in wireless sensor
networks for monitoring linear infrastructure. In Proceedings of the 3rd IFIP WG 11.2 International
Workshop on Information Security Theory and Practice. Smart Devices, Pervasive Systems, and
Ubiquitous Networks, WISTP ’09, pages 143–152, Berlin, Heidelberg, 2009. Springer-Verlag.

19. Suat Ozdemir, Miao Peng, and Yang Xiao. PRDA: polynomial regression-based privacy-preserving
data aggregation for wireless sensor networks. Wireless Communications and Mobile Computing,
2013.

20. Steffen Peter, Dirk Westhoff, and Claude Castelluccia. A survey on the encryption of convergecast
traffic with in-network processing. IEEE Trans. Dependable Sec. Comput., 7(1):20–34, 2010.

21. Bartosz Przydatek, Dawn Xiaodong Song, and Adrian Perrig. SIA: secure information aggregation
in sensor networks. In Ian F. Akyildiz, Deborah Estrin, David E. Culler, and Mani B. Srivastava,
editors, SenSys, pages 255–265. ACM, 2003.

22. Kasper Bonne Rasmussen and Srdjan Capkun. Implications of radio fingerprinting on the security
of sensor networks. In Proceedings of IEEE SecureComm, pages 331 –340, sep. 2007.

23. Kasper Bonne Rasmussen and Srdjan Čapkun. Realization of RF distance bounding. In Proceedings
of the 19th USENIX conference on Security, USENIX Security’10, pages 25–25, Berkeley, CA, USA,
2010. USENIX Association.

24. Sankardas Roy, Sanjeev Setia, and Sushil Jajodia. Attack-resilient hierarchical data aggregation
in sensor networks. In Proceedings of the fourth ACM workshop on Security of ad hoc and sensor
networks, SASN ’06, pages 71–82, New York, NY, USA, 2006. ACM.

25. David Wagner. Resilient aggregation in sensor networks. In Proceedings of the 2nd ACM workshop
on Security of ad hoc and sensor networks, SASN ’04, pages 78–87, New York, NY, USA, 2004.
ACM.

26. Geng Yang, Sen Li, Xiaolong Xu, Hua Dai, and Zhen Yang. Precision-enhanced and encryption-
mixed privacy-preserving data aggregation in wireless sensor networks. IJDSN, 2013, 2013.

