
An Empirical Study and some Improvements of the MiniMac
Protocol for Secure Computation

Ivan Damg̊ard, Rasmus Lauritsen, and Tomas Toft

Department of Computer Science, Aarhus University
{ivan,rwl,ttoft}@cs.au.dk

Abstract. Recent developments in Multi-party Computation (MPC) has resulted in very efficient
protocols for dishonest majority in the preprocessing model. In particular, two very promising protocols
for Boolean circuits have been proposed by Nielsen et al. (nicknamed TinyOT) and by Damg̊ard and
Zakarias (nicknamed MiniMac). While TinyOT has already been implemented, we present in this paper
the first implementation of MiniMac, using the same platform as the existing TinyOT implementation.
We also suggest several improvements of MiniMac, both on the protocol design and implementation
level. In particular, we suggest a modification of MiniMac that achieves increased parallelism at no
extra communication cost. This gives an asymptotic improvement of the original protocol as well as an
8-fold speed-up of our implementation. We compare the resulting protocol to TinyOT for the case of
secure computation in parallel of a large number of AES encryptions and find that it performs better
than results reported so far on TinyOT, on the same hardware.

1 Introduction

In Multi-party Computation (MPC), N players wish to compute a function securely on privately
held inputs, where security means that the result must be correct, and be the only new information
that is released about the inputs. This must hold even if T players are corrupted by an adversary.
In this paper, we consider the case of active corruption (where the adversary takes full control over
corrupted players) of up to N − 1 players, so-called dishonest majority. In several recent papers
[2,6,5,7,9] it has been shown that we can obtain very practical MPC protocols for dishonest majority
using preprocessing.
The basic idea exploited is that, while dishonest majority precludes information-theoretic (IT)
constructions, the expensive and inefficient, computationally secure (public key) cryptography can
be pushed to a preprocessing phase. This phase is independent of not only the inputs, but also
the function to be securely computed. The “raw-material” generated allows the use of IT-secure
protocols in the online phase, i.e., protocols that are much more computationally efficient.
Two promising protocols have been proposed for the case of secure computation of Boolean circuits,
namely the TinyOT protocol by Nielsen et al. [9] and the MiniMac protocol by Damg̊ard and
Zakarias [7]. [7] presents a theoretical comparison between the two: For security parameter κ, it
was shown that where TinyOT requires each player to do Θ(κ) elementary bit operations per gate
in the circuit, MiniMac requires only O(log κ) operations (or even O(1) for some instantiations,
when the number of players is large). The same overhead was found for communication and the
amount of preprocessing-data each player stores.
It is, however, very unclear whether these theoretical advantages translate to greater efficiency in
practice. Indeed, TinyOT has been implemented with promising results, and the Θ(κ) bit operations
required per gate can in most cases be performed in parallel using a single or small number of CPU
instructions. On the other hand, the larger storage requirements and communication complexity is
not affected by the word size of the CPU.

Our Contribution In this paper we present the first implementation of MiniMac. We compare this
to a TinyOT implementation running on the same hardware with the goal of making a meaningful
comparison of the two approaches in practice. As benchmark, we use parallel computation of many
AES encryptions using a binary circuit; AES is often used as the de facto standard benchmark
and performing multiple parallel executions has practical relevance, e.g., when encrypting data
in counter mode. Additionally, we propose a new modification of MiniMac which increases the
efficiency of binary circuit evaluation in both theory and practice.
MiniMac is based on an error correcting code of length n and dimension k over some finite field,
F, and allows k parallel evaluations of some arithmetic circuit over F. It further uses an IT-secure
authentication scheme that is based on the code; a forged message authentication code (MAC) will
be accepted with probability 2−t where t = log(|F|) · (n− 2k + 1).
Our implementation uses a Reed-Solomon code over F28 with (n, k) = (256, 120) or (255, 85),
depending on the underlying implementation of operations on codewords; this implies (at least) 128-
bit security. We note that [7] suggests alternative constructions of binary codes based on algebraic
geometry, however, the constants involved are very large and no truly efficient encoding algorithm
is known, thus, using these were not seen as a viable approach.
Using F28 as the underlying field is a natural choice; elements can be encoded as bytes and addressed
separately, while the field is sufficiently small to allow efficient multiplication through table-lookup.
Further, F28 has characteristic two implying that binary-XOR is simply addition.

2

Regarding the choice of (n, k), we strove to maximize parallel computation, i.e., maximize k. Since n
is bounded by the cardinality of the field, F28 , we have (n, k) = (256, 120) when aiming for security
level t ≥ 128. However, for these parameters, our best encoding algorithm is quadratic: the naive
multiplication by the generator matrix. We found this matrix multiplication to be quite costly in
practice. As an alternative, we suggest to implement it using a variant of Fast Fourier Transform
(FFT) – 85 divides 255 which is the order of the multiplicative group implying that roots of unity
of order 255 and 85 exist in F28 . This reduces encoding- and decoding-time, but requires that the
input-size divides 255. This sets (n, k) = (255, 85), however, despite the reduced parallelization we
found that this still pays off.

In addition to the above implementation suggestions, we also present an improvement of the protocol
when the overall goal is Boolean circuits. Taking a closer look at the choice of field, we see that
using a code over F28 with the original MiniMac protocol to compute a Boolean circuit, implies
that every bit is encoded as a byte, i.e., we “waste” a factor of 8 in terms of space. We propose
an optimization that allows us to use every bit in every data byte; this increases parallelization to
8 · 120 = 960 or 8 · 85 = 680 instances. To reach this goal, we redesign the multiplication operation
in MiniMac: The original protocol implements multiplication of data bytes as multiplication in
F28 . Instead, we compute bit-wise AND of two bytes. Our solution for this generalizes to other
characteristic 2 fields (and even other protocols, e.g., [6]) and while it requires a small amount of
extra local computation, it saves communication and storage compared to the original MiniMac.
More precisely, in [7] they compute the cost per player per gate of their protocol, where the cost
can be the amount of data stored from the processing, the communication and the computational
work. For the case of two players, these costs can be O(1), O(1), O(poly(n)), or all three can be
O(polylog(n)), depending on the underlying code used. For the case of computing the same function
many times in parallel, our solution obtains O(log(n)), O(1),polylog(n) and so is better than both
previous solutions on the parameters that matter most for efficiency. This is not only a theoretical
improvement: In our implementation, we obtain more than an 8-fold speedup.

A final performance boost is obtained by exploiting the structure of the AES circuit: only AND
gates require communication, and we form a number of batches of gates, such that gates of one
batch can all be executed in parallel. We collect the required communication in packets that each
span the entire batch. This way we send fewer but larger packets and this turns out to minimize
the time we wait for communication to happen.

Combining all these tricks, we obtain an amortized time of 14 ms per AES encryption with (at least)
128 bit security and about 9 seconds latency. We describe in the paper an additional optimization,
and although the implementation of this was not yet finished at the time of writing, a reliable
estimate is that we will get 10 ms per evaluation. This is approximately three times faster than the
best time reported for TinyOT evaluating the same circuit on the same hardware, where we note
that this TinyOT implementation runs with only 64 bit security and much larger latency.

In [8], a different secure AES implementation is reported on, based on the SPDZ protocol [6]. It is
significantly faster than ours, but is incomparable as the hardware is different and the security level
lower (40 bit). Most importantly, however, the circuit used there is an arithmetic circuit over F28

plus some “bit-decomposition” tricks to evaluate the S-boxes. Our study should be seen primarily as
targeted against at using MiniMac as efficiently as possible to evaluate a Boolean circuit. Finally,
[8] reports that much of their efficiency comes from a very careful scheduling of operations and
messages. We have optimized our implementation to some extent w.r.t. scheduling but based on
measurements of the time we spend waiting for messages, we believe there is further potential.

3

2 MiniMac

The MiniMac protocol supports the operations described in Figure 1. It does this by representing
values occurring in the computation in a certain format. In the original MiniMac paper this rep-
resentation is optimized for the case of many players. In this paper, however, we concentrate on
the two-player case and therefore we set up the representation in a way that resembles more the
way it is done in the TinyOT protocol (which is inherently a two-player protocol). More precisely,
whereas in the original MiniMac, each secret value, as well a Message Authentication Code (MAC),
is additively secret shared among the players, we keep the additive secret sharing of the value, but
add instead a MAC on each share. Whereas this is sub-optimal for the multiple player case, it
makes the check of Macs simpler and adds no significant other cost for two players.

Functionality FMPC

Initialize: On input (init , k) from all parties, each initialize the store for block length k.
Rand: On input (rand , Pi, vid) from all parties Pi, with vid a fresh identifier, pick r ← Fk and store (vid , r).
Input: On input (input , Pi, vid ,x) from Pi and (input , Pi, vid , ?) from all other parties, with vid a fresh identifier,

store (vid ,x).
Add: On command (add , vid1, vid2, vid3) from all parties (if vid1, vid2 are present in memory and vid3 is not),

retrieve (vid1,x), (vid2,y) and store (vid3,x+ y).
Multiply: On input (mult , vid1, vid2, vid3) from all parties (if vid1, vid2 are present in memory and vid3 is not),

retrieve (vid1,x), (vid2,y) and store (vid3,x ∗ y).
Output: On input (output , vid) from all honest parties (if vid is present in memory), retrieve (vid ,x) and

output it to the environment. If the environment returns “OK”, then output (vid ,x) to all players, else
output ⊥ to all players.

Fig. 1: The ideal functionality for MPC.

Representation of values A clear text value x is k-element vector over some finite field, in our case
always F28 . We consider a systematic linear error correcting code C of length n and dimension k,
and let C(x) denote the encoding of x in C. We also need to consider the Schur-transform C∗

of C, which is the linear span of all products of form c1 ∗ c2, where c1, c2 ∈ C and ∗ denote the
coordinate-wise product of vectors.

In our set-up, players P1, P2 hold a random n-element vectors α1,α2, serving as keys for the MACs.

A representation of x has the following form:

[[x]] =
(
(C(x1),m1,βx2

), (C(x2),m2,βx1
)
)

where the first component is held by P1 and the second by P2. It should hold that x = x1 + x2,
that m1 = MAC(x1) = α2 ∗ x1 + βx1

, and by symmetry that m2 = MAC(x2) = α1 ∗ x2 + βx2
.

A representation can be opened if players exchange C(x1),m1 and C(x2),m2. P1 checks that C(x2)
is indeed in C, and that m2 = MAC(x2) = α1 ∗ x2 + βx2

holds; P2 does the symmetric check on
what he receives. Then both players can add the additive shares to get C(x) and hence x.

This way to open a representation is reliable if we assume that βx2
is uniformly chosen, indepen-

dently for each representation: it follows that a corrupt P2 has no a priory information on α1. It is
now easy to show, using essentially the same argument as in [7]: P1 will accept an incorrect value

4

of C(x2) with probability at most S−d where S is the size of the field used and d is the minimum
distance of C. The point is that P2 could only make this happen by guessing α1 in d positions.

It is trivial to verify that [[x]] + [[y]] = [[x+ y]] where the +-symbol denotes that each player locally
adds corresponding components he knows from the representations.

We can easily define a similar representation [[x]]∗, this is exactly the same as [[x]], except that the
code C∗ is used for encoding. This will mean that the MACs can now be cheated with probability
S−d

∗
where d∗ is the minimum distance of C∗. This is a potential problem since in general d∗ < d,

so we need to take care when we choose C.

Now, to multiply a value on the representation with a publicly known k-vector u, u is turned into
a codeword, C(u) and then we define

C(u) ∗ [[a]] =
(
(C(u) ∗ C(x1), C(u) ∗m1, C(u) ∗ βx2

), (C(u) ∗ C(x2), C(u) ∗m2, C(u) ∗ βx1
)
)
.

It is easy to see that this is indeed a well-formed representation of u ∗ x, however, using the code
C∗, so we can write this as C(u) ∗ [[a]] = [[u ∗ x]]∗.

We can also add a public constant u to a representation, namely we define

C(u) + [[a]] =
(
(C(u) + C(x1),m1,βx2

), (C(x2),m2,βx1
−α2 ∗ u)

)
= [[u+ x]].

The protocol ΠMPC using this representation and its linear properties is described in Figure 2.
In the original protocol [7] there was also a sub-protocol for permuting entries internally in the
represented vectors. However, since we only want to do several instance of one computation in
parallel, we do not need this step.

Protocol ΠMPC

Initialize: The parties first invoke the preprocessing to get a sufficient number of multiplication triples
([[a]], [[b]], [[c]]∗), random values and single values ([[r]]), ([[s]], [[s]]∗), [[t]].

Rand: The parties take an available single [[t]].
Input: To share Pi’s input xi, take an available single [[r]] and do the following:

1. [[r]] is opened privately to Pi only.
2. Pi broadcasts ε← C(xi)− C(r).
3. The parties verify that ε is a codeword and if so, compute [[xi]]← [[r]] + ε.

Add: To add representations [[x]], [[y]], parties locally compute [[x+ y]]← [[x]] + [[y]].
Multiply: To multiply [[x]], [[y]], parties take a triple ([[a]], [[b]], [[c]]∗) and a pair of random values [[s]], [[s]]∗ from

the set of the available ones and do:
1. Open [[x]]− [[a]] to get ε and [[y]]− [[b]] to get δ to every player.
2. Compute [[x ∗ y]]∗ ← [[c]]∗ + ε ∗ [[b]] + δ ∗ [[a]] + ε ∗ δ to every player.
3. Open [[x ∗ y]]∗ − [[s]]∗ to every player who gets σ∗ ∈ C∗. P1 extracts x ∗ y − s and encodes this value

into a codeword σ ∈ C which he broadcasts.
4. All players check that σ∗,σ are codewords for the same value and then compute [[x ∗ y]]← σ + [[s]].

Output: This stage is entered when the players have [[y]]. In the [[·]] MACs are checked immediately and thus
the players do the following:
1. [[y]] is opened privately to each player Pi.

Fig. 2: The online protocol.

5

2.1 Reed-Solomon codes

MiniMac[7] requires that the code C and its Schur transform C∗ are systematic. In this section we
recall how Reed-Solomon works, what it means for a code to be systematic and how it is achieved
for Reed-Solomon which is not systematic out of the box.
A Reed-Solomon code is an error correcting code described by three parameters: (n, k, d) where n
is the length of the code, k is the dimension (the length of messages that can be encoded) and d
the distance of the code (the amount of redundancy). There are two algorithms, one for encoding
a message in to a codeword and one for checking a codeword is valid.
To encode a message of k field elements say a = [a0, ..., ak−1] as a Reed-Solomon codeword we
consider the polynomial fa(x) = a0 + a1x + · · · + ak−1x

k−1 of degree k − 1. For n ≥ k distinct
points vj , j = 0, . . . , n− 1 we define the vector c = (fa(v0), . . . , fa(vn−1)) to be a codeword for a.
Evaluating a polynomial fa in n distinct points is is strongly connected to n by k Vandermonde
matrices, Vn×k. Encoding a polynomial fa corresponds to multiplying such a Vandermonde matrix
with the column vector a = (a0, ..., ak−1)

T as follows:

Vn×k · a =

v00 v0 · · · v

k−1
0

v01 v1 · · · vk−11
...

v0n vn · · · vk−1n

a0
a1
...

ak−1

 =

a0 + a1v0 + · · ·+ ak−1v

k−1
0

a0 + a1v1 + · · ·+ ak−1v
k−1
1

...
a0 + a1 + vn + · · ·+ ak−1v

k−1
n

 =

fa(v0)
fa(v1)

...
fa(vn)

Observe that from k points from a codeword we can find our message a (the coefficient of fa) again
using interpolation. Thus, one naive way to validate a given codeword, c is to go through each of
the 2d subsets of k elements from c and check that each interpolate to the same message a.
As noted in the beginning of this section this way of encoding messages is not systematic in the
following sense: A systematic code is a code where the encoded message directly appears in fixed
positions of the codeword. In our case we will have the first k positions of a codeword to be the
actual encoded message.
To encode a systematic Reed-Solomon codeword we fix an encoding matrix Vn×k where n is the
desired codeword length and k the length of our messages. Then we take the upper k × k matrix
Vk×k of Vn×n which by construction is guaranteed to be invariable and do the following:

Vn×k(Vk×k)−1aT = c =

c0 = a0
...

ck−1 = ak−1
ck
...

cn−1

We take E = Vn×k(Vk×k)−1 to define our encoding matrix. Notice that the first k rows of E will
yield the k × k identity matrix, ensuring systematic codewords as desired.
Now it is easy to check whether a vector is a codeword, namely given c we multiply E with
the column vector consisting of the first k entries in c, and check the result yields c again e.g.

E[c0, ..., ck−1]
T ?

= c. If not the codeword is invalid.
As noted in the introduction, F28 is a natural choice as an underlying field. In particular as efficient
encoding is important for MiniMac, we benefit from F28 being small enough that multiplication

6

can be done by table look-up. With respect to Reed-Solomon the choice of F28 introduces some
restrictions on the parameters (n, k, d). Namely, that as there are only 256 elements, the length
of a (checkable) Reed-Solomon code can be at most 256, as we need a distinct evaluation point
for each codeword position. Furthermore, the error probability for the MACs is at most 256d

∗
;

aiming for 128-bit security implies a minimum distance of (at least) 16 field elements for C∗. We
can summarize the restrictions we get on the Reed-Solomon code parameters as follows:

– n ≤ |F28 | = 256 - The length of the codewords can be at most 256.
– d′ = min(d, d∗) ≥ 16 - Altering a message to another codeword implies modifying d′ positions.
– k ≤ (n− d′)/2 + 1 - If C has dimension k it is generated from polynomials of degree k − 1, so

the Schur transform is generated from polynomials of degree 2(k − 1) and hence has minimum
distance d∗ = n− 2(k− 1). For d∗ = 16 we get k ≤ 121 when n = 256. We have chosen to round
this to k = 120 as this slightly simplifies implementation.

2.2 Preprocessing

We will not explicitly consider the preprocessing in this paper. Note, however, that since MACs
are set up as in [9] and our field is characteristic 2, it is straightforward to modify the TinyOT
preprocessing to obtain the one presently needed.

3 Evaluation and Comparison with TinyOT

In this section we evaluate MiniMac in practice. To put our work in perspective we wish to compare
MiniMac to the previous state of the art protocol, TinyOT, in [9]. We present performance numbers
for AES encryption for both protocols in our framework and their interpretation.

3.1 Empirical setup and performance measurements

In the following empirical study of TinyOT and MiniMac, we use the same two computers on an
Aarhus University’s network. Both machines have the following specifications:

CPU Intel(R) Xeon(R) CPU X3430 @ 2.40 GHz
CPU op-mode(s) 32-bit, 64-bit
CPU(s) 4
Thread(s) per core 1
CPU MHz 2393.859
L1d cache 32K
L1i cache 32K
L2 cache 256K
L3 cache 8192K
RAM 32 GB
Net Gigabit LAN with 0.215 ms avg. latency measured using the ping tool.

Fig. 3: Hardware spec.

In many of our experiments we start multiple processes on the two test machines that pair-wise
execute the protocol to maximize CPU and network utilization. When more pairs of processes are

7

executing the protocol a third machine, the Monitor, listens for all of them to report ready. When
all processes are ready the Monitor broadcasts a “Go!” signal and records the time. When the
pairs of processes running the protocol reports back to the Monitor that they are done the Monitor
records the time of the last process. These two numbers are recorded as the start and end time of
the experiment and their difference is taken to be the measured elapsed time of the experiment.
In summary performance numbers are presented in tables with these columns:

Instances This column report how many protocol instances are run in parallel. That is, the
number of processes started on each of the two test machines pair-wise carrying out the protocol.

Total (ms) This column reports on the total execution time in milliseconds. For one instance,
this is also the latency, e.g. the time from initiating computation until some result is ready.

No AES This reports the total number of single block 128-bit AES encryptions carried out.
Time per AES (ms) This column shows the amortized time in milliseconds used per AES circuit.

To even out fluctuations, every line in tables like the one below reports on the mean time from at
least five runs. When appropriate, we present results with in a 95% confidence interval, indicated
as 35± 8 ms for an experiment with mean 35 with a 95% confidence interval in [27; 43] ms.

Instances No AES Total Time (ms) Time per AES (ms)

8 102000 960 380 ±69 ms

Fig. 4: An example performance measurement, these numbers are made up.

3.2 The benchmark - AES circuit and relevance

We run our experiments with a binary AES circuit encrypting one block of plaintext with a 128 bits
key. The key is additively secret shared between the two test machines. The plain-text to encrypt
is publicly known as well as the circuit gates. Both test machines learns the cipher-text but learns
nothing new about the key. There are several practical scenarios where key material split between
several servers might mitigate a potential compromise of one server.
Our concrete circuit has 6800 AND-gates and 26816 XOR-gates.
Throughout all experiments MiniMac is run with at least 128-bit security.

3.3 MiniMac test runs with no optimizations

In this Section we run our implentation with all optmizations and tricks turned off to present a
baseline of performance. This baseline is compared to TinyOT also implemented in our framework.
To only measure the AES circuit we exclude input and output gates. Thus when running our
experiments all MiniMac processes run to the point where all parties has completed their input
gates. Likewise, when the last XOR-gates of the circuit is computed the computation is recorded
as complete before running any of the output gates.

3.4 Introduction to TinyOT

The protocol in [9] is nicked named TinyOT. MiniMac and TinyOT are both targeted at evaluating
binary circuits. TinyOT uses Oblivious Transfer to obtain multiplication triples as described in [1].

8

Instances No AES Total Time (ms) Time per AES (ms)

1 120 161651 1347 ± 1243
2 240 128283 644 ± 578
4 480 188824 393 ± 138
8 960 264596 144 ± 233
16 1920 598799 311 ± 108

Fig. 5: Running MiniMac without tricks and optimizations.

First a short piece of history about TinyOTs implementation. A great deal of work was put in to
implementing of TinyOT in Java for the publication and the performance-numbers presented in [9].
The best times achieved there were on a gigantic circuit doing 2048 AES encryptions in parallel.
With this set-up, they achieved 32 ms amortised time per AES block. This circuit was not available
to us here as it was custom built into a circuit generator written in Java.
Later Nielsen et. al. did experimentation with implementing TinyOT in C++ .This later C++
implementation has been adapted to our set-up in plain C. This allows us to measure TinyOT
performance on a single AES circuit in our framework. It is faster than the Java implementation
used in [9] for one instance, probably because of the cost involved in starting up a Java process.

3.5 Empirical results with TinyOT

The table below presents runs of TinyOT on the test circuit in our setup. To get some parallelism we
try to run several TinyOT processes. From the numbers it is evident that running multiple TinyOT
processes in parallel actually hurts performance making each AES circuit slower. The explanation
for this is that TinyOT exhausts the CPU resource on out test machines, probably in part because
the administration involved in running several separate processes hurts performance.

Instances No AES Total Time (ms) Time per AES (ms)

1 1 1079 1079 ± 251
2 2 1414 707 ± 183
4 4 4740 1185 ± 229
8 8 10451 1306 ± 187
16 16 41998 2624 ± 261

Fig. 6: Running TinyOT (the C version) on one instance of our AES circuit.

4 MiniTrix

In this section we boost MiniMac in a number of ways.

4.1 Making the protocol symmetric for Multiplications

In MiniMac one player has a special role when transforming [[σ]]∗ back to [[σ]] where all players wait
on one player to do the re-encoding of σ as codeword in C. This happens both when multiplying with
a public constant and when multiplying two secret values. This step, transforming a C∗ codeword
to C requires communication in the order of 2N -codeword for N players.

9

With this trick we make the protocol symmetric, by opening [[σ]]∗ among all players. Now each
party in parallel can extract 〈σ〉 and reencode it in C. This increases the overall communication
complexity from 2N to N2, however for small N and in particular in the two party case this makes
no difference, and evens out the workload for the parties. However, we did not see any significant
impact of this optimization.

4.2 Use Fast Fourier Transform for encoding

The naive MiniMac implementation spends most of its CPU-time in matrix by vector multiplications
during the encoding of codewords.

Naive matrix by vector multiplication is quadratic in the length of the codeword, n, and hence
there is a lot to gain by reducing this using the Fast Fourier Transform (FFT[4,3]).

In its basic form, FFT can be thought of as a recursive algorithm for multiplying a vector by an n×n
Vandermonde matrix M , or its inverse. In order for this to work, the matrix must contain powers
of an n’th root of unity. More specifically, starting indices from 0, the (i, j)’th entry in the matrix
should be ωij , where ωn = 1. We call this matrix Mω. If we think of a vector x as containing
coefficients of a polynomial of degree (at most) n − 1, then computing Mωx will evaluate the
polynomial in the points ω0, ω1, . . . , ωn−1, it can therefore be used for Reed-Solomon encoding.

FFT works by breaking the problem into two instance of size n/2 each, and in order for this to
work recursively, it is usually assumed that n is a two-power. In this case, the algorithm takes
time O(n log n) field multiplications. However, even if n is not a two-power but factors into smaller
primes, variants of the algorithm can still be used to break the problem into smaller pieces and
improve performance.

In our field F28 , the multiplicative group has order 255, which factors into 3 · 5 · 17. The field
therefore contains a root of unity ω of order 255, which means that ω3 is a root of unity of order 85.
This allows us to use a Reed-Solomon code of length 255 and dimension 85, where all the required
operations can be done using (a variant of) FFT:

Systematic encoding can be done by multiplying the data vector x by the 85× 85 matrix M−1
ω3 to

get y containing coefficients of a polynomial that evaluates to the coordinates of x in the points
(ω3)i, i = 0...84. Then we compute Mωy to get the full codeword. Note that the protocol only
requires to encode in C, not in C∗. We can test if c is in C (or C∗) by computing M−1ω c. This should
reconstruct the polynomial underlying the purported codeword, and we then can then simply test
if the degree is low enough.

Even using one level of recursion in FFT reduces significantly the work we need for these operations.
Because 17 divides the size of both matrices, we can break both problems in 17 smaller pieces, and
for multiplication by Mω, for instance, this reduces the work from 2562 = 65536 field multiplications
to 255 ∗ 15 + 255 ∗ 17 = 8160.

Instances No AES Total Time (ms) Time per AES (ms)

1 85 53699 631
2 170 59505 424
4 340 79092 207
8 680 107512 146
16 1360 257609 115

Fig. 7: Running a varying number MiniMac instances using FFT encoding.

10

4.3 Preprocessing dedicated for Binary circuits

Minimac provides secure field arithmetic, however, F2 computation is not immediate as the field is
too small. Assuming that the overall goal is secure binary circuit evaluation, this can be simulated
using a larger field. Every data vector we encode will have binary entries, which implies that the data
positions in the resulting codeword will have an overhead – e.g., they are bytes bytes when using
F28 , where only the least significant position contains data; all other bit positions are identically 0.
It is natural to ask if we can exploit all eight positions in each data byte. Thus, the goal here will
be to evaluate not k, but 8k (log |F| ·k in general) identical circuits in parallel, using the same code
as before and therefore (ideally) at the same cost.

We can certainly encode a vector x that contains data in all bit positions, to get [[x]], and our
addition [[x]] + [[y]] = [[x+y]] indeed implements 8k XOR operations in parallel, simply because the
addition in F28 is the same as bit-wise XOR on bytes.

This means that we just need to redesign the multiplication protocol so that from [[x]], [[y]], we can
compute [[x∧y]], where for x = (x1, ..., xk),y = (y1, ..., yk) we define [[x∧y]] = (x1∧ y1, ..., xk ∧ yk),
and where xi ∧ yi denotes bit-wise AND on bytes.

To get started, let us recall the MiniMac multiplication protocol (since we are in characteristic 2,
we simplify some expressions by replacing some minus signs by plus).

To multiply [[x]], [[y]], parties take a triple ([[a]], [[b]], [[c]]∗) and a pair of random values [[s]], [[s]]∗ from
the set of the available ones and do:

1. Open [[x]] + [[a]] to get ε and [[y]] + [[b]] to get δ to every player.

2. Compute [[x ∗ y]]∗ ← [[c]]∗ + ε ∗ [[b]] + δ ∗ [[a]] + ε ∗ δ to every player.

3. Open [[x ∗ y]]∗ + [[s]]∗ to every player who gets σ∗ ∈ C∗. P1 extracts x ∗ y + s and encodes this
value into a codeword σ ∈ C which he broadcasts.

4. All players check that σ∗,σ are codewords for the same value and then compute [[x∗y]]← σ+[[s]].

Note here that ε and δ are codewords. In general for c ∈ C we will let C−1(c) denote the k-
vector that c encodes. The reader should notice that the reason why step 2 above works is that
C−1(ε) = x+ a and C−1(δ) = y + b.

Now, the idea is to change the computation in step 2. above. Instead we will compute:

[[x ∧ y]]∗ = [[C−1(δ) ∧ C−1(ε)]] + [[C−1(ε) ∧ a]]∗ + [[C−1(δ) ∧ b]]∗ + [[a ∧ b]]∗

It is easy to see that this equation is true, simply because the ∧ operation distributes over bit-wise
XOR just like the ∗-operation does. Essentially, we are simply using Beaver triples for F2, where
the product is stored as a F28-element. Note that it makes sense to add [[]] and [[]]∗-representations
since our C is contained in C∗. Therefore [[C−1(δ)∧C−1(ε)]] is also a [[]]∗-representation of the same
vector (albeit not a random such representation).

Now we need to figure out how we can compute the 4 terms on the right-hand side. The last term
can be obtained by requiring that the preprocessing supplies us with [[c]]∗ = [[a∧b]]∗. Also, the first
term can be computed on public values by all parties.

The “mixed terms” [[C−1(ε) ∧ a]]∗, [[C−1(δ) ∧ b]]∗ constitute a challenge. To compute these, the
multiplication triples from the preprocessing phase are extended so that in addition to [[a]] and [[b]],
the “bit decomposition” of a and b is also provided.

To explain what this means we need some notation. Say a = (a1, ..., ak) where each aj ∈ F28 . Let
(aj)i be the byte that equals aj in the i’th bit position and is 0 elsewhere. Furthermore, (aj)↓i

11

denotes (aj)i shifted down i − 1 positions, so that the “important” bit is in the least significant
position. Then we define ai = ((a1)i,, (ak)i) and a↓i = ((a1)↓i...., (ak)↓i).
The assumption on the preprocessing now is that we that we are given [[ai]], [[bi]] for i = 0...7.
One can now observe that we can compute the missing terms as follows:

7∑
i=0

C(C−1(δ)↓i) ∗ [[ai]] =
7∑

i=0

[[C−1(δ)↓i ∗ ai]]∗ = [[C−1(δ) ∧ a]]∗

Note that we multiply by the public constant C(C−1(δ)↓i) using the normal MiniMac procedure
that works over F28 . Hence the result will indeed be a vector in the [[]]∗-representation. That the
vector inside the representation is indeed C−1(δ) ∧ a can be seen from the fact that each byte in
C−1(δ)↓i has the value 0 or 1, depending on the value of the corresponding bits from C−1(δ). It
therefore acts as a “selector” that decides whether to include the bits from ai.
A final modification concerns that last two steps in the original protocol, where the result is con-
verted from [[]]∗ to [[]]-representation. This costs communication that we would like to avoid. To do
this, consider what happens if we simply omit this conversion. This would mean that data would
be passed from one gate to another using the [[]]∗-representation instead. This presents no problem
for doing linear computation, as the [[]]∗-representation is also linear.
For the multiplication protocol to take input in the [[]]∗-representation, we can just modify the
preprocessing so that it would supply [[a]]∗, [[b]]∗ in stead of [[a]], [[b]]. The only effect of this is that
then ε, δ will be C∗-codewords, but this has no effect on the rest of the protocol, since we anyway
need to decode them and re-encode the bits in C; thus, C∗−1 will simply denote the extraction of
the first k data-entries of a C∗ codeword.
To summarize, the multiplication triples have been replaced by a different set of data, namely

[[a]]∗, [[b]]∗, [[a ∧ b]]∗, {[[ai]]| i = 0...7}, {[[bi]]| i = 0...7}

The multiplication protocol works as follows:

1. Open [[x]]∗ + [[a]]∗ to get ε and [[y]]∗ + [[b]]∗ to get δ, for every player. The following steps are
then done using local operations only.

2. Compute [[C∗−1(ε) ∧ C∗−1(δ)]]
3. Compute

∑7
i=0C(C∗−1(δ)↓i) ∗ [[ai]] = [[C∗−1(δ) ∧ a]]∗.

4. Compute
∑7

i=0C(C∗−1(ε)↓i) ∗ [[bi]] = [[C∗−1(ε) ∧ b]]∗.
5. Compute [[C∗−1(δ) ∧ C∗−1(ε)]] + [[C∗−1(ε) ∧ a]]∗ + [[C∗−1(δ) ∧ b]]∗ + [[a ∧ b]]∗ = [[x ∧ y]]∗

Theoretical Analysis of the Binary Preprocessing It is easy to see that the above methods
generalizes to any field of characteristic 2. In general the field should be of size O(log(n)) to allow
the use of Reed-Solomon codes and hence allow for efficient encoding using FFT.
Following [7], we compute the cost of the protocol per player per gate in the circuit we compute.
By simple inspection, one sees that the storage needed from the preprocessing is O(log(n) (namely
O(1) field elements). The communication is O(1) bits because we only do 2 openings in each
multiplication protocol, and each such protocol does log(n) AND gates. Finally the computational
work is O(polylog(n)) bit operations due to the use of FFT. As explained in the Introduction, this
improves on the original MiniMac for communication and computational work. We also save one
round of communication.

12

Experimentation and Performance numbers In the above we actually present two tricks. The
first trick allows us to utilize all eight bits of each Galois elements we call this the bit-packing trick.
In the second trick we reduce the communication complexity of the protocol by removing the down
conversion from codewords in the Schur transform to codewords in C, we call this the zero-degree
constants trick because it takes advantage of the fact that all constants in our circuit is the same
value repeated many times and thus the underlying encoding polynomial must be constant.

Instances No AES Total Time (ms) Time per AES (ms)

1 960 58127 60 ± 2
2 1920 104840 76 ± 6
4 3840 224146 58 ± 2
8 7680 591523 77 ± 7
16 15360 1094454 71 ± 6

Fig. 8: Running MiniMac with bit-packing-trick only, with standard matrix encoding

Instances No AES Total Time (ms) Time per AES (ms)

1 680 19410 24 ± 4
2 1360 36235 26 ± 3
4 2720 71082 24 ± 8
8 5440 196322 34 ± 30
16 10880 428458 39 ± 1

Fig. 9: Running MiniMac with bit-packing-trick only, with Fast Fourier Transform encoding

4.4 Simultaneous multiplication gates

The present optimization is based on the observation that network utilization is much higher for
large batches of data. Thus, collecting a larger amount of data before communication should give
better performance.
In the previous sections our MiniMac implementation was general and works even if the circuit
is streamed, e.g. without any knowledge of what is coming ahead. If our circuit description is
extended with hints about which gates can be run simultaneously, then the protocol can be made
to run faster. In particular, we extend our implementation to use such hints to compute blocks of
multiplication (AND) gates. The hints that we allow in the circuit description describe how many
of the following multiplications are independent (e.g. the number of AND gates in the following
that will not read the results of each other).
Lets us recap the communication pattern in MiniMac during a multiplication from one players
pointer of view:

1 The codewords for δ and ε are sent to every other player along with their MACs. This requires
4 ∗n ∗N bytes of communication. Where n is the length of a codeword and N is the number of
players.

2 Receive δ and ε with MACs from every other player.
3 Local computation, including checking the incoming MACs.

13

The idea is to collect say M independent AND gates before initiating communication. Then on the
M ’th gate the peers exchange M δ- and ε-values with MACs.

Instances No AES Total Time (ms) Time per AES (ms)

1 960 55917 58 ± 20
2 1920 95321 70 ± 56
4 3840 205667 85 ± 148
8 7680 334529 43 ± 24
16 15360 282940 42 ± 20

Fig. 10: Running MiniMac with bit-packing-trick and simultaneous multiplication trick, with matrix
encoding

Instances No AES Total Time (ms) Time per AES (ms)

1 680 14313 21 ± 2
2 1360 27893 28 ± 22
4 2720 69452 25 ± 4
8 5440 140540 25 ± 6
16 10880 257556 23 ± 3

Fig. 11: Running MiniMac with bit-packing-trick and simultaneous multiplication trick, with FFT
encoding.

4.5 Fast encoding of binary data

One should notice that in the above multiplication protocol we need to encode C∗−1(ε)↓i) for
i = 0...7. However, each entry in these vectors is 0 or 1, due to the shift down we did. Therefore, we
can encode much faster than in general by simply XOR-ing together those rows of the generator
matrix that correspond to positions in the vector that are 1. Packing bytes together in word-size
chunk allows us to do this on several bytes using one CPU instruction.

4.6 A Final Optimization

By inspection of the optimized multiplication protocol above, one can observe that the only coding
operations needed are encoding of binary data into C and check for membership in C∗. If we use
fast encoding of binary data, the latter is the only case where FFT is used. Recall that for this
we multiply by M−1ω and check that enough 0’s are present in the result. Clearly this will work
to check membership in a Reed-Solomon code of any dimension. Therefore, we do not have to use
dimension 85, we can increase the dimension to 120 and still have 128-bit security. The protocol
will remain unchanged in all other respects. The only possible performance difference is that the
binary encoding into C now has to work on longer vectors. But on the other hand, since we do
systematic encoding, we only need to compute the redundant part of the codeword, which will be
smaller since we increased the dimension. These two factors will approximately balance each other
out. Therefore, although this has not been implemented at the time of writing, we can reliably

14

estimate that running the program will take the same time as before, but now we compute 8 ∗ 120
instead of 8 ∗ 85 AES circuits. This improves the amortized time by a factor about 1.5, and should
therefore give us a time of about 10ms per AES circuit.

Instances No AES Total Time (ms) Time per AES (ms)

1 960 18060 18 ± 1
2 1920 37614 19 ± 6
4 3840 118878 28 ±10
8 7680 252111 18 ±10
16 15360 304846 19 ±7

Fig. 12: Running MiniMac with bit-packing-trick, zero-degree-constants and simultaneous multipli-
cation trick, with matrix bit encoding trick.

Instances No AES Total Time (ms) Time per AES (ms)

1 680 9962 14 ± 1
2 1360 17553 14 ± 5
4 2720 39886 15 ± 5
16 10880 195992 18 ± 7

Fig. 13: Running MiniMac with bit-packing-trick, zero-degree-constants and simultaneous multipli-
cation trick, with FFT bit encoding trick.

5 Conclusion

We have proposed several optimisations of the MiniMac protocol, both on implementation and
protocol level. In the fastest configuration of MiniMac using Fast Fourier transform and bit encoding
trick with simultaneous multiplications gates we evaluate an AES circuit in 14 ms on our test setup,
which can be optimized to about 10 ms. As far as we are aware, this is the fastest published actively
secure two-party implementation of AES with 128-bit security based on a Boolean circuit.

6 Future directions

All experiments in this paper are run on the same AES circuit. To improve performance one may
try to optimize the AES circuit, for instance by reducing further the number of AND gates. Since a
lot of the description of AES uses arithmetic over F28 it seems natural to try an arithmetic circuit
over F28 . However, the circuits of this type that we know of are all significantly larger than the
binary circuit we use here. However, it is likely that adding the bit decomposition trick used in [8]
could help here, so this seems an obvious direction to try in future work. However, AES leads to
very specialized circuits, so it natural to broaden the scope and consider other binary circuits, for
instance for hash functions such as SHA-1.
During our work with MiniMac many Operating System dependent obstacles has been identified.
In particular the handling of when the TCP actually sends data. It is possible that tweaking Linux
network stack parameters, and/or other strategies for better scheduling may increase throughput
further.

15

Bibliography

References

1. Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO, pages 420–432, 1991.
2. Rikke Bendlin, Ivan Damg̊ard, Claudio Orlandi, and Sarah Zakarias. Semi-homomorphic encryption and multiparty

computation. In EUROCRYPT, pages 169–188, 2011.
3. S.D. Conte and C. De Boor. Elementary Numerical Analysis: An Algorithmic Approach. International series in

pure and applied mathematics. McGraw-Hill, 1980.
4. James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier series. Math.

comput, 19(90):297–301, 1965.
5. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and Nigel P. Smart. Practical covertly

secure mpc for dishonest majority - or: Breaking the spdz limits. In ESORICS, pages 1–18, 2013.
6. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat

homomorphic encryption. In CRYPTO, pages 643–662, 2012.
7. Ivan Damg̊ard and Sarah Zakarias. Constant-overhead secure computation of boolean circuits using preprocessing.

In TCC, pages 621–641, 2013.
8. Marcel Keller, Peter Scholl, and Nigel P Smart. An architecture for practical actively secure mpc with dishonest

majority. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, pages
549–560. ACM, 2013.

9. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach to
practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 681–700. Springer Berlin
Heidelberg, 2012.

16

	An Empirical Study and some Improvements of the MiniMac Protocol for Secure Computation

