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Abstract

We study the Reliable Broadcast problem in incomplete networks, under the locally
bounded adversarial model [8], that is, there is a known bound on the number of players
that a Byzantine adversary controls in each player’s neighborhood. We generalize the model
to the more realistic non-uniform case, by allowing this bound to vary from node to node.

We first settle an open question of Pelc and Peleg [12] in the affirmative, by showing that
Koo’s Certified Propagation Algorithm (CPA) for ad hoc networks is indeed unique, that
is, it can tolerate as many local corruptions as any other non-faulty algorithm, thus having
optimal resilience. Actually, we prove the stronger result that a natural extension of CPA
is unique for the non-uniform model. We do this by providing a necessary and sufficient
condition for reliable broadcast in ad hoc networks. On the other hand, we show that it is
NP-hard to check whether this condition holds for a given graph G.

We also study known topology networks and prove that a topological condition, shown
in [12] to be necessary for the existence of a Broadcast algorithm, is also sufficient. This leads
to an optimal resilience algorithm for known networks as well. On the downside, we prove
that PPA is inefficient. However, we are able to provide evidence showing that probably no
efficient protocol of optimal resilience exists.

We take one more step, by considering a hybrid between ad hoc and known topology
networks: each node knows a part of the network, namely a connected subgraph containing
itself. We show that this partial knowledge model allows for more accurate reliable broadcast
algorithms.

Finally, we show that our results extend to the general adversary model. This, among
others, means that an appropriate adaptation of CPA is unique against general adversaries
in ad hoc networks.



1 Introduction

A fundamental problem in distributed networks is Reliable Broadcast, in which the goal is to
distribute a message correctly despite the presence of Byzantine faults. That is, an adversary
may control several nodes and be able to make them deviate from the protocol arbitrarily
by blocking, rerouting, or even altering a message that they should normally relay intact to
specific nodes. In general, agreement problems have been primarily studied under the threshold
adversary model, where a fixed upper bound t is set for the number of corrupted players and
broadcast can be achieved if and only if t < n/3, where n is the total number of players.
The Broadcast problem has been extensively studied in complete networks under the threshold
adversary model mainly in the period from 1982, when it was introduced by Lamport, Shostak
and Pease [10], to 1998, when Garay and Moses [4] presented the first fully polynomial Broadcast
protocol optimal in resilience and round complexity.

The case of Reliable Broadcast under a threshold adversary in incomplete networks has
been studied to a much lesser extent, in a study initiated in [1, 2, 9], mostly through protocols
for Secure Message Transmission which, combined with a Broadcast protocol for complete net-
works, yield Broadcast protocols for incomplete networks. Naturally, connectivity constraints
are required to hold in addition to the n/3 bound. Namely, at most t < c/2 corruptions can be
tolerated, where c is network connectivity, and this bound is tight[1].

In the case of an honest dealer, particularly meaningful in wireless networks, the impossibility
threshold of n/3 does not hold; for example, in complete networks with honest dealer the
problem becomes trivial regardless of the number of corrupted players. However, in incomplete
networks the situation is different. A small number of traitors (corrupted players) may manage
to block the entire protocol if they control a critical part of the network, e.g. if they form a
separator of the graph. It therefore makes sense to define criteria (or parameters) depending on
the structure of the graph, in order to bound the number or restrict the distribution of traitors
that can be tolerated.

An approach in this direction is to consider topological restrictions on the adversary’s cor-
ruption capacity. The importance of local restrictions comes, among others, from the fact that
they may be used to derive local criteria which the players can employ in order to achieve Broad-
cast in ad hoc networks. Such a paradigm is the t-locally bounded adversary model, introduced
in [8], in which at most a certain number t of corruptions are allowed in the neighborhood of
every node.

The locally bounded adversarial model is particularly meaningful in real-life applications and
systems. For example, in social networks it is more likely for an agent to have a quite accurate
estimation of the maximum number of malicious agents that may appear in its neighborhood,
than having such information, as well as knowledge of connectivity, for the whole network. In
fact, this scenario applies to all kinds of networks, where each node is assumed to be able to
estimate the number of traitors in its close neighborhood. It is also natural for these traitor
bounds to vary among different parts of the network. Motivated by such considerations, in this
work we will introduce a generalization of the t-locally bounded model.

1.1 Related Work

Considering t-locally bounded adversaries, Koo [8] proposed a simple, yet powerful protocol,
namely the Certified Propagation Algorithm (CPA) (a name coined by Pelc and Peleg in [12]),
and applied it to networks of specific topology. CPA is based on the idea that a set of t + 1
neighbors of a node always contain an honest one. Pelc and Peleg [12] considered the t-locally
bounded model in generic graphs and gave a sufficient topological condition for CPA to achieve
Broadcast. They also provided an upper bound on the number of corrupted players t that can
be locally tolerated in order to achieve Broadcast by any protocol, in terms of an appropriate
graph parameter; they left the deduction of tighter bounds as an open problem. To this end,

1



Ichimura and Shigeno [7] proposed an efficiently computable graph parameter which implies
a more tight, but not exact, characterization of the class of graphs on which CPA achieves
Broadcast. It had remained open until very recently to derive a tight parameter revealing the
maximum number of traitors that can be locally tolerated by CPA in a graph G with dealer D.
Such a parameter is implicit in the work of Tseng et al. [13], who gave a necessary and sufficient
condition for CPA Broadcast. Finally, in [11] such a graph parameter was presented explicitly,
together with an efficient 2-approximation algorithm for computing its value.

A more general approach regarding the adversary structure was initiated by Hirt and Maurer
in [6] where they studied the security of multiparty computation protocols with respect to an
adversary structure, i.e. a family of sets of players, such that the adversary may entirely corrupt
any set in the family. This line of work has yielded results on Broadcast against a general
adversary in complete networks [3] but, to the best of our knowledge, the case of Broadcast
against general adversaries in incomplete networks has not been studied as such.1

1.2 Our Results

In this work we introduce a generalization of the t-locally bounded model, namely the non-
uniform t-locally bounded model which subsumes the (uniform) model studied so far. The new
model allows for a varying bound on the number of corruptions in each player’s neighborhood.
We address the issue of locally resilient Broadcast in the non-uniform model.

We first introduce a new necessary and sufficient condition for CPA to be t-locally resilient
by extending the notion of the local pair cut employed in [12]. The condition allows us to answer
the question of CPA Uniqueness [12], in the affirmative: we show that if any safe (non-faulty)
algorithm achieves Broadcast in an ad hoc network then so does CPA. We next prove that
computing the validity of the condition is NP-hard and observe that the latter negative result
also has a positive aspect, namely that a polynomially bounded adversary is unable to design
an optimal attack unless P = NP.

Moreover we devise an optimal resilience protocol for networks of known topology, which we
call Path Propagation Algorithm (PPA). Using PPA we prove that a topological condition which
was shown in [12] to be necessary for the existence of a Broadcast algorithm is also sufficient.
Thus, we manage to exactly characterize the class of networks for which there exists a solution
to the Broadcast problem. On the downside, we prove that it is NP-hard to compute an essential
decision rule of PPA, rendering the algorithm inefficient. However, we are able to provide an
indication that probably no efficient protocol of optimal resilience exists. In particular, we prove
that, assuming P 6= NP, no safe fully polynomial algorithm Π can guarantee that each player
that decides through PPA will also decide through Π.

We then take one more step, by considering a hybrid between ad hoc and known topology
networks: each node knows a part of the network, namely a connected subgraph containing
itself. We propose a protocol for this setting as well, namely the Generalized Path Propagation
Algorithm (GPPA). We use GPPA to show that this partial knowledge model allows for Reliable
broadcast algorithms of increased resilience.

We next study the case of general adversaries and devise variations of our protocols which
prove to be of optimal resilience in this setting, both in known topology and ad hoc networks.
Finally we discuss how to extend our results to the case of a corrupted dealer by simulating
Broadcast protocols for complete networks.

1Some related results are implicit in [9], but in the problem studied there, namely Secure Message Transmission,
additional secrecy requirements are set which are out of the scope of our study.
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2 Problem and Model Definition

In this paper we address the problem of Reliable Broadcast with an honest dealer in generic
(incomplete) networks. As we will see in Section 7, this case essentially captures the difficulty
of the general problem, where even the dealer may be corrupted. The problem definition follows.

Reliable Broadcast with Honest Dealer. The network is represented by a graph G =
(V,E), where V is the set of players, and E represents authenticated channels between players.
We assume the existence of a designated honest player, called the dealer, who wants to broadcast
a certain value xD ∈ X, where X is the initial input space, to all players. We say that a
distributed protocol achieves Reliable Broadcast if by the end of the protocol every honest
player has decided on xD, i.e. if it has been able to deduce that xD is the value originally sent
by the dealer and output it as its own decision.

The problem is trivial in complete networks; we will consider the case of incomplete networks
here. For brevity we will refer to the problem as the Broadcast problem.

We will now formally define the adversary model by generalizing the notions originally devel-
oped in [8, 12]. We will also define basic notions and terminology that we will use throughout
the paper. We refer to the participants of the protocol by using the terms node and player
interchangeably.

Corruption function. Taking into account that each player might be able to estimate her
own upper bound on the corruptions of its neighborhood, as discussed earlier, we introduce a
model in which the maximum number of corruptions in each player’s neighborhood may vary
from player to player. We thus generalize the standard t-locally bounded model [8] in which
a uniform upper bound on the number of local corruptions was assumed. Here we consider
t : V → N to be a corruption function over the set of players V .

Non-Uniform t-Locally Bounded Adversary Model. The network is represented by a
graph G = (V,E). One player D ∈ V is the dealer (sender). A corruption function t : V → N
is also given, implying that an adversary may corrupt at most t(u) nodes in the neighborhood
of each node u ∈ V . The family of t-local sets plays an important role in our study since it
coincides with the family of admissible corruption sets.

Definition 1 (t-local set). Given a graph G = (V,E) and a function t : V → N a t-local set is
a set C ⊆ V for which ∀u ∈ V, |N (u) ∩ C| ≤ t(u). For V ′ ⊆ V a t-local w.r.t. V ′ set is a set
C ⊆ V for which ∀u ∈ V ′, |N (u) ∩ C| ≤ t(u).

Uniform vs Non-Uniform Model. Obviously the original t-locally bounded model corre-
sponds to the special case of t being a constant function. Hereafter we will refer to the original
t-locally bounded model as the Uniform Model as opposed to the Non-Uniform Model which
we introduce here.

In our study we will often make use of node-cuts which separate some players from the
dealer, hence, node-cuts that do not include the dealer. From here on we will simply use the
term cut to denote such a node-cut. The notion of t-local pair cut was introduced in [12] and
is crucial in defining the bounds for which correct dissemination of information in a network is
possible.

Definition 2 (t-local pair cut). Given a graph G = (V,E) and a function t : V → N, a pair of
t-local sets C1, C2 s.t. C1 ∪ C2 is a node-cut of G is called a t-local pair cut.

The next definition extends the notion of t-local pair cut and is particularly useful in de-
scribing capability of achieving Broadcast in networks of unknown topology (ad hoc networks)
where each player’s knowledge of the topology is limited in its own neighborhood.
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Definition 3 (t-partial local pair cut). Let C be a node-cut of G, partitioning V \ C into sets
A,B 6= ∅ s.t. D ∈ A. C is a t-partial local pair cut (t-plp cut) if there exists a partition
C = C1 ∪ C2 where C1 is t-local and C2 is t-local w.r.t. B.

In the uniform model the Local Pair Connectivity (LPC(G,D)) [12] parameter of a graph G
with dealer D, was defined to be the minimum integer t s.t. G has a t-local pair cut. To define
the corresponding notion in the non-uniform model we need to define a (partial) order among
corruption functions. Nevertheless, for reasoning about our results it suffices to consider the
following decision problem:

Definition 4 (pLPC). Given a graph G, a dealer D and a corruption function t determine
whether there exists a t-plp cut in G.

Definition 5 (t-locally resilient algorithm). An algorithm which achieves Broadcast for any
t-local corruption set in graph G with dealer D is called t-locally resilient for (G,D).

Definition 6 (safe / t-locally safe algorithm). A Broadcast algorithm which never causes an
honest node to decide on an incorrect message, is called safe.
A Broadcast algorithm which never causes an honest node to decide on an incorrect message
under any t-local corruption set, is called t-locally safe.

3 Ad Hoc Networks

3.1 Certified Propagation Algorithm

The Certified Propagation algorithm [8] uses only local information and thus is particularly
suitable for ad hoc networks. CPA is probably the only Broadcast algorithm known up to now
for the t-locally bounded model, which does not require knowledge of the network topology.
Protocol 2, presented in the Appendix, is a modification of the original CPA that can be
employed under the generalized corruption model introduced here. Namely a node v, upon
reception of t(v) + 1 messages with the same value x from t(v) + 1 distinct neighbors, decides
on x, sends it to all neighbors and terminates. It can easily be proven by induction that CPA
is a t-locally safe Broadcast algorithm.

3.2 CPA Uniqueness in Ad Hoc Networks

Based on the above definitions we can now prove the CPA uniqueness conjecture for ad hoc
networks, which was posed as an open problem in [12]. The conjecture states that no algorithm
can locally tolerate more corrupted nodes than CPA in networks of unknown topology.

We consider only the class of t-locally safe Broadcast algorithms. We assume the ad hoc
network model, e.g. [12]. In particular we assume that nodes know only their own labels, the
labels of their neighbors and the label of the dealer. We call a distributed Broadcast algorithm
that operates under these assumptions an ad hoc Broadcast algorithm.

Theorem 1 (Sufficient Condition). Given a graph G, a corruption function t and a dealer D,
if no t-plp cut exists, then CPA is t-locally resilient for (G,D).

Proof. Suppose that no t-plp cut exists in G. Let T be the corruption set and T ∪N(D) is a cut
on G not including node D i.e. there exists u1 ∈ V \ (T ∪N (D)∪D) s.t. |N(u1)∩ (N(D)\T )| ≥
t(u1) + 1 and since u1 is honest it will decide on the dealer’s value xD. We now use the same
argument inductively to show that every honest node will eventually decide on the correct value
xD through CPA. Let Ck = N(D)∪ {u1, u2, ..., uk−1} be the set of the nodes that have decided
until a certain round of the protocol. Then Ck ∪ T is a cut. Since T is t-local by the same
argument as before there exists a node uk s.t. |Ck ∩N(uk)| ≥ t(uk) + 1 and uk will decide on
xD. Eventually all honest players will decide on xD. Thus CPA is t-locally resilient in G.
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Figure 1: Partition of G in the subgraphs A,B, T

Theorem 2 (Necessary Condition). Let A be a t-locally safe ad hoc Broadcast algorithm. Given
a graph G, a corruption function t and a dealer D, if a t-plp cut exists, then A is not t-locally
resilient in (G,D).

Proof. Assume that there exists a t-plp cut C = T ∪H in graph G with dealer D with T being
the t-local set of the partition and H the t-local w.r.t. to B set (Figure 1). Let G′ be a graph
that results from G if we remove some edges from E′ = {(u, v) : u, v ∈ A∪T} so that the set H
becomes t-local in G′ (e.g. we can remove all edges that connect nodes in A∪T ). The existence
of a set of edges that guarantees such a property is implied by the fact that H is t-local w.r.t.
B.

The proof is by contradiction. Suppose that there exists a t-locally safe Broadcast algorithm
A which is t-locally resilient in graph G with dealer D. We consider the following executions σ
and σ′ of A :

• Execution σ is on the graph G with dealer D, with dealer’s value xD = 0, and corruption
set T ; in each round, all players in T perform the actions that perform in the respective
round of execution σ′ (where T is a set of honest players).

• Execution σ′ is on the graph G′ with dealer D, with dealer’s value xD = 1, and corruption
set H; in each round, all players in H perform the actions that perform in the respective
round of execution σ (where H is a set of honest players).

Note that the corruption sets T,H are admissible corruption sets in G,G′ respectively due
to their t-locality. It is easy to see that the set H ∪ T is a node-cut which separates D from
B in both G and G′ and actions of all nodes of this cut are identical in both executions σ, σ′.
Consequently the actions of any honest node w ∈ B must be identical in both executions. Since
by our assumption algorithm A is t-locally resilient on G with dealer D, w must decide on the
dealer’s message 0 in execution σ on G with dealer D, and must do the same in execution σ′

on G′ with dealer D. However, in execution σ′ the dealer’s message is 1. Therefore A makes
w decide on an incorrect message in (G′, D). This contradicts the assumption that A is locally
safe.

We can show that if we drop the requirement for t-local safety, then the theorem does
not hold. Intuitively, the reason is that an ad hoc protocol that assumes certain topological
properties for the network may be t-locally resilient in a family of graphs that have the assumed
topological properties. Indeed, Pelc and Peleg [12] introduced another algorithm for the uniform
model, the Relaxed Propagation Algorithm (RPA) which uses knowledge of the topology of the
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network and they proved that there exists a graph G∗ with dealer D for which RPA is 1-locally
resilient and CPA is not. So if we use RPA in an ad hoc setting assuming that the network is
G∗ then this algorithm will be t-locally resilient for (G∗, D) while CPA will not. Non-t-local
safety of RPA can easily be shown. This shows that there are non-safe algorithms of higher
resilience than CPA.

Corollary 3 (CPA Uniqueness). Given a graph G and dealer D, if there exists an ad hoc
Broadcast algorithm which is t-locally resilient in (G,D) and t-locally safe, then CPA is t-locally
resilient in (G,D).

Proof. Immediate from Theorems 1,2.

3.3 Hardness of pLPC

We next show that the pLPC problem (see Def. 4) is NP-hard. We prove the claim for a special
case of pLPC in the uniform model, in which the corruption functions in consideration are
constant. The proof uses similar arguments as the one given in [7] for the NP-hardness of the
computation of LPC(G) and is given in the appendix.

Theorem 4. pLPC is NP-hard.

Therefore, computing the necessary and sufficient condition for CPA to work is NP-hard.
Observe that this negative result also has a positive aspect, namely that a polynomially bounded
adversary is unable to compute an optimal attack unless P = NP.

4 Known topology Networks

4.1 The Path Propagation Algorithm

Considering only safe Broadcast algorithms, the uniqueness of CPA in the ad hoc model implies
that an algorithm that achieves Broadcast in cases where CPA does not, must have some
additional information on the topology of the network. It thus makes sense to consider the
setting where players have full knowledge of the topology of the network. In this section we
propose the Path Propagation Alorithm (PPA) and show that it achieves Broadcast in the full-
knowledge model. For convenience we will use the following notion: a set S is called a cover of
a set of paths P if and only if ∀p ∈ P, ∃s ∈ S s.t. s is a node of p. The description of PPA
follows.

Protocol 1: Path Propagation Algorithm (PPA)

Input (for each node v): dealer’s label D, graph G, t(v) = max. # traitors in N(v).
Message format : pair (x, p), where x ∈ X and p is a path of G (message’s propagation trail).

Code for D: send value xD ∈ X to all neighbors, decide on xD and terminate.

Code for v 6= D: upon reception of (x, p) do:

if v ∈ p then discard the message else send message (x, p||v) to all neighbors.

if decision(v) 6= ⊥ then send message (decision(v), v) to all neighbors.

function decision(v)

(* dealer propagation rule *)

if v ∈ N (D) and v receives (xD, D) then return xD.

(* honest path propagation rule *)
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if v receives messages (x, p1), . . . , (x, pn) and @ t-local cover of P = {p1, . . . , pn}
then return x else return ⊥.

The correctness of the second rule in function decision (path propagation rule) is trivial: if
a path is corruption free, then value x, which is relayed through that path, is correct. Observe
that each player can check the validity of the path propagation rule only if it has knowledge of
the corruption function t and the network’s topology. Notice that the certified propagation rule
of CPA is in fact subsumed by the path propagation rule of PPA as discussed in Section 5.

4.2 A necessary and sufficient condition

We will now show that the non-existence of a t-local pair cut is a sufficient condition for PPA
to achieve Broadcast in the t-locally bounded model in networks of known topology (proof in
the Appendix).

Theorem 5 (Sufficiency). Given a graph G with dealer D and corruption function t, if no
t-local pair cut in (G,D) exists then all honest players will decide through PPA on xD.

Trivially, the theorem holds in the uniform model as well. Using the same arguments as in
the proof of the necessity of condition t < LPC(G,D) [12] it can be seen that the non-existence
of a t-local pair cut is a necessary condition for any algorithm to achieve Broadcast under the
non-uniform model.

Theorem 6 (Necessity). Given a graph G with dealer D and corruption function t, if there
exists a t-local pair cut in (G,D) then there is no t-locally resilient algorithm for (G,D).

Thus the non-existence of a t-local pair cut proves to be a necessary and sufficient condition
for the existence of a t-locally resilient algorithm in both the uniform and non-uniform model.

4.3 On the hardness of Broadcast in known networks

In order to run PPA we have to be able to deduce whether a corruption-free path exists among
a set of paths broadcasting the same value. Formally, given a graph G(V,E), a set of paths P
and a node u (the one that executes decision(u)) we need to determine whether there exists a
t-local cover T of P. We call this problem the Local Path Cover Problem, LPCP (G,D, u, t,P).

Theorem 7. It is NP-hard to compute LPCP (G,D, u, t,P).

Proof. See Appendix.

The above theorem implies that PPA may not be practical in some cases, since its decision
rule cannot be checked efficiently. Moreover, if one attempts to devise a fully polynomial
algorithm, then this algorithm will either be non-safe, or will fail to make a decision for certain
nodes which PPA manages to make decide (i.e. there is no fully polynomial algorithm that
completely subsumes PPA, unless P=NP).

Theorem 8. Assuming P 6= NP, no safe fully polynomial protocol Π can satisfy the following:
for any graph G, dealer D and corruption function t, if a node u decides through PPA on a
value x, then u will decide on x by running Π on (G,D, t).

Proof. See Appendix.
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5 Partial knowledge

Until now we have presented optimal resilience algorithms for Broadcast in two extreme cases,
with respect to the knowledge over the network topology: the ad hoc model and and the full-
knowledge model. A natural question arises, is there any algorithm that works in settings where
nodes have partial knowledge of the topology?

To address these questions we devise a new generalized version of PPA that can run with
partial knowledge of the topology of the network. Specifically we assume that each player v
only has knowledge of the topology of a certain connected subgraph Gv of G which includes
v. Namely if we consider the family G of connected subgraphs of G we use the topology view
function γ : V → G, where γ(v) represents the subgraph over which player v has knowledge of
the topology. We also define the joint view of a set S as the subgraph γ(S) of G with node-set
V (γ(S)) =

⋃
u∈S V (γ(u)) and edge-set E(γ(S)) =

⋃
u∈S E(γ(u)).

Now given a corruption function t and a view function γ we define the Generalized Path
Propagation Algorithm (GPPA) to work exactly as PPA apart from a modification of the path
propagation rule.

Generalized path propagation rule: Player v receives the same value x from a set P of paths
that are completely inside γ(v) and is able to deduce (from the topology) that no t-local cover
of P exists.

Remark. Note that GPPA generalizes both CPA and PPA. Indeed, if ∀v ∈ V, γ(v) = N (v), ,
then GPPA(G,D, t, γ) coincides with CPA(G,D, t). If, on the other hand, ∀v ∈ V, γ(v) = G
then GPPA(G,D, t, γ) coincides with PPA(G,D, t).

We also notice that, quite naturally, as γ provides more information for the topology of the
graph, resilience increases, with CPA being of minimal resilience in this family of algorithms,
and PPA achieving maximal resilience.

To prove necessary and sufficient conditions for GPPA being t-local resilient we need to
generalize the notion of t-plp cut as follows:

Definition 7 (type 1 (γ, t)-partial local pair cut). Let C be a node-cut of G, partitioning V \C
into sets A,B 6= ∅ s.t. D ∈ A. C will be called a type 1 (γ, t)-partial local pair cu (plp1 cut) if
there exists a partition C = C1 ∪ C2 s.t. C1 is t-local and C2 is t-local in the graph γ(B).

Definition 8 (type 2 (γ, t)-partial local pair cut). Let C be a node-cut of G, partitioning V \C
into sets A,B 6= ∅ s.t. D ∈ A. C will be called a type 2 (γ, t)-partial local pair cut (plp2 cut)
if there exists a partition C = C1 ∪C2 s.t. C1 is t-local and ∀u ∈ B, C2 ∩N(u) is t-local in the
graph γ(u).

We can now show the following two theorems. The proofs are similar to the ones presented
for CPA and PPA and are included in the Appendix.

Theorem 9 (sufficient condition). Let t be corruption function and γ be a view function, if 6 ∃
(γ, t)-plp2 cut in G with dealer D then GPPA(G,D, t, γ) is t-locally resilient for G,D.

Theorem 10 (necessary condition). Let t be a corruption function, γ be a view function and A
be a t-locally safe ad hoc Broadcast algorithm. If a (γ, t)-plp1 cut exists in graph G with dealer
D, then A is not t-locally resilient for G,D.

Increased resilience. One can argue that increased topology knowledge implies increased re-
silience for GPPA compared to CPA; for example, the sufficient condition of GPPA holds in
settings where the sufficient condition of CPA does not hold. Notice that the reason for which
GPPA is not optimal is that nodes in γ(v) do not share their knowledge of topology. An optimal
resilience protocol would probably include exchange of topological knowledge among players.
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6 General Adversary

Hirt and Maurer in [6] study the security of multiparty computation protocols with respect
to an adversary structure, that is, a family of subsets of the players; the adversary is able to
corrupt one of these subsets. More formally,

A structure Z for the set of players V is a monotone family of subsets of V , i.e. Z ⊆ 2V ,
where all subsets of Z are in Z if Z ∈ Z.

Let us now redefine some notions that we have introduced in this paper in order to extend
our results to the case of a general adversary. We will call an algorithm that achieves Broadcast
for any corruption set T ∈ Z in graph G with dealer D, Z-resilient. We next generalize the
notion of a t-local pair cut.

Definition 9 (Z-pair cut). A cut C of G for which there exists a partition C = C1 ∪ C2 and
C1, C2 ∈ Z is called a Z-pair cut of G.

Known Topology Networks

We adapt PPA in order to address the Broadcast problem under a general adversary. The
Generalized Z-PPA algorithm can be obtained by a modification of the path propagation rule
of PPA (Protocol 1).

Z-PPA Honest Path Propagation Rule: player v receives the same value x from a set P of paths
and is able to deduce that for any T ∈ Z, T is not a cover of P.

Moreover, the following theorems can be easily shown using essentially the same proofs as
for Theorems 5, and 6 and replacing the notion of t-local pair cut with that of Z-pair cut.

Theorem 11 (Sufficiency). Given a graph G, dealer D, and an adversary structure Z, if no
Z-pair cut exists, then all honest players will decide on xD through Z-PPA.

Theorem 12 (Necessity). Given a graph G, dealer D, and an adversary structure Z, if there
exists a Z-pair cut then there is no Z-resilient Broadcast algorithm for (G,D).

Ad Hoc Networks

Since in the ad hoc model the players know only their own labels, the labels of their neighbors
and the label of the dealer it is reasonable to assume that a player has only local knowledge
on the actual adversary structure Z. Specifically, given the actual adversary structure Z we
assume that each player v knows only the local adversary structure Zv = {A ∩N (v) : A ∈ Z}.

As in known topology networks, we can describe a generalized version Z-CPA of CPA, which
is an ad hoc Broadcast algorithm for the general adversary model. In particular, we modify
step (3) of CPA (Protocol 2) in the following way.

Z-CPA Certified Propagation Rule: if a node v is not a neighbor of the dealer, then upon
receiving the same value x from all its neighbors in a set N ⊆ N (v) s.t. N /∈ Zv, it decides on
value x.

In order to argue about the topological conditions which determine the effectiveness of Z-
CPA we generalize the notion of partial t-local pair cut.

Definition 10 (Z-partial pair cut). Let C be a cut of G partitioning V \ C into sets A,B 6= ∅
s.t. D ∈ A. C is a Z-partial pair cut (Z-pp cut) if there exists a partition C = C1 ∪ C2 with
C1 ∈ Z and ∀u ∈ B, N (u) ∩ C2 ∈ Zu.

Analogously to CPA Uniqueness, we can now prove Z-CPA Uniqueness in the general ad-
versary model (proofs in Appendix).

9



Theorem 13 (Sufficient Condition). Given a graph G, dealer D, and an adversary structure
Z, if no Z-pp cut exists, then Z-CPA is Z-resilient.

Theorem 14 (Necessary Condition). Let A be a safe ad hoc Broadcast algorithm. Given a
graph G, dealer D, and an adversary structure Z, if a Z-pp cut exists then A is not Z-resilient
for G,D.

Complexity of Z-CPA. Regarding the computational complexity of Z-CPA one can observe
that is polynomial if and only if for every player v there exists a polynomial (w.r.t. the size of
G) algorithm B which given a set S ⊆ N (v) decides whether S ∈ Zv. Since Z-CPA is clearly
polynomial in round complexity and communication complexity, if such an algorithm B exists,
Z-CPA is fully polynomial.

7 Dealer Corruption

We have studied the problem of Broadcast in the case where the dealer is honest. In order to
address the general case in which the dealer may also be corrupted one may observe that for
a given adversary structure Z and graph G, Z-resilient Broadcast in ad hoc networks can be
achieved if the following conditions both hold:

1. @Z1, Z2, Z3 ∈ Z s.t. Z1 ∪ Z2 ∪ Z3 = V .

2. ∀v ∈ V there does not exist a Z-pp cut for G with dealer v.

Condition 1 was proved by Hirt and Maurer [6] sufficient and necessary for the existence of secure
multiparty protocols in complete networks. Z-resilient Broadcast in the general case where the
network is incomplete can be achieved by simulating any protocol for complete graphs (e.g. the
protocol presented in [3]) as follows: each one-to-many transmission is replaced by an execution
of Z-CPA. It is not hard to see that the conjunction of the above two conditions is necessary
and sufficient for Broadcast in incomplete networks in the case of corrupted dealer. Similarly in
networks of known topology, there exists a Z-resilient Broadcast algorithm if condition 1 holds
and for every v ∈ V a Z-pair cut does not exist for graph G with dealer v. Naturally, the above
observations hold also in the special case of a locally bounded adversary.

8 Open questions

A number of questions arise from the results presented in this paper:

• Necessary and sufficient criteria for Broadcast on known topology and ad-hoc networks
are NP-hard to compute. So what is the best attack a polynomially bounded adversary
could deploy? Similar issues may be raised from the point of view of system designers.
Defining a meaningful approximation objective is essential in answering such questions.

• In the known topology locally bounded setting we have shown that no safe, fully polyno-
mial algorithm Π can guarantee that each player that decides through PPA will also decide
through Π. This is a first step towards proving the conjecture that no such algorithm can
have the same resilience as PPA.

• Regarding the partial knowledge model discussed in Section 5, GPPA is not of optimal
resilience. Devising an algorithm with this property would give further insight about this
model.

• In the ad hoc general adversary setting, we proved that Z-CPA is unique, thus having
optimal resilience. We conjecture that it is also unique w.r.t. polynomial time complexity,
i.e. if a safe protocol achieves Broadcast in polynomial time then so does Z-CPA.

10
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Appendix

A The Certified Propagation Algorithm

Protocol 2: Certified Propagation Algorithm (CPA) for the Non-Uniform Model

Input (for each node v): Dealer’s label D, labels of v’s neighbors, corruption bound t(v).
Message format : A single value x ∈ X.

Code for D: send value xD ∈ X to all neighbors, decide on xD and terminate.

Code for v ∈ N (D): upon reception of xD from the dealer, decide on xD, send it to all
neighbors and terminate.

(* certified propagation rule *)

Code for v /∈ N (D) ∪ D: upon reception of t(v) + 1 messages with the same value x from
t(v) + 1 distinct neighbors, decide on x, send it to all neighbors and terminate.

B Proof of Theorem 4

Proof. We show that the set splitting problem known as NP-hard [5] can be reduced to the
pLPC problem. Given a collection S of 3-element subsets of a finite set X, the set splitting
problem asks whether there is a partition of X into two subsets X1 and X2 such that no subset
in S is entirely contained in either X1 or X2. Let S+ be a multiple collection adding dummy
subsets {v} to S such that the cardinality of {s ∈ S+ : v ∈ s} is at least six for each v ∈ X. A
complete graph with vertex set S+ and a copy of it are denoted by KS+ and K ′S+, respectively.
We construct a graph GSSP with vertex set V (GSSP ) = V (KS+) ∪ V (K ′S+) ∪X and edge set
E(GSSP ) = E(KS+) ∪ E(K ′S+) ∪ {(v, s), (v, s′) : v ∈ X, s ∈ S+, v ∈ s}, where s is a node in
V (K ′S+) which is a copy of s ∈ S+. If a subgraph of GSSP deleting C(⊆ V (GSSP )) has at
least two connected components and X \C 6= ∅, C contains N (v)∩V (KS+) or N (v)∩V (K ′S+)
for some v ∈ X. Since each v ∈ X has at least six neighbor in both V (KS+) and V (K ′S+), C
is a t-local pair side cut with t >= 3. We next consider the case of C = X. We can partition
X into two 2-local sets in GSSP , if and only if the set splitting problem has a desired partition
X1 and X2. Therefore, we have pLPC(GSSP , 2) = true, if and only if the set splitting problem
has a desired partition. Now we can easily show that NP-hardness for pLPC(G, t) without a
dealer implies NP-hardness for the case with a dealer. If pLPC(G, t,D) could be solved with
a polynomial-time algorithm then solving pLPC(G, t, v) for every node in V would suffice to
build a polynomial algorithm for pLPC(G, t) which is a contradiction. Therefore to compute
pLPC(G, t,D) is NP-hard.

C Proof of Theorem 5

Proof. All players in N (D) decide due to rule 1, since the dealer is honest. We next show the
rest of the players will decide due to rule 2.

Let v be an arbitrary player in V \ N (D) and assume that a t-local pair cut in G,D does
not exist, let T be a t-local set and consider the execution σT of PPA where T is the corruption
set. Let P be the set of all paths connecting D with v and are composed entirely by nodes in
V \ T (honest nodes). To be consistent we assume that the first node of each path in P is a
neighbor of the dealer. Observe that P 6= ∅, if the opposite holds then T is a cut separating
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Figure 2: An instance of the reduction graph G for variables {x1, x2, x3} and clause c1 =
{x1 ∨ x2 ∨ ¬x3}.

D from v and T is trivially a t-local pair cut due to its t locality which yields a contradiction.
Since paths in P are entirely composed by honest nodes it is easy to see that v will receive the
correct value through all the paths of P.

We next prove that under any t-local corruption set T ′ at least one of the paths of P is
completely corruption free.

Assume that ∃T ′ : t-local s.t. ∀p ∈ P, p∩T ′ 6= ∅ 2. Then obviously T ∪T ′ is a cut separating
D from v, since every path that connects D with v contains at least a node in T ∪T ′. Moreover
the cut T ∪ T ′ can be partitioned in the sets T \ T ′, T ′ which are trivially t-local due to the
t-locality of both T and T ′ and thus, T ∪T ′ is a t-local pair cut which leads us to a contradiction.
Hence, under any t-local corruption set T ′ at least one of the paths of P is entirely corruption
free.

Consequently, in execution σT , node v will receive the correct value through every path in
P along with the corresponding propagation trail and will decide on the correct value due to
rule 2.

D Proof of Theorem 7

Proof. We will describe a reduction from 3SAT to LPCP (G,D, u, t,P). For every variable xi
we construct a gadget Gxi shown on the left of Figure 2. We will make use of a parameter µ
that will serve as a constant corruption function (that is, we prove our hardness result for the
uniform model). We will use several copies of the complete graphs Kµ+1 and K2µ. Node D is
connected to every vertex of a Kµ+1 copy. Every vertex of that Kµ+1 copy is connected with
the ‘upper’ µ vertices of a K2µ copy; let us call this ‘upper’ node set Xi. Symmetrically for the
lower part, node u is connected to every vertex of another Kµ+1 copy and every vertex of that
Kµ+1 copy is connected to the ‘lower’ µ vertices of K2µ, let us call this set X ′i. Now assuming

2with p ∩ T ′ denoting the intersection of T ′ with the set of nodes which constitute the path p.
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that P contains those paths in Gxi that are of length 5 and connect D to u (and no other path
in in Gxi) it is easy to show that :

Lemma 15. If LPCP (G,D, u, µ,P) = 1 with µ-local pair T , then either Xi ⊆ T or X ′i ⊆ T .

T ∩Gxi is a node cut of Gxi . Since the only µ-local cuts in Gxi are Xi and X ′i, the claim is
immediate.

Now for every clause ci = ci1 ∨ ci2 ∨ ci3 in C we construct the gadget shown on the right
of Figure 2. Node D is connected to every vertex of Kµ+1. Every vertex of Kµ+1 is connected
to the first literal of the clause, say li1 . Literal li1 is connected to li2 , and li2 to li3 . And
symmetrically, node u is connected to every vertex of another copy of Kµ+1 and every vertex
of Kµ+1 is connected to li3 . Let us call this subgraph of G, Gci . Assuming that all paths from
D to u of length 6 that go through Gci are contained in P it is not hard to show that:

Lemma 16. if LPCP (G,D, u, µ,P) = 1 with µ-local pair T , then li1 ⊆ T or li2 ⊆ T or li3 ⊆ T .

The proof is by contradiction: if no lij node belongs to T , then it must be Kµ+1 ⊆ T ,
contradicting the t-locality of T .

The last thing we need to establish is that if Xi ⊆ T (respectively X ′i ⊆ T ), no ¬xi (resp.
xi) literal of Gcj is in T . We achieve this by adding a node vij connecting Xi (resp. X ′i) to ¬xi
(resp. xi) for each appearance of these literals in some Gcj . The following holds because If both
Xi and ¬xi are in T , then T is not µ-local since |N(vij) ∩ T | = µ+ 1.

Lemma 17. If LPCP (G,D, u, µ,P) = 1 with µ-local pair T , then Xi ⊆ T (resp. X ′i ⊆ T )
⇒ ¬xi 6∈ T (resp. xi 6∈ T ).

So for graph G that is constructed as described above and for path set P consisting of the
paths used for proving Lemmata 15 and 16 we have that LPCP (G,D, u, µ,P) = 1 iff there
exists a truth assignment A which makes every clause in C true. The ‘⇒’ direction follows from
the lemmata proved above. The ‘⇐’ direction comes naturally by setting T contain X ′i if xi is
true by A, otherwise T contains Xi; T also contains all literals in Gcj that are set true by A.
Then T is a µ-local cover of P and LPCP (G,D, u, µ,P) = 1.

E Proof of Theorem 8

Proof. We will show that if such Π existed then it would be a polynomial time solver for the
3-SAT problem. Let us consider what happens when Π is run on the graph G that we made
for theorem 7, with dealer D and the corrupt nodes being the ones that connect the “formula”
gadgets with the “variable” gadgets (e.g. C = {u1, u2, u3} on Figure 2). If the 3-SAT instance
used to make G has a solution,then from theorem 7 LPCP (G,D, u, t,P) = 1 and a µ-local
cover C1 on P exists. It’s easy to see that C ∪ C1 is a LPC. Then by the imposibility proof
on [12] no safe protocol will make u decide on any value while a LPC exists in the graph, since
that would mean an attack on the safeness of the protocol exists. So since Π is safe, u does not
decide on any value.

If u cannot decide while running Π on G then neither can decide while running PPA. But
that means there exists a µ-local cover on P so LPCP (G,D, u, t,P) = 1 and the 3-SAT instance
has a solution. So u decides on xD while running Π on G, with dealer D and corruption set
C which runs the ΠC protocol iff 3-SAT has a solution. Apparently if Π existed then 3-SAT
would have a polynomial time solver which is equal to P = NP.
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F Proof of Theorem 9

Proof. Suppose no (γ, t)-plp2 cut exists. T∪N(D) is a cut on G non including node D. From the
definition of (γ, t)-plp2 cut we have that there exists u1 ∈ V \ (T ∪N (D)∪D) s.t. N(D)∩N(u)
is not t-local on γ(u1). But since all the nodes in N(D) ∩ N(u) are decided, u will receive
the value xD from paths starting from these nodes of length 1. Finding a t-local corruption
set covering these paths is impossible since it would have to include all thes nodes and from
above it would not be t-local. So u1 will decide on the dealer’s value xD. We can use the same
argument inductively to show that every honest node will eventually decide on the correct value
xD through GPPA. Let Ck = N(D)∪{u1, u2, ..., uk−1} be the set of the nodes that have decided
until a certain round of the protocol. Then Ck ∪ T is a cut. Since T is t-local by the same
argument as before there exists an undecided node uk s.t. Ck ∩N(uk) is not t-local on γ(uk).
Using the same argument as before uk will decide on the correct value. Eventually all honest
players will decide on xD. Thus GPPA is t-locally resilient in G.

G Proof of Theorem 10

Proof. Assume that there exists a (γ, t)-plp1 cut C = T ∪H in graph G with dealer D and with
T being the t-local set of the partition(figure 1). γ(B) is the joint view of the nodes in B. G′ is
the graph that results from G if we remove edges from A \ γ(B) s.t. the set H becomes t-local
in G′. The existence of a set of edges that guarantees such a property is implied by the second
property of the (γ, t)-plp1 cut. Suppose that there exists a t-locally safe Broadcast algorithm
A which is t-locally resilient in graph G with dealer D. We can argue the same way we did on
Theorem 2 which leads to a contradiction.

G.1 Proof of Theorem 13

Proof. Suppose that Z-CPA is not Z-resilient. Then we can split the graph in 3 parts: A being
the honest decided nodes, B being the honest undecided nodes and C being the corrupted nodes.
Now since every node in B is undecided we have that ∀u ∈ B : N(u) ∩ A ∈ Zu (otherwise u
would have decided). But then C ∪A is a Z-pp cut which is a contradiction. Hence, Z-CPA is
Z-resilient.

G.2 Proof of Theorem 14

Proof. The proof is similar to the one of Theorem 1. Let C = C1 ∪ C2 be the Z-pp cut which
partitions V \ C in sets A,B 6= ∅ s.t. D ∈ A. Let Z ′ = {⋃u∈B Z ∩ N(u) : Z ∈ Z} ∪ {C2}.
We have that Z ′u = {Z ∩ N(u) : Z ∈ Z ′} ∪ {C2 ∩ N(u)} = {(⋃v∈B Z ∩ N(v)) ∩ N(u) : Z ∈
Z} ∪ {C2 ∩N(u)} = {Z ∩N(u) : Z ∈ Z} ∪ {C2 ∩N(u)} but since ∀u ∈ B : N(u) ∩ C2 ∈ Zu,
for every node u in B: Zu = Z ′u. So far we have established that (a) nodes in B cannot tell
whether Z or Z ′ is the adversary structure since ∀u ∈ B : Zu = Z ′u and (b) C2 is an admissible
corruption set in Z ′.

Suppose a node in B could decide with Z being the adversary structure. Then using the
standard argument employed in Theorem 2, an attack on the safeness of the algorithm would
be possible in the same setting with Z ′ being the adversary structure. The details of the proof
are similar and are based on the difficulty of the honest players in B to distinguish which
scenario they participate in, with respect to the adversary structure: the one with Z or the one
with Z ′.
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