
Quantum Attacks on Classical Proof Systems

The Hardness of Quantum Rewinding

Andris Ambainis
University of Latvia and

Institute for Advanced Study

Princeton

Ansis Rosmanis
Institute for Quantum Computing

School of Computer Science

University of Waterloo

Dominique Unruh
University of Tartu

April 28, 2014

Abstract. Quantum zero-knowledge proofs and quantum proofs of knowledge are inherently
difficult to analyze because their security analysis uses rewinding. Certain cases of quantum
rewinding are handled by the results by Watrous (SIAM J Comput, 2009) and Unruh
(Eurocrypt 2012), yet in general the problem remains elusive. We show that this is not only
due to a lack of proof techniques: relative to an oracle, we show that classically secure proofs
and proofs of knowledge are insecure in the quantum setting.

More specifically, sigma-protocols, the Fiat-Shamir construction, and Fischlin’s proof system
are quantum insecure under assumptions that are sufficient for classical security. Additionally,
we show that for similar reasons, computationally binding commitments provide almost no
security guarantees in a quantum setting.

To show these results, we develop the “pick-one trick”, a general technique that allows an
adversary to find one value satisfying a given predicate, but not two.

Contents

1 Introduction 2

2 Preliminaries 6

2.1 Security definitions 7

3 Oracle transformation tech-
niques 8

3.1 State creation oracles 8

3.2 Small image oracles 10

4 The pick-one trick 11

4.1 Additional oracles 12

5 Attacking commitments 13

6 Attacking sigma-protocols 15

6.1 The computational case . . . 16

7 Attacking Fiat-Shamir 17

7.1 The computational case . . . 17

8 Attacking Fischlin’s scheme 18

8.1 The computational case . . . 18

References 19

Symbol index 22

Keyword index 23

A Auxiliary lemmas 24

B Proofs for Section 3 30

B.1 Lemmas for Section 3.1 . . . 30

B.2 Proofs of Theorem 4 32

C Proof of Theorem 6 33

C.1 Preliminaries 33

C.2 Registers and symmetrization
of the algorithm 34

C.3 Representation theory of SX . 37

C.4 Framework for the proof . . . 37

C.5 Proof of Lemma 46 38

C.6 Proof of Lemma 45 40

C.7 Reduction of Lemma 47 to the
|Y | = 1 case 42

1

D Proof of Lemma 47 when |Y | = 1 44

D.1 Statement of the lemma . . . 44

D.2 Decomposition of U 45

D.3 Significant irreps 47

D.4 Necessary and sufficient condi-
tions for irrep (N − 1, 1) . . . 48

D.5 Conditions for irreps (N−2, 2)
and (N − 2, 1, 1) 50

D.6 Solution for irrep (N − 1, 1) . 51

E Proofs for Section 4 52

E.1 Proof of Theorem 7 52

E.2 Proof of Corollary 9 53

F Proofs for Section 5 56

F.1 Proof for Lemma 15 56
F.2 Proof of Lemma 16 57

G Proofs for Section 6 58
G.1 Proof of Lemma 19 58
G.2 Proof of Lemma 20 59
G.3 Proof of Lemma 23 61
G.4 Proof of Lemma 24 61

H Proofs for Section 7 61
H.1 Proof of Theorem 26 61
H.2 Proof of Theorem 27 62

I Proofs for Section 8 63
I.1 Proof of Theorem 29 63
I.2 Proofs for Theorem 30 65

1 Introduction

Quantum computers threaten classical cryptography. With a quantum computer, an attacker
would be able to break all schemes based on the hardness of factoring, or on the hardness of
discrete logarithms [28], this would affect most public key encryption and signature schemes
is use today. For symmetric ciphers and hash functions, longer key and output lengths will
be required due to considerable improvements in brute force attacks [20, 10]. These threats
lead to the question: how can classical cryptography be made secure against quantum attacks?
Much research has been done towards cryptographic schemes based on hardness assumptions
not known to be vulnerable to quantum computers, e.g., lattice-based cryptography. (This is
called post-quantum cryptography ; see [5] for a somewhat dated survey.) Yet, identifying useful
quantum-hard assumptions is only half of the problem. Even if the underlying assumption holds
against quantum attackers, for many classically secure protocols it is not clear if they also resist
quantum attacks: the proof techniques used in the classical setting often cannot be applied in
the quantum world. This raises the question whether it is just our proof techniques that are
insufficient, or whether the protocols themselves are quantum insecure. The most prominent
example are zero-knowledge proofs. To show the security of a zero-knowledge proof system,
one typically uses rewinding. That is, in a hypothetical execution, the adversary’s state is
saved, and the adversary is executed several times starting from that state. In the quantum
setting, we cannot do that: saving a quantum state means cloning it, violating the no-cloning
theorem [35]. Watrous [33] showed that for many zero-knowledge proofs, security can be shown
using a quantum version of the rewinding technique. (Yet this technique is not as versatile as
classical rewinding. For example, the quantum security of the graph non-isomorphism proof
system [19] is an open problem.) Unruh [29] noticed that Watrous’ rewinding cannot be used
to show the security of proofs of knowledge; he developed a new rewinding technique to show
that so-called sigma-protocols are proofs of knowledge. Yet, in [29] an unexpected condition was
needed: their technique only applies to proofs of knowledge with strict soundness (which roughly
means that the last message in the interaction is determined by the earlier ones); this condition
is not needed in the classical case. The security of sigma-protocols without strict soundness
(e.g., graph isomorphism [19]) was left open. The problem also applies to arguments as well
(i.e., computationally-sound proof systems, without “of knowledge”), as these are often shown
secure by proving that they are actually arguments of knowledge. Further cases where new proof
techniques are needed in the quantum setting are schemes involving random oracles. Various
proof techniques were developed [6, 37, 30, 8, 31], but all are restricted to specific cases, none of
them matches the power of the classical proof techniques.

2

Underlying sigma-protocol Sig.-pr. used directly Fiat-Shamir Fischlin
zero- special strict

knowledge soundness soundness PoK proof PoK proof PoK proof

stat perf comp attack17 stat[33] attack26 ? attack29 ?
stat comp comp attack21 attack21 attack27 attack27 attack30 attack30

stat perf perf stat[29] stat[33] ? ? ? ?

Figure 1: Taxonomy of proofs of knowledge. For different combinations of security properties of the underlying
sigma-protocol (statistical (stat)/perfect (perf)/computational (comp)), is there an attack in the quantum setting
(relative to an oracle)? Or do we get a statistically/computationally secure proof/proof of knowledge (PoK)? The
superscripts refer to theorem numbers in this paper or to literature references. Note that in all cases, classically
we have at least computational security.

To summarize: For many constructions that are easy to prove secure classically, proofs in the
quantum setting are much harder and come with additional conditions limiting their applicability.
The question is: does this only reflect our lack of understanding of the quantum setting, or
are those additional conditions indeed necessary? Or could it be that those classically secure
constructions are actually insecure quantumly? We show, relative to an oracle, that the answer
is indeed yes:
• Sigma-protocols are not necessarily quantum proofs of knowledge, even if they are classical

proofs of knowledge. In particular, the strict soundness condition from [29] is necessary.
(Theorem 17)
• In the computational setting, sigma-protocols are not necessarily quantum arguments, even

if they are classical arguments. (Theorem 21)
• The Fiat-Shamir construction [16] for non-interactive proofs of knowledge in the random

oracle model does not give rise to quantum proofs of knowledge. And in the computational
setting, not even to quantum arguments. (Theorems 26 and 27)
• Fischlin’s non-interactive proof of knowledge in the random oracle model [17] is not a

quantum proof of knowledge. (This is remarkable because in contrast to Fiat-Shamir,
the classical security proof of Fischlin’s scheme does not use rewinding.) And in the
computational setting, it is not even an argument. (Theorems 29 and 30)
• Besides proof systems, we also have negative results for commitment schemes. The usual

classical definition of computationally binding commitments is that the adversary cannot
provide openings to two different values for the same commitment. Surprisingly, relative
to an oracle, there are computationally binding commitments where a quantum adversary
can open the commitment to any value he chooses (just not to two values simultaneously).
(Theorem 13)
• The results on commitments in turn allow us to strengthen the above results for proof

systems. While it is known that even in the quantum case, sigma-protocols with so-called
“strict soundness” (the third message is uniquely determined by the other two) are proofs
and proofs of knowledge [29], using the computational variant of this property leads to
schemes that are not even computationally secure. (Theorems 17, 21, 26, 27, 29, and 30.)

Figure 1 gives an overview of the results relating to proofs of knowledge. To the best of our
knowledge, these are the first cases where natural classical constructions can be shown to be
actually insecure in the quantum setting (albeit relative to an oracle). Before, we only knew
that our proof techniques were insufficient.1

1We stress that negative results were known for pseudorandom functions when the adversary is not only
quantum, but can also query the pseudorandom function in superposition [36]. Similarly for secret sharing schemes
[14] and one-time MACs [7]. But, in all of these cases, the negative results are shown for the case when the
adversary is allowed to interact with the honest parties in superposition. Thus, the cryptographic protocol is
different in the classical case and the quantum case.

In contrast, we keep the protocols the same, with only classical communication and only change adversary’s
internal power (by allowing it to be a polynomial-time quantum computer which may access quantum oracles).

3

Our contribution. Our main result are the separations listed in the bullet points above.
Towards that goal, we additionally develop several tools that may be of independent interest in
quantum cryptographic proofs:
• Section 4: We develop the “pick-one” trick, a technique for providing the adversary with

the ability to compute a value with a certain property, but not two of them. (See “our
technique” below.) This technique and the matching lower bound on the adversary’s query
complexity may be useful for developing further oracle separations between quantum and
classical security. (At least it gives rise to all the separations listed above.)
• Section 3.1: We show how to create an oracle that allows us to create arbitrarily many

copies of a given state |Ψ〉, but that is not more powerful than having many copies of |Ψ〉,
even if queried in superposition. Again, this might be useful for other oracle separations,
too. (The construction of OΨ in Section 4 is an example for this.)
• Section 3.2: We show that a random oracle (with all images chosen independently) can be

replaced by an oracle with a polynomial-size image. This is a strengthening of a result by
Zhandry [37] which allows us to encode challenges into the random oracle. Our result may
be useful for cryptographic proofs where Zhandry’s result is not strong enough. (Zhandry’s
result only allowed us to replace a fraction of the oracle’s images.) In addition, it is useful
when constructing oracle separations where we want to provide access to arbitrarily many
values v according to some distribution: we can construct a quantum oracle that returns
random values but that does not give more power than polynomially many random value v
(even when queried in superposition). (The construction of OS in Section 4 is an example
for this.)

Related work. Van der Graaf [32] first noticed that security definitions based on rewinding
might be problematic in the quantum setting. Watrous [33] showed how the problems with
quantum rewinding can be solved for a large class of zero-knowledge proofs. Unruh [29]
gave similar results for proofs of knowledge; however he introduced the additional condition
“strict soundness” and they did not cover the computational case (arguments and arguments of
knowledge). Our work (the results on sigma-protocols, Section 6) shows that these restrictions
are not accidental: both strict soundness and statistical security are required for the result
from [29] to hold. Protocols that are secure classically but insecure in the quantum setting
where given by [36, 7, 14], but only if the quantum adversary can interact with the protocol
in superposition (cf. footnote 1). Boneh, Dagdelen, Fischlin, Lehmann, and Schaffner [6] first
showed how to correctly define the random oracle in the quantum setting (namely, the adversary
has to have superposition access to it). For the Fiat-Shamir construction (using random oracles
as modeled by [6]), an impossibility result was given by Dagdelen, Fischlin, and Gagliardoni [12].
However, their impossibility only shows that security of Fiat-Shamir cannot be shown using
extractors that do not perform quantum rewinding;2 but such quantum rewinding is possible
and used in the existing positive results from [33, 29] which would also not work in a model
without quantum rewinding.

Our technique. The schemes we analyze are all based on sigma-protocols which have the
special soundness property: In a proof of a statement s, given two accepting conversations
(com, ch, resp) and (com, ch ′, resp′), one can efficiently extract a witness for s. (The commitment
com and the response resp are sent by the prover, and the challenge ch by the verifier.) In the
classical case, we can ensure that the prover cannot produce one accepting conversation without
having enough information to produce two. This is typically proven by rewinding the prover to

2They do allow extractors that restart the adversary with the same classical randomness from the very beginning.
But due to the randomness inherent in quantum measurements, the adversary will then not necessarily reach
the same state again. They also do not allow the extractor to use a purified (i.e., unitary) adversary to avoid
measurements that introduce randomness.

4

get two conversations. So in order to break the schemes in the quantum case, we need to give
the prover some information that allows him to succeed in one interaction, but not in two.

To do so, we use the following trick (we call it the pick-one trick): Let S be a set of values
(e.g., accepting conversations). Give the quantum state |Ψ〉 := 1√

|S|

∑
x∈S |x〉 to the adversary.

Now the adversary can get a random x ∈ S by measuring |Ψ〉. However, on its own that is not
more useful than just providing a random x ∈ S. So in addition, we provide an oracle that
applies the unitary OF with OF |Ψ〉 = −|Ψ〉 and OF |Ψ⊥〉 = |Ψ⊥〉 for all |Ψ⊥〉 orthogonal to
|Ψ〉. Now the adversary can use (a variant of) Grover’s search starting with state |Ψ〉 to find
some x ∈ S that satisfies a predicate P (x) of his choosing, as long as |S|/|{x ∈ S : P (x)}| is
polynomially bounded. Note however: once the adversary did this, |Ψ〉 is gone, he cannot get a
second x ∈ S.

How do we use that to break proofs of knowledge? The simplest case is attacking the
sigma-protocol itself. Assume the challenge space is polynomial. (I.e., |ch| is logarithmic.) Fix
a commitment com, and let S be the set of all (ch, resp) that form an accepting conversation
with com. Give com and |Ψ〉 to the malicious prover. (Actually, in the full proof we provide an
oracle OΨ that allows us to get |Ψ〉 for a random com.) He sends com and receives a challenge
ch ′. And using the pick-one trick, he gets (ch, resp) ∈ S such that ch = ch ′. Thus sending resp
will make the verifier accept.

This in itself does not constitute a break of the protocol. A malicious prover is allowed to
make the verifier accept, as long as he knows a witness. Thus we need to show that even given
|Ψ〉 and OF , it is hard to compute a witness. Given two accepting conversations (com, ch, resp)
and (com, ch ′, resp′) we can compute a witness. So we need that given |Ψ〉 and OF , it is hard
to find two different x, x′ ∈ S. We show this below (under certain assumptions on the size
of S, see Theorem 6, Corollary 9). Thus the sigma-protocol is indeed broken: the malicious
prover can make the verifier accept using information that does not allow him to compute a
witness. (The full counterexample will need additional oracles, e.g., for membership test in S
etc.) Counterexamples for the other constructions (Fiat-Shamir, Fischlin, etc.) are constructed
similarly.We stress that this does not contradict the security of sigma-protocols with strict
soundness [29]. Strict soundness implies that there is only one response per challenge. Then |S|
is polynomial and it becomes possible to extract two accepting conversations from |Ψ〉 and OF .

The main technical challenge is to prove that given |Ψ〉 and OF , it is hard to find two
different x, x′ ∈ S. This is done using the representation-theoretic form of “quantum adversary”
lower bound method for quantum algorithms [1, 2]. The method is based on viewing a quantum
algorithm as a sequence of transformations on a bipartite quantum system that consists of two
registers: one register HA that contains the algorithm’s quantum state and another register HI
that contains the information which triples (com, ch, resp) belong to S. The algorithm’s purpose
is to obtain two elements x1, x2 ∈ S using only a limited type of interactions betweeen HA and
HI . (From a practical perspective, a quantum register HI holding the membership information
about S would be huge. However, we do not propose to implement such a register. Rather, we
use it as a tool to prove a lower bound which then implies a corresponding lower bound in the
usual model where S is accessed via oracles.)

We then partition the state-space of HI into subspaces corresponding to group representations
of the symmetry group ofHI (the set of all permutations of triples (com, ch, resp) that satisfy some
natural requirements). Informally, these subspaces correspond to possible states of algorithm’s
knowledge about the input data: having no information about any s ∈ S, knowing one value
x ∈ S, knowing two values x1, x2 ∈ S and so on.

The initial state in which the algorithm has |Ψ〉 corresponds to HI being in the state “the
algorithm knows one x ∈ S”. (This is very natural because measuring |Ψ〉 gives one value x ∈ S
and there is no way to obtain two values x ∈ S from this state with a non-negligible probability.)
We then show that each application of the available oracles (such as OF and the membership
test for S) can only move a tiny part of the state in HI from the “the algorithm knows one

5

x ∈ S” subspace of HI to the “the algorithm knows two x ∈ S” subspace. Therefore, to obtain
two values x1, x2 ∈ S, we need to apply the available oracles a large number of times.

While the main idea is quite simple, implementing it requires a sophisticated analysis of the
representations of the symmetry group of HI and how they evolves when the oracles are applied.

Actually, below we prove an even stronger result: We do not wish to give the state |Ψ〉 as
input to the adversary. (Because that would mean that the attack only works with an input that
is not efficiently computable, even in our relativized model.) Thus, instead, we provide an oracle
OΨ for efficiently constructing this state. But then, since the oracle can be invoked arbitrarily
many times, the adversary could create two copies of |Ψ〉, thus easily obtaining two x, x′ ∈ S!
Instead, we provide an oracle OΨ that provides a state |ΣΨ〉 which is a superposition of many
|Ψ〉 = |Ψ(y)〉 for independently chosen sets Sy. Now the adversary can produce |ΣΨ〉 and using
a measurement of y, get many states |Ψ(y)〉 for random y’s, but no two states |Ψ(y)〉 for the
same y. Taking these additional capabilities into account complicates the proof further, as does
the presence of additional oracles that are needed, e.g., to construct the prover (who does need
to be able to get several x ∈ S).

Organization. Section 2 introduces conventions and security definitions. Section 4 develops
the pick-one trick. Section 5 shows the insecurity of computationally binding commitments,
Section 6 that of sigma-protocols, Section 7 that of the Fiat-Shamir construction, and Section 8
that of Fischlin’s construction. Appendix 3 describes our additional oracle techniques: oracles
for creating copies of a state |Ψ〉, and oracles with small ranges.

2 Preliminaries

Security parameter. As usual in cryptography, we assume that all algorithms are parametric
in a security parameter η. Furthermore, parameters of said algorithms can also implicitly depend
on the security parameter. E.g., if we say “Let ` be a superlogarithmic integer. Then A(`) runs
in polynomial time.”, then this formally means “Let ` be a superlogarithmic function. Then the
running time of A(η, `(η)) is a polynomially-bounded function of η.”

Misc. x
$←M means that x is uniformly randomly chosen from the set M . x← A(y) means

that x is assigned the classical output of the (usually probabilistic or quantum) algorithm A on
input y.

Quantum mechanics. For space reasons, we cannot give an introduction to the mathematics
of quantum mechanics used here. We refer the reader to, e.g., [25]. A quantum state is a vector of
norm 1 in a Hilbert space, written |Ψ〉. Then 〈Ψ| is its dual. TD(ρ, ρ′) denotes the trace distance
between mixed states ρ, ρ′. We write short TD(|Ψ〉, |Ψ′〉) for TD(|Ψ〉〈Ψ|, |Ψ′〉〈Ψ′|). SD(X;Y) in
contrast is the statistical distance between random variables X and Y .

Oracles. We make heavy use of oracles in this paper. Formally, an oracle O is a unitary
transformation on some Hilbert space H. An oracle algorithm A with access to O (written AO)
is then a quantum algorithm which has a special gate for applying the unitary O. O may depend
on the security parameter. O may be probabilistic in the sense that at the beginning of the
execution, the unitary O is chosen according to some distribution (like the random oracle in
cryptography). However, O may not be probabilistic in the sense that O, when queried on the
same value twice, gives two different random answers (like an encryption oracle for a probabilistic
encryption scheme would). Such a behavior would be difficult to define formally when allowing
queries to O in superposition. When defining O, we use the shorthand O(x) := f(x) to denote
O|x, y〉 := O|x, y ⊕ f(x)〉. We call an oracle of this form classical. Our classical algorithms

6

will only access oracles of this form. We stress that even for a classical oracle O, a quantum
algorithm can query O(x) in superposition of different x. We often give access to several oracles
(O1,O2, . . .) to an algorithm. This can be seen as a specific case of access to a single oracle by
setting O|i〉|Ψ〉 := |i〉 ⊗ Oi|Ψ〉.

In our setting, oracles are used to denote a relativised world in which those oracles happen
to be efficiently computable. If a unitary U is implemented by an efficient quantum circuit, U †

can also be implemented by an efficient quantum circuit. We would expect this also to hold in a
relativised setting. Thus for any oracle O, algorithms should have access to their inverses, too.
In our work this is ensured because all oracles defined here are self-inverse (O = O†).

2.1 Security definitions

A sigma-protocol for a relation R is a three message proof system. It is described by the
lengths `com , `ch , `resp of the messages, a polynomial-time prover (P1, P2) and a polynomial-time
verifier V . The first message from the prover is com ← P1(s,w) with (s,w) ∈ R and is called

commitment , the uniformly random reply from the verifier is ch
$← {0, 1}`ch (called challenge),

and the prover answers with resp ← P2(ch) (the response). We assume P1, P2 to share state.
Finally V (s, com, ch, resp) outputs whether the verifier accepts.

We will make use of the following standard properties of sigma-protocols. Note that we have
chosen to make the definition stronger by requiring honest entities (simulator, extractor) to be
classical while we allow the adversary to be quantum.

Definition 1 (Properties of sigma-protocols) Let (`com , `ch , `resp , P1, P2, V, R) be a sigma-
protocol. We define:

• Completeness: For all (s,w) ∈ R, Pr[ok = 0 : com ← P1(s,w), ch
$← {0, 1}`ch , resp ←

P2(ch), ok ← V (s, com, ch, resp)] is negligible.
• Perfect special soundness: There is a polynomial-time classical algorithm EΣ such

that for any (s, com, ch, resp, ch ′, resp′) with ch 6= ch ′, we have that Pr[(s,w) /∈
R ∧ ok = ok ′ = 1 : ok ← V (s, com, ch, resp), ok ′ ← V (s, com, ch ′, resp′), w ←
EΣ(s, com, ch, resp, ch ′, resp′)] = 0.
• Computational special soundness: There is a polynomial-time classical algorithm
EΣ such that for any polynomial-time quantum algorithm A, we have that Pr[(s,w) /∈
R ∧ ch 6= ch ′ ∧ ok = ok ′ = 1 : (s, com, ch, resp, ch ′, resp′) ← A, ok ← V (s, com, ch, resp),
ok ′ ← V (s, com, ch ′, resp′), w ← EΣ(s, com, ch, resp, ch ′, resp′)] is negligible.
• Statistical honest-verifier zero-knowledge (HVZK):3 There is a polynomial-time

classical algorithm SΣ (the simulator) such that for any (possibly unlimited) quantum
algorithm A and all (s, w) ∈ R, the following is negligible:∣∣Pr[b = 1 : com ← P1(s, w), ch

$← {0, 1}`ch , resp ← P2(ch), b← A(com, ch, resp)]

−Pr[b = 1 : (com, ch, resp)← S(s), b← A(com, ch, resp)]
∣∣

• Strict soundness: For any (s, com, ch) and any resp 6= resp′ we have Pr[ok = ok ′ = 1 :
ok ← V (s, com, ch, resp), ok ′ ← V (s, com, ch, resp′)] = 0.
• Computational strict soundness:4 For any polynomial-time quantum algorithm A,

we have that Pr[ok = ok ′ = 1 ∧ resp 6= resp′ : (s, com, ch, resp, resp′) ← A, ok ←
V (s, com, ch, resp), ok ′ ← V (s, com, ch, resp′)] = 0.
• Commitment entropy: For all (s, w) ∈ R and com ← P1(s, w), the min-entropy of com

is superlogarithmic.

3In the context of this paper, HVZK is equivalent to zero-knowledge because our protocols have logarithmic
challenge length `ch [33].

4Also known as unique responses in [17].

7

In a relativized setting, all quantum algorithms additionally get access to all oracles, and all
classical algorithms additionally get access to all classical oracles.

In this paper, we will mainly be concerned with proving that certain schemes are not proofs
of knowledge. Therefore, we will not need to have precise definitions of these concepts; we only
need to know what it means to break them.

Definition 2 (Total breaks) Consider an interactive or non-interactive proof system (P, V)
for a relation R. Let LR := {s : ∃w.(s, w) ∈ R} be the language defined by R. A total break is a
polynomial-time quantum algorithm A such that the following probability is overwhelming:

Pr[ok = 1 ∧ s /∈ LR : s← A, ok ← 〈A, V (s)〉]

Here 〈A, V (s)〉 denotes the output of V in an interaction between A and V (s).
A total knowledge break is a polynomial-time quantum algorithm A such that for all

polynomial-time quantum algorithms E we have that:
• Adversary success: Pr[ok = 1 : s← A, ok ← 〈A, V (s)〉] is overwhelming.
• Extractor failure: Pr[(x,w) ∈ R : s← A,w ← E(s)] is negligible.

Here E has access to the final state of A.

Note that these definitions of attacks are quite strong. In particular, A does not get any
auxiliary state. And A needs to succeed with overwhelming probability and make the extraction
fail with overwhelming probability. (Usually, proofs / proofs of knowledge are considered broken
already when the adversary has non-negligible success probability.) Furthermore, we require A
to be polynomial-time.

In particular, a total break implies that a proof system is neither a proof nor an argument.
And total knowledge break implies that it is neither a proof of knowledge nor an argument of
knowledge, with respect to all definitions the authors are aware of.5

3 Oracle transformation techniques

In this section, we show two techniques for emulating different oracles. We will need those
techniques in our analysis of the pick-one trick (Section 4), but we believe that they are of
independent interest and can be useful in other oracles separation results or cryptographic proofs.

3.1 State creation oracles

We first show a result that shows that having access to an oracle OΨ for creating copies of
an unknown state |Ψ〉 is not more powerful than having access to a reservoir state |R〉 of
polynomially-many copies of |Ψ〉 (some of them in superposition with a fixed state |⊥〉). Note
that this is not immediate, because OΨ can be queried in superposition, and its inverse applied;
this might give more power than the state |Ψ〉. In fact, we know of no way to generate, e.g.,

1√
2
|Ψ〉 + 1√

2
|⊥〉 for a given |⊥〉 and unknown |Ψ〉, even given many copies of |Ψ〉 (unless we

have enough copies of |Ψ〉 to determine a complete description of |Ψ〉 by measuring). Yet
1√
2
|Ψ〉+ 1√

2
|⊥〉 can be generated with a single query to OΨ. This is why our reservoir |R〉 has

to contain such superpositions in addition to pure states |Ψ〉.

Theorem 3 (Emulating state creation oracles) Let |Ψ〉 be a state, chosen according to
some distribution. Let |⊥〉 be a fixed state orthogonal to |Ψ〉. (Such a state can always be found
by extending the dimension of the Hilbert space containing |Ψ〉 and using the new basis state

5Definitions that would not be covered would be such where the extractor gets additional auxiliary input not
available to the adversary. We are, however, not aware of such in the literature.

8

as |⊥〉.) Let OΨ be an oracle with OΨ|Ψ〉 = |⊥〉, OΨ|⊥〉 = |Ψ〉, and OΨ|Ψ⊥〉 = |Ψ⊥〉 for any
|Ψ⊥〉 orthogonal to both |Ψ〉 and |⊥〉. Let O be an oracle, not necessarily independent of |Ψ〉.
Let |Φ〉 be a quantum state, not necessarily independent of |Ψ〉. Let n,m ≥ 0 be integers. Let
|R〉 := |Ψ〉⊗m ⊗ |α1〉 ⊗ · · · ⊗ |αn〉 where |αj〉 := (cos jπ2n)|Ψ〉+ (sin jπ

2n)|⊥〉.
Let A be an oracle algorithm that makes qΨ queries to OΨ. Then there is an oracle algorithm

B that makes the same number of queries to O as A such that:

TD
(
BO(|R〉, |Φ〉), AOΨ,O(|Φ〉)

)
≤ πqΨ

2
√
n

+ qΨ o(
1√
n

) +
2qΨ√
m+ 1

≤ O
(qΨ√

n
+

qΨ√
m

)
.

The idea behind this lemma is the following: To implement OΨ, we need a way to convert |⊥〉
into |Ψ〉 and vice versa. At the first glance this seems easy: If we have a reservoir R containing
|Ψ〉⊗n for sufficiently large n, we can just take a new |Ψ〉 from R. And when we need to destroy
|⊥〉, we just move it into R. This, however, does not work because the reservoir R “remembers”
whether we added or removed |Ψ〉 (because the number of |Ψ〉’s in R changes). So if we apply
OΨ to, e.g., 1√

2
|Ψ〉 + 1√

2
|0〉, the reservoir R essentially acts like a measurement whether we

applied OΨ to |Ψ〉 or |0〉.
To avoid this, we need a reservoir R in a state that does not change when we add |Ψ〉 or |⊥〉

to the reservoir. Such a state would be |R∞〉 := |Ψ〉⊗∞ ⊗ |⊥〉⊗∞. If we add or remove |Ψ〉 to an
infinite state |Ψ〉⊗∞, that state will not change. Similarly for |⊥〉. (The reader may be worried
here whether an infinite tensor product is mathematically well-defined or physically meaningful.
We do not know, but the state |R∞〉 is only used for motivational purposes, our final proof only
uses finite tensor products.)

Thus we have a unitary operation S such that S|⊥〉|R∞〉 = |Ψ〉|R∞〉. Can we use this
operation to realize OΨ? Indeed, an elementary calculation reveals that the following circuit
implements OΨ on X when R,Z are initialized with |R∞〉, |0〉.

X U⊥
S

ORef
S†

U⊥

R

Z H • H • H • H • H • H

(1)

with U⊥ := 1− 2|⊥〉〈⊥|
and ORef := 1− 2|Ψ〉〈Ψ| (2)

Note that we have introduced a new oracle ORef here. We will deal with that oracle later.
Unfortunately, we cannot use |R∞〉. Even if such a state should be mathematically well-

defined, the algorithm B cannot perform the infinite shift needed to fit in one more |Ψ〉 into |R∞〉.
The question is, can |R∞〉 be approximated with a finite state? I.e., is there a state |R〉 such
that S|⊥〉|R〉 ≈ |Ψ〉|R〉 for a suitable S? Indeed, such a state exists, namely the state |R〉 from
Lemma 41. For sufficiently large n, the beginning of |R〉 is approximately |Ψ〉 ⊗ |Ψ〉 ⊗ |Ψ〉 ⊗ . . . ,
while the tail of |R〉 is approximately · · · ⊗ |⊥〉 ⊗ |⊥〉 ⊗ |⊥〉. In between, there is a smooth
transition. If S adds |⊥〉 to the end and removes |Ψ〉 from the beginning of |R〉, the state still
has approximately the same form (this needs to be made quantitative, of course). That is, S is a
cyclic left-shift on |⊥〉|R〉.

Hence |R〉 is a good approximate drop-in replacement for |R∞〉, and the circuit (1) approxi-
mately realizes OΨ when R,Z are initialized with |R〉, |0〉.

However, we now have introduced the oracle ORef . We need to show how to emulate that
oracle: ORef essentially implements a measurement whether a given state |Φ〉 is |Ψ〉 or orthogonal
to |Ψ〉. Thus to implement ORef , we need a way to test whether a given state is |Ψ〉 or not.
The well-known swap test [11] is not sufficient, because for |Φ〉 orthogonal to |Ψ〉, it gives an

9

incorrect answer with probability 1
2 and destroys the state. Instead, we use the following test

that has an error probability O(1/m) given m copies of |Ψ〉 as reference: Let |T 〉 := |Ψ〉⊗m. Let
V be the space of all (m+ 1)-partite states that are invariant under permutations. |Ψ〉|T 〉 is
such a state, while for |Φ〉 orthogonal to |Ψ〉, |Φ〉|T 〉 is almost orthogonal to V for large m (up
to an error of O(1/m)). So by measuring whether |Φ〉|T 〉 is in V , we can test whether |Φ〉 is |Ψ〉
or not (with an error O(1/m)), and when doing so the state |T 〉 is only disturbed by O(1/m).
We can thus simulate any algorithm that uses ORef up to any inversely polynomial precision
using a sufficiently large state |T 〉.

We then get Theorem 3 by extending the state |R〉 to also contain |T 〉.
Formally, the theorem is an immediate consequence of Lemmas 41 and 42 in Appendix B.1.

3.2 Small image oracles

In this section we show that a random function H (where each H(x) is independently chosen)
is indistinguishable from a random function G with a small image. More precisely, a suitably
chosen function G with |imG| ∈ poly(1/α, q) can be distinguished from H in q queries only with
probability α. (Theorem 4 below.)

In particular, this implies that having access to an oracle H that returns random values H(x)
from some distribution is no more powerful than having access to polynomially-many values
from that distribution (namely imG.) In our setting, we will use this to show that the oracle
OS which for each z returns a simulated sigma-protocol execution OS(z), is not more powerful
than having access to polynomially-many such executions. This allows us to remove OS from
the analysis. (In Corollary 9 below.)

However, we believe Theorem 4 also to be useful in other reduction proofs, too: In [37] a
similar result (Lemma 43 below) was used to perform reduction proofs in the random oracle
model: In these proofs, a particular challenge value y was inserted into the random oracle at
random positions, and with sufficiently high probability, the adversary would then use that value
for the attack (which then allows us to conclude the reduction). Our Theorem 4 goes beyond
that by allowing to program the random oracle such that every value returned by the random
oracle can be a challenge value. (We will not use this feature in the present paper though.)

Theorem 4 (Small image oracles) For any α ∈ (0, 1) and any integer q ≥ 1, there is an

integer s :=
⌈64q4

3α (ln 4q
α)2
⌉
∈ O(q

4

α (log q
α)2) and a distribution Ds on {1, . . . , s} such that:

Fix sets Z, Y and a distribution DY on Y . Let H : Z → Y be chosen as: for each z ∈ Z,
H(z)← DY .

Let G : Z → Y be chosen as: Pick y1, . . . , ys ← DY , then for each z ∈ Z, pick iz ← Ds, and
set G(z) := yiz . Let A be an oracle algorithm making at most q queries.

Then
∆ :=

∣∣∣Pr[b = 1 : b← AH]− Pr[b = 1 : b← AG]
∣∣∣ ≤ α.

The idea of the proof is to reduce it to the result from [37]. There, it was shown that if we
fix a λ fraction of the image of the oracle H to be the same random value y1, then the resulting
oracle can be distinguished from the original oracle only with probability O(q4λ2). Now, if we
repeatedly replace an λ fraction of H by a random value yi (s times), we get an oracle Hs which
can be distinguished only with probability O(sq4λ2). And now all but a (1− λ)s fraction of Hs

has image {y1, . . . , ys}. G (in which we assign values from {y1, . . . , ys} also to the remaining
(1 − λ)s fraction of the image) then differs from Hs in only a (1 − λ)s fraction of its inputs.
Thus distinguishing G and Hs is at least as hard as an unstructured search problem in which a
(1− λ)s fraction of the inputs are solutions; thus G and Hs are distinguished with probability
at most O(q

√
(1− λ)s). So ∆ ≤ O(sq4λ2) + O(q

√
(1− λ)s). By suitably chosen s, λ, we get

∆ ≤ α.

The full proof of Theorem 4 is given in Appendix B.2.

10

4 The pick-one trick

In this section, we show first show a basic case of the pick-one trick which focusses on the core
query complexity aspects. In Section 4.1, we extend this by a number of additional oracles that
will be needed in the rest of the paper.

Definition 5 (Two values problem) Let X,Y be finite sets and let k ≤ |X| be a positive
integer. For each y ∈ Y , let Sy be a uniformly random subset of X of cardinality k, let |Ψ(y)〉 :=∑

x∈Sy |x〉/
√
k. Let |ΣΨ〉 =

∑
y∈Y |y〉|Ψ(y)〉/

√
|Y | and |ΣΦ〉 =

∑
y∈Y,x∈X |y〉|x〉/

√
|Y | · |X|.

The Two Values problem is to find y ∈ Y and x1, x2 ∈ Sy such that x1 6= x2 given the following
resources:
• one instance of the state

⊗h
`=1(α`,0|ΣΨ〉+ α`,1|ΣΦ〉), where h and the coefficients α are

independent of the Sy’s and are such that this state has unit norm;
• an oracle OV such that for all y ∈ Y , x ∈ X, OV (y, x) = 0 if x /∈ Sy and OV (y, x) = 1 if
x ∈ Sy.
• on oracle OF that, for all y ∈ Y , maps |y,Ψ(y)〉 to −|y,Ψ(y)〉 and, for any |Ψ⊥〉 orthogonal

to |Ψ(y)〉, maps |y,Ψ⊥〉 to itself.

The two values problem is at the core of the pick-one trick : if we give an adversary access
to the resources described in Definition 5, he will be able to search for one x ∈ Sy satisfying a
predicate P (shown in Theorem 7 below). But doing he will not be able to find two different
x, x′ ∈ Sy (Theorem 6 below); we will use this to foil any attempts at extracting by rewinding.

Theorem 6 (Hardness of the two values problem) Let A be an algorithm for the Two
Values problem that makes qV and qF queries to oracles OV and OF , respectively. The success
probability for A to find y ∈ Y and x1, x2 ∈ Sy such that x1 6= x2 is at most

O

(
h

|Y |1/2
+

(qV + qF)1/2k1/4

|X|1/4
+

(qV + qF)1/2

k1/4

)
.

The proof uses the adversary-method from [1, 2] as described in the introduction and is given
in Appendices C and D. In Section 4.1 we extend this hardness result to cover additional oracles.

Theorem 7 (Searching one value) Let Sy ⊆ X and OF ,OV be as in Definition 5.
There is a polynomial-time oracle algorithm E1 that on input |ΣΨ〉 returns a uniformly

random y ∈ Y and |Ψ(y)〉. There is a polynomial-time oracle algorithm E2 such that: For any
δmin > 0, for any y ∈ Y , for any predicate P on X with |{x ∈ Sy : P (x) = 1}|/|Sy| ≥ δmin, and
for any n ≥ 0 we have

Pr[x ∈ Sy ∧ P (x) = 1 : x← EOV ,OF ,P2 (n, δmin, y, |Ψ(y)〉)] ≥ 1− 2−n.

(The running time of E2 is polynomial-time in n, 1/δmin, |y|.)

This theorem is proven with a variant of Grover’s algorithm [20]: Using Grover’s algorithm,
we search for an x with P (x) = 1. However, we do not search over all x ∈ {0, 1}` for some `, but
instead over all x ∈ Sy. When searching over Sy, the initial state of Grover’s algorithm needs to
be
∑

x
1√
|Sy |
|x〉 = |Ψ(y)〉 instead of

∑
x 2−`/2|x〉 =: |Φ〉. And the diffusion operator I − 2|Φ〉〈Φ|

needs to be replaced by I − 2|Ψ(y)〉〈Ψ(y)|. Fortunately, we have access both to |Ψ(y)〉 (given
as input), and to I − 2|Ψ(y)〉〈Ψ(y)| (through the oracle OF). To get an overwhelming success
probability, Grover’s algorithm is usually repeated until it succeeds. (In particular, when the
number of solutions is not precisely known [9].) We cannot do that: we have only one copy
of the initial state. Fortunately, by being more careful in how we measure the final result, we
can make sure that the final state in case of failure is also a suitable initial state for Grover’s

11

algorithm. (Note that the necessity of repeating also occurs when the number of solutions is
known precisely: since the number of iterations in Grover’s algorithm needs to be an integer, it
will rarely be close enough to the optimal value.)

The full proof is given in Section E.1.

4.1 Additional oracles

In this section, we extend the hardness of the two values problem to cover additional oracles
that we will need in various parts of the paper.

Definition 8 (Oracle distribution) Fix integers `com , `ch , `resp (that may depend on the
security parameter) such that `com , `resp are superlogarithmic and `ch is logarithmic. Let
`rand := `com + `resp.

Let Oall = (OE ,OP ,OR,OS ,OF ,OΨ,OV) be chosen according to the following distribution:

• Let s0 := 0 (fixed). Pick w0
$← {0, 1}`rand .

• Choose Sy, OV , OF as in Definition 5 with Y := {0, 1}`com and X := {0, 1}`ch × {0, 1}`resp
and k := 2`ch+b`respc/3.
• For each z ∈ {0, 1}`rand , pick y

$← Y and x
$← Sy, and set OS(z) := (y, x).

• Let |⊥〉 be a quantum state orthogonal to all |com, ch, resp〉 (i.e., we extend the dimension of
the space in which |ΣΨ〉 lives by one). OΨ|⊥〉 := |ΣΨ〉, OΨ|ΣΨ〉 := |⊥〉, and OΨ|Φ〉 := |Φ〉
for |Φ〉 orthogonal to |Ψ〉 and |⊥〉.
• Let OE(com, ch, resp, ch ′, resp′) := w0 iff (ch, resp), (ch ′, resp′) ∈ Scom ∧ (ch, resp) 6=

(ch ′, resp′) and OE := 0 everywhere else.
• Let OR(s0, w0) := 1 and OR := 0 everywhere else.
• For each com ∈ {0, 1}`com , ch ∈ {0, 1}`ch , z ∈ {0, 1}`rand , let OP (w0, com, ch, z) be assigned

a uniformly random resp with (ch, resp) ∈ Scom . (Or ⊥ if no such resp exists.) Let
OP (w, ·, ·, ·) := 0 for w 6= w0.

The following corollary is a strengthening of Theorem 6 to the oracle distribution from
Definition 8. For later convenience, we express the soundness additionally in terms of guessing
w0. Since the formula would become unwieldy, we do not give a concrete asymptotic bound here.
But such a bound can be easily derived from the inequalities (49–56) in the proof.

Corollary 9 (Hardness of two values 2) Let Oall = (OE ,OP ,OR,OS ,OF ,OΨ,OV), w0 be
as in Definition 8. Let A be an oracle algorithm making at most qE , qP , qR, qS , qF , qΨ, qV queries
to OE ,OP ,OR,OS ,OF ,OΨ,OV , respectively. Assume that qE , qP , qR, qS , qF , qV are polynomially-
bounded (and `com , `resp are superlogarithmic by Definition 8). Then:

(i) Pr[w = w0 : w ← AOall] is negligible.
(ii) Pr[(ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom : (com, ch, resp, ch ′, resp′) ←

AOall] is negligible.

This corollary is shown by reduction to Theorem 6 (Hardness of the two values problem). Given
an adversary that violates (i), we remove step by step the oracles that are not covered by
Theorem 6. First, we remove the oracles OP ,OR. Those do not help the adversary (much)
to find w0 because OP and OR only give non-zero output if their input already contains w0.
Next we change A to output a collision (ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom

instead of the witness w0; since w0 can only be found by querying OE with such a collision, this
adversary succeeds with non-negligible probability, too. Furthermore, A then does not need
access to OE any more since OE only helps in finding w0. Next we get rid of OΨ: as shown in
Theorem 3 (Emulating state creation oracles), OΨ can be emulated (up to an inversely polynomial
error) using (suitable superpositions on) copies of the state |ΣΨ〉. Finally we remove OS : By
Theorem 4 (Small image oracles), OS can be replaced by an oracle that provides only a polynomial
number of triples (com, ch, resp). Those triples the adversary can produce himself by measuring

12

polynomially-many copies of |ΣΨ〉 in the computational basis. Thus we have shown that without
loss of generality, we can assume an adversary that only uses the oracles OF ,OV and (suitable
superpositions of) polynomially-many copies of |ΣΨ〉, and that tries to find a collision. But that
such an adversary cannot find a collision was shown in Theorem 6.

And (ii) is shown by observing that an adversary violating (i) leads to one violating (ii) using
one extra OE-query.

The full proof is given in Section E.2.

5 Attacking commitments

In the classical setting, a non-interactive commitment scheme is usually called computationally
binding if it is hard to output a commitment and two different openings (Definition 10 below).
We now show that in the quantum setting, this definition is extremely weak. Namely, it may
still be possible to commit to a value and then to open the commitment to an arbitrary value
(just not to two values at the same time).

Security definitions. To state this more formally, we define the security of commitments: A
non-interactive commitment scheme consists of algorithms COM,COMverify , such that (c, u)←
COM(m) returns a commitment c on the message m, and an opening information u. We
require perfect completeness, i.e., for any m and (c, u)← COM(m), COMverify(c,m, u) = 1 with
probability 1. In our setting, c,m, u are all classical.

Definition 10 (Computationally binding) A commitment scheme COM,COMverify is com-
putationally binding iff for any quantum polynomial-time algorithm A the following probability
is negligible:

Pr[ok = ok ′ = 1 ∧ m 6= m′ : (c,m, u,m′, u′)← A,

ok ← COMverify(c,m, u), ok ← COMverify(c,m′, u′)]

We will show below that this definition is not the right one in the quantum setting.
[29] also introduces a stronger variant of the binding property, called strict binding, which

requires that also the opening information u is unique (not only the message). We define a
computational variant of this property here:

Definition 11 (Computationally strict binding) A commitment scheme COM,COMverify

is computationally strict binding iff for any quantum polynomial-time algorithm A the following
probability is negligible:

Pr[ok = ok ′ = 1 ∧ (m,u) 6= (m′, u′) : (c,m, u,m′, u′)← A,

ok ← COMverify(c,m, u), ok ← COMverify(c,m′, u′)]

We will show below that this stronger definition is also not sufficient.

Definition 12 (Statistically hiding) A commitment scheme COM,COMverify is statistically
hiding iff for all m1,m2 with |m1| = |m2| and ci ← COM(mi) for i = 1, 2, c1 and c2 are
statistically indistinguishable.

The attack. We now state the insecurity of computationally binding commitments. The
remainder of this section will prove the following theorem.

Theorem 13 (Insecurity of binding commitments) There is an oracle O and a non-
interactive commitment scheme COM,COMverify such that:

13

• The scheme is perfectly complete, computationally binding, computationally strict binding,
and statistically hiding.
• There is a quantum polynomial-time adversary B1, B2 such that for all m,

Pr[ok = 1 : c← B1(|m|), u← B2(m), ok ← COMverify(c,m, u)]

is overwhelming. (In other words, the adversary can open to a value m that he did not
know while committing.)

In the rest of this section, when referring to the sets Scom from Definition 8, we will call
them Sy and we refer to their members as x ∈ Sy. (Not (ch, resp) ∈ Scom .) In particular, oracles
such as OS will returns pairs (y, x), not triples (com, ch, resp), etc.

We construct a commitment scheme relative to the oracle Oall from Definition 8. (Note: that
oracle distribution contains more oracles than we need for Theorem 13. However, we will need
in later sections that our commitment scheme is defined relative to the same oracles as the proof
systems there.)

Definition 14 (Bad commitment scheme) We define COM,COMverify as follows:

• COM(m): For i = 1, . . . , |m|, pick zi
$← {0, 1}`rand and let (yi, xi) := OS(zi). Let pi

$←
{1, . . . , `ch + `resp}. Let bi := mi ⊕ bitpi(xi). Let c := (p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|)
and u := (x1, . . . , x|m|). Output (c, u).
• COMverify(c,m, u) with c = (p1, . . . , pn, y1, . . . , yn, b1, . . . , bn) and u = (x1, . . . , xn): Check

whether |m| = n. Check whether OV (yi, xi) = 1 for i = 1, . . . , n. Check whether bi =
mi ⊕ bitpi(xi) for i = 1, . . . , n. Return 1 if all checks succeed.

For the results of the current section, there is actually no need for the values pi which select
which bit of xi is used for masking the committed bit mi. (E.g., we could always use the least
significant bit of xi.) But in Section 8 (attack on Fischlin’s scheme) we will need commitments
of this particular form to enable a specific attack where we need to open commitments to certain
values while simultaneously searching for these values in the first place.

Lemma 15 (Properties of COM) The scheme from Definition 14 is perfectly complete, com-
putationally binding, computationally strict binding, and statistically hiding. (Relative to Oall .)

The computational binding and computational strict binding property are a consequence of
Corollary 9 (Hardness of two values 2): to open a commitment to two different values, the adversary
would need to find one yi (part of the commitment) and two xi ∈ Syi (part of the two openings).
Corollary 9 states that this only happens with negligible probability. Statistical hiding follows
from the fact that for each yi, there are superpolynomially many xi ∈ Syi , hence bitpi(xi) is
almost independent of yi.

The proof is given in Section F.1.

Lemma 16 (Attack on COM) There is a quantum polynomial-time adversary B1, B2 such
that for all m,

εCOM := Pr[ok = 1 : c← B1(|m|), u← B2(m), ok ← COMverify(c,m, u)]

is overwhelming.

Basically, the adversary B1, B2 commits to a random commitment. And to unveil to a
message m, he needs to find values xi ∈ Syi with bitpi(xi) = mi ⊕ bi. Since half of all xi have
this property, such xi can be found using Theorem 7 (Searching one value).

The full proof is given in Appendix F.2.

Theorem 13 then follows immediately from Lemmas 15 and 16.

14

6 Attacking sigma-protocols

We will now show that in general, sigma-protocols with special soundness are not necessarily
proofs of knowledge. [29] showed that if a sigma-protocol additionally has strict soundness,
it is a proof of knowledge. It was left as an open problem whether that additional condition
is necessary. The following theorem resolves that open question by showing that the results
from [29] do not hold without strict soundness (not even with computational strict soundness),
relative to an oracle.

Theorem 17 (Insecurity of sigma-protocols) There is an oracle Oall and a relation R and
a sigma-protocol relative to Oall with logarithmic `ch (challenge length), completeness, perfect
special soundness, computational strict soundness, and statistical honest-verifier zero-knowledge
for which there exists a total knowledge break.

In contrast, a sigma-protocol relative to Oall with completeness, perfect special soundness,
and statistical honest-verifier zero-knowledge is a classical proof of knowledge.

Note that a corresponding theorem with polynomially bounded `ch follows immediately by
parallel repetition of the sigma-protocol.

The remainder of this section will prove Theorem 17. As a first step, we construct the
sigma-protocol.

Definition 18 (Sigma-protocol) Let COM,COMverify be the commitment scheme from Defi-
nition 14.6

Relative to the oracle distribution from Definition 8, we define the following sigma-protocol
(`com , `ch , `resp , P1, P2, V,R) for the relation R := {(s0, w0)}:
• P1(s,w) picks com

$← {0, 1}`com . For each ch ∈ {0, 1}`ch , he picks zch
$← {0, 1}`rand and

computes respch := OP (w, com, ch, zch) and (cch , uch)← COM(respch). Then P1 outputs
com∗ := (com, (cch)ch∈{0,1}`ch).
• P2(ch) outputs resp∗ := (respch , uch).
• For com∗ = (com, (cch)ch∈{0,1}`ch) and resp∗ = (resp, u), let V (s, com∗, ch, resp∗) := 1 iff
OV (com, ch, resp) = 1 and s = s0 and COMverify(cch , resp, u) = 1.

The commitments cch are only needed to get computational strict soundness. A slightly
weaker Theorem 17 without computational strict soundness can be achieved using the sigma-
protocol from Definition 18 without the commitments cch ; the proofs stay the same, except that
the steps relating to the commitments are omitted.

Lemma 19 (Security of the sigma-protocol) The sigma-protocol from Definition 18 has:
completeness, perfect special soundness, computational strict soundness, statistical honest-verifier
zero-knowledge, commitment entropy.

Perfect special soundness follows from the existence of the oracle OE . That oracle provides
the witness w0 given two accepting conversations, as required by perfect special soundness.
Computational strict soundness stems from the fact that the message com∗ contains commitments
cch to all possible answers. Thus to break computational strict soundness (i.e., to find two
different accepting resp∗), the adversary would need to open one of the commitments cch in two
ways. This happens with negligible probability since COM is computationally strict binding.
Statistical honest-verifier zero-knowledge follows from the existence of the oracle OS which
provides simulations. (And the commitment cch that are not opened can be filled with arbitrary
values due to the statistical hiding property of COM.)

The full proof is given in Appendix G.1.

6The commitment described there has the property that it is computationally binding, but still it is possible for
the adversary to open the commitment to any value, only not to several values at the same time. The commitment
is defined relative to the same oracle distribution as the sigma-protocol here, which is why we can use it.

15

Lemma 20 (Attack on the sigma-protocol) Assume that `ch is logarithmically bounded.
Then there exists a total knowledge break (Definition 2) against the sigma-protocol from Defini-
tion 18.

To attack the sigma protocol, the malicious prover uses Theorem 7 (Searching one value) to
get a com and a corresponding state |Ψ(com)〉. Then, when receiving ch, he needs to find
(ch ′, resp) ∈ Scom with ch ′ = ch. Since an inversely polynomial fraction of (ch ′, resp) satisfy
ch ′ = ch (`ch is logarithmic), this can be done with Theorem 7. This allows the prover to succeed
in the proof with overwhelming probability. (He additionally needs to open the commitments
cch to suitably. This can be done using Lemma 16 (Attack on COM).) However, an extractor that
has the same information as the prover (namely, access to the oracle Oall) will fail to find w0 by
Corollary 9 (Hardness of two values 2).

The full proof is given in Appendix G.2.

Now Theorem 17 follows from Lemmas 19 and 20. (The fact that the sigma-protocol is a classical
proof of knowledge is shown in [13].)

Note that we cannot expect to get a total break (as opposed to a total knowledge break):
Since the sigma-protocol is a classical proof of knowledge, it is also a classical proof. But a
classical proof is also a quantum proof, because an unlimited classical adversary can simulate a
quantum adversary. However, this argument does not apply when we consider computationally
limited provers, see Section 6.1 below.

6.1 The computational case

We now consider the variant of the impossibility result from the previous section. Namely,
we consider sigma-protocols that have only computational security (more precisely, for which
the special soundness property holds only computationally) and show that these are not even
arguments in general (the results from the previous section only say that they are not arguments
of knowledge).

Theorem 21 (Insecurity of sigma-protocols, computational) There is an oracle Oall

and a relation R′ and a sigma-protocol relative to Oall with logarithmic `ch (challenge length),
completeness, computational special soundness, and statistical honest-verifier zero-knowledge for
which there exists a total break.

In contrast, a sigma-protocol relative to Oall with completeness, computational special sound-
ness, and statistical honest-verifier zero-knowledge is a classical argument.

Note that a corresponding theorem with polynomially bounded `ch follows immediately by
parallel repetition of the sigma-protocol. The remainder of this section is dedicated to proving
Theorem 21.

Definition 22 (Sigma-protocol, computational) We define a sigma-protocol
(`com , `ch , `resp , P1, P2, V,R

′) as in Definition 18, except that the relation is R′ := ∅.

Lemma 23 (Security of the sigma-protocol, computational) The sigma-protocol from
Definition 22 has: completeness. computational special soundness. computational strict sound-
ness. statistical honest-verifier zero-knowledge. commitment entropy.

Most properties are either immediate or shown as in Lemma 19 (Security of the sigma-protocol).
However, perfect special soundness does not hold for the sigma-protocol from Definition 22:
There exist pairs of accepting conversations (ch, resp), (ch ′, resp′) ∈ Scom . But these do not allow
us to extract a valid witness for s0 (because R′ = ∅, so no witnesses exist). However, we have
computational special soundness: by Corollary 9 (Hardness of two values 2), it is computationally
infeasible to find those pairs of conversations.

The full proof is given in Appendix G.3.

16

Lemma 24 (Attack on the sigma-protocol, computational) Assume that `ch is logarith-
mically bounded. Then there exists a total break (Definition 2) against the sigma-protocol from
Definition 22.

In this lemma, we use the same malicious prover as in Lemma 20 (Attack on the sigma-protocol).
That adversary proves the statement s0. Since R′ = ∅, that statement is not in the language,
thus this prover performs a total break.

The full proof is given in Appendix G.4.

Now Theorem 21 follows from Lemmas 23 and 24. (And sigma-protocols with computational
special soundness are arguments of knowledge and thus arguments; we are not aware of an
explicit write-up in the literature, but the proof from [13] for sigma-protocols with special
soundness applies to this case, too.)

7 Attacking Fiat-Shamir

Definition 25 (Fiat-Shamir) Fix a sigma-protocol (`com , `ch , `resp , P1, P2, V, R) and an integer
r > 0. Let H : {0, 1}∗ → {0, 1}r·`ch be a random oracle. The Fiat-Shamir construction (PFS , VFS)
is the following non-interactive proof system:
• Prover PFS (s,w): For (s,w) ∈ R, invoke comi ← P1(s,w) for i = 1, . . . , r. Let

ch1‖ . . . ‖chr := H(s, com1, . . . , comr). Invoke respi ← P2(chi). Return π :=
(com1, . . . , comr, resp1, . . . , respr).
• Verifier VFS (s, (com1, . . . , comr, resp1, . . . , respr)): Let ch1‖ . . . ‖chr :=
H(s, com1, . . . , comr). Check whether V (s, comi, chi, respi) = 1 for all i = 1, . . . , r. If so,
return 1.

Theorem 26 (Insecurity of Fiat-Shamir) There is an oracle Oall and a relation R and a
sigma-protocol relative to Oall with logarithmic `ch (challenge length), completeness, perfect
special soundness, computational strict soundness, statistical honest-verifier zero-knowledge, and
commitment entropy, such that there is total knowledge break on the Fiat-Shamir construction.

In contrast, the Fiat-Shamir construction based on a sigma-protocol with the same properties
is a classical argument of knowledge (assuming that r`ch is superlogarithmic).

As the underlying sigma-protocol, we use the one from Definition 18. The attack on Fiat-
Shamir is analogous to that on the sigma-protocol itself. The only difference is that the challenge
ch now comes from H and not from the verifier; this does not change the attack strategy.

The full proof is given in Appendix H.1.

7.1 The computational case

Again, we get even stronger attacks if the special soundness holds only computationally.
Theorem 27 (Insecurity of Fiat-Shamir, computational) There is an oracle Oall and a
relation R and a sigma-protocol relative to Oall with logarithmic `ch (challenge length), complete-
ness, computational special soundness, computational strict soundness, statistical honest-verifier
zero-knowledge, and commitment entropy, such that there is a total break on the Fiat-Shamir
construction.

In contrast, the Fiat-Shamir construction based on a sigma-protocol with the same properties
is a classical argument of knowledge (assuming that r`ch is superlogarithmic).

The proof is along the lines of those of Theorem 26 and Lemma 24 and given in Appendix H.2.

17

8 Attacking Fischlin’s scheme

In the preceding sections we have used the pick-one trick to give negative results for the
(knowledge) soundness of sigma protocols and of the Fiat-Shamir construction. Classically, both
protocols are shown sound using rewinding. This leads to the conjecture that the pick-one trick
is mainly useful for getting impossibilities for protocols with rewinding-based security proofs.
Yet, in this section we show that this is not the case; we use the pick-one trick to give an
impossibility result for Fischlin’s proof system with online-extractors [17]. The crucial point of
that construction is that in the classical security proof, no rewinding is necessary. Instead, a
witness is extracted by passively inspecting the list of queries performed by the adversary.

Definition 28 (Fischlin’s scheme) Fix a sigma-protocol (`com , `ch , `resp , P1, P2, V,R). Fix
integers b, r,S, t such that br and 2t−b are superlogarithmic, b, r, t are logarithmic, S ∈ O(r)
(S = 0 is permitted), and b ≤ t ≤ `ch .

Let H : {0, 1}∗ → {0, 1}b be a random oracle. Fischlin’s construction (PFis , VFis) is the
non-interactive proof system is defined as follows:
• PFis(s, w): See [17]. (Omitted here since we only need to analyze VFis for our results.)
• VFis(s, π) with π = (comi, chi, respi)i=1,...,r: Check if V (comi, chi, respi) = 0 for all i =

1, . . . , r. Check if
∑r

i=1H(x, (comi)i, i, chi, respi) ≤ S (where H(. . .) is interpreted as a
binary unsigned integer). If all checks succeed, return 1.

The idea (in the classical case) is that, in order to produce triples (comi, chi, respi) that make
H(x, (comi)i, i, chi, respi) sufficiently small, the prover needs try out several accepting chi, respi
for each comi. So with overwhelming probability, the queries made to H will contain at least
two chi, respi for the same comi. This then allows extraction by just inspecting the queries.

In the quantum setting, this approach towards extraction does not work: the “list of random
oracle queries” is not a well-defined notion, because the argument of H is not measured when
a query is performed. In fact, we show that Fischlin’s scheme is in fact not an argument of
knowledge in the quantum setting (relative to an oracle):

Theorem 29 (Insecurity of Fischlin’s construction) There is an oracle Oall and a relation
R and a sigma-protocol relative to Oall with logarithmic `ch (challenge length), completeness, per-
fect special soundness, computational strict soundness, statistical honest-verifier zero-knowledge,
and commitment entropy, such that there is a total knowledge break of Fischlin’s construction.

In contrast, Fischlin’s construction based on a sigma-protocol with the same properties is a
classical argument of knowledge.

As the underlying sigma-protocol, we use the one from Definition 18. The basic idea is that
the malicious prover finds conversations (com∗i , chi, resp∗i) by first fixing the values com∗i , and
then using Theorem 7 to find ch, resp∗ where resp∗i contains respi such that (chi, respi) ∈ Scomi

and H(x, (com∗i)i, i, chi, resp∗i) = 0. If resp∗i would not additionally contain commitments cch

(see Definition 18), this would already suffice to break Fischlin’s scheme. To additionally make
sure we can open the commitments to the right value, we use a specific fixpoint property of
COM. See the full proof (Appendix I.1) for details.

8.1 The computational case

Theorem 30 (Insecurity of Fischlin’s construction, computational) There is an oracle
Oall and a relation R and a sigma-protocol relative to Oall with logarithmic `ch (challenge length),
completeness, computational special soundness, computational strict soundness, statistical honest-
verifier zero-knowledge, and commitment entropy, such that there is a total break on Fischlin’s
construction.

In contrast, Fischlin’s construction based on a sigma-protocol with the same properties is a
classical argument of knowledge.

18

The proof is given in Appendix I.2.

Fischlin’s scheme with strict soundness. We conjecture that Theorems 29 and 30 even
hold with strict soundness instead of computational strict soundness. We sketch our reasoning:
Consider a variant of the oracle distribution from Definition 8, in which `ch is superlogarithmic
(not logarithmic) and in which the sets Scom are chosen uniformly at random from all sets S
which satisfy ∀ch∃1resp.(ch, resp) ∈ S. Note that the results from Sections 5–7 do not hold
in this setting, because ch must be polynomially-bounded to show the existence of successful
adversaries. (Namely, when Theorem 7 (Searching one value) is invoked, the predicate P is true
on a 2−`ch fraction of the all values.) But the proofs of Lemma 51 (Attack on Fischlin’s construction)

and Lemma 52 (Attack on Fischlin’s construction, computational) do not require this. We conjecture
that Corollary 9 still holds in this modified setting (the cardinality of the Scom satisfies the
conditions of Corollary 9, but the Scom have additional structure). Then the sigma-protocols
from Definitions 18 and 22 (without the commitments cch) will still have the properties shown
in Lemmas 19 and 23, but additionally they will have strict soundness because for any com, ch,
there exists only one resp such that (ch, resp) ∈ Scom .

We leave the proof that Corollary 9 holds even for sets Scom with ∀ch∃1resp.(ch, resp) ∈ Scom

as an open problem.

Acknowledgments. We thank Marc Fischlin and Tommaso Gagliardoni for valuable discus-
sions and the initial motivation for this work. Andris Ambainis was supported by FP7 FET
projects QCS and QALGO and ERC Advanced Grant MQC (at the University of Latvia) and
by National Science Foundation under agreement No. DMS-1128155 (at IAS, Princeton). Any
opinions, findings and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science Foundation.
Ansis Rosmanis was supported by the Mike and Ophelia Lazaridis Fellowship, the David R.
Cheriton Graduate Scholarship, and the US ARO. Dominique Unruh was was supported by
the Estonian ICT program 2011-2015 (3.2.1201.13-0022), the European Union through the
European Regional Development Fund through the sub-measure “Supporting the development of
R&D of info and communication technology”, by the European Social Fund’s Doctoral Studies
and Internationalisation Programme DoRa, by the Estonian Centre of Excellence in Computer
Science, EXCS.

References

[1] Andris Ambainis. A new quantum lower bound method, with an application to a strong
direct product theorem for quantum search. Theory of Computing, 6(1):1–25, 2010.

[2] Andris Ambainis, Löıck Magnin, Martin Roetteler, and Jérémie Roland. Symmetry-assisted
adversaries for quantum state generation. In IEEE Conference on Computational Complexity,
pages 167–177. IEEE Computer Society, 2011.

[3] Andris Ambainis, Robert Špalek, and Ronald de Wolf. A new quantum lower bound
method, with applications to direct product theorems and time-space tradeoffs. Algorithmica,
55(3):422–461, 2009.

[4] Daniel Berend and Aryeh Kontorovich. On the convergence of the empirical distribution.
arXiv:1205.6711v2 [math.ST], 2012.

[5] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, editors. Post-Quantum
Cryptography. Springer, 2009.

19

http://arxiv.org/abs/1205.6711v2

[6] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In ASIACRYPT 2011, pages 41–69, Berlin,
Heidelberg, 2011. Springer-Verlag.

[7] Dan Boneh and Mark Zhandry. Quantum-secure message authentication codes. In Eurocrypt
2013, volume 7881 of LNCS, pages 592–608. LNCS, 2013. Online version IACR ePrint
2012/606.

[8] Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext security in a
quantum computing world. In Crypto 2013, 2013. Full version at IACR ePrint 2013/088.

[9] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum
searching. Fortschritte der Physik, 46(4-5):493–505, 1998. Online version at arXiv:quant-
ph/9605034.

[10] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum algorithm for the collision problem.
ACM SIGACT News, 28:14–19, 1997. Full version at arXiv:quant-ph/9705002.

[11] Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting.
Phys. Rev. Lett., 87:167902, September 2001. Online version arXiv:quant-ph/0102001.

[12] Özgür Dagdelen, Marc Fischlin, and Tommaso Gagliardoni. The Fiat-Shamir transformation
in a quantum world. In Asiacrypt 2013, volume 8270 of LNCS, pages 62–81. Springer, 2013.
Online version IACR ePrint 2013/245.

[13] Ivan Damg̊ard. On σ-protocols. Course notes for “Cryptologic Protocol Theory”, http:
//www.cs.au.dk/~ivan/Sigma.pdf, 2010. Retrieved 2014-03-17. Archived at http://www.
webcitation.org/6O9USFecZ.

[14] Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Superposition attacks
on cryptographic protocols. In ICITS 2013, volume 8317 of LNCS, pages 142–161. Springer,
2014. Online version IACR ePrint 2011/421.

[15] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On
the non-malleability of the Fiat-Shamir transform. In Steven Galbraith and Mridul Nandi,
editors, INDOCRYPT 2012, volume 7668 of LNCS, pages 60–79. Springer, 2012. Preprint
on IACR ePrint 2012/704.

[16] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, Advances in Cryptology, Proceedings of
CRYPTO ’86, number 263 in Lecture Notes in Computer Science, pages 186–194. Springer-
Verlag, 1987.

[17] Marc Fischlin. Communication-efficient non-interactive proofs of knowledge with online
extractors. In Crypto 2005, volume 3621 of LNCS, pages 152–168. Springer, 2005.

[18] Chris Godsil. Association schemes. Lecture Notes, 2005.

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):690–
728, 1991. Online available at http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf.

[20] Lov K. Grover. A fast quantum mechanical algorithm for database search. In STOC, pages
212–219, 1996.

[21] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the Americal Statistical Association, 58(301):13–30, 1963.

20

http://eprint.iacr.org/2012/606
http://eprint.iacr.org/2012/606
http://eprint.iacr.org/2013/088
http://arxiv.org/abs/quant--ph/9605034
http://arxiv.org/abs/quant--ph/9605034
http://arxiv.org/abs/quant-ph/9705002
http://arxiv.org/abs/quant-ph/0102001
https://eprint.iacr.org/2013/245
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.webcitation.org/6O9USFecZ
http://www.webcitation.org/6O9USFecZ
http://eprint.iacr.org/2011/421
http://eprint.iacr.org/2012/704
http://www.wisdom.weizmann.ac.il/~oded/X/gmw1j.pdf

[22] Gordon James and Adalbert Kerber. The Representation Theory of the Symmetric Group,
volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley, 1981.

[23] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Taylor & Francis,
2007.

[24] Donald E. Knuth. Selected Papers on Discrete Mathematics. CSLI, 2003.

[25] M. Nielsen and I. Chuang. Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, 10th anniversary edition, 2010.

[26] Bruce E. Sagan. The symmetric group: representations, combinatorial algorithms, and
symmetric functions, volume 203 of Graduate Texts in Mathematics. Springer, 2001.

[27] Jean-Pierre Serre. Linear Representations of Finite Groups, volume 42 of Graduate Texts
in Mathematics. Springer, 1977.

[28] Peter W. Shor. Algorithms for quantum computation: Discrete logarithms and factoring.
In FOCS 1994, pages 124–134. IEEE, 1994.

[29] Dominique Unruh. Quantum proofs of knowledge. In Eurocrypt 2012, volume 7237 of LNCS,
pages 135–152. Springer, April 2012. Preprint on IACR ePrint 2010/212.

[30] Dominique Unruh. Revocable quantum timed-release encryption. In Eurocrypt 2014, LNCS.
Springer, 2013. To appear, preprint on IACR ePrint 2013/606.

[31] Dominique Unruh. Quantum position verification in the random oracle model, February
2014. Preprint on IACR ePrint 2014/118.

[32] Jeroen van de Graaf. Towards a formal definition of security for quantum protocols. PhD
thesis, Départment d’informatique et de r.o., Université de Montréal, 1998. Online available
at http://www.cs.mcgill.ca/~crepeau/PS/these-jeroen.ps.

[33] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput., 39(1):25–58,
2009.

[34] Eric W. Weisstein. Hypergeometric distribution. From MathWorld – A Wolfram Web Re-
source. http://mathworld.wolfram.com/HypergeometricDistribution.html. Retrieved
2014-03-19.

[35] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299:802–803,
1982.

[36] Mark Zhandry. How to construct quantum random functions. In FOCS 2013, pages 679–687,
Los Alamitos, CA, USA, 2012. IEEE Computer Society. Online version is IACR ePrint
2012/182.

[37] Mark Zhandry. Secure identity-based encryption in the quantum random oracle model. In
Crypto 2012, volume 7417 of LNCS, pages 758–775. Springer, 2012. Long version on IACR
ePrint 2012/076.

[38] Mark Zhandry. Personal communication, 2014.

21

http://eprint.iacr.org/2013/606
http://eprint.iacr.org/2014/118
http://www.cs.mcgill.ca/~crepeau/PS/these-jeroen.ps
http://mathworld.wolfram.com/HypergeometricDistribution.html
http://eprint.iacr.org/2012/182
http://eprint.iacr.org/2012/182
https://eprint.iacr.org/2012/076
https://eprint.iacr.org/2012/076

Symbol index

r Parameter of Fischlin’s scheme: number of subproofs 18
COMverify Verification algorithm for COM 14
OS Oracle, enabling simulation 12
k Cardinality of random sets Sy (or Scom) 12
η Security parameter 6
COMopen∗ A specific cheating open phase for attacking Fischlin’s scheme 63
PFS Prover of Fiat-Shamir 17
VFis Verifier of Fischlin’s construction 18
COM Commitment scheme from Definition 14 14
EΣ Special soundness extractor for sigma protocol Σ 7
SΣ Honest-verifier simulator extractor for sigma protocol Σ 7
|Ψ〉 Vector in a Hilbert space (usually a quantum state) 6
〈Ψ| Conjugate transpose of |Ψ〉 6
`com Length of commitments in sigma-protocol 7
`ch Length of challenges in sigma-protocol 7
`resp Length of responses in sigma-protocol 7
`rand Length of randomness in oracle queries 12
D Denotes a distribution
|⊥〉 A fixed stated orthogonal to |ΣΨ〉 12
OV Oracle, enabling verification 11
ORef Oracle, measures |ΣΨ〉 30
dxe Ceiling (x rounded towards +∞)
|x| Absolute value / cardinality of x
OP Oracle, enabling honest proofs 12
OR Oracle, membership in relation R 12
H Denotes a Hilbert space
Var[X] Variance of X
R Real numbers
biti(x) i-th bit of bitstring x (from left) 25
poly(n) Polynomially-bounded in n
Hα(D) Renyi entropy of order α of distribution D 25
im f Image of function f
SD(A;B) Statistical distance between random variables or distributions A and B 6
E[A] Expected value of random variable A
PFis Prover of Fischlin’s construction 18
OE Oracle, enabling extraction 12
OF Oracle, mapping |Ψ〉 → −|Ψ〉 11
COM∗ A specific cheating commit phase for attacking Fischlin’s scheme 63
t Parameter of Fischlin’s scheme: number of tries performed by prover 18
bxc x rounded towards −∞
TD(ρ, ρ′) Trace distance between ρ, ρ′. Short TD(|Ψ〉, |Ψ′〉) for TD(|Ψ〉〈Ψ|, |Ψ′〉〈Ψ′|) 6
|Ψ(y)〉 Superposition of all x ∈ Sy, for pick-one trick 11
Sy Set of all “good” x, in pick-one trick 11
x← A x is assigned output of algorithm A 6
|ΣΨ〉 Superposition of all |Ψ(y)〉, for pick-one trick 11
ch Challenge (second message in sigma-protocol, by verifier) 7

x
$← S x chosen uniformly from set S/according to distribution S 6

resp Response (third message in sigma-protocol, by prover) 7
com Commitment (first message in sigma-protocol, by prover) 7

22

|yes〉 Superposition of no-instances in Grover search 53
|no〉 Superposition of no-instances in Grover search 53
OΨ Oracle that provides |Ψ〉 12
Oall The oracles OE ,OP ,OR,OS ,OF ,OΨ,OV together 12
O Denotes an oracle 6
ok ← 〈P, V 〉 Joint execution of P and V , ok is V ’s output 8
LR Language defined by R 8
b Parameter of Fischlin’s scheme: length of H-outputs 18
‖x‖ Euclidean norm of x
S Parameter of Fischlin’s scheme: maximum sum of H-outputs 18
VFS Verifier of Fiat-Shamir 17

Keyword index

adversary success, 8

binding

computationally, 13

computationally strict, 13

break

total, 8

challenge, 4

(in sigma-protocol), 7

commitment, 4

(in sigma-protocol), 7

commitment entropy, 7

commitment scheme

computationally binding, 13

computationally strict binding, 13

non-interactive, 13

perfect completeness, 13

statistically hiding, 13

completeness

(of sigma-protocol), 7

perfect (of commitment scheme), 13

computational special soundness

(of sigma-protocol), 7

computational strict soundness, 7

computationally binding, 13

computationally strict binding, 13

diffusion operator

(Grover’s algorithm), 11

distance

statistical, 6

trace, 6

entropy

commitment, 7

extractor failure, 8

Fiat-Shamir, 17
(proof system), 17

Fischlin
(proof system), 18

hiding
statistically, 13

honest-verifier zero-knowledge
(of sigma-protocol), 7

HVZK, see honest-verifier zero-knowledge

non-interactive
commitment scheme, 13

perfect completeness
(of commitment scheme), 13

pick-one trick, 5, 11
post-quantum cryptography, 2
problem

two values, 11

quantum state, 6

reservoir state, 8
response, 4

(in sigma-protocol), 7
responses

unique, 7

security parameter, 6
sigma-protocol, 7
soundness

computational special (of sigma-protocol),
7

computational strict, 7
special (of sigma protocol), 7
strict, 7

special soundness

23

(of sigma protocol), 7
computational (of sigma-protocol), 7

state
quantum, 6

statistical distance, 6
statistically hiding, 13
strict binding

computationally, 13
strict soundness, 7

computational, 7

total break, 8

knowledge, 8
total knowledge break, 8
trace distance, 6
two values problem, 11

unique responses, 7

values problem
two, 11

zero-knowledge
honest-verifier (of sigma-protocol), 7

A Auxiliary lemmas

Lemma 31
√

2
(
1− (cos π

2n)n
)
∈ π

2
√
n

+ o(1√
n

).

Proof. By Taylor’s theorem, for x→ 0,

cosx ∈ 1− x2

2 +O(x4), (3)

ln(1− x) ∈ −x+O(x2), (4)

ex ∈ 1 + x+O(x2). (5)

Hence for n→∞,

ln cos π
2n

(3)

∈ ln
(
1− π2

8n2 +O(n−4)
) (4)

⊆ − π2

8n2 +O(n−4).

Hence

2n
(

1−
(
cos π

2n

)n) ∈ 2n
(

1− en
(
− π2

8n2 +O(n−4)
)) (5)

⊆ 2n
(
π2

8n +O(n−2)
)
⊆ π2

4 + o(1).

Thus √
n ·
√

2
(
1− (cos π

2n)n
)
∈ π

2 + o(1)

and √
2
(
1− (cos π

2n)n
)
∈ π

2
√
n

+ o(1√
n

). �

Lemma 32 Let X be a set. Let P ⊆ X be a set. Let S ⊆ X be uniformly random with |S| = k.
Let ϕ := |P |/|X|. Let δmin ∈ [0, ϕ]. Then

Pr
[|P ∩ S|
|S|

< δmin

]
≤ e−2k(ϕ−δmin)2

.

Proof. Let N := |X|. Let δ := |P ∩ S|/|S|. We can describe the choice of S as sampling
k elements xi ∈ X without replacement. Let Xi := 0 if xi ∈ P and Xi := 1 else. Then
1− δ =

∑k
i=1Xi/k. And the Xi result from sampling k elements without replacement from a

population C consisting of (1− ϕ)N ones and ϕN zeros. Note that µ := 1− ϕ is the expected
value of each Xi. Thus we get

Pr[δ < δmin] ≤ Pr[1− δ ≥ 1− δmin] = Pr
[∑

Xi
k ≥ 1− δmin

]
= Pr

[∑
Xi
k − µ ≥ ϕ− δmin

] (∗)
≤ e−2k(ϕ−δmin)2

.

24

Here (∗) uses Hoeffding’s inequality [21] (and the fact that 0 ≤ t ≤ 1 − µ for t := ϕ − δmin).
Note that Hoeffding’s inequality also holds in the case of sampling without replacement, see [21,
Section 6]. �

Lemma 33 Let X be a finite and Y a countable set. Let D be a distribution over Y . Let H 1
2
(D)

denote the Rényi entropy of order 1/2 of D. For each x ∈ X, let O(x) be an independently

chosen y ← D. Let y1 ← D, and y2 := O(x) for x
$← X. Then

SD
(
(O, y1); (O, y2)

)
≤ 1

2
√
n

2
1
2
H 1

2
(D) ≤ 1

2

√
|Y |/|X|.

(I.e., we bound the statistical distance between an element y1 chosen according to D, and an
element y2 chosen by evaluating O on a random input, when the function O is known.)

Proof. Let n := |X|. For a function f : X → Y , let Df denote the empirical distribution of f ,
i.e., Df (y) = 1

n |{x : f(x) = y}|. Let j(f) := 2 SD(D,Df). And let Jn := j(O), i.e., Jn is a real-

valued random variable. Then [4, Lemma 8] proves that E[Jn] ≤ 1√
n

∑
y∈Y

√
D(y) =: γ. Since

H 1
2
(D) = 1

1− 1
2

log
(∑

y∈Y D(y)
1
2

)
by definition, we have γ = 1√

n
2

1
2
H 1

2
(D)

. SinceH1/2(D) ≤ log |Y |

for any distribution D on Y , we furthermore have γ ≤ 1√
n

2
1
2

log |Y | =
√
|Y |/|X|. Let SD(y1, y2|E)

denote the statistical distance between y1 and y2 conditioned on an event E. We can finally
compute:

SD
(
(O, y1); (O, y2)

)
=

∑
f :X→Y

Pr[O = f] · SD(y1, y2|O = f)

=
∑

f :X→Y
Pr[O = f] · SD(D,Df) =

∑
f :X→Y

Pr[O = f] · 1
2j(f) = 1

2 E[Jn] ≤ 1
2γ. �

Lemma 34 Let bitp(x) denote the p-th bit of x. Let X = {0, 1}` for some `, and k ≥ 1,

p ∈ {1, . . . , `} be integers. Let S ⊆ X be uniformly random with |S| = k. Let x
$← S. Let

b∗
$← {0, 1}. Then SD

(
(S, bitp(x)); (S, b∗)

)
≤ 1/2

√
k.

Proof. Let P := {x ∈ S : bitp(x) = 1}. Let SD(X;Y |S) denote the statistical distance between
X and Y conditioned on a specific choice of S. And Pr[S] denote the probability of a specific
choice of S. Then

SD
(
(S, bitp(x)); (S, b∗)

)
=
∑
S

Pr[S] SD(bitp(x); b∗|S)

=
∑
S

Pr[S] ·
∣∣∣Pr[x ∈ P : x

$← S]− Pr[b∗ = 1 : b∗
$← {0, 1}]

∣∣∣
=
∑
S

Pr[S] ·
∣∣∣ |P ||S| − 1

2

∣∣∣ (∗)
≤
√∑

S

Pr[S]
(
|P |
|S| −

1
2

)2
=

√
E
[(|P |
|S| −

1
2

)2]
=

√
E
[(
|P |
|S| − E

[
|P |
|S|

])2]
=
√

Var
[
|P |/|S|

](∗∗)
= 1

k

√
Var
[
|P |
]
.

Here (∗) uses Jensen’s inequality. And (∗∗) that |S| = k.
|P | is the number of successes when sampling k times without replacement from a population

of size 2` containing 2`−1 successes (the elements x ∈ {0, 1}` with bitp(x) = 1). That is, |P | has

25

hypergeometric distribution with parameters m = n = 2`−1 and N := k (in the notation of [34]).
Thus (see [34]):

Var
[
|P |
]

=
mnN(m+ n−N)

(m+ n)2(m+ n− 1)
= 1

4k
2` − k
2` − 1

≤ k
4 .

Summarizing,

SD
(
(S, bitp(x)); (S, b∗)

)
≤ 1

k

√
Var
[
|P |
]
≤ 1

k

√
k/4 =

1

2
√
k
. �

Lemma 35 Let C and R be finite sets, let k ≥ 1 be an integer. Let S be a uniformly chosen

subset of C ×R with |S| = k. Let c′
$← C, and r

$← S|c′ := {r : (c′, r) ∈ S} (with r := ⊥ /∈ R iff

S|c′ = ∅). Let (c′′, r′′)
$← S.

Then σ := SD
(
(S, c′, r′); (S, c′′, r′′)

)
≤ 2k2

|C×R| +

√
|C|

2
√
k

.

Proof. In the following calculation, G
ε
≈ H means that the distribution of (S, c) when picked

according to G has statistical distance ≤ ε from the distribution of (S, c) when picked according

to H. And G ≡ H means equality of these distributions (G
0
≈ H). And [C ×R]k denotes the set

of all S ⊆ C ×R with |S| = k. And x1, . . . , xk
6=←M means that the xi are chosen uniformly but

distinctly from M (drawn without replacing).

S
$← [C ×R]k, (c, r)

$← S

≡ F (1), . . . , F (k)
6=← C ×R, S := imF, j

$← {1, . . . , k}, (c, r) := F (j)
ε1≈ F (1), . . . , F (k)

$← C ×R, S := imF, j
$← {1, . . . , k}, (c, r) := F (j)

≡ F1(1), . . . , F1(k)
$← C, F2(1), . . . , F2(k)

$← R, S := im((F1, F2)),

j
$← {1, . . . , k}, c := F1(j), r := F2(j)

≡ F1(1), . . . , F1(k)
$← C, j

$← {1, . . . , k}, c := F1(j),

F2(1), . . . , F2(k)
$← R, S := im((F1, F2))

ε2≈ F1(1), . . . , F1(k)
$← C, c

$← C, F2(1), . . . , F2(k)
$← R, S := im(F1, F2)

≡ F (1), . . . , F (k)
$← C ×R, S := imF, c

$← C
ε1≈ F (1), . . . , F (k)

6=← C ×R, S := imF, c
$← C

≡ S $← [C ×R]k, c
$← C

Here ε1 is the probability that at least two independently chosen F (i)
$← C ×R are equal, and

ε2 = SD
(
(F1, c); (F1, u)

)
for u

$← C.
Thus SD

(
(S, c′); (S, c′′)

)
≤ 2ε1 + ε2. Since r′ given S, c′ has the same distribution as r′′ given

S, c′′, it follows
SD
(
(S, c′, r′); (S, c′′, r′′)

)
≤ 2ε1 + ε2. (6)

We have ε1 ≤
∑

i 6=j Pr[F (i) = F (j)] =
∑

i 6=j 1/|C ×R| ≤ k2/|C ×R|.
For a function f : {1, . . . , k} → C, let Df denote the empirical distribution of f , i.e.,

Df (c) = 1
k

∣∣{i : f(i) = c}
∣∣. Let U denote the uniform distribution on C. Let j(f) := 2 SD(U ,Df).

And let Jk := j(F1) for F1(1), . . . , F1(k)
$← C, i.e., Jk is a real-valued random variable. Then [4,

Lemma 8] proves that E[Jk] ≤ 1√
k

∑
c∈C

√
U(c) =

√
|C|/k. Then

ε2 = SD
(
(F1, c); (F1, u)

)
=
∑
f

Pr[F1 = f] · SD(Df ,U)

=
∑
f

Pr[F1 = f] · 1
2j(f) = 1

2 E[Jk] ≤ 1
2

√
|C|/k.

26

With (6), the lemma follows. �

We restate an auxiliary lemma from [30, full version, Lemma 7]:

Lemma 36 Let |Ψ1〉, |Ψ2〉 be quantum states that can be written as |Ψi〉 = |Ψ∗i 〉+ |Φ∗〉 where
both |Ψ∗i 〉 are orthogonal to |Φ∗〉. Then TD(|Ψ1〉, |Ψ2〉) ≤ 2‖|Ψ∗2〉‖.

Lemma 37 Let |Ψ1〉, |Ψ2〉 be quantum states. Then TD(|Ψ1〉, |Ψ2〉) ≤
∥∥|Ψ1〉 − |Ψ2〉

∥∥.

Proof. Fix a basis such that |Ψ1〉 = |0〉 and |Ψ2〉 = α|0〉+ β|1〉. Then |α|2 + |β|2 = 1 and

TD(|Ψ1〉, |Ψ2〉)2
(∗)
≤ 1− |〈Ψ1|Ψ2〉|2 = 1− |α|2 = |β|2 ≤ |1− α|2 + |β2| =

∥∥|Ψ1〉 − |Ψ2〉
∥∥2
.

Here (∗) uses that the trace distance is bounded in terms of the fidelity (e.g., [25, (9.101)]). Thus
TD(|Ψ1〉, |Ψ2〉) ≤

∥∥|Ψ1〉 − |Ψ2〉
∥∥. �

Lemma 38 (Preimage search in a random function) Let γ ∈ [0, 1]. Let Z be a finite set.
Let q ≥ 0 be an integer. Let F : Z → {0, 1} be the following function: For each z, F (z) := 1
with probability γ, and F (z) := 0 else. Let N be the function with ∀z : N(z) = 0.

If an oracle algorithm A makes at most q queries, then∣∣∣Pr[b = 1 : b← AF]− Pr[b = 1 : b← AN]
∣∣∣ ≤ 2q

√
γ.

Proof. We can assume that A uses three quantum registers A,K, V for its state, oracle inputs,
and oracle outputs. For a function f , let Of |a, k, v〉 := |a, k, v ⊕ f(k)〉. Then the final state of
Af () is (UOf)q|Ψ0〉 for some unitary U and some initial state |Ψ0〉. The output b of Af is then
obtained by obtained by performing a projective measurement Pfinal on that final state.

Let |Ψi
f 〉 := (UOf)i|Ψ0〉 and |Ψi〉 := (UON)i|Ψ0〉 = U i|Ψ0〉. (Recall: N is the constant-zero

function.)
We compute:

Df
i := TD(|Ψi

f 〉, |Ψi〉) = TD(Of |Ψi−1
f 〉, |Ψ

i−1〉)

≤ TD(Of |Ψi−1
f 〉, Of |Ψ

i−1〉) + TD(Of |Ψi−1〉, |Ψi−1〉)

= Df
i−1 + TD(Of |Ψi−1〉, |Ψi−1〉).

Furthermore Df
0 = TD(|Ψ0〉, |Ψ0〉) = 0, thus Df

q ≤
∑q−1

i=0 TD(Of |Ψi〉, |Ψi〉).
Let Qz be the projector projecting K onto |z〉 (i.e., Qz = I ⊗ |z〉〈z| ⊗ I). Qf is the projector

projecting K onto all |z〉 with f(z) = 1 (i.e., Qf =
∑

z:f(z)=1Qz). Let αf := Pr[F = f].
We then have∑

f

αf
∥∥Qf |Ψi〉

∥∥2 (∗)
=
∑
f

αf
∑

z:f(z)=1

∥∥Qz|Ψi〉
∥∥2

=
∑
z∈Z

∑
f :f(x)=1

αf
∥∥Qz|Ψi〉

∥∥2

(∗∗)
= λ

∑
z

∥∥Qz|Ψi〉
∥∥2

= λ
∥∥|Ψi〉

∥∥2
= λ. (7)

Here (∗) uses that Qf =
∑

z:f(z)=1Qz and all Qz|Ψi〉 are orthogonal. And (∗∗) uses that∑
f :f(x)=1 αf = Pr[F (x) = 1] = λ.

27

Then ∑
f

αf TD(|Ψq
f 〉, |Ψ

q〉) =
∑
f

αfD
f
q ≤

∑
f,i

αf TD(Of |Ψi〉, |Ψi〉)

=
∑
f,i

αf TD
(
OfQf |Ψi〉+ (1−Qf)|Ψi〉, Qf |Ψi〉+ (1−Qf)|Ψi〉

)
(∗)
≤
∑
f,i

αf2‖Qf |Ψi〉‖
(∗∗)
≤ 2

∑
i

√∑
f

αf‖Qf |Ψi〉‖2

(7)
= 2

∑
i

√
λ = 2q

√
λ. (8)

Here (∗) uses Lemma 36. And (∗∗) uses Jensen’s inequality. Finally,∣∣∣Pr[b = 1 : b← AF]− Pr[b = 1 : b← AN]
∣∣∣

≤
∑
f

αf

∣∣∣Pr[b = 1 : b← Af]− Pr[b = 1 : b← AN]
∣∣∣

≤
∑
f

αf TD(|Ψq
f 〉, |Ψ

q〉)
(8)

≤ 2q
√
λ. �

The following lemma formalizes that an oracle O1 does not help (much) in finding a value w if
O1 only gives answers when w is already contained in its input.

Lemma 39 (Removing redundant oracles 1) Let w, O1, O2 be chosen according to some
joint distribution. Here w is a bitstring, and O1,O2 are oracles, and O1 is classical (i.e.,
∀x, y.∃y′.O1|x〉|y〉 = |x〉|y′〉). Fix a function f . Assume that for all x with f(x) 6= w, O1(x) = 0.
(In other words, O1|x〉|y〉 = |x〉|y〉 for f(x) 6= w.)

Let A be an oracle machine that makes at most q queries to O1 and q′ queries to O2. Then
there is another oracle machine Â that makes at most q′ queries to O2 such that:

Pr[w = w′ : w′ ← AO1,O2] ≤ 2(q + 1)

√
Pr[w′ = w : w′ ← ÂO2]

Proof. We can assume that A is unitary until the final measurement of its output. Then the final
state of A before that measurement is |Ψ∗〉 := (U2O1)qU2|Ψ〉 for some unitary U2 depending
only on O2, and O1 operating on quantum registers K,V for oracle input and output, and |Ψ〉
being some initial state independent of O1,O2, w. Let |Ψi〉 := (U2O1)q−iU i+1

2 |Ψ〉. Note that
|Ψ0〉 = |Ψ∗〉. Let PX :=

∑
x:f(x)=w |x〉〈x|⊗I and P̄X := 1−PX . Note that since O1|x〉|y〉 = |x〉|y〉

for f(x) 6= w, we have O1 = O1PX + P̄X . We have for i = 1, . . . , q:

TD(|Ψi−1〉, |Ψi〉) = TD
(
(U2O1)q−i(U2O1)U i2|Ψ〉, (U2O1)q−iU2U

i
2|Ψ〉

)
= TD(O1U

i
2|Ψ〉, U i2|Ψ〉)

= TD
(
O1PXU

i
2|Ψ〉+ P̄XU

i
2|Ψ〉, PXU i2|Ψ〉+ P̄XU

i
2|Ψ〉

)
(∗)
≤ 2‖PXU i2|Ψ〉‖.

Here (∗) uses Lemma 36 (using that |Ψ∗1〉 := O1PXU
i
2|Ψ〉 and |Ψ∗2〉 := PXU

i
2|Ψ〉 are both

orthogonal to |Φ∗〉 := P̄XU
i
2|Ψ〉 because O1 is classical and therefore does not leave the image of

PX).
Thus TD(|Ψ∗〉, |Ψq〉) ≤

∑q
i=1 2‖PXU i2|Ψ〉‖. For i = 1, . . . , q, let AO2

i be the oracle algorithm
that computes U i

2|Ψ〉 and measures register K in the computational basis, giving outcome x,
and then outputs f(x). (Note that Ai does not need access to O1 because U2 does not depend

28

on O1.) Then Pr[w = w′ : w′ ← Ai] = ‖PXU i2|Ψ〉‖
2
. Let A0 be the oracle machine that performs

the same operations as A, except that it omits all calls to O1. That is, its state before measuring
the output is |Ψq〉. Thus∣∣Pr[w = w′ : w′ ← AO1,O2]− Pr[w = w′ : w′ ← AO2

0]
∣∣

≤ TD(|Ψ∗〉, |Ψq〉) ≤
q∑
i=1

2

√
Pr[w = w′ : w′

$← AO2
i]

Let ÂO2 be the algorithm that picks i
$← {0, . . . , q} and runs Ai. Then

Pr[w = w′ : w′ ← AO1,O2] ≤
q∑
i=1

2

√
Pr[w = w′ : w′ ← AO2

i] + Pr[w = w′ : w′ ← AO2
0]

≤ 2(q + 1)

q∑
i=0

1
q+1

√
Pr[w = w′ : w′ ← AO2

i]

(∗)
≤ 2(q + 1)

√√√√ q∑
i=0

1
q+1 Pr[w = w′ : w′ ← AO2

i]

= 2(q + 1)

√
Pr[w = w′ : w′ ← ÂO2].

Here (∗) uses Jensen’s inequality. �

The following lemma formalizes that if w is a random bitstring that can be accessed only by
querying an oracle O1 on some input x ∈ X, then the probability of finding w using O1 is
bounded in terms of the probability of finding some x ∈ X without using O1.

Lemma 40 (Removing redundant oracles 2) Let w, X, O1, O2 be chosen according to
some joint distribution such that w and O2 are stochastically independent. Here X is a set of
bitstrings, and O1,O2 are oracles, and O1 is classical (i.e., ∀x, y.∃y′.O1|x〉|y〉 = |x〉|y′〉). And
w is uniformly distributed on {0, 1}`. Assume that for all x /∈ X, O1(x) = 0. (In other words,
O1|x〉|y〉 = |x〉|y〉 for x /∈ X.)

Let A be an oracle machine that makes at most q queries to O1 and q′ queries to O2. Then
there is another oracle machine Â that makes at most q queries to O2 such that:

Pr[w = w′ : w′ ← AO1,O2] ≤ 2q

√
Pr[x ∈ X : x← ÂO2] + 2−`

Proof. Let PX :=
∑

x∈X |x〉〈x| ⊗ I and P̄X := 1 − PX . Note that since O1|x〉|y〉 = |x〉|y〉 for
x /∈ X, we have O1 = O1PX + P̄X .

Let |Ψ〉, |Ψ∗〉, |Ψq〉 and U2 be defined as in the proof of Lemma 39. (Remember that all
of these only depend on O2, not O1.) Exactly as in Lemma 39, we get TD(|Ψ∗〉, |Ψq〉) ≤∑q

i=1 2‖PXU i2|Ψ〉‖. For i = 1, . . . , q, let AO2
i be the oracle algorithm that computes U i2|Ψ〉 and

measures register K in the computational basis and outputs the outcome. Then Pr[x ∈ X : x←
AO2
i] = ‖PXU i2|Ψ〉‖

2
.

Like in the proof of Lemma 39, let A0 be the oracle machine that performs the same operations
as A, except that it omits all calls to O1. That is, its state before measuring the output is |Ψq〉.
Let ÂO2 pick a random i

$← {1, . . . , q} (not i
$← {0, . . . , q} as in Lemma 39!) and run AO2

i . Then

Pr[w = w′ : w′ ← AO1,O2]− Pr[w = w′ : w′ ← AO2
0] ≤ TD(|Ψ∗〉, |Ψq〉)

≤ 2q

q∑
i=1

1
q

√
Pr[x ∈ X : x

$← AO2
i]

(∗)
≤ 2q

√∑q

i=1

1
q Pr[x ∈ X : x

$← AO2
i]

= 2q

√
Pr[x ∈ X : x← ÂO2]. (9)

29

Here (∗) uses Jensen’s inequality.
Since w and O2 are independent and w is uniform on {0, 1}`, Pr[w = w′ : w′ ← AO2

0] ≤ 2−`.

With (9), we get 2q

√
Pr[x ∈ X : x← ÂO2] ≥ Pr[w = w′ : w′ ← AO1,O2]− 2−`. �

B Proofs for Section 3

B.1 Lemmas for Section 3.1

Lemma 41 Let |Ψ〉 be a state, chosen according to some distribution. Let |⊥〉 be a fixed state
orthogonal to |Ψ〉. (Such a state can always be found by extending the dimension of the Hilbert
space containing |Ψ〉 and using the new basis state as |⊥〉.)

Let OΨ be an oracle with OΨ|Ψ〉 = |⊥〉, OΨ|⊥〉 = |Ψ〉, and OΨ|Ψ⊥〉 = |Ψ⊥〉 for any |Ψ⊥〉
orthogonal to both |Ψ〉 and |⊥〉. Let ORef := I − 2|Ψ〉〈Ψ|.

Let O be an oracle, not necessarily independent of |Ψ〉. Let |Φ〉 be a quantum state, not
necessarily independent of |Ψ〉.

Let n ≥ 0 be an integer. Let |R〉 := |α1〉 ⊗ · · · ⊗ |αn〉 where |αj〉 := (cos jπ2n)|Ψ〉+ (sin jπ
2n)|⊥〉.

Then there is an oracle algorithm B that makes qΨ queries to ORef and makes the same
number of queries to O as A such that:

TD
(
BORef ,O(|R〉, |Φ〉), AOΨ,O(|Φ〉)

)
≤ πqΨ

2
√
n

+ qΨ o(
1√
n

).

Proof. In this proof, we use the following shorthand notation: |Φ〉 = |Φ′〉 ± ε means that∥∥|Φ〉 − |Φ′〉∥∥ ≤ ε.
We first show that

S|⊥〉|R〉 = |Ψ〉|R〉 ± εn and S†|Ψ〉|R〉 = |⊥〉|R〉 ± εn with εn := π
2
√
n

+ o(1√
n

) (10)

where S|Φ0〉|Φ1〉 . . . |Φn〉 := |Φ1〉 . . . |Φn〉|Φ0〉 (cyclic shift) and |R〉 is as in the statement of the
lemma (the reservoir state).

We have

(S|⊥〉|R〉)†(|Ψ〉|R〉) =
(
|α1〉|α2〉 . . . |αn〉|⊥〉

)†(
|Ψ〉|α1〉 . . . |αn−1〉|αn〉

)
= 〈α1|Ψ〉 ·

n−1∏
j=1

〈αj+1|αj〉 · 〈⊥|αn〉

(∗)
= cos π

2n ·
n−1∏
j=1

cos
((j+1)π

2n − jπ
2n

)
· sin nπ

2n = (cos π
2n)n.

Here (∗) uses that |Ψ〉 and |⊥〉 are orthogonal (and the definition of |αj〉 from the statement of

the lemma). For any quantum states |Φ〉, |Φ′〉 we have
∥∥|Φ〉− |Φ′〉∥∥2

= (|Φ〉− |Φ′〉)†(|Φ〉− |Φ′〉) =
1−〈Φ|Φ′〉−〈Φ′|Φ〉+1 = 2(1−<〈Φ|Φ′〉) where < denote the real part. Thus ‖S|⊥〉|R〉 − |Ψ〉|R〉‖ ≤√

2(1− (cos π
2n)n) ∈ π

2
√
n

+ o(1√
n

) = εn. (The asymptotic bound uses Lemma 31.) This shows

the lhs of (10). The rhs follows from the rhs by applying the unitary S† on both sides.

Let UΨ denote the unitary computed by circuit (1) on page 9. We will show that for any |Φ〉,

UΨ|Φ〉|R〉|0〉 = (OΨ|Φ〉)|R〉|0〉 ± εn. (11)

By linearity of UΨ,OΨ and the triangle inequality, it is sufficient to verify this for |Φ〉 = |Ψ〉,
|Φ〉 = |⊥〉, and |Φ〉 orthogonal to both |Ψ〉, |⊥〉. In an execution of circuit (1) on state |Φ〉|R〉|0〉,
we denote the state before S with |Φ1〉, the state after S with |Φ2〉, the state before S† with
|Φ3〉, and the state after S† with |Φ4〉. We denote the final state with |Φ′〉 = UΨ|Φ〉|R〉|0〉.

30

For |Φ〉 = |Ψ〉, we have

|Φ1〉 = |Ψ〉|R〉|0〉, |Φ2〉 = |Ψ〉|R〉|0〉,

|Φ3〉 = |Ψ〉|R〉|1〉, |Φ4〉
(10)
= |⊥〉|R〉|1〉 ± εn,

|Φ′〉 = |⊥〉|R〉|0〉 ± εn = (OΨ|Φ〉)|R〉|0〉 ± εn.

For |Φ〉 = |⊥〉, we have

|Φ1〉 = |⊥〉|R〉|1〉, |Φ2〉
(10)
= |Ψ〉|R〉|1〉 ± εn,

|Φ3〉 = |Ψ〉|R〉|0〉 ± εn, |Φ4〉 = |Ψ〉|R〉|0〉 ± εn,
|Φ′〉 = |Ψ〉|R〉|0〉 ± εn = (OΨ|Φ〉)|R〉|0〉 ± εn.

And for |Φ〉 orthogonal to |Ψ〉 and |⊥〉, we have

|Φ1〉 = |Φ〉|R〉|0〉, |Φ2〉 = |Φ〉|R〉|0〉,
|Φ3〉 = |Φ〉|R〉|0〉, |Φ4〉 = |Φ〉|R〉|0〉,
|Φ′〉 = |Φ〉|R〉|0〉 = (OΨ|Φ〉)|R〉|0〉.

Thus (11) holds.
Without loss of generality, we assume that the algorithm A is unitary and only (optionally)

performs a final measurement at the end. Let B be like A, except that B has additional register
R,Z initialized with |R〉, |0〉, and that B computes circuit (1) on X,R,Z whenever A invokes
OΨ on X. (And when A performs a controlled invocation of OΨ, then B executes the circuit
with all operations accordingly controlled.) Let |Φ0〉 be the initial state of A and B, and let
|ΦA〉, |ΦB〉 be the final state of A,B (right before the final measurement), respectively. Then
by induction, from (11) we get

∥∥|ΦA〉 − |ΦB〉
∥∥ ≤ qΨεn. By Lemma 37, TD(|ΦA〉 − |ΦB〉) 5Ψ εn.

Thus

TD
(
BORef ,O(|R〉, |Φ〉), AOΨ,O(|Φ〉)

)
≤ qΨεn ≤ πqΨ

2
√
n

+ qΨ o(
1√
n

). �

Lemma 42 Let |Ψ〉 be a state, chosen according to some distribution. Let ORef := I − 2|Ψ〉〈Ψ|.
Let O be an oracle, not necessarily independent of |Ψ〉. Let |Φ〉 be a quantum state, not necessarily
independent of |Ψ〉. Let A be an oracle algorithm that makes qRef queries to ORef . Let m ≥ 0 be
an integer. Then there is an oracle algorithm B that makes the same number of queries to O as
A such that:

TD
(
BO(|Ψ〉⊗m, |Φ〉), AORef ,O(|Φ〉)

)
≤

2qRef√
m+ 1

.

Proof. Let H be the space in which |Ψ〉 lives (i.e., |Ψ〉 ∈ H). Let S denote a cyclic shift
on (m + 1)-partite states. That is, S|Φ0〉|Φ1〉 . . . |Φm〉 := |Φ1〉 . . . |Φm〉|Φ0〉 for all |Φi〉 ∈ H.
(extended linearly to all of H⊗m+1). S is unitary.

Let V ⊆ H⊗m+1 be the space of states invariant under S. I.e., |Φ〉 ∈ V iff S|Φ〉 = |Φ〉.
Let UV be the unitary with UV |Φ〉 = −|Φ〉 for |Φ〉 ∈ V , and UV |Φ〉 = |Φ〉 for |Φ〉 orthogonal

to V . (That is, UV = I − 2PV where PV is the orthogonal projector onto V .)
In this proof, we use the following shorthand notation: |Φ〉 = |Φ′〉±ε means that

∥∥|Φ〉−|Φ′〉∥∥ ≤
ε.

Let |T 〉 := |Ψ〉⊗m.
We show that for any |Φ〉 ∈ H,

UV |Φ〉|T 〉 = (ORef |Φ〉)|T 〉 ± 2√
m+1

. (12)

31

We first show this for |Φ〉 orthogonal to |Ψ〉. We decompose |Φ〉|T 〉 = α|χ〉+ β|κ〉 for quantum
states |χ〉 ∈ V , and |κ〉 orthogonal to V . Since |χ〉 ∈ V , we have 〈χ| = 〈χ|Sj for any j. Thus

|α| = |〈χ|(|Φ〉|T 〉)| =
∣∣∣ 1
m+1

m∑
j=0

〈χ|Sj(|Φ〉|T 〉)
∣∣∣

= 1
m+1

∣∣∣〈χ|(m∑
j=0

Sj |Φ〉|T 〉
)∣∣∣ (∗)
≤ 1

m+1

∣∣√m+ 1
∣∣ = 1√

m+1
.

Here (∗) follows from the fact that |Ψ〉 and |Φ〉 are orthogonal, and hence all Sj |Φ〉|T 〉 (j =
0, . . . ,m) are orthogonal, and thus

∥∥∑
j S

j |Φ〉|T 〉
∥∥ =
√
m+ 1. Thus∥∥UV |Φ〉|T 〉 − (ORef |Φ〉)|T 〉

∥∥ =
∥∥|Φ〉|T 〉 − 2α|χ〉 − |Φ〉|T 〉

∥∥ = |2α| ≤ 2√
m+1

.

Thus shows (12) for the case that |Φ〉 is orthogonal to |Ψ〉. If |Φ〉 = |Ψ〉, (12) follows since
|Φ〉|T 〉 = |Ψ〉⊗m ∈ V and thus UV |Φ〉|T 〉 = −|Φ〉|T 〉 = ORef |Φ〉|T 〉. By linearity and the triangle
inequality, (12) then holds for all |Φ〉 ∈ H.

Without loss of generality, we assume that the algorithm A is unitary and only (optionally)
performs a final measurement at the end. Let B be like A, except that B has additional register T
initialized with |T 〉 (which is given as input), and that B applies UV to X,T whenever A invokes
ORef on X. (And when A performs a controlled invocation of ORef , then B executes the circuit
with all operations accordingly controlled.) Let |Φ0〉 be the initial state of A and B, and let
|ΦA〉, |ΦB〉 be the final state of A,B (right before measuring the output), respectively. Then by

induction, from (12) we get
∥∥|ΦA〉 − |ΦB〉

∥∥ ≤ 2qRef√
m+1

. By Lemma 37, TD(|ΦA〉 − |ΦB〉) ≤
2qRef√
m+1

.

Thus

TD
(
BO(|T 〉, |Φ〉), AORef ,O(|Φ〉)

)
≤

2qRef√
m+ 1

. �

B.2 Proofs of Theorem 4

Before proving Theorem 4, we first restate a result by Zhandry on which we build.

Lemma 43 (Distinguishing semi-constant distributions [37]) Let Z, Y be finite sets, let
λ ∈ [0, 1], and let q ≥ 0 be an integer. Let DY be a distribution on Y .

Let H : Z → Y be chosen as: H(z)← DY for each z ∈ Z.
Let G : Z → Y be chosen as: first pick y ← DY , then for all z ∈ Z, with probability λ, let

G(z) := y, and with probability 1− λ, let G(z)← DY . (G is “semi-constant” in the language of
[37].)

Then for any oracle algorithm making at most q queries:∣∣∣Pr[b = 1 : b← AH]− Pr[b = 1 : b← AG]
∣∣∣ ≤ 8

3q
4λ2.

Note that [37, Coro. 4.3] shows this only for DY being the uniform distribution on Y .
However, the general case is an immediate consequence because the uniform outputs of H or G,
respectively, can be seen as random coins for producing values distributed according to DY [38].

Proof of Theorem 4. Fix some integer s and some λ ∈ (0, 1). (We will provide concrete values
at the end of this proof.)

For an integer ν ≥ 0, let D∗ν be the following distribution on {1, . . . , ν,⊥}: Return j ∈
{1, . . . , ν} with probability (1− λ)j−1λ. Return ⊥ with probability (1− λ)ν .

Let Hν : Z → Y be the function chosen as follows: Pick y1, . . . , yν ← DY . For each z ∈ Z,
pick j ← D∗ν , and set Hν(z) := yj if j 6= ⊥ and Hν(z)← DY if j = ⊥.

32

Note that H0 has the same distribution as H. And H1 is semi-constant in the sense of
Lemma 43.

We will now show that
∣∣Pr[b = 1 : b← AHν]− Pr[b = 1 : b← AHν+1]

∣∣ ≤ 8
3q

4λ2 for all ν ≥ 0.
Fix ν ≥ 0. Let H∗ : Z → Y ∪ {⊥} be chosen as follows: Pick y1, . . . , yν ← DY . For each

z ∈ Z, pick j ← D∗ν and set H∗(z) := yj if j 6= ⊥ and H∗(z) := ⊥ if j = ⊥. For functions f, g,
let f |g be the function with (f |g)(z) = f(z) if f(z) 6= ⊥ and (f |g)(z) = g(z) if f(z) = ⊥. Then
H∗|H has the same distribution as Hν . And H∗|H1 has the same distribution as Hν+1. Let Bf

be the algorithm that picks H∗ and then executes AH
∗|f . Note that Bf makes at most q queries

to f .

Pr[b = 1 : b← AHν] = Pr[b = 1 : b← AH
∗|H] = Pr[b = 1 : b← BH]

ε1≈ Pr[b = 1 : b← BH1] = Pr[b = 1 : b← AH
∗|H1] = Pr[b = 1 : b← AHν+1].

Here p
ε1≈ q means that |p− q| ≤ ε1 with ε1 := 8

3q
4λ2. And the

ε1≈-equation follows from Lemma 43
(with H := H and G := H1).

Thus
∣∣Pr[b = 1 : b← AHν]−Pr[b = 1 : b← AHν+1]

∣∣ ≤ 8
3q

4λ2 for all ν ≥ 0. Using that H and
H0 have the same distribution, we get

∣∣Pr[b = 1 : b← AH]−Pr[b = 1 : b← AHs]
∣∣ ≤ 8

3sq
4λ2 =: ε2.

Let Ds be the distribution on {1, . . . , s} that picks j ∈ {1, . . . , s} with probability (1−λ)j−1λ
1−(1−λ)s .

That is, Ds is D∗s conditioned on not returning ⊥. Let G : Z → Y be chosen as in the statement
of the lemma. (I.e., G(z) = yi with i← Ds.)

Let F : Z → {0, 1} be the following function: For each z, F (z) := 1 with probability (1− λ)s,
and F (z) := 0 else. Let N be the function with ∀z : N(z) = 0.

For a function f : Z → {0, 1}, let Hf be the following function: For all z ∈ Z, if f(z) = 0
then Hf (z) := G(z), and if f(z) = 1 then Hf (z) := H(z).

Then HN = G. And HF has the same distribution as Hs. Let CF be an oracle algorithm
that picks G,H himself and then runs AHF . Then

Pr[b = 1 : b← AH]
ε2≈ Pr[b = 1 : b← AHs] with ε2 = 8

3sq
4λ2

= Pr[b = 1 : b← AHF] = Pr[b = 1 : b← CF]
ε3≈Pr[b = 1 : b← CN] with ε3 := 2q(1− λ)s/2

= Pr[b = 1 : b← AHN] = Pr[b = 1 : b← AG].

Here
ε3≈ follows from Lemma 38 (with γ := (1− λ)s and A := C).

Thus ∆ =
∣∣Pr[b = 1 : b← AH]− Pr[b = 1 : b← AG]

∣∣ ≤ ε2 + ε3.

We now fix s :=
⌈64q4

3α (ln 4q
α)2
⌉

and λ := 2s−1 ln 4q
α . It is then immediate to verify that

ε2 ≤ α/2. And

ε3 = 2q(1− λ)s/2
(∗)
≤ 2qe−λs/2 = 2qe− ln 4q

α = α
2 .

Here (∗) uses the fact that (1− 1/x)x converges to e−1 from below. Thus ∆ = ε2 + ε3 ≤ α as
required by the statement of the lemma. �

C Proof of Theorem 6

C.1 Preliminaries

Let M = |Y | and N = |X| and, without loss of generality, let Y = {1, . . . ,M} and X =
{1, . . . , N}. Let D ⊂ {0, 1}N be the set of all

(
N
k

)
N -bit strings of Hamming weight k. For

every y, we associate Sy with a string zy ∈ D whose x-th entry zy,x := (zy)x is 1 if and
only if x ∈ Sy. This association is one-to-one. The black-box oracles essentially hide an

33

input z = (z1, . . . , zM) ∈ DM . Let us write |Ψ(zy)〉 and |ΣΨ(z)〉 instead of |Ψ(y)〉 and |ΣΨ〉,
respectively, to emphasize that these states depend on z.

Let SL denote the symmetric group of a finite set L, that is, the group with the permutations
of L as elements and the composition as a group operation. For a positive integer n, let Sn
denote the isomorphism class of the symmetric groups SL with |L| = n. A permutation σ ∈ SX
acts on zy ∈ D in a natural way: we define

σ(zy) := (zy,σ−1(1), . . . , zy,σ−1(N)), (13)

so that (σ(zy))σ(x) = zy,x holds. A permutation π ∈ SY acts on z ∈ DM in the same way: we
define π(z) := (zπ−1(1), . . . , zπ−1(M)).

Consider a pair (σ, π), where σ = (σ1, . . . , σM) ∈ SMX and π ∈ SY . Let this pair act on
z ∈ DM by first permuting the entries of z with respect to π and then permuting entries within
each (π(z))y with respect to σy. Namely, let

(σ, π) : (z1, . . . , zM) 7→ (σ1(zπ−1(1)), . . . , σM (zπ−1(M))). (14)

This action defines a (linear) representation of the wreath product W := SX o SY .

Definition 44 ([22, Chapter 4]) The wreath product G oSM of groups G and SM is the group
whose elements are (σ, π) ∈ GM × SM and whose group operation is(

(σ′1, . . . , σ
′
M), π′

)(
(σ1, . . . , σM), π

)
:=
(
(σ′1σ(π′)−1(1), . . . , σ

′
Mσ(π′)−1(M)), π

′π
)
.

Let X2 be the set of all
(
N
2

)
size-two subsets of X. In addition to (14), we are also interested

in the following two representations of W defined by its action on the sets Y ×X and Y ×X2,
respectively:

(σ, π) : (y, x) 7→ (π(y), σπ(y)(x)), (15)

(σ, π) : (y, {x1, x2}) 7→ (π(y), {σπ(y)(x1), σπ(y)(x2)}). (16)

The former representation concerns oracle queries and the latter—the output of the algorithm.
For w = (y, x) ∈ Y ×X, let zw = zy,x. Note that the representations (14) and (15) are such

that, for τ ∈W, we have (τ(z))τ(w) = zw.

C.2 Registers and symmetrization of the algorithm

Let HA be the workspace on which A operates. We express

HA = HQ ⊗HB ⊗HO ⊗HR ⊗HW , (17)

where the tensor factors are defined as follows.

• HQ := HQY ⊗ HQX and HB are the “query” registers that the oracles OV and OF use,
where HQY , HQX , and HB correspond to the sets Y , X, and {0, 1}, respectively. For all
(y, x, b) ∈ Y ×X × {0, 1}, we have

OV |y, x, b〉 := |y, x, b⊕ zy,x〉 (18)

and OF maps |y,Ψ(y), b〉 to −|y,Ψ(y), b〉 and, for every |Ψ⊥〉 orthogonal to |Ψ(y)〉, maps
|y,Ψ⊥, b〉 to itself.

• HO := HOY ⊗HOX2
is the “output” register, where HOY and HOX2

correspond to the sets
Y and X2, respectively.

34

• HR :=
⊗h

`=1HR(`) is the (initial) “resource” register, where HR(`) = HRY (`) ⊗HRX(`), in
which HRY (`) and HRX(`) correspond to the sets Y and X, respectively. At the beginning
of the algorithm, the register HR is initialized to the resource state

|ξ′(z)〉 :=
⊗h

`=1
(α`,0|ΣΨ(z)〉+ α`,1|ΣΦ〉). (19)

Also, let HRY :=
⊗h

`=1HRY (`) and HRX :=
⊗h

`=1HRX(`).

• HW is the rest of the workspace.

Let us also define HA−Q, HA−O, and HA−R to be the space corresponding to all the registers
of the algorithm except HQ, HO, and HR, respectively. Let I be the identity operator. We
frequently write subscripts below states and unitary transformations to clarify, respectively,
which registers they belong to or act on. For example, we may write |ξ′(z)〉R instead of |ξ′(z)〉.
We do this especially when the order of registers is not that of (17). We may also concatenate
subscripts when we use multiple registers at once. For example, we may write IQB instead of
IQ ⊗ IB.

Let |ξ∅(z)〉A := |ξ′(z)〉R ⊗ |ξ′′〉A−R be the initial state of the algorithm, where |ξ′′〉A−R
is independent from z. The algorithm makes in total qT := qV + qF oracle calls. For q ∈
{0, 1, . . . , qT − 1}, let

|ξq(z)〉A =
∑

w∈Y×X
|w〉Q|ξq,w(z)〉A−Q

be the state of the algorithm A, as a sequence of transformations on HA, just before (q + 1)-th
oracle call, OV or OF , where |ξq,w(z)〉A−Q are unnormalized. Similarly, for q = qT , let

|ξqT (z)〉A =
∑

w∈Y×X2

|w〉O|ξqT ,w(z)〉A−O

be the final state of the algorithm.
Let UI , and UQ, and UO be unitary transformations corresponding to representations (14),

(15), and (16) of W, respectively, where the register HI is yet to be defined. (That is, UI ,
UQ, UO are actually families of unitaries, indexed by elements τ ∈ W.) We add a subscript
τ ∈W when we want to specify that we are considering the representation of the element τ , for
example, we may write UQ,τ . Since HR is essentially the h-th tensor power of HQ, we define
UR := U⊗hQ . The tensor product of two (or more) representations of W is also a representation
of W. Let UIQ := UI ⊗ UQ and UIO := UI ⊗ UO, an we later use analogous notation for other
“concatenations”.

We first “symmetrize” A by adding an extra register HS holding a “permutation” τ ∈ W.
Initially, HS holds a uniform superposition over all permutations:

|W〉S :=
1√

M !(N !)M

∑
τ∈W
|τ〉S .

Then, at specific points in the algorithm, we insert unitary transformations controlled by the
content τ of HS .

1. At the beginning of the algorithm, we insert the controlled transformation UR,τ on the
register HR. Recall that, if (and only if) zy,x = 1, then (τ(z))τ(y,x) = 1. Hence,∑

τ∈W
|τ〉S |ξ(z)〉A

τ on HR7−→
∑
τ∈W
|τ〉S |ξ(τ(z))〉A.

2. Before each oracle call, OV or OF , we insert the controlled transformation U−1
Q,τ on the

register HQ. Note that (τ(z))y,x = 1 if and only if zτ−1(y,x) = 1, and OV and OF use z as
the input. After the oracle call, we insert the controlled UQ,τ .

35

3. At the end of the algorithm, we insert the controlled transformation U−1
O,τ on the register

HO containing the output of A because, again, zτ−1(y,x) = 1 if and only if (τ(z))y,x = 1.

The effect of the symmetrization is that, on the subspace |τ〉S , the algorithm is effectively running
on the input τ(z). If the original algorithm A succeeds on every input z with average success
probability p, the symmetrized algorithm succeeds on every input with success probability p.

Next, we recast A into a different form, using an “input” register HI that stores z ∈ DM .

Namely, let HI :=
⊗M

y=1HI(y) be an
(
N
k

)M
-dimensional Hilbert space whose basis states

correspond to possible inputs z, where we define HI(y) to be
(
N
k

)
-dimensional Hilbert space

whose basis states correspond to zy ∈ D. Since all the spaces HI(y) are essentially equivalent, we
write HI instead of HI(y) when we do not care which particular y ∈ Y we are talking about, and

HI = H⊗MI .
Initially, HI is in the uniform superposition of all the basis states of HI . More precisely,

HI ⊗HS ⊗HA takes the following initial state (before applying the controlled transformation
UR,τ in step 1 of the symmetrisation above):(

N

k

)−M/2 ∑
z∈DM

|z〉I ⊗ |W〉S ⊗ |ξ∅(z)〉A.

We transform the symmetrised version of A into a sequence of transformations on a Hilbert
space H = HI ⊗ HS ⊗ HA . A black-box transformation O (where O = OV or O = OF) is
replaced by a transformation O′ =

∑
z∈DM |z〉〈z| ⊗ O(z), where O(z) is the transformation O

for the case when the input is equal to z.
At the end, the algorithm measures the input register HI and the output register HO =

HOY ⊗HOX2
in the computational basis, and outputs the result of this measurement: z ∈ DM ,

y ∈ Y , and {x1, x2} ∈ X2. The algorithm is successful if zy,x1 = zy,x1 = 1.
For q ∈ {0, . . . , qT − 1}, let |φ−q 〉 be the state of the algorithm just before the controlled U−1

Q,τ

transformation preceding the (q + 1)-th oracle call, and let |φq〉 be the state just after we apply
this U−1

Q,τ and still before the oracle call. Due to the symmetrization, we have

|φ−q 〉 = γ
∑
z∈Dm

|z〉I
∑
τ∈W
|τ〉S

∑
w∈Y×X

|w〉Q|ξq,w(τ(z))〉A−Q,

where γ = 1/
√
M !(N !

(
N
k

)
)M , and, after we apply U−1

Q,τ , we have

|φq〉 = γ
∑
z∈Dm

|z〉I
∑
τ∈W
|τ〉S

∑
w∈Y×X

|τ−1(w)〉Q|ξq,w(τ(z))〉A−Q. (20)

Recall the representations UI and UQ of W. Let us also consider the right regular representation
of W acting on HS : for κ ∈W, let US,κ|τ〉 := |τκ−1〉. Let UISQ := UI ⊗ US ⊗ UQ, and, for all
κ ∈W, we have

(UISQ,κ ⊗ IA−Q)|φq〉 = γ
∑
z∈Dm

|κ(z)〉I
∑
τ∈W
|τκ−1〉S

∑
w∈Y×X

|κτ−1(w)〉Q|ξq,w(τ(z))〉A−Q

= γ
∑
z∈Dm

|κ(z)〉I
∑
τ∈W
|τκ−1〉S

∑
w∈Y×X

|(τκ−1)−1(w)〉Q|ξq,w((τκ−1)(κ(z)))〉A−Q = |φq〉. (21)

For q ∈ {0, 1, . . . , qT − 1}, let ρ′q be the density matrix obtained from |φq〉〈φq| by tracing out
the HS and HA−Q registers and, in turn, let ρq be obtained from ρ′q by tracing out the register
HQ. Due to (21), we have

UIQ,τρ
′
qU
−1
IQ,τ = ρ′q and UI,τρqU

−1
I,τ = ρq for all τ ∈W. (22)

36

Similarly, for q = qT , let |φqT 〉 be the final state of the algorithm (i.e., the state after
the controlled U−1

O,τ), and it satisfies an analogous symmetry to (21): for all κ ∈ W, we have
(UISO,κ⊗ IA−O)|φqT 〉 = |φqT 〉. Let ρ′′qT be the density matrix obtained from |φqT 〉〈φqT | by tracing
out all the registers but HI and HO, let ρqT be obtained from ρ′′qT by tracing out the register
HO. Again, we have

UIO,τρ
′′
qT
U−1
IO,τ = ρ′′qT and UI,τρqTU

−1
I,τ = ρqT for all τ ∈W. (23)

Note that, throughout the algorithm, the density matrix of the HI part of the state of the
algorithm can be affected only by oracle calls. Therefore, for q ∈ {0, 1, . . . , qT }, this density
matrix equals ρq just after q-th oracle call (at the very beginning of the algorithm, if q = 0) and
remains such till (q + 1)-th oracle call (till the end of the algorithm, if q = qT).

C.3 Representation theory of SX
Consider a positive integer n. The representation theory of Sn is closely related to partitions. A
partition λ of n is a non-increasing list (λ1, . . . , λk) of positive integers satisfying λ1 + · · ·+λk = n.
There is one-to-one correspondence between irreducible representations (irreps, for short) of Sn
and partitions λ ` n, and we will use these terms interchangeably. For example, (n) corresponds
to the trivial representation and (1n) = (1, 1, . . . , 1) to the sign representation. (One may refer
to [27] for more background on the representation theory of finite groups and to [22, 26] for the
representation theory of the symmetric group and the wreath product.)

The group action of SX on HI is given by (13), which defines a representation UI of SX (this
representation is independent from y). In order to decompose UI into a direct sum of irreps of SN
(recall that X = {1, . . . , N}), first consider the subgroup Sk × SN−k of SN , where Sk permutes
{1, . . . , k} and SN−k permutes {k + 1, . . . , N}. Let VI,σ be UI,σ restricted to σ ∈ Sk × SN−k and
the one-dimensional space span{|1k0N−k〉I}. VI is a representation of Sk × SN−k and, since it
acts trivially on 1k0N−k, we have VI ∼= (k)× (N − k). And, since

|SN |
/
|Sk × SN−k| = |D|

/
|{1k0N−k}|,

UI is equal to the induced representation when we induce VI from Sk×SN−k to SN . For shortness,
we write UI = VI ↑ SN . The Littlewood-Richardson rule then implies

((k)× (N − k)) ↑ SN = (N)⊕ (N − 1, 1)⊕ (N − 2, 2)⊕ . . .⊕ (N − k, k). (24)

Hence, we have

HI =
⊕k

i=0
H(N−i,i)
I ,

where UI restricted to H(N−i,i)
I is an irrep of SN corresponding to the partition (N − i, i) of N .

It is also known (see [18, 24]) that H(N−i,i)
I = T iI ∩ (T i−1

I)⊥, where T iI is the space spanned by

all
(
N
i

)
states

|ψx1,...,xi〉 =
1√(
N−i
k−i
) ∑

zy∈D
zy,x1=...=zy,xi=1

|zy〉 (25)

(the value of y is irrelevant here). When i = 0, let us denote this state by |ψ∅〉.

C.4 Framework for the proof

We use the representation-theoretic framework developed in [1] (and used in [3] and [2]). Let

HI,a := T 1
I = H(N)

I ⊕H(N−1,1)
I , HI,b := HI ∩ (HI,a)⊥,

HI,a := H⊗MI,a , HI,b := HI ∩ (HI,a)
⊥.

37

And let ΠI,a, ΠI,b, ΠI,a, and ΠI,b denote the projections to the spaces HI,a, HI,b, HI,a, and
HI,b, respectively.

Recall that ρq is the density matrix of the HI part of the state of the algorithm anywhere
between q-th and (q + 1)-th oracle calls (interpreting (−1)-st and (qT + 1)-th oracle calls as the
beginning and the end of the algorithm, respectively). Recall that ρq is fixed under the action of
W—for all τ ∈W, we have UI,τρqU

−1
I,τ = ρq—and so are ΠI,a and ΠI,b. Let

pa,q := Tr(ρqΠI,a) and pb,q := 1− pa,q = Tr(ρqΠI,b).

Theorem 6 (Hardness of the two values problem) then follows from the following three lemmas.

Lemma 45 The success probability of the algorithm is at most 2(k−1)
N−1 +

√
2pb,qT .

Lemma 46 (At the very beginning of the algorithm) we have pb,0 < h2/(2M).

Lemma 47 For all q ∈ {0, . . . , qT − 1}, we have |pb,q − pb,q+1| = O(max{
√
k/N,

√
1/k}).

One can see that M , the size of the set Y , does not appear in the statements of Lemmas
45 and 47. The size of Y indeed does not matter for them, as in we will eventually reduce the
general case for Lemmas 45 and 47 to the case when |Y | = 1.

C.5 Proof of Lemma 46

Let us rewrite (19) as

|ξ′(z)〉R =

h⊗
`=1

(1√
M

∑
y∈Y
|y〉RY (`)

(
α`,0|Ψ(zy)〉+ α`,1|Φ〉

)
RX(`)

)
=

1√
Mh

∑
y1,...,yh∈Y

|y1, . . . , yh〉RY |ξ
′(y1, . . . , yh)〉RX ,

where |Φ〉 :=
∑

x∈X |x〉/
√
|X| and

|ξ′(y1, . . . , yh)〉RX :=
⊗h

`=1
(α`,0|Ψ(zy`)〉RX(`) + α`,1|Φ〉RX(`))

has unit norm for 〈Ψ(zy)|Φ〉 = 〈ΣΨ(z)|ΣΦ〉 =
√
k/N . Let Yh be the set of all (y1, . . . , yh) ∈ Y h

such that y` 6= y`′ whenever ` 6= `′. Let us write |ξ′(z)〉R = |ξ′a(z)〉R + |ξ′b(z)〉R, where the
unnormalized state |ξ′a(z)〉R corresponds to all (y1, . . . , yh) ∈ Yh in the register HRY . Then,
‖|ξ′b(z)〉‖2 equals the probability that among h numbers chosen independently and uniformly at
randomly from {1, . . . ,M} at least two numbers are equal. Analysis of the birthday problem
tells us that this probability is at most h(h− 1)/(2M) [23]. For c ∈ {a, b}, let

|φc〉 :=

(
N

k

)−M/2 ∑
z∈Dm

|z〉I |W〉S |ξ′c(z)〉R|ξ′′〉A−R,

and note that ‖|φc〉‖ = ‖|ξ′c(z)〉‖. The initial state of the algorithm is |φa〉+ |φb〉. (Note: in this
proof, the subscript of φ does not denote the number of queries.)

Claim 1 We have (ΠI,a ⊗ ISA)|φa〉 = |φa〉.

38

Claim 1 implies that (ΠI,b ⊗ ISA)|φa〉 = 0, and therefore

pb,0 = Tr(ρ0ΠI,b) = Tr
(

TrSA
(
(|φa〉+ |φb〉)(〈φa|+ 〈φb|)

)
ΠI,b

)
= 〈φb|(ΠI,b ⊗ ISA)|φb〉 ≤ 〈φb|φb〉 < h2/(2M).

Proof of Claim 1. First, let |Ω0(zy`)〉 := |Ψ(zy`)〉 and |Ω1(zy`)〉 := |Φ〉, so that

|ξ′(y1, . . . , yh)〉RX =
∑

β=(β1,...,βh)∈{0,1}h
(α1,β1 . . . αh,βh)|Ωβ1(zy1), . . . ,Ωβh(zyh)〉RX .

For all β ∈ {0, 1}h and all (y1, . . . , yh) ∈ Yh, let

|φa,β(y1, . . . , yh)〉 := γ
∑
z∈Dm

|z〉I |W〉S |y1, . . . , yh〉RY |Ωβ1(zy1), . . . ,Ωβh(zyh)〉RX |ξ
′′〉A−R, (26)

where γ =
(
N
k

)−M/2
(α1,β1 . . . αh,βh)

/√
Mh. We have

|φa〉 =
∑

β∈{0,1}h

∑
(y1,...,yh)∈Yh

|φa,β(y1, . . . , yh)〉,

and it is enough to show that

(ΠI,a ⊗ ISA)|φa,β(y1, . . . , yh)〉 = |φa,β(y1, . . . , yh)〉

for all β ∈ {0, 1}h and (y1, . . . , yh) ∈ Yh.
Notice that, if β` = 1, then the register HRX(`) contains the state |Φ〉 and this register is not

entangled with any the other registers. Therefore, it suffices to consider the case when β = 0h.
Without loss of generality, let (y1, . . . , yh) = (1, . . . , h).

For simplicity, let |φ̂〉 be the the state |φa,0k(1, . . . , h)〉/γ restricted to registers HI and HRX ,
for these registers are not entangled with the other registers and we have

TrSA(|φa,0h(1, . . . , h)〉〈φa,0h(1, . . . , h)|) = γ2TrRX (|φ̂〉〈φ̂|).

We have

|φ̂〉 =
∑
z∈Dm

|z〉I |Ψ(z1), . . . ,Ψ(zh)〉RX =
h⊗
y=1

(∑
zy∈D

|zy〉I(y)|Ψ(zy)〉RX(y)

)
⊗

M⊗
y=h+1

(∑
zy∈D

|zy〉I(y)

)
.

Recall the states |ψx1,...,xi〉 ∈ HI from (25). We have∑
zy∈D

|zy〉|Ψ(zy)〉 ∝
∑
zy∈D

|zy〉
∑
x∈X
zy,x=1

|x〉 =
∑
x∈X

(∑
zy∈D
zy,x=1

|zy〉
)
|x〉 ∝

∑
x∈X
|ψx〉|x〉 ∈ T 1

I(y) ⊗HRX(y);

∑
zy∈D

|zy〉 ∝ |ψ∅〉 ∈ T 0
I(y) = H(N)

I(y).

The claim follows from the definition of HI,a (Section C.4). �

39

C.6 Proof of Lemma 45

Reduction to the pqT ,b = 0 case. Let us first reduce the lemma to its special case when
pqT ,b = 0. This reduction was used in [1] for a very similar problem. Recall that the final state
of the algorithm |φqT 〉 satisfies the symmetry (UISO,τ ⊗ IA−O)|φqT 〉 = |φqT 〉 for all τ ∈W, and
note that, for c ∈ {a, b}, the state

|φcqT 〉 :=
(ΠI,c ⊗ ISA)|φqT 〉
‖(ΠI,c ⊗ ISA)|φqT 〉‖

=
1

√
pc,qT

(ΠI,c ⊗ ISA)|φqT 〉

satisfies the same symmetry. We have

|φqT 〉 =
√

1− pb,qT |φ
a
qT
〉+
√
pb,qT |φ

b
qT
〉.

Since |φaqT 〉 and |φbqT 〉 are orthogonal, we have

‖|φqT 〉 − |φ
a
qT
〉‖ =

√
(1−

√
1− pb,qT)2 + (

√
pb,qT)2 ≤

√
2pb,qT (27)

From now on, let us assume that pb,qT = 0 and, thus, |ψqT 〉 = |ψaqT 〉. Lemma 37 and (27)

states that this changes the success probability by at most
√

2pb,qT .

Reduction to the |Y | = 1 case. Recall that ρ′′qT = TrS,A−O|φqT 〉〈φqT |, and we have

(ΠI,a ⊗ IO)ρ′′qT = ρ′′qT and ∀τ ∈W : UIO,τρ
′′
qT
U−1
IO,τ = ρ′′qT .

The algorithm makes its final measurement of the HI and HO registers, ignoring all the other
registers, therefore the success probability is completely determined by ρ′′qT . Let us assume that
the algorithm measures (and then discards) the HOY register first, before measuring HI and
HOX2

, and that the outcome of this measurement is y ∈ Y . Due to the symmetry, we get each
outcome y with the same probability 1/M .

Now the algorithm can discard the registers HI(y′) for all y′ 6= y, as their content do not
affect the success probability. We are left with

ρ′′qT ,y = MTrI(y′) : y′ 6=y
(
(IIOX2

⊗ 〈y|OY)ρ′′qT (IIOX2
⊗ |y〉OY)

)
,

which is a density matrix on the registers HI(y) and HOX2
, and it satisfies

(ΠI,a ⊗ IOX2
)ρ′′qT ,y = ρ′′qT ,y,

∀σ ∈ SX : (UI,σ ⊗ UOX2,σ)ρ′′qT ,y(UI,σ ⊗ UOX2,σ)−1 = ρ′′qT ,y

(we use the subscript I instead of I(y) as y is fixed from now on). The success probability of the
algorithm equals the probability that we measure the state ρ′′qT ,y in the computational basis and
obtain zy ∈ D and {x1, x2} ∈ X2 such that zy,x1 = zy,x2 = 1. Hence, we have reduced the proof
to the case when |Y | = 1.

The |Y | = 1 case. Since y ∈ Y is fixed, to lighten the notation, in the remainder of the proof
of Lemma 45, let us write z′ instead of zy and z′x instead of zy,x.

Let us now assume that the algorithm measures the HOX2
register, obtaining {x1, x2} ∈ X2,

and only then measures HI . Due to the symmetry, the measurement yields each outcome {x1, x2}
with the same probability 1/

(
N
2

)
, and let

ρ̂ :=

(
N

2

)
(II ⊗ 〈{x1, x2}|OX2

)ρ′′qT ,y(II ⊗ |{x1, x2}〉OX2
)

40

be the density matrix of the register HI after the measurement. Without loss of generality, let
{x1, x2} = {1, 2}, and let Ŝ := S{1,2} × S{3,...,N} < SX be the group of all permutations σ ∈ SX
that map {1, 2} to itself. Now we have

ΠI,aρ̂ = ρ̂ and ∀σ ∈ Ŝ : UI,σρ̂U
−1
I,σ = ρ̂. (28)

Let Π̂ denote the projection to the subspace of HI spanned by all |z′〉 such that z′1 = z′2 = 1. We
note that UI,σΠ̂U−1

I,σ = Π̂ for all σ ∈ Ŝ. One can see that the success probability of the algorithm

is Tr(Π̂ρ̂), and it is left to show

Claim 2 Tr(Π̂ρ̂) ≤ 2(k − 1)/(N − 1).

Proof. We can express ρ̂ as a mixture of its eigenvectors |χi〉, with probabilities that are equal
to their eigenvalues χi: ρ̂ =

∑
i χi|χi〉〈χi|. Hence we have

Tr(Π̂ρ̂) =
∑

i
χiTr(Π̂|χi〉〈χi|) =

∑
i
χi‖Π̂|χi〉‖2,

which is at most
max|χ〉

(
‖Π̂|χ〉‖2

/
‖|χ〉‖2

)
where the maximization is over all eigenvectors of ρ̂ with non-zero eigenvalues. Due to the
symmetry (28), we can calculate the eigenspaces of ρ̂ by inspecting the restriction of UI to the
subspace T 1

I , namely, ÛI := ΠI,aUI . Recall that we defined T 1
I to be the space spanned by all

|ψx〉 =
1√(
N−1
k−1

) ∑
z′∈D
z′x=1

|z′〉.

We note that 〈ψx1 |ψx2〉 = k−1
N−1 for all x1, x2 : x1 6= x2.

Both UI and ÛI are representations of both SX and its subgroup Ŝ. We already studied UI
as a representation of SX in Section C.3. Since T 1

I = H(N)
I ⊕H(N−1,1)

I , the representation ÛI of
SX consists of only two irreps: one-dimensional (N) and (N − 1)-dimensional (N − 1, 1), which

correspond to the spaces H(N)
I and H(N−1,1)

I , respectively.

In order to see how ÛI decomposes into irreps of Ŝ, we need to restrict (N) and (N − 1, 1)
from SN to S2 × SN−2. The Littlewood-Richardson rule gives us the decomposition of these
restrictions:

(N) ↓ (S2 × SN−2) = ((2)× (N − 2));

(N − 1, 1) ↓ (S2 × SN−2) = ((2)× (N − 2))⊕ ((1, 1)× (N − 2))⊕ ((2)× (N − 3, 1)).

Hence, Schur’s lemma and (28) imply that that eigenspaces of ρ̂ are invariant under UI,σ for all

σ ∈ Ŝ, and they have one of the following forms:

1. one-dimensional subspace spanned by |ψ(α, β)〉 = α(|ψ1〉+ |ψ2〉) + β
∑N

x=3 |ψx〉 for some
coefficients α, β;

2. one-dimensional subspace spanned by |ψ1〉 − |ψ2〉;

3. (N − 3)-dimensional subspace consisting of all
∑N

i=3 αx|ψx〉 with
∑

x αx = 0 (spanned by
all |ψx〉 − |ψx′〉, x, x′ ∈ {3, . . . , N});

4. a direct sum of subspaces of the above form.

41

In the first case,

Π̂|ψ(α, β)〉 =
2α+ (k − 2)β√(

N−1
k−1

) ∑
z′3,...,z

′
N∈{0,1}

z′3+...+z′N=k−2

|1, 1, z′3, . . . , z′N 〉.

Therefore,

‖Π̂|ψ(α, β)〉‖2 =

(
N−2
k−2

)(
N−1
k−1

)(2α+ (k − 2)β)2 =
k − 1

N − 1
(2α+ (k − 2)β)2.

We also have

‖|ψ(α, β)〉‖2 = 〈ψ(α, β)|ψ(α, β)〉

=

(
2 + 2

k − 1

N − 1

)
|α|2 +

(
N − 2 + (N − 2)(N − 3)

k − 1

N − 1

)
|β|2 + 4(N − 2)αβ

≥ (2α+ (k − 2)β)2

2

with the last inequality following by showing that coefficients of |α|2, |β|2 and αβ on the left
hand side are all larger than similar coefficients on the right hand side. Therefore,

‖Π̂|ψ(α, β)〉‖2

‖|ψ(α, β)〉‖2
≤ 2(k − 1)

N − 1
.

In the second case, Π(|ψ1〉 − |ψ2〉) = 0 because basis states |1, 1, z′3, . . . , z′N 〉 have the same
amplitude in |ψ1〉 and |ψ2〉.

In the third case, it suffices to consider a state of the form |ψ3〉 − |ψ4〉, because {UI,σ(|ψ3〉 −
|ψ4〉) : σ ∈ Ŝ} spans the whole eigenspace and Π̂ and UI,σ commute. Then,

Π̂(|ψ3〉 − |ψ4〉) =
1√(
N−1
k−1

) ∑
z′5,...,z

′
N∈{0,1}

z′5+...+z′N=k−3

(|1, 1, 1, 0, z′5, . . . , z′N 〉 − |1, 1, 0, 1, z′5, . . . , z′N 〉)

and

‖Π̂(|ψ3〉 − |ψ4〉)‖2 = 2

(
N−4
k−3

)(
N−1
k−1

) =
(k − 2)(k − 3)(N − k)

(N − 2)(N − 3)(N − 4)
.

We also have

‖|ψ3〉 − |ψ4〉‖2 = 2− 〈ψ3|ψ4〉 = 2− 2
k − 1

N − 1
= 2

N − k
N − 1

.

Hence,
‖Π̂(|ψ3〉 − |ψ4〉)‖2

‖|ψ3〉 − |ψ4〉‖2
=

2(k − 2)(k − 3)(N − 1)

(N − 2)(N − 3)(N − 4)
= O

(
k2

N2

)
.

�

C.7 Reduction of Lemma 47 to the |Y | = 1 case

First, instead of the oracle OV given by (18), we define

OV (z)|y, x, b〉 := (−1)b·zy,x |y, x, b〉.

Both definitions are equivalently powerful as one is obtained from another by two Hadamard
gates on the register HB.

42

For all zy ∈ D, let

O′′V (zy) := IQX − 2
∑
x∈X
zy,x=1

|x〉〈x|QX and O′′F (zy) := IQX − 2|Ψ(zy)〉〈Ψ(zy)|QX

act on HQX , so that we have

O′V =
∑

z∈DM
|z〉〈z|I ⊗

∑
y∈Y
|y〉〈y|QY ⊗O

′′
V (zy)⊗ |1〉〈1|B + IIQ ⊗ |0〉〈0|B,

O′F =
∑

z∈DM
|z〉〈z|I ⊗

∑
y∈Y
|y〉〈y|QY ⊗O

′′
F (zy)⊗ IB.

(29)

Let
ρ′′′q = ρ′q,00 ⊗ |0〉〈1|B + ρ′q,01 ⊗ |0〉〈1|B + ρ′q,10 ⊗ |1〉〈0|B + ρ′q,11 ⊗ |1〉〈1|B

be the state of the algorithm corresponding to the HI , HQ, and HB registers right before the
(q+ 1)-th oracle call (OV or OF). Note that ρq = TrQB(ρ′′′q) and, since oracles are the only gates
of the algorithm that interact with the HI register, ρq+1 = TrQB(O′ρ′′′q O′).

Notice that |pb,q − pb,q+1| = |pa,q − pa,q+1|, therefore let us deal with pa,q instead. We have

|pa,q − pa,q+1| = Tr
(
ΠI,a(ρq − ρq+1)

)
= Tr

(
(ΠI,a ⊗ IQB)(ρ′′′q −O′ρ′′′q O′)

)
, (30)

which for the oracle OV equals

Tr
(
(ΠI,a ⊗ IQ)(ρ′q,11 − Õ′V ρ′q,11Õ′V)

)
,

where Õ′V = (IIQ ⊗ 〈1|B)O′V (IIQ ⊗ |1〉B). Therefore, without loss of generality, we assume that
the state of HB is always |1〉 throughout the execution of the algorithm. In turn, we assume
that O′V and O′F in (29) act only on HI ⊗HQ, and we take ρ′q instead of ρ′′′q and IQ instead of
IQB in (30).

Since (τ(z))τ(y,x) = 1 if and only if zx,y = 1, we have UIQ,τO′U−1
IQ,τ = O′ for all τ ∈W, and

recall that the same symmetry holds for ρ′q, namely, (22). Hence, for all y ∈ Y ,

ρ′q,y = M(IIQX ⊗ 〈y|QY)ρ′q(IIQX ⊗ |y〉QY)

has trace one and (30) equals

MTr
(
(IIQX ⊗ 〈y|QY)(ΠI,a ⊗ IQ)(ρ′q −O′ρ′qO′)(IIQX ⊗ |y〉QY)

)
= Tr

(
(ΠI,a ⊗ IQX)

(
ρ′q,y −

(∑
z∈DM

|z〉〈z|I ⊗O′′(zy)
)
ρ′q,y
(∑
z∈DM

|z〉〈z|I ⊗O′′(zy)
)))

. (31)

Without loss of generality, let y = 1, and let us write∑
z∈DM

|z〉〈z|I =
∑

z1∈D
|z1〉〈z1|I(1) ⊗ I⊗(M−1)

I .

Recall that ΠI,a = Π⊗MI,a . Therefore, for

ρ̂′q,1 := TrI(2),...,I(M)

(
(II(1) ⊗Π

⊗(M−1)
I,a ⊗ IQX)ρ′q,y

)
,

(30) and (31) are equal to

Tr

(
(ΠI(1),a ⊗ IQX)

(
ρ̂′q,1 −

(∑
z1∈D

|z1〉〈z1|I(1) ⊗O′′(z1)
)
ρ̂′q,1
(∑
z1∈D

|z1〉〈z1|I(1) ⊗O′′(z1)
)))

. (32)

Since ρ̂′q,1 is a positive semidefinite operator of trace at most one and it acts on HI(1) ⊗HQX ,
we have reduced the lemma to the case when |Y | = 1. We consider this case in Section D.

43

D Proof of Lemma 47 when |Y | = 1

Since |Y | = {y}, let us use notation HQ instead of HQX to denote the register corresponding to
the query index x ∈ X. Also, now we have z = (zy), so let us use z instead of zy and zx instead
zy,x. Also, now we denote the permutations in SN with π instead of σ.

We will consider the following representations of SN :

1. The computational basis of HQ is labeled by x ∈ {1, . . . , N} = X. We define the action of
π ∈ SN on HQ via the unitary UQ,π|x〉 := |π(x)〉. UQ is known as the natural representation

of SN , and we can decompose HQ = H(N)
Q ⊕H(N−1,1)

Q so that UQ restricted to H(N)
Q and

H(N−1,1)
Q are irreps of SN isomorphic to (N) and (N − 1, 1), respectively.

2. The computational basis of HI is labeled by z ∈ D, that is, z = (z1, . . . , zN) ∈ {0, 1}N
such that

∑N
x=1 zi = k. In Section C.3 we already defined and studied the representation

UI : for π ∈ SN ,
UI,π|z1 . . . zN 〉 = UI,π|zπ−1(1) . . . zπ−1(N)〉.

We showed that we can decompose HI =
⊕k

i=0H
(N−i,i)
I so that UI restricted to H(N−i,i)

I

is an irrep of SN isomorphic to (N − i, i).

3. Finally, let U := UQ ⊗UI , which acts on H := HQ ⊗HI and is also a representation of SN .

Let Π
(N)
Q and Π

(N−1,1)
Q denote, respectively, the projectors on H(N)

Q and H(N−1,1)
Q . Π

(N)
Q is

the N -dimensional matrix with all entries equal to 1/N , and Π
(N−1,1)
Q is the N -dimensional

matrix with 1− 1/N on the diagonal and −1/N elsewhere. Let Π
(N)
I , Π

(N−1,1)
I , . . . , Π

(N−k,k)
I

denote, respectively, the projectors on H(N)
I , H(N−1,1)

I , . . . , H(N−k,k)
I . The entries of these(

N
k

)
-dimensional matrices can be calculated using the fact that they project on the eigenspaces

of the Johnson scheme (see [18]).
Let us also denote

ΠHQ⊗S≥2
:= IQ ⊗

∑k

j=2
Π

(N−j,j)
I =

(
Π

(N)
Q + Π

(N−1,1)
Q

)
⊗
∑k

j=2
Π

(N−j,j)
I , (33)

ΠHQ⊗S<2
:= IQI −ΠHQ⊗S≥2

=
(
Π

(N)
Q + Π

(N−1,1)
Q

)
⊗
(
Π

(N)
I + Π

(N−1,1)
I

)
, (34)

which are equal to IQ ⊗ΠI,b and IQ ⊗ΠI,a, respectively.

D.1 Statement of the lemma

For the oracles, let us write O instead of O′ (where O = OV or O = OF). Similarly to (29), we
have to consider

OV =
∑
z∈D

(∑
x∈X
zx=0

|x〉〈x| −
∑
x∈X
zx=1

|x〉〈x|
)
Q
⊗ |z〉〈z|I ,

OF =
∑
z∈D

(
I− |Ψ(z)〉〈Ψ(z)|

)
Q
⊗ |z〉〈z|I ,

where |Ψ(z)〉 =
∑

x : zx=1 |x〉
/√

k. Note that O acts on H and is satisfies UπOU−1
π = O for all

π ∈ SN . Equivalently to (32), it suffices to prove that∣∣Tr
(
ΠHQ⊗S<2

(ρ−OρO)
)∣∣ ≤ O(max{

√
k/N,

√
1/k})

for every density operator ρ on H that satisfies UπρU
−1
π = ρ for all π ∈ SN and both oracles

O = OV and O = OF .

44

For a subspace H′ ⊂ H such that H′ is invariant under U (i.e., under Uπ for all π ∈ SN), let
U |H′ be U restricted to this subspace (note: U |H′ is a representation of SN). Let ΠH′ denote
the projector on H′. Due to Schur’s lemma, there is a spectral decomposition

ρ =
∑

µ
χµ

Πµ

dimµ
,

where
∑

µ χµ = 1, every µ is invariant under U , and U |µ in an irrep of SN . Hence, it suffices to
show the following.

Lemma 48 For every subspace µ ⊂ H such that U |µ is an irrep and for µ′ being the subspace
that µ is mapped to by OV or OF , we have

1

dimµ

∣∣Tr(ΠHQ⊗S≥2
(Πµ −Πµ′))

∣∣ ≤ O(max{
√
k/N,

√
1/k}). (35)

In order to prove Lemma 48, we need to inspect the representation U in more detail.

D.2 Decomposition of U

Let us decompose U into irreps. We consider two approaches how to do that. That is, the list of
irreps contained in U cannot depend on which approach we take, but we can choose the way we
address individual instances of irreps. For example, we will show that U contains four instances
of (N − 1, 1), and we have as much freedom in choosing a projector on a single instance of
(N − 1, 1) as in choosing (up to global phase) a unit vector in C4.

For an irrep θ present in U , let Π̂θ be a projector on the space corresponding to all instances
of θ in U .

Approach 1: via the tensor product of irreps. We know that U = UQ⊗UI and we already
know how UQ and UI decomposes into irreps. Thus, all we need to see is how, for j ∈ {0, . . . , k},
(N)Q ⊗ (N − j, j)I and (N − 1, 1)Q ⊗ (N − j, j)I decompose into irreps (we use subscripts Q
and I here to specify which spaces these irreps act on, namely, HQ and HI , respectively, but we
will drop these subscripts most of the time later). Note that (N)⊗ (N − j, j) ∼= (N − j, j) and
(N − 1, 1)⊗ (N) ∼= (N − 1, 1) as (N) is the trivial representation. And, for j ∈ {1, . . . , k}, the
decomposition of (N − 1, 1)⊗ (N − j, j) is given by the following claim.

Claim 3 For j ∈ {1, . . . , k}, we have

(N − 1, 1)⊗ (N − j, j)
= (N − j + 1, j − 1)⊕ (N − j, j)⊕ (N − j, j − 1, 1)⊕ (N − j − 1, j + 1)⊕ (N − j − 1, j, 1),

where we omit the term (N − j, j − 1, 1) when j = 1.

Proof. We use Expression 2.9.5 of [22], which, for j ∈ {2, . . . , k}, gives us

(N − 1, 1)⊗ (N − j, j) = (N − j, j) ↓ (SN−1 × S1) ↑ SN 	 (N − j, j) ↓ SN ↑ SN
= ((N − j, j − 1)× (1)) ↑ SN ⊕ ((N − j − 1, j)× (1)) ↑ SN 	 (N − j, j)
= (N − j + 1, j − 1)⊕ (N − j, j)⊕ (N − j, j − 1, 1)⊕ (N − j, j)
⊕ (N − j − 1, j + 1)⊕ (N − j − 1, j, 1)	 (N − j, j)

= (N − j + 1, j − 1)⊕ (N − j, j)⊕ (N − j, j − 1, 1)⊕ (N − j − 1, j + 1)

⊕ (N − j − 1, j, 1)

45

and, similarly, for j = 1, gives us

(N − 1, 1)⊗ (N − 1, 1) = (N − 1, 1) ↓ (SN−1 × S1) ↑ SN 	 (N − 1, 1) ↓ SN ↑ SN
= (N)⊕ (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1, 1). �

We can see that, for every ` ∈ {0, 1} and j ∈ {0, . . . , k}, the representation (N−`, `)Q⊗(N−j, j)I
is multiplicity-free, that is, it contains each irrep at most once. For an irrep θ present in
(N − `, `)Q ⊗ (N − j, j)I , let

Π
(N−`,`)Q⊗(N−j,j)I
θ := Π̂θ

(
Π

(N−`,`)
Q ⊗Π

(N−j,j)
I

)
,

which is the projector on the unique instance of θ in (N − `, `)Q ⊗ (N − j, j)I . For example,

for θ = (N − 1, 1), we have projectors Π
(N)Q⊗(N−1,1)I
(N−1,1) , Π

(N−1,1)Q⊗(N)I
(N−1,1) , Π

(N−1,1)Q⊗(N−1,1)I
(N−1,1) , and

Π
(N−1,1)Q⊗(N−2,2)I
(N−1,1) .

Approach 2: via spaces invariant under queries OV and OF . Let us decompose H as
the direct sum of four subspaces, each invariant under the action of U , OV , and OF . First, let
H = H(0) ⊕H(1), where H(0) and H(1) are spaces corresponding to, respectively, the subsets

H0 =
{

(x, z) ∈ X ×D : zx = 0
}

and H1 =
{

(x, z) ∈ X ×D : zx = 1
}
,

of the standard basis X ×D. Let us further decompose H(0) and H(1) as

H(0) = H(0,s) ⊕H(0,t) and H(1) = H(1,s) ⊕H(1,t),

where

H(0,s) := span
{ ∑
x : zx=0

|x, z〉 : z ∈ D
}

and H(1,s) := span
{ ∑
x : zx=1

|x, z〉 : z ∈ D
}
,

and H(0,t) := H(0) ∩ (H(0,s))⊥ and H(1,t) := H(1) ∩ (H(1,s))⊥.
Note that, for a given z,

∑
z : zx=1 |x〉 =

√
k |Ψ(z)〉. Therefore, the query OF acts on H(1,s)

as the minus identity and on H(0) ⊕H(1,t) as the identity. Meanwhile, OV acts on H(1) as the
minus identity and on H(0) as the identity.

For every superscript σ ∈ {(0), (1), (0, s), (0, t), (1, s), (1, t)}, let Πσ be the projector on the
space Hσ, and let Uσ be the restriction of U to Hσ. Let V σ

π be Uσπ restricted to π ∈ Sk × SN−k
and the space

H̃σ := Hσ ∩ (HQ ⊗ |1k0N−k〉I).

V σ is a representation of Sk × SN−k. One can see that

|SN |
/
|Sk × SN−k| = dimHσ

/
dim H̃σ,

so we have Uσ = V σ ↑ SN . In order to see how Uσ decomposes into irreps, we need to see how
V σ decomposes into irreps, and then apply the Littlewood-Richardson rule.

We have dim H̃(0,s) = dim H̃(1,s) = 1, and it is easy to see that V (0,s) and V (1,s) act trivially
on H̃(0,s) and H̃(1,s), respectively. That is, V (0,s) ∼= V (1,s) ∼= (k)× (N − k). Now, note that

H̃(0) = span
{
|x〉 ⊗ |1k0N−k〉 : x ∈ {k + 1, . . . , N}

}
.

The group Sk (in Sk × SN−k) acts trivially on H̃(0), while and the action of SN−k on H̃(0)

defines the natural representation of SN−k. Hence, V (0) ∼= (k)× ((N − k)⊕ (N − k − 1, 1)), and
V (0) = V (0,s) ⊕ V (0,t), in turn, gives us V (0,t) ∼= (k) × (N − k − 1, 1). Analogously we obtain
V (1,t) ∼= (k−1, 1)× (N −k). The decompositions of U (0,s) = V (0,s) ↑ SN and U (1,s) = V (1,s) ↑ SN

46

into irreps are given via (24). For U (0,t) = V (0,t) ↑ SN and U (1,t) = V (1,t) ↑ SN , the Littlewood-
Richardson rule gives us, respectively,

((k)× (N − k − 1, 1)) ↑ SN = (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1, 1)

⊕ (N − 3, 3)⊕ (N − 3, 2, 1)⊕ (N − 4, 4)⊕ (N − 4, 3, 1)⊕ . . .
⊕ (N − k, k)⊕ (N − k, k − 1, 1)⊕ (N − k − 1, k + 1)⊕ (N − k − 1, k, 1)

and

((k − 1, 1)× (N − k)) ↑ SN = (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1, 1)

⊕ (N − 3, 3)⊕ (N − 3, 2, 1)⊕ (N − 4, 4)⊕ (N − 4, 3, 1)

⊕ . . .⊕ (N − k + 1, k − 1)⊕ (N − k + 1, k − 2, 1)⊕ (N − k, k − 1, 1).

Note that all U (0,s), U (0,t), U (1,s), and U (1,t) are multiplicity-free. For a superscript σ ∈
{(0, s), (0, t), (1, s), (1, t)} and an irrep θ present in Uσ, let Πσ

θ := Π̂θΠ
σ, which is the projector

on the unique instance of θ in Uσ. For example, for θ = (N − 1, 1), we have all the projectors

Π
(0,s)
(N−1,1), Π

(0,t)
(N−1,1), Π

(1,s)
(N−1,1), and Π

(1,t)
(N−1,1).

D.3 Significant irreps

We noted in Section D.2 that OF acts on H(1,s) as the minus identity and on H(0) ⊕H(1,t) as
the identity and OV acts on H(1) as the minus identity and on H(0) as the identity. This means
that, if µ is a subspace of one of the spaces H(0), H(1,s), or H(1,t), then µ′ = µ. In turn, even if
that is not the case, we still have that U |µ and U |µ′ are isomorphic irreps.

Also note that ∣∣Tr(ΠHQ⊗S≥2
(Πµ −Πµ′))

∣∣ =
∣∣Tr(ΠHQ⊗S<2(Πµ −Πµ′))

∣∣. (36)

Hence we need to consider only µ such that U |µ is isomorphic to an irrep present in both

(
(N)⊕ (N − 1, 1)

)
Q
⊗
(
(N)⊕ (N − 1, 1)

)
I

and
(
(N)⊕ (N − 1, 1)

)
Q
⊗

k⊕
j=2

(N − j, j)I ,

as otherwise the expression (35) equals 0. From Section D.2 we see that the only such irreps are
(N − 1, 1), (N − 2, 2), and (N − 2, 1, 1).

The representation U contains four instances of irrep (N − 1, 1), four of (N − 2, 2), and two
of (N − 2, 1, 1). Projectors on them, according to Approach 1 in Section D.2, are

Π
(N)Q⊗(N−1,1)I
(N−1,1) , Π

(N−1,1)Q⊗(N)I
(N−1,1) , Π

(N−1,1)Q⊗(N−1,1)I
(N−1,1) , Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ,

Π
(N)Q⊗(N−2,2)I
(N−2,2) , Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) , Π

(N−1,1)Q⊗(N−2,2)I
(N−2,2) , Π

(N−1,1)Q⊗(N−3,3)I
(N−2,2) ,

Π
(N−1,1)Q⊗(N−1,1)I
(N−2,1,1) , Π

(N−1,1)Q⊗(N−2,2)I
(N−2,1,1) ,

(37)

or, according to Approach 2 in Section D.2, are

Π
(0,s)
(N−1,1), Π

(0,t)
(N−1,1), Π

(1,s)
(N−1,1), Π

(1,t)
(N−1,1),

Π
(0,s)
(N−2,2), Π

(0,t)
(N−2,2), Π

(1,s)
(N−2,2), Π

(1,t)
(N−2,2),

Π
(0,t)
(N−2,1,1), Π

(1,t)
(N−2,1,1).

One thing we can see from this right away is that, if U |µ ∼= (N − 2, 1, 1), then µ ⊂ H(0) ⊕H(1,t),
so the application of the query OF fixes µ, and the expression (35) equals 0.

47

D.4 Necessary and sufficient conditions for irrep (N − 1, 1)

We would like to know what are necessary and sufficient conditions for inequality (35) to hold.
First, let us consider the irrep (N − 1, 1); later, the argument for the other two irreps will be
very similar.

Transporters as the standard basis for irreps. For a1, a2 ∈ {0, 1} and b1, b2 ∈ {s, t}, let

Π
(a1,b1)←(a2,b2)
(N−1,1) be, up to a global phase, the unique operator of rank dim(N − 1, 1) such that(

U
(a1,b1)
(N−1,1)

)
π

= Π
(a1,b1)←(a2,b2)
(N−1,1)

(
U

(a2,b2)
(N−1,1)

)
π

(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
.

for all π ∈ SN . We call Π
(a1,b1)←(a2,b2)
(N−1,1) the transporter from irrep U

(a2,b2)
(N−1,1) to U

(a1,b1)
(N−1,1). One can

see that all non-zero singular values of Π
(a1,b1)←(a2,b2)
(N−1,1) are 1. We also have

Π
(a1,b1)←(a2,b2)
(N−1,1)

(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
= Π

(a1,b1)
(N−1,1),

(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
Π

(a1,b1)←(a2,b2)
(N−1,1) = Π

(a2,b2)
(N−1,1).

We can and we do choose global phases of these transporters in a consistent manner so that(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
= Π

(a2,b2)←(a1,b1)
(N−1,1) and Π

(a1,b1)←(a2,b2)
(N−1,1) Π

(a2,b2)←(a3,b3)
(N−1,1) = Π

(a1,b1)←(a3,b3)
(N−1,1)

for all a3 ∈ {0, 1} and b3 ∈ {s, t}. Together they imply Π
(a1,b1)←(a1,b1)
(N−1,1) = Π

(a1,b1)
(N−1,1).

Fix a3 and b3, and note that(
Π

(a3,b3)←(a1,b1)
(N−1,1)

)∗
Π

(a3,b3)←(a2,b2)
(N−1,1) = Π

(a1,b1)←(a2,b2)
(N−1,1)

is independent of our choice of (a3, b3). Therefore, let us introduce the notation

Π
←(a1,b1)
(N−1,1) := Π

(a3,b3)←(a1,b1)
(N−1,1) .

Fact 1 Let µ ⊂ H be such that U |µ is an irrep isomorphic to (N−1, 1) and let Πµ be the projector
on this subspace. There exists, up to a global phase, a unique vector γ = (γ0,s, γ0,t, γ1,s, γ1,t) such
that Πµ = Π̄∗γΠ̄γ, where

Π̄γ =
(
γ0,sΠ

←(0,s)
(N−1,1) + γ0,tΠ

←(0,t)
(N−1,1) + γ1,sΠ

←(1,s)
(N−1,1) + γ1,tΠ

←(1,t)
(N−1,1)

)
.

The norm of the vector γ is 1. The converse also holds: for any unit vector γ, Π̄∗γΠ̄γ is a projector
to an irrep isomorphic to (N − 1, 1).

From now on, let us work in this basis of transporters, because in this basis, queries OV and
OF restricted to Π̂(N−1,1) are, respectively,

OV |(N−1,1) =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 and OF |(N−1,1) =

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .

Necessary and sufficient condition for the query OV . In the basis of transporters we
have

Πµ =

γ∗0,s
γ∗0,t
γ∗1,s
γ∗1,t

 · (γ0,s γ0,t γ1,s γ1,t

)
=

|γ0,s|2 γ∗0,sγ0,t γ∗0,sγ1,s γ∗0,sγ1,t

γ∗0,tγ0,s |γ0,t|2 γ∗0,tγ1,s γ∗0,tγ1,t

γ∗1,sγ0,s γ∗1,sγ0,t |γ1,s|2 γ∗1,sγ1,t

γ∗1,tγ0,s γ∗1,tγ0,t γ∗1,tγ1,s |γ1,t|2

 , (38)

48

and note that
|γa,b|2 = Tr

(
ΠµΠ

(a,b)
(N−1,1)

)/
dim(N − 1, 1).

From (37), one can see that

Π̂(N−1,1)ΠHQ⊗S≥2
= Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) .

Hence, for the space µ, the desired inequality (35) becomes

1

dim(N − 1, 1)

∣∣∣Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) (Πµ −Πµ′)

)∣∣∣ ≤ O(max{
√
k/N,

√
1/k}). (39)

Let us first obtain a necessary condition if we want this to hold for all µ.
In the same transporter basis, let

Π
(N−1,1)Q⊗(N−2,2)I
(N−1,1) =

|β0,s|2 β∗0,sβ0,t β∗0,sβ1,s β∗0,sβ1,t

β∗0,tβ0,s |β0,t|2 β∗0,tβ1,s β∗0,tβ1,t

β∗1,sβ0,s β∗1,sβ0,t |β1,s|2 β∗1,sβ1,t

β∗1,tβ0,s β∗1,tβ0,t β∗1,tβ1,s |β1,t|2

 . (40)

For b0, b1 ∈ {s, t} and a phase φ ∈ R, define the space ξb0,b1,φ via the projector on it:

Πξb0,b1,φ
:=

1

2

(
Π

(0,b0)
(N−1,1) + eiφΠ

(0,b0)←(1,b1)
(N−1,1) + e−iφΠ

(1,b1)←(0,b0)
(N−1,1) + Π

(1,b1)
(N−1,1)

)
.

We have
Πξb0,b1,φ

−OV Πξb0,b1,φ
OV = eiφΠ

(0,b0)←(1,b1)
(N−1,1) + e−iφΠ

(1,b1)←(0,b0)
(N−1,1) ,

so, for this space, the inequality (39) becomes∣∣eiφβ∗1,b1β0,b0 + e−iφβ∗0,b0β1,b1

∣∣ ≤ O(max{
√
k/N,

√
1/k}).

Since this has to hold for all b0, b1, and φ (in particular, consider b0 and b1 that maximize
|β∗1,b1β0,b0 |), we must have either

|β1,s|2 + |β1,t|2 ≤ O(max{k/N, 1/k}) or |β1,s|2 + |β1,t|2 ≥ 1−O(max{k/N, 1/k}), (41)

and note that

|β1,s|2 + |β1,t|2 = Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1)

)/
dim(N − 1, 1).

The condition (41) is necessary, but it is also sufficient for (39). Because, if it holds, then
|β∗1,b1β0,b0 | ≤ O(max{

√
k/N,

√
1/k}) for all b0, b1 ∈ {s, t} and, clearly, |γ∗1,b1γ0,b0 | ∈ O(1) for all

unit vectors γ. Therefore, if we plug (38) and (40) into (39), the inequality is satisfied.

Necessary and sufficient condition for the query OF . Almost identical analysis shows
that, in order for the main conjecture hold when U |µ is isomorphic to (N − 1, 1) and we apply
OF , it is necessary and sufficient that

|β1,s|2 ≤ O(max{k/N, 1/k}) or |β1,s|2 ≥ 1−O(max{k/N, 1/k}). (42)

Note that
|β1,s|2 = Tr

(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1)

)/
dim(N − 1, 1).

49

D.5 Conditions for irreps (N − 2, 2) and (N − 2, 1, 1)

For irreps (N − 2, 2) and (N − 2, 1, 1), let us exploit equation (36). Mainly, we do that because
the space HQ ⊗ S≥2 contains three instances of irrep (N − 2, 2), while HQ ⊗ S<2 contains only
one. From (37) we get

Π̂(N−2,2)ΠHQ⊗S<2 = Π
(N−1,1)Q⊗(N−1,1)I
(N−2,2) and Π̂(N−2,1,1)ΠHQ⊗S<2 = Π

(N−1,1)Q⊗(N−1,1)I
(N−2,1,1) .

Condition for the query OV . An analysis analogous to that of the irrep (N − 1, 1) shows
that, in order for the desired inequality (35) to hold for query OV and irreps (N − 2, 2) and
(N − 2, 1, 1), it is sufficient to have

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) ·Π(1)

)
dim(N − 2, 2)

≤ O(k/N) and
Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,1,1) ·Π(1)

)
dim(N − 2, 1, 1)

≤ O(k/N).

Let us prove this. Consider irrep (N −2, 2) and the hook-length formula gives us dim(N −2, 2) =
N(N − 3)/2. We have

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) ·Π(1)

)
≤ Tr

(
(Π

(N−1,1)
Q ⊗Π

(N−1,1)
I)·Π(1)

)
,

and we can evaluate the right hand side of this exactly. Π(1) is diagonal (in the standard basis),

and, on the diagonal, it has (N − k)
(
N
k

)
zeros and k

(
N
k

)
ones. The diagonal entries of Π

(N−1,1)
Q

are all the same and equal to N−1
N . The diagonal entries of Π

(N−1,1)
I are also all the same,

because Π
(N−1,1)
I projects to an eigenspace of the Johnson scheme. More precisely, we have

Tr(Π
(N−1,1)
I) = dim(N−1, 1) = N−1, therefore the diagonal entries of Π

(N−1,1)
I are (N−1)/

(
N
k

)
.

Hence, the diagonal entries of Π
(N−1,1)
Q ⊗Π

(N−1,1)
I are (N − 1)2/(N

(
N
k

)
), implying that

Tr
(
(Π

(N−1,1)
Q ⊗Π

(N−1,1)
I)Π(1)

)
=
k(N − 1)2

N

and, in turn,

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) Π(1)

)
dim(N − 2, 2)

≤ 2k(N − 1)2

N2(N − 3)
∈ O(k/N)

as required. The same argument works for irrep (N − 2, 1, 1) as, by the hook-length formula,
dim(N − 2, 1, 1) = (N − 1)(N − 2)/2 = dim(N − 2, 2) + 1.

Condition for the query OF . As we mentioned in the very end of Section D.3, OF affects
no space µ such that U |µ is isomorphic to irrep (N − 2, 1, 1). However, the following argument
for irrep (N − 2, 2) actually works for (N − 2, 1, 1) as well. We have

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) Π(1,s)

)
dim(N − 2, 2)

≤
Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) Π(1)

)
dim(N − 2, 2)

≤ O(k/N),

which, similarly to the condition (42) for irrep (N − 1, 1), is sufficient to show that the main
conjecture holds for irrep (N − 2, 2) and the query OF .

50

D.6 Solution for irrep (N − 1, 1)

Recall that conditions (41) and (42) are sufficient for the main conjecture to hold for the queries
OV and OF , respectively. Hence, it suffices for us to show that

Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1)

)
dim(N − 1, 1)

≥
Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1)

)
dim(N − 1, 1)

=

=
k − 1

k
· N(N − k − 1)

(N − 1)(N − 2)
≥ 1−O(max{k/N, 1/k}).

It is easy to see that both inequalities in this expression hold, and we need to concern ourselves
only with the equality in the middle.

Notice that

Π
(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1) = (IQ ⊗Π
(N−2,2)
I)·Π(1,s)

(N−1,1),

and let us evaluate the trace of the latter. We briefly mentioned before that Π
(N)
I , Π

(N−1,1)
I , . . . ,

Π
(N−k,k)
I are orthogonal projectors on the eigenspaces of the Johnson scheme. Let us now use

this fact.

Johnson scheme on HI . For any two strings z, z′ ∈ D, let |z−z′| be the half of the Hamming
distance between them (the Hamming distance between them is an even number in the range
{0, 2, 4, . . . , 2k}). For every i ∈ {0, 1, . . . , k}, let

AIi =
∑
z,z′∈D
|z−z′|=i

|z〉〈z′|,

which is a 01-matrix in the standard basis of HI . Matrices AI0, A
I
1, . . . , A

I
k form an association

scheme known as the Johnson scheme (see [18, Chapter 7]).
There are matrices CI0 , C

I
1 , . . . , C

I
k of the same dimensions as Ai that satisfy

CIj =

k−j∑
i=0

(
k − i
j

)
Ai for all j and AIi =

k∑
j=k−i

(−1)j−k+i

(
j

k − i

)
Cj for all i. (43)

These matrices CIj simplify the calculation of the eigenvalues of AIi , as, for all j ∈ {0, 1, . . . , k},
we have

CIj =

j∑
h=0

(
N − j − h
N − k − h

)(
k − h
j − h

)
Π

(N−h,h)
I for all j. (44)

Hence, we can express AIi uniquely as a linear combination of orthogonal projectors Π
(N−h,h)
I ,

and the coefficients corresponding to these projectors are the eigenvalues of AIi .

Here, however, we are interested in the opposite: expressing Π
(N−h,h)
I as a linear combination

of AIi . From (44) one can see that

Π
(N−h,h)
I = (N − 2h+ 1)

h∑
j=0

(−1)j−h

(
k−j
h−j
)

(k − j + 1)
(
N−j−h+1
N−k−h

)CIj (45)

for h = 0, 1, 2. We are interested particularly in Π
(N−2,2)
I , and from (45) and (43) we get

Π
(N−2,2)
I =

1(
N−4
k−2

) k∑
i=0

((
k − i

2

)
− (k − 1)2

N − 2
(k − i) +

k2(k − 1)2

2(N − 1)(N − 2)

)
AIi . (46)

51

Johnson scheme on H(1,s). Recall that, for z ∈ D, we have |Ψ(z)〉 =
∑

x : zx=1 |x〉/
√
k, and

let us define
A

(1,s)
i =

∑
z,z′∈D
|z−z′|=i

|Ψ(z), z〉〈Ψ(z′), z′|

for all i ∈ {0, 1, . . . , k}. The matrices AIi and A
(1,s)
i have the same eigenvalues corresponding to

the same irreps. Analogously to the space HI , we can define matrices C
(1,s)
j to the space H(1,s).

From (45) and (43) we get

Π
(1,s)
(N−1,1) =

1(
N−2
k−1

) k∑
i=0

(
(k − i)− k2

N

)
A

(1,s)
i . (47)

Both Johnson schemes together. Now that we have expressions for both Π
(N−2,2)
I and

Π
(1,s)
(N−1,1), we can compute Tr

(
(IQ ⊗Π

(N−2,2)
I)·Π(1,s)

(N−1,1)

)
. For all i, i′ ∈ {0, 1, . . . , k}, we have

Tr
(
(IQ ⊗AIi)·A

(1,s)
i′

)
= δi,i′

(
N

k

)(
k

i

)(
N − k
i

)
k − i
k

. (48)

Indeed, it is easy to see that this trace is 0 if i 6= i′, and for i = i′ we argue as follows. The
matrix AIi has

(
N
k

)
rows, and each row has

(
k
i

)(
N−k
i

)
entries 1. That is, each z ∈ D has exactly(

k
i

)(
N−k
i

)
z′ ∈ D such that |z − z′| = i. And for such z and z′, we have 〈ψz|ψz′〉 = (k − i)/k.

Now, if we put (46), (47), and (48) together, we get

Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1)

)
= Tr

(
(IQ ⊗Π

(N−2,2)
I)·Π(1,s)

(N−1,1)

)
=

=
k∑
i=0

(
(k − i)− k2

N

)
(
N−2
k−1

)
(

(k−i)(k−i−1)
2 − (k−1)2

N−2 (k − i) + k2(k−1)2

2(N−1)(N−2)

)
(
N−4
k−2

) (
N

k

)(
k

i

)(
N − k
i

)
k − i
k

,

which, by using the equality

k∑
i=1

(
k

i

)
Ni

(k − i)!
(k − i− l)!

=
k!

(k − l)!

(
N − l
N − k

)
,

can be shown to be equal to k−1
k ·

N(N−k−1)
(N−2) . We get the desired equality by dividing this by

dim(N − 1, 1) = N − 1.
This concludes the proof of Theorem 6 (Hardness of the two values problem).

E Proofs for Section 4

E.1 Proof of Theorem 7

Proof of Theorem 7. Algorithm E1 measures the first half of |ΣΨ〉. This measurement yields a
uniformly random outcome y ∈ Y and leaves |Ψ(y)〉 in the second half.

Let OF (y) := I−2|Ψ(y)〉〈Ψ(y)|. This notation is justified because OF (y) is how OF operates
its the second input when the first input is |y〉. In particular, given OF we can implement the
unitary OF (y).

52

The algorithm E2 is as follows:

1 initialize register X with |Ψ(y)〉 (given as input);
2 for i = 1 to n+ 1 do
3 for j = 1, . . . , dlog(π/2

√
δmin)e do

4 for k = 1 to 2j−1 do

5 let UP |x〉 := (−1)P (x)|x〉;
6 apply OF (y)UP to register X

7 let PX :=
∑

P (x)=1 |x〉〈x|;
8 measure register X with projector PX , outcome b;
9 if b = 1 then

10 measure register X in the computational basis, outcome x;
11 return x

We first analyze the one iteration of the j-loop (i.e., lines 4–11). Let Py := {x ∈ Sy : P (x) = 1}
and P̄y := {x ∈ Sy : P (x) = 0}. Let |yes〉 :=

∑
x∈Py

√
1/|Py| |x〉 and |no〉 :=

∑
x∈P̄y

√
1/|P̄y| |x〉.

For any β ∈ R, let |φβ〉 := sinβ|yes〉 + cosβ|no〉. We check that UP |φβ〉 = |φ−β〉. Let
γ := arcsin

√
|Py|/|Sy|. Then |Ψ(y)〉 = sin γ|yes〉 + cos γ|no〉 = |φδ〉. Hence OF (y)|φβ〉 =(

I − 2|Ψ(y)〉〈Ψ(y)|
)
|φβ〉 = |φ−β+2γ〉 for all β. Thus OF (y)UP |φβ〉 = |φβ+2γ〉.

Assume that at line 4, we have X = |φβ〉. The innermost loop (lines 4–6) thus yields
X = |φβ+2jγ〉. Since |yes〉 ∈ imPX and |no〉 is orthogonal to imPX , measuring X using PX
(line 8) yields b = 1 with probability (sin(β + 2jγ))2. If b = 1, X has state |yes〉, and if b = 0,
X has state |no〉. Thus, if b = 1, measuring X in the computational basis (line 10) yields and
returns x ∈ Sy with P (x) = 1.

Summarizing so far: one iteration of the j-loop (i.e., lines 4–11) returns x ∈ Sy with
probability (sin(β + 2jγ))2 if X has state |φβ〉 initially. And if no such x is returned, X is in
state |no〉 = |ψ0〉.

In the first execution of the j-loop, X contains |Ψ(y)〉 = |φγ〉. Thus in all further executions
of the j-loop, X contains |no〉 = |φ0〉 and the probability of returning x ∈ Sy, P (x) = 1 in the

j-th iteration is (sin 2jγ)2 = 1−
(

sin(π/2− 2jγ)
)2≥ 1− (π/2− 2jγ)2.

Thus any but the first iteration of the j-loop (i.e., lines 4–11) fails to return x ∈ Sy with
probability at most:

χ := min
1≤j≤dlog(π/2

√
δmin)e

(π/2− 2jγ)2.

We distinguish two cases:
• Case γ > π

4 : Since also γ ≤ 1, we have that |π/2− 2γ| ≤ 2 − π/2 < 1
2 and thus

χ ≤ (π/2− 2γ)2 ≤ (1
2)2 ≤ 1

2 .
• Case γ ≤ π

4 : For at least one 1 ≤ j ≤ dlog(π/2
√
δmin)e we have 2jγ ≤ π/2. And for at

least one such j we have

2jγ ≥ 2log π/2
√
δminγ =

πγ

2
√
δmin

≥
π arcsin

√
|Py|/|Sy|

2
√
|Py|/|Sy|

≥ π/2.

Thus the minimum ranges over some j, j + 1 such that 2jγ ≤ π/2 ≤ 2j+1γ. For any a ≥ 0,
min{|π2 − a|, |

π
2 − 2a|} ≤ π

6 if a ≤ π
2 ≤ 2a. Thus χ ≤ (π/6)2 ≤ 1

2 .
Hence in all cases, χ ≤ 1

2 .
The algorithm executes the j-loop n+ 1 times, and each but the first j-loop fails to return

x ∈ Sy, P (x) = 1 with probability at most χ ≤ 1
2 . Thus the algorithm fails to return x ∈ Sy,

P (x) = 1 with probability at most χn ≤ 2−n. �

E.2 Proof of Corollary 9

Proof of Corollary 9. We first show (i). Let PA := Pr[w = w0 : w ← AOall].

53

In the remainder of the proof, we will make the probabilistic choice of oracles explicit, as
well as their use by A. That is, PA becomes:

PA = Pr[w = w0 : w0
$← {0, 1}`rand , (Scom)← $,OS ← $,OP ← $,

w ← AOE ,OP ,OR,OS ,OF ,OΨ,OV].

Here we used the following shorthands: (Scom) ← $ means that the sets Scom are uniformly
random subsets of {0, 1}`ch × {0, 1}`resp of size k. OS ← $ means that the oracle OS is randomly
chosen as described in Definition 8 (Oracle distribution). OP ← $ means that the oracle OP is ran-
domly chosen as described in Definition 8. Since no random choices are involved in the definitions
of OE ,OR,OF ,OΨ,OV , we do not write their definitions explicitly here, cf. Definitions 5 and 8.

Removing OP ,OROP ,OROP ,OR: We now remove access to OP ,OR. We then have

PA ≤ 2(qP + qR + 1)
√
P1, (49)

P1 := Pr[w = w0 : w0
$← {0, 1}`rand , (Scom)← $,OS ← $, w ← AOE ,OS ,OF ,OΨ,OV

1]

for some A1 by Lemma 39 (with O1 := (OP ,OR), w := w0, O2 := (OE ,OS ,OF ,OΨ,OV),
∀w′ : f(·, w′) := f(w′, ·, ·, ·) := w′). Here the algorithm A1 makes at most as many oracle queries
as A to the remaining oracles. Note that we also removed OP ← $ because OP is not used any
more.

Removing OEOEOE: We now transform A1 not to output w, but to output the two accepting
conversations (com, ch, resp, ch ′, resp′) needed for extraction. In the following, we write short
Collision for (ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom .

P1 ≤ 2qE
√
P2 + 2−`rand , (50)

P2 := Pr[Collision : (Scom)← $,OS ← $, (com, ch, resp, ch ′, resp′)← AOS ,OF ,OΨ,OV
2]

for some A2 by Lemma 40 (with w := w0, ` := `rand , O1 := OE , O2 := (OS ,OF ,OΨ,OV), and
X := {(com, ch, resp, ch ′, resp′) : Collision}). Here A2 makes at most as many oracles queries as
A1. We also removed the choice of w0 from the formula because none of the remaining oracles
depend on it.

Removing OΨOΨOΨ: Fix integers n,m. We determinate the actual values later. By Theorem 3
(Emulating state creation oracles), we have:

P2 ≤ P3 +O
(qΨ√

n
+

qΨ√
m

)
, (51)

P3 := Pr[Collision : (Scom)← $,OS ← $, (com, ch, resp, ch ′, resp′)← AOS ,OF ,OV3 (|R〉)]

for some A3. Here A3 makes qS , qF , qV queries to OS ,OF ,OV . And |R〉 := |ΣΨ〉⊗m ⊗ |α1〉 ⊗
· · · ⊗ |αn〉 with |αj〉 := (cos jπ2n)|ΣΨ〉+ (sin jπ

2n)|⊥〉.

Removing OSOSOS: For given choice of (Scom)com∈{0,1}`com , let DY be the distribution of OS(z),

i.e., D picks com
$← {0, 1}`com and (ch, resp)

$← Scom and returns (com, ch, resp).
Fix some α ∈ (0, 1) (we determine the value of α later). Then, for fixed choice of (Scom)com

(OV ,OF are deterministic given Scom anyway), we have by Theorem 4 (Small image oracles) (with
H := OS): ∣∣∣Pr[Collision : OS ← $, (com, ch, resp, ch ′, resp′)← AOS ,OF ,OV3 (|R〉)]−

Pr[Collision : G← $, (com, ch, resp, ch ′, resp′)← AG,OF ,OV3 (|R〉)]
∣∣∣ ≤ α.

54

Here s ∈ O(
q4
S
α (log qS

α)2), and Ds is as in Theorem 4. And G ← $ means that G is chosen

as: pick (com1, ch1, resp1), . . . , (coms, chs, resps) ← DY , then for all z, pick iz
$← Ds and set

G(z) := (comiz , chiz , respiz).
By averaging over the choice of (Scom), we then get that

|P3 − P4| ≤ α, (52)

P4 := Pr[Collision : (Scom)← $, G← $, (com, ch, resp, ch ′, resp′)← AG,OF ,OV3].

We construct the adversary A4: Let AOF ,OV4 (com1, ch1, resp1, . . . , coms, chs, resps, |R〉) pick G

himself as: for all z, iz
$← Ds, G(z) := (comiz , chiz , respiz). Then A4 executes AG,OF ,OV3 (|R〉).

Then

P4 = Pr[Collision : (Scom)← $, (com1, ch1, resp1), . . . , (coms, chs, resps)← DY ,

(com, ch, resp, ch ′, resp′)← AOF ,OV4 (com1, ch1, resp1, . . . , coms, chs, resps, |R〉)].

(Note that the distribution DY depends on the choice of Sy.)

Let AOF ,OV5 (|ΣΨ〉⊗s, |R〉) be the algorithm that does the following: For each each i, it takes
one copy of the state |ΣΨ〉 (given as input) and measures it in the computational basis to get
(comi, chi, respi). Then A5 runs AOF ,OV4 (com1, ch1, resp1, . . . , coms, chs, resps, |R〉).

By definition of |ΣΨ〉 (Definition 5), each (comi, chi, respi) chosen by A5 is independently
distributed according to DY . Thus

P4 = P5, (53)

P5 := Pr[Collision : (Scom)← $, (com, ch, resp, ch ′, resp′)← AOF ,OV5 (|ΣΨ〉⊗s, |R〉)].

Converting the |αi〉|αi〉|αi〉: The adversary A5 is almost an adversary as in Theorem 6 (Hardness of the two

values problem), with one exception: the input to A5 is a state |R〉 = |ΣΨ〉⊗m⊗|α1〉⊗· · ·⊗|αn〉 with
|αj〉 := (cos jπ2n)|ΣΨ〉+(sin jπ

2n)|⊥〉. Theorem 6 on the other hand assumes an adversary that takes

as input states in the span of |ΣΨ〉 and |ΣΦ〉 :=
∑

com,ch,resp 2−(`com+`ch+`resp)/2|com, ch, resp〉.
Let |α̃j〉 := (cos jπ2n)|ΣΨ〉+ (sin jπ

2n)|ΣΦ〉. |R̃〉 = |ΣΨ〉⊗m ⊗ |α̃1〉 ⊗ · · · ⊗ |α̃n〉 Let Uα|ΣΦ〉 := |⊥〉
and Uα|⊥〉 := |ΣΦ〉 and Uα|Φ〉 := |Φ〉 for |Φ〉 orthogonal to |⊥〉, |ΣΦ〉.

Let AOF ,OV6 (|ΣΨ〉⊗s, |R̃〉) be the algorithm that runs AOF ,OV5 (|ΣΨ〉⊗s, (I⊗m ⊗ U⊗nα)|R̃〉).
Then

P5 ≤ P6 + TD
(
(I⊗m ⊗ U⊗nα)|R̃〉, |R〉

)
, (54)

P5 := Pr[Collision : (Scom)← $, (com, ch, resp, ch ′, resp′)← AOF ,OV6 (|ΣΨ〉⊗s, |R̃〉)].

Write |ΣΨ〉 as |ΣΨ〉 = γ|ΣΦ〉 + δ|ΣΦ⊥〉 with |ΣΦ⊥〉 a state orthogonal to |ΣΦ〉. Write short
c := (cos jπ2n) and s := (sin jπ

2n). Then

χ := 〈αj |Uα|α̃j〉
= (c|ΣΨ〉+ s|⊥〉)†Uα(c|ΣΨ〉+ s|ΣΦ〉)
= c2〈ΣΨ|Uα|ΣΨ〉+ s2〈⊥|⊥〉+ cs〈ΣΨ|⊥〉+ cs〈⊥|Uα|ΣΨ〉
(∗)
= c2|δ2|+ s2 + cs · 0 + csγ = c2(1− |γ2|) + s2 + csγ = 1− c2|γ2|+ csγ.

In (∗) we use that |⊥〉, |ΣΦ〉, |ΣΦ⊥〉 are orthogonal. Furthermore,

γ = 〈ΣΦ|ΣΨ〉 =
∑

com,ch,resp
(ch,resp)∈Scom

2−(`com+`ch+`resp)/2 · 2−`com/2/
√
k

= 2`comk · 2−(`com+`ch+`resp)/2 · 2−`com/2/
√
k = 2−(`ch+`resp)/2

√
k ≥ 0.

55

Thus

χ = 1− c2|γ2|+ csγ ≥ 1− c2γ2 ≥ 1− γ2

and hence

TD(|αj〉, Uα|α̃j〉) =
√

1− χ2 ≤
√

1− (1− γ2) ≤
√

2γ2 = 2−(`ch+`resp−1)/2
√
k.

With (54), we get

P5 ≤ P6 + TD
(
(I⊗m ⊗ U⊗nα)|R̃〉, |R〉

)
= P6 +

n∑
i=1

TD(|αj〉, Uα|α̃j〉)

≤ P6 + n2−(`ch+`resp−1)/2
√
k. (55)

Wrapping up: Note that A6 is an adversary as in Theorem 6 (Hardness of the two values problem).
Thus by Theorem 6 (with h := n+m+ s), we have:

P6 ≤ O

(
(n+m+ s)

2`com/2
+

(qV + qF)1/2k1/4

2(`ch+`resp)/4
+

(qV + qF)1/2

k1/4

)
. (56)

Assume that PA is non-negligible. By (49), and since qP , qR are polynomially-bounded, P1 is
then non-negligible. By (50), and since qE is polynomially-bounded and `rand superlogarithmic,
P2 is non-negligible. Since P2 is non-negligible, there is a polynomial p2 such that p2 = ω(1/P2)
on an infinite set K. Let n,m := q2

Ψp
2
2. Note that n,m are polynomially-bounded since qΨ

is polynomially-bounded. Then O(qΨ/
√
n + qΨ/

√
m) = O(1/p2) = o(P2) on K . Thus by

(51), P2 ≤ P3 + o(P2) on K, hence P3 is non-negligible. Since P3 is non-negligible, there is
a polynomial p3 such that 1/p3 ≤ P3 on an infinite set K. Let α := 1/2p3. Then by (52),
|P3 − P4| ≤ P3/2 on K. Thus P4 is non-negligible. By (53), P4 = P5, hence P5 is non-negligible.
By (55), P6 ≥ P5 − n2−(`ch+`resp−1)/2

√
k. Since `resp is superlogarithmic and k = 2`ch+b`respc/3

and n polynomially-bounded, this implies that P6 is non-negligible. But qS , qΨ, qV , qF are

polynomially-bounded and thus n,m and s ∈ O(
q4
S
α (log qS

α)2) are polynomially-bounded, and
`com , `resp are superlogarithmic, by (56) we have that P6 is negligible. Thus the assumption that
PA is non-negligible is wrong. Hence PA is negligible. This shows part (i) of the lemma.

We now show part (ii) of the lemma. For an adversary A outputting (com, ch, resp, ch ′, resp′),
let B be the adversary that runs (com, ch, resp, ch ′, resp′) ← A, then invokes w ←
OE(com, ch, resp, ch ′, resp′) and returns w. Note that B makes qE + 1 queries to OE , and
the same number of queries to the other oracles as A. By definition of OE , we have

Pr[(ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom :

(com, ch, resp, ch ′, resp′)← AOall] ≤ Pr[w = w0 : w ← BOall].

By (i) the rhs is negligible, thus the lhs is, too. This proves (ii). �

F Proofs for Section 5

F.1 Proof for Lemma 15

Proof of Lemma 15. Perfect completeness: By definition of OS , we have that xi ∈ Syi
for all (yi, xi) := OS(zi). Hence OV (yi, xi) = 1 for all i. Thus COMverify(c,m, u) = 1 for
(c, u)← COM(m). Hence we have perfect completeness.

56

Computational strict binding: Consider an adversary AOall against the computational strict
binding property. Let µ be the probability that AOall outputs (c,m, u,m′, u′) such that (m,u) 6=
(m′, u′) and ok = ok ′ = 1 with ok = COMverify(c,m, u) and ok ′ = COMverify(c,m′, u′). We need
to show that µ is negligible. Let c =: (p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|) and u =: (x1, . . . , x|m|)
and u′ =: (x′1, . . . , x

′
|m|). Then (m,u) 6= (m′, u′) implies that for some i, (xi,mi) 6= (x′i,m

′
i).

If xi = x′i, then from ok = ok ′ = 1 we have mi = bi ⊕ bitpi(xi) = bi ⊕ bitpi(x
′
i) = m′i, in

contradiction to (xi,mi) 6= (x′i,m
′
i). So xi 6= x′i. Furthermore, ok = ok ′ = 1 implies that

OV (yi, xi) = OV (yi, x
′
i) = 1, i.e., xi, x

′
i ∈ Syi . So AOall finds xi 6= x′i with xi, x

′
i ∈ Syi with

probability µ. By Corollary 9 (Hardness of two values 2), this implies that µ is negligible.

Computational binding: This is implied by computational strict binding.

Statistical hiding: Fix m,m′ ∈ {0, 1}. Let (y, x) := OS(z), z
$← {0, 1}`rand , p← {1, . . . , `ch +

`resp}, b := m⊕ bitp(x). Let ŷ
$← `com , x̂

$← Sŷ. Define analogously y′, x′, z′, p′, b′, ŷ′, x̂′.

Let D be the distribution that returns (ŷ, x̂) with ŷ
$← {0, 1}`com , x̂

$← Sŷ. Note that
by definition of OS , OS(z) is initialized according to D. By Lemma 33, for fixed choice of
the sets Sy, SD

(
(OS , y, x); (OS , ŷ, x̂)

)
≤ 2(`com−`rand)/2−1

√
k =: µ1. (With X := {0, 1}`rand ,

Y := {(y, x) : y ∈ {0, 1}`com , x ∈ Sy}, and O := OS .) Thus for random Sy and random

p, SD
(
(Oall , p, y, bitp(x) ⊕ m); (Oall , p, ŷ, bitp(x̂) ⊕ m)

)
≤ µ1. Let b∗

$← {0, 1}. For fixed ŷ

and p and random sets Sy and random p, SD
(
(Sŷ, ŷ, bitp(x̂)); (Sŷ, ŷ, b

∗)
)
≤ 1/2

√
k =: µ2 by

Lemma 34. Thus for random ŷ and p, SD
(
(Oall , p, ŷ, bitp(x̂)⊕m); (Oall , p, ŷ, b

∗⊕m)
)
≤ µ2. And

(Oall , p, ŷ, b
∗ ⊕m) has the same distribution as (Oall , p, ŷ, b

∗) since b∗ ∈ {0, 1} is uniform and
independently chosen from Oall , ŷ. Hence SD

(
(Oall , p, y, bitp(x)⊕m); (Oall , p, ŷ, b

∗)
)
≤ µ1 + µ2.

Analogously, SD
(
(Oall , p

′, y′, bitp(x
′)⊕m′); (Oall , p

′, ŷ′, b∗′)
)
≤ µ1 + µ2 with b∗′

$← {0, 1}. Since
(Oall , p, ŷ, b

∗) and (Oall , p
′, ŷ′, b∗′) have the same distribution, this implies

SD
(
(Oall , p, y, bitp(x)⊕m); (Oall , p

′, y′, bitp(x
′)⊕m′)

)
≤ 2(µ1 + µ2). (57)

Fix m1,m2 with |m1| = |m2|. Let zi
$← {0, 1}`rand , (yi, xi) := OS(zi), pi

$← {1, . . . , `ch +`resp},
bi := mi ⊕ bitpi(xi) and analogously y′i, x

′
i, p
′
i, z
′
i, b
′
i. By induction over n, and using (57), we get

for all 1 ≤ n ≤ |m1|:

SD
(
(Oall , (pi)i=1,...,n, (yi)i=1,...,n, (bitpi(xi)⊕mi)i=1,...,n);

(Oall , (p
′
i)i=1,...,n, (y

′
i)i=1,...,n, (bitpi(x

′
i)⊕m′i)i=1,...,n)

)
≤ 2n(µ1 + µ2).

For n = |m1|, this becomes

SD
(
(Oall , c), (Oall , c

′)
)
≤ 2|m1|(µ1 + µ2) =: µ (with c← COM(m), c′ ← COM(m′)).

Since |m1| is polynomially-bounded, and `rand − `com − k is superlogarithmic, and k is super-
polynomial, µ is negligible. Thus COM is statistically hiding. �

F.2 Proof of Lemma 16

Proof of Lemma 16. Our adversary is as follows:
• B1(|m|) invokes E1 from Theorem 7 (Searching one value) |m| times to get (yi, |Ψ(yi)〉) for

i = 1, . . . , |m|.7 Let p1, . . . , p|m|
$← {1, . . . , `ch + `resp}. Let b1, . . . , b|m|

$← {0, 1}. Output
c := (p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|).
• B2(m): Let Pi(x) := 1 iff bitpi(x) = bi ⊕mi. Then, for each i = 1, . . . , |m|, B2 invokes
E2(n, δmin, yi, |Ψ(yi)〉) from Theorem 7 with oracle access to P := Pi and with n := `com

and δmin := 1/3 to get xi. Then B2 outputs u := (x1, . . . , xn).

7E1 expects an input |ΣΨ〉. |ΣΨ〉 can be computed using the oracle OΨ.

57

By Theorem 7, the probability that the i-th invocation of E2 fails to return xi with xi ∈
Sy ∧ Pi(xi) = 1 is at most:

f := 2−`com + fδ with fδ := Pr
[|{x ∈ Syi : Pi(x) = 1}|

|Syi |
< δmin

]
Let P ′0 := {x : bitpi(x) = 0} and P ′1 := {x : bitpi(x) = 1}. Since Syi ⊆ X is chosen uniformly

at random, by Lemma 32 we have for b = 0, 1:

f bδ := Pr
[
|Syi ∩ P ′b|/|Syi | < δmin

]
≤ e−2k(1

2
−δmin)2

= e−k/18.

Since Pi = P ′0 or Pi = P ′1, we have fδ ≤ f0
δ + f1

δ ≤ 2e−k/18. (Note: we cannot just apply
Lemma 32 to Pi because Pi might not be independent of Syi .)

The probability that B2 fails to return u with COMverify(c,m, u) is then |m|f . Hence
εCOM ≥ 1− |m|f ≥ 1− |m|2−`com + |m|2e−k/18 which is overwhelming since |m| is polynomial
and `com and k are superlogarithmic. �

G Proofs for Section 6

G.1 Proof of Lemma 19

Proof of Lemma 19. Completeness: We need to show that with overwhelming probability,
(a) COMverify(cch , respch , uch) = 1 for (cch , uch)← COM(respch) and (b) OV (com, ch, respch) =
1 for uniform com, ch and respch := OP (w, com, ch). From the completeness of COM (Lemma 15),
we immediately get (a). We prove (b): By definition ofOP andOV , (b) holds iff ∃resp.(ch, resp) ∈
Scom . We thus need to show that p1 := Pr[∃resp.(ch, resp) ∈ Scom] is overwhelming. Scom is a
uniformly random subset of size k = 2`ch+b`respc/3 of X = {0, 1}`ch × {0, 1}`resp . Thus p1 is lower
bounded by the probability p2 that out of k uniform independent samples from {0, 1}`ch , at

least one is ch. Thus p1 ≥ p2 = 1− (1− 2−`ch)k = 1−
(
(1− 1/2`ch)2`ch

)2b`respc/3 (∗)
≥ 1− e−2b`respc/3

where (∗) uses the fact that (1− 1/n)n converges from below to 1/e for integers n→∞. Thus
p1 is overwhelming for superlogarithmic `resp , and the sigma-protocol is complete.

Commitment entropy: We need to show that com∗ ← P1(s,w) has superlogarithmic min-
entropy. Since com∗ = (com, . . .), and com is uniformly distributed on {0, 1}`com , the min-entropy
of com∗ is at least `com which is superlogarithmic.

Perfect special soundness: Observe that V (s, com∗, ch, resp∗) = V (s, com∗, ch ′, resp∗′) = 1
and ch 6= ch ′ implies (ch, resp), (ch ′, resp′) ∈ Scom and s = s0 and ch 6= ch ′ which in turn implies
OE(com, ch, resp, ch ′, resp′) = w0 and (s,w0) ∈ R. Thus an extractor E that just outputs
OE(com, ch, resp, ch ′, resp′) achieves perfect special soundness.

Computational strict soundness: We need to show that a polynomial-time A will only
with negligible probability output (com∗, ch, resp∗, resp∗′) such that resp∗ 6= resp∗′ and
V (s, com∗, ch, resp∗) = V (s, com∗, ch, resp∗′) = 1. Assume A outputs such a tuple with non-
negligible probability. By definition of V , this implies that resp∗ = (resp, u), resp∗′ = (resp′, u′),
and com∗ contains cch such that COMverify(cch , resp, u) = 1 and COMverify(cch , resp′, u′) =
1. Since resp∗ 6= resp∗′, this contradicts the computational strict binding property of
COM,COMverify (Lemma 15). Thus the sigma-protocol has computational strict soundness.

Statistical HVZK: Let S be the simulator that picks z
$← {0, 1}`rand , computes

(com, ch, resp) := OS(z), and (cc, uc) ← COM(0`resp) for all c ∈ {0, 1}`ch \ {ch}, and
(cch , uch) ← COM(resp), and returns (com∗, ch, resp∗) with com∗ := (com, (cch)ch∈{0,1}`ch)
and resp∗ := (respch , uch). We now compute the difference between the probabilities from the

58

definition of statistical HVZK (Definition 1) for (s, w) ∈ R, i.e., for s = s0 and w = w0. In the
calculation, com∗ always stands short for (com, (cch)ch∈{0,1}`ch) and resp∗ for (respch , uch).

Pr[b = 1 : com∗ ← P1(s, w), ch
$← {0, 1}`ch , resp∗ ← P2(ch), b← A(com∗, ch, resp∗)]

= Pr
[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [for all c ∈ {0, 1}`ch : zc

$← {0, 1}`rand ,
respc := OP (w, com, c, zc), (cc, uc)← COM(respc)], b← A(com∗, ch, resp∗)

]
ε0≈ Pr

[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [for all c ∈ {0, 1}`ch \ {ch} :

(cc, uc)← COM(0`resp)], zch
$← {0, 1}`rand , respch := OP (w, com, ch, zch),

(cch , uch)← COM(respch), b← A(com∗, ch, resp∗)
]

Here a
ε0≈ b means that |a− b| ≤ ε0 where ε0 := 2`chεCOM and εCOM is the statistical distance

between commitments COM(respc) and COM(0`resp). We have that εCOM is negligible by
Lemma 15 (statistical hiding of COM).

We abbreviate [for all c ∈ {0, 1}`ch \ {ch} : (cc, uc)← COM(0`resp)] with [COM(0)] and con-
tinue our calculation:

· · · = Pr
[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [COM(0)], zch

$← {0, 1}`rand ,
respch := OP (w, com, ch, zch), (cch , uch)← COM(respch), b← A(com∗, ch, resp∗)

]
ε1≈ Pr

[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [COM(0)],

respch ← Dcom,ch , (cch , uch)← COM(respch), b← A(com∗, ch, resp∗)
]

Here Dcom,ch is the uniform distribution on {resp : (ch, resp) ∈ Scom}. (Or, if that set is

empty, Dcom,ch assigns probability 1 to ⊥.) And a
ε1≈ b means that |a− b| ≤ ε1 where ε1 :=

1
2

√
2`resp/2`rand . The last equation follows from Lemma 33, with X := {0, 1}`rand and Y :=

{0, 1}`resp and D := Dch,com , and using the fact that for all z, OP (w0, com, ch, z) is chosen
according to Dch,com . (Note that the adversary A has access to OP , but that is covered since O
occur on both sides of the statistical distance in Lemma 33.) We continue the computation:

· · ·
ε2≈ Pr[b = 1 : (com, ch, respch)

$← D′, [COM(0)], (cch , uch)← COM(respch),

b← A(com∗, ch, resp∗)]

Here D′ is the distribution resulting from choosing com
$← {0, 1}`com , (ch, resp)

$← Scom . By

Lemma 35, ε2 ≤ 2k2

2`ch+`resp
+ 2`ch/2

2
√
k

. We continue

. . .
ε3≈ Pr[b = 1 : z

$← {0, 1}`rand , (com, ch, resp) := OS(z),

[COM(0)], (cch , uch)← COM(respch), b← A(com∗, ch, resp∗)]

Here ε3 =
√

(2`com · k)/2`rand . This follows from Lemma 33 with D := D′ and X := {0, 1}`rand
and Y := {(com, ch, resp) : (ch, resp) ∈ Scom}. (Note that |Y | = 2`com · k.) We continue

· · · = Pr[b = 1 : (com∗, ch, resp∗) := S(s), b← A(com∗, ch, resp∗)].

Thus the difference of probabilities from the definition of statistical HVZK is bounded by
ε := ε0 + ε1 + ε2 + ε3. And ε is negligible since εCOM is negligible, and k = 2`ch+b`respc/3, and `ch

is logarithmic, and `resp , `com are superlogarithmic, and `rand = `com + `resp . �

G.2 Proof of Lemma 20

Proof of Lemma 20. According to Definition 2 (specialized to the case of the sigma-protocol
from Definition 18) we need to construct a polynomial-time quantum adversary A1, A2, A3 such
that:

59

• Adversary success:

PA := Pr[ok = 1 : s← A1, com∗ ← A2, ch
$← {0, 1}`ch ,

resp∗ ← A3(ch), ok = V (s, com∗, ch, resp∗)]

= Pr[okv = 1 ∧ ok c = 1 ∧ s = s0 : s← A1,
(
com, (cch)ch∈{0,1}`ch

)
← A2,

ch
$← {0, 1}`ch , (resp, u)← A3(ch), okv := OV (com, ch, resp),

ok c = COMverify(cch , resp, u)] (58)

is overwhelming.
• Extractor failure: For any polynomial-time quantum E (with access to the final state of
A1), Pr[s = s0, w = w0 : s← A1, w ← E(s)] is negligible.

Our adversary is as follows:
• Let B1, B2 be the adversary from Lemma 16 (Attack on COM). (That is, B1(|m|) produces a

fake commitment which B2(m) then opens to m.)
• A1 outputs s0.
• A2 invokes E1 from Theorem 7 (Searching one value) to get (com, |Ψ(com)〉).8 Then A2 invokes
cc ← B1(`resp) for all c ∈ {0, 1}`ch . A2 outputs com∗ := (com, (cch)ch∈{0,1}`ch).

• Let Pch(ch ′, resp′) := 1 iff ch ′ = ch. A3(ch) invokes E2(n, δmin, com, |Ψ(com)〉) from The-
orem 7 with oracle access to P := Pch and with n := `com and δmin := 2−`ch−1 to get
resp. Then A3 invokes u ← B1(resp) to get opening information for cch . A3 outputs
resp∗ := (resp, u).

Adversary success: By Lemma 16, COMverify(cch , resp, u) = 1 with overwhelming probability.
Thus ok c = 1 with overwhelming probability in (58).

By Theorem 7, the probability that E2 fails to return (ch ′, resp) with (ch ′, resp) ∈ Scom ∧
Pch(ch ′, resp) = 1 is at most:

f := 2−`com + fδ with fδ := Pr
[|{(ch ′, resp) ∈ Scom : Pch(ch ′, resp) = 1}|

|Scom |
< δmin

]
Let P ′ := {x : Pch(x) = 1} and X := {0, 1}`ch × {0, 1}`com . Then |P |′/|X| = 2−`ch . Since
Scom ⊆ X is chosen uniformly at random with |Scom | = k, by Lemma 32 we have:

fδ = Pr
[
|Scom ∩ P ′|/|Scom | < δmin

]
≤ e−2k(2−`ch−δmin)2

= e−k2−2`ch−1
.

Thus f ≤ 2−`com + e−k2−2`ch−1
is negligible since `com is superpolynomial, `ch logarithmic,

and k superpolynomial. Thus with overwhelming probability E2 returns (ch ′, resp) ∈ Scom

with Pch(ch ′, resp) = 1. Pch(ch ′, resp) = 1 implies ch ′ = ch. Hence (ch, resp) ∈ Scom , thus
OV (com, ch, resp) = 1, thus okv = 1 with overwhelming probability. Since s = s0 by construction
of A1, it follows that PA is overwhelming. Thus we have adversary success.

Extractor failure: It remains to show extractor failure. Fix some polynomial-time E. Since
A1 only returns a fixed s0 and has a trivial final state, without loss of generality we can assume
that E does not use its input s or A1’s final state. Then

PE := Pr[s = s0, w = w0 : s← A1, w ← EOall (s)] = Pr[w = w0 : w ← EOall]

is negligible by Corollary 9 (Hardness of two values 2). This shows extractor failure.
�

8Using OΨ to get the input |ΣΨ〉 for E1.

60

G.3 Proof of Lemma 23

Proof of Lemma 23. Completeness and statistical HVZK and commitment entropy
hold trivially, because they only have to hold for (s,w) ∈ R′ = ∅. Computational strict
soundness is shown exactly as in the proof of Lemma 19 (Security of the sigma-protocol). (The
definition of computational strict soundness is independent of the relation R′.)

Computational special soundness: Let EΣ be an algorithm that always outputs ⊥. By
Definition 1 (Properties of sigma-protocols) we have to show that the following probability is negligible:

PS := Pr[(s, w) /∈ R′ ∧ ch 6= ch ′ ∧ ok = ok ′ = 1 : (s, com∗, ch, resp∗, ch ′, resp∗′)← AOall ,

ok ← V (s, com∗, ch, resp∗), ok ′ ← V (s, com∗, ch ′, resp∗′),

w ← EΣ(s, com∗, ch, resp∗, ch ′, resp∗′)]

≤ Pr[ch 6= ch ′ ∧ (ch, resp), (ch ′, resp′) ∈ Scom : (com∗, ch, resp∗, ch ′, resp∗′)← AOall ,

(com, . . .) := com∗, (resp, . . .) := resp∗, (resp′, . . .) := resp∗′]

The right hand side is negligible by Corollary 9 (Hardness of two values 2). Hence PS is negligible.
This shows that the sigma-protocol from Definition 22 has computational special soundness. �

G.4 Proof of Lemma 24

Proof of Lemma 24. By Definition 2 (specialized to the sigma-protocol from Definition 22), we
need to construct a polynomial-time adversary A1, A2, A3 such that:

PA := Pr[ok = 1 ∧ s /∈ LR′ : s← A1, com∗ ← A2, ch
$← {0, 1}`ch , resp∗ ← A3(ch),

ok := V (com∗, ch, resp∗)] is overwhelming

We use the same adversary (A1, A2, A3) as in the proof of Lemma 20. Then PA here is the same
as PA in the proof of Lemma 20. (Here we additionally have the condition s /∈ LR′ , but this
condition is vacuously true since R′ = ∅ and thus LR′ = ∅.) And in the proof of Lemma 20 we
showed that PA is overwhelming. �

H Proofs for Section 7

H.1 Proof of Theorem 26

Lemma 49 (Attack on Fiat-Shamir) There exists a total knowledge break (Definition 2)
against the Fiat-Shamir construction based on the sigma-protocol from Definition 18. (For
any r.)

Proof. According to Definition 2 (specialized to the case of the Fiat-Shamir construction based
on the sigma-protocol from Definition 18) we need to construct a polynomial-time quantum
adversary Â1, Â2 such that:
• Adversary success:

P̂A := Pr[∀i.ok i = 1 : s← ÂH,Oall
1 ,

(
(com∗i)i, (resp∗i)i

)
← ÂH,Oall

2 ,

ch1‖ . . . ‖chr := H(s, (com∗i)i), ok i := V (com∗i , chi, resp∗i)]

is overwhelming. Here V is the verifier of the sigma-protocol (Definition 18).
• Extractor failure: For any polynomial-time quantum E (with access to the final state of
Â1), Pr[s = s0, w = w0 : s← ÂH,Oall

1 , w ← EH,Oall (s)] is negligible.

61

Let A1, A2, A3 be the adversary from the proof of Lemma 20 (Attack on the sigma-protocol). Our
adversary is then as follows:
• Â1 outputs s0. (Identical to A1.)
• Â2 invokes the adversary A2 r times to get com∗1, . . . , com∗r. Then Â2 computes

ch1‖ . . . ‖chr := H(s, (com∗i)i). Then Â2 invokes A3 r times to get resp∗1 ←
A3(ch1), . . . , resp∗r ← A3(chr). Then Â2 outputs ((com∗i)i, (resp∗i)i).

Adversary success: We have

1− P̂A = Pr[∃i.ok i = 0 : s← AOall
1 , ∀i.com∗i ← AOall

2 ,

ch1‖ . . . ‖chr := H(s, (com∗i)i), ∀i.resp∗i ← AOall
3 (chi),

∀i.ok i ← V (com∗i , chi, resp∗i)]
(∗)
= Pr[∃i.ok i = 0 : s← AOall

1 , ∀i.com∗i ← AOall
2 ,

∀i.chi
$← {0, 1}`ch , ∀i.resp∗i ← AOall

3 (chi),

∀i.ok i ← V (com∗i , chi, resp∗i)]

(∗∗)
≤

r∑
i=1

Pr[ok i = 0 : s← AOall
1 , com∗i ← AOall

2 ,

chi
$← {0, 1}`ch , resp∗i ← AOall

3 (chi),

ok i ← V (com∗i , chi, resp∗i)]

(∗∗∗)
=

r∑
i=1

(1− PA) = r(1− PA).

Here (∗) uses the fact that H is only queried once (classically), and thus H(s, (com∗i)i) is
uniformly random. And (∗∗) is a union bound. And (∗∗∗) is by definition of PA in the proof
of Lemma 20. There is was also shown that PA is overwhelming. Thus 1− P̂A ≤ r(1− PA) is
negligible and hence P̂A overwhelming. Thus we have adversary success.

Extractor failure: Extractor failure was already shown in the proof of Lemma 20. (A1 here is
defined exactly as Â1 in the proof of Lemma 20, and the definition of extractor failure depends
only on Â1, not on Â2 or the protocol being attacked.)

Note that we have actually even shown extractor failure in the case that the extractor is
allowed to choose the random oracle H before and during the execution of A1, because A1 does
not access H. �

Now Theorem 26 follows from Lemma 19 (Security of the sigma-protocol) and Lemma 49. (The
fact that the Fiat-Shamir protocol is a classical argument of knowledge is shown in [15].9)

H.2 Proof of Theorem 27

Lemma 50 (Attack on Fiat-Shamir, computational) Then there exists a total break (Def-
inition 2) against the Fiat-Shamir construction based on the sigma-protocol from Definition 22.
(For any r.)

Proof. By Definition 2 (specialized to the case of the Fiat-Shamir construction based on the
sigma-protocol from Definition 22), we need to construct a polynomial-time adversary A1, A2

such that:

P̂A := Pr[∀i.ok i = 1 ∧ s /∈ LR′ : s← ÂH,Oall
1 ,

(
(com∗i)i, (resp∗i)i

)
← ÂH,Oall

2 ,

ch1‖ . . . ‖chr := H(s, (com∗i)i), ok i := V (com∗i , chi, resp∗i)] is overwhelming

9Actually, [15] requires perfect completeness instead of completeness as defined here (we allow a negligible
error). However, it is straightforward to see that their proof works unmodified for completeness as defined here.

Also, [15] assumes that `ch is superlogarithmic, and considers the case r = 1. But [15] can be applied to our
formulation by first parallel composing the sigma-protocol r times (yielding a protocol with challenges of length
r`ch), and then applying the result from [15].

62

Here V is the verifier of the sigma-protocol (Definition 22).
We use the same adversary (Â1, Â2) as in the proof of Lemma 49 (Attack on Fiat-Shamir). Then

P̂A here is the same as P̂A in the proof of Lemma 49. (Here we additionally have the condition
s /∈ LR′ , but this condition is vacuously true since R′ = ∅ and thus LR′ = ∅.) And in the proof
of Lemma 49 we showed that P̂A is overwhelming. �

Now Theorem 27 follows from Lemmas 23 and 50. (The fact that the Fiat-Shamir protocol
is a classical argument of knowledge is shown in [15].10)

I Proofs for Section 8

I.1 Proof of Theorem 29

Lemma 51 (Attack on Fischlin’s construction) There exists a total knowledge break (Def-
inition 2) against the Fischlin construction based on the sigma-protocol from Definition 18
(Sigma-protocol).

Proof. According to Definition 2 (Total breaks) (specialized to the case of Fischlin’s construction
based on the sigma-protocol from Definition 18) we need to construct a polynomial-time quantum
adversary A1, A2 such that:
• Adversary success:

PA := Pr
[
∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0 : s← AH,Oall

1 ,

(com∗i , chi, resp∗i)i=1...r ← AH,Oall
2 , ok i := V (com∗i , chi, resp∗i),

σ :=
r∑
i=1

H(x, (com∗i)i, i, chi, resp∗i)
]

is overwhelming. (59)

• Extractor failure: For any polynomial-time quantum E (with access to the final state of
A1), Pr[s = s0, w = w0 : s← AH,Oall

1 , w ← EH,Oall (s)] is negligible.
Adversary success: At the first glance, it may seem that it is immediate how to construct an
adversary that has adversary success: Using Theorem 7 (Searching one value), we can for each i
search (chi, respi) ∈ Scomi such that H(x, (com∗i)i, i, chi, resp∗i) = 0. However, there is a problem:
com∗i contains commitments cich to all responses. Thus, after finding chi, respi, we need to open
cichi

as respi. This could be done with the adversary against COM from Lemma 16 (Attack on

COM). But the problem is, the corresponding openings have to be contained in resp∗i . So we
need to know these openings already when searching for chi, respi. But at that point we do not
know yet to what value the commitments cichi

should be opened! To avoid this problem, we use
a special fixpoint property of the commitment scheme COM that allows us to commit in a way
such that we can use the (chi, respi) themselves as openings for the commitments.

The fixpoint property is the following: There are functions COM∗, COMopen∗ such that for
any com ∈ {0, 1}`com , and any (ch, resp) ∈ Scom , we have

COMverify(c, resp, u) = 1 for c := COM∗(com) and u := COMopen∗(ch, resp). (60)

These functions are defined as follows: COM∗(com) = (p1, . . . , p`resp , y1, . . . , y`resp , b1, . . . , b`resp)
with pi := `ch + i, yi := com, bi := 0. And COMopen∗(ch, resp) := (x1, . . . , x`resp) with

10Actually, [15] requires perfect special soundness instead of computational special soundness, as well as perfect
completeness instead of completeness as defined here (we allow a negligible error). However, it is straightforward
to see that their proof works unmodified for computational special soundness and completeness as defined here.

Also, [15] assumes that `ch is superlogarithmic, and considers the case r = 1. But [15] can be applied to our
formulation by first parallel composing the sigma-protocol r times (yielding a protocol with challenges of length
r`ch), and then applying the result from [15].

63

xi := (ch, resp) for all i. It is easy to verify from the definition of COMverify (Definition 14) that
(60) holds if (ch, resp) ∈ Scom .

Our adversary is as follows:
• A1 outputs s0.
• A2 invokes E1 from Theorem 7 (Searching one value) r times to get

(
comi, |Ψ(comi)〉

)
for

i = 1, . . . , r. A2 sets cich := COM∗(comi) for all i and all ch ∈ {0, 1}`ch . And com∗i :=(
comi, (c

i
ch)ch

)
.

Let Pi(ch ′, resp′) := 1 iff H(s, (com∗i)i, i, ch ′, (resp′,COMopen∗(ch ′, resp′))) = 0. Then, for
each i = 1, . . . , r, A2 invokes E2(n, δmin, comi, |Ψ(comi)〉) from Theorem 7 with oracle
access to P := Pi and with n := `com and δmin := 2−b−1 to get chi, respi. Let resp∗i :=
(respi,COMopen∗(chi, respi)). Then A2 outputs π := (com∗i , chi, resp∗i)i=1,...,r.

Consider an execution of A1, A2 as in (59). Let Succi denote the event that (chi, respi) ∈
Scomi ∧ Pi(chi, respi) = 1 in that execution. We have

Pr[Succi] = Pr[(ch, resp) ∈ Scomi ∧ P (ch, resp) = 1 : ∀j.
(
comj , |Ψ(comj)〉

)
← E1,

∀j.com∗j :=
(
comj , (COM

∗(comj))ch

)
, H

$← ({0, 1}∗ → {0, 1}b),
∀ch ′resp′.P (ch ′, resp′) := 1 iff H(s, (com∗j)j , i, ch ′, (resp′,COMopen∗(ch ′, resp′))) = 0,

(ch, resp)← E2(n, δmin, comi, |Ψ(comi)〉)]. (61)

Hence by Theorem 7 (Searching one value),

Pr[Succi] ≥ 1− 2−`com − Pr
[|{(ch,resp)∈Scomj :P (ch,resp)=1}|

|Scomj |
< δmin

]
︸ ︷︷ ︸

=:pδ

.

Here P and com are chosen as in the rhs of (61).
In the rhs of (61), H is chosen after Scomj , s, com∗j , and i are fixed. Thus for every,

(ch, resp) ∈ Scomi it is independently chosen whether P (ch, resp) = 1 or P (ch, resp) = 0,
where Pr[P (ch, resp) = 1] = 2−b. Thus

pδ = Pr
[∑

i∈S
Xi
|S| ≥ 1− δmin

]
= Pr

[∑
i∈S

Xi
|S| − (1− 2−b) ≥ 1− δmin − (1− 2−b)

]
(∗)
≤ e−2|S|(1−δmin−(1−2−b))2

= e−2k(2−b−δmin)2
= e−k(2−2b−1)

where Xch,resp := 1− P (ch, resp) and S := Scomi . And (∗) follows from Hoeffding’s inequality
[21].

We thus have

Pr[∀i = 1 . . . r. Succi] ≥ 1− 2−`com r − re−k(2−2b−1) =: ps

Since r is polynomially bounded and b is logarithmic and `com , k are superpolynomial, ps is
overwhelming.

For adversary success, it remains to show that PA ≥ ps where PA is as in (59). For this, we
show that ∀i.Succi implies ∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0. First, note that s = s0 always holds by
definition of A1. Furthermore, ∀i.Succi implies (by definition of Pi) that

σ =
∑

i
H(s, (com∗i)i, i, chi, resp∗i)

=
∑

i
H
(
s, (com∗i)i, i, chi,

(
respi,COMopen∗(chi, respi)

))
=
∑

i
0 ≤ S.

Finally, if Succi holds, then (chi, respi) ∈ Scomi , thus

COMverify(cichi
, respi,COMopen∗(chi, respi))

= COMverify(COM∗(comi), respi,COMopen∗(chi, respi))
(60)
= 1.

64

And OV (comi, chi, respi) = 1. Thus ok i = V (com∗i , chi, resp∗i) = 1. Summarizing, ∀i.Succi
implies ∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0 and thus PA ≥ ps. Since ps is overwhelming, so is PA, thus
we have adversary success.

Extractor failure: Extractor failure was already shown in the proof of Lemma 20. (A1 here is
defined exactly as in the proof of Lemma 20, and the definition of extractor failure depends only
on A1, not on A2 or the protocol being attacked.)

Note that we have actually even shown extractor failure in the case that the extractor is
allowed to choose the random oracle H before and during the execution of A1, because A1 does
not access H. �

Now Theorem 29 follows from Lemma 19 (Security of the sigma-protocol) and Lemma 51. (The fact
that Fischlin’s construction is a classical argument of knowledge is shown in [17].11)

I.2 Proofs for Theorem 30

Lemma 52 (Attack on Fischlin’s construction, computational) Then there exists a to-
tal break (Definition 2) against Fischlin’s construction based on the sigma-protocol from Defini-
tion 22 (Sigma-protocol, computational).

Proof. By Definition 2 (specialized to the case of Fischlin’s construction based on the sigma-
protocol from Definition 22), we need to construct a polynomial-time adversary A1, A2 such
that:

PA := Pr
[
∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0 ∧ s /∈ LR′ : s← AH,Oall

1 ,

(com∗i , chi, resp∗i)i=1...r ← AH,Oall
2 , ok i := V (com∗i , chi, resp∗i),

σ :=

r∑
i=1

H(x, (com∗i)i, i, chi, resp∗i)
]

is overwhelming.

Here V is the verifier of the sigma-protocol (Definition 22).
We use the same adversary (A1, A2) as in the proof of Lemma 51 (Attack on Fischlin’s construction).

Then PA here is the same as PA in the proof of Lemma 20. (Here we additionally have the
condition s /∈ LR′ , but this condition is vacuously true since R′ = ∅ and thus LR′ = ∅.) And in
the proof of Lemma 51 we showed that PA is overwhelming. �

Now Theorem 30 follows from Lemma 23 (Security of the sigma-protocol, computational) and Lemma 52.
(The fact that Fischlin’s construction is a classical argument of knowledge is shown in [17].12)

11Actually, [17] requires perfect completeness instead of completeness as defined here (we allow a negligible
error). However, it is straightforward to see that their proof works unmodified for completeness as defined here.

12Actually, [17] requires perfect special soundness instead of computational special soundness, as well as perfect
completeness instead of completeness as defined here (we allow a negligible error). However, it is straightforward
to see that their proof works unmodified for computational special soundness and completeness as defined here.

65

	Introduction
	Preliminaries
	Security definitions

	Oracle transformation techniques
	State creation oracles
	Small image oracles

	The pick-one trick
	Additional oracles

	Attacking commitments
	Attacking sigma-protocols
	The computational case

	Attacking Fiat-Shamir
	The computational case

	Attacking Fischlin's scheme
	The computational case

	References
	Symbol index
	Keyword index
	Auxiliary lemmas
	Proofs for Section 3
	Lemmas for Section 3.1
	Proofs of Theorem 4

	Proof of Theorem 6
	Preliminaries
	Registers and symmetrization of the algorithm
	Representation theory of SX
	Framework for the proof
	Proof of Lemma 46
	Proof of Lemma 45
	Reduction of Lemma 47 to the |Y|=1 case

	Proof of Lemma 47 when |Y|=1
	Statement of the lemma
	Decomposition of U
	Significant irreps
	Necessary and sufficient conditions for irrep (N-1,1)
	Conditions for irreps (N-2,2) and (N-2,1,1)
	Solution for irrep (N-1,1)

	Proofs for Section 4
	Proof of Theorem 7
	Proof of Corollary 9

	Proofs for Section 5
	Proof for Lemma 15
	Proof of Lemma 16

	Proofs for Section 6
	Proof of Lemma 19
	Proof of Lemma 20
	Proof of Lemma 23
	Proof of Lemma 24

	Proofs for Section 7
	Proof of Theorem 26
	Proof of Theorem 27

	Proofs for Section 8
	Proof of Theorem 29
	Proofs for Theorem 30

