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Abstract. Quantum zero-knowledge proofs and quantum proofs of knowledge are
inherently difficult to analyze because their security analysis uses rewinding. Certain
cases of quantum rewinding are handled by the results by Watrous (SIAM J Comput,
2009) and Unruh (Eurocrypt 2012), yet in general the problem remains elusive. We
show that this is not only due to a lack of proof techniques: relative to an oracle,
we show that classically secure proofs and proofs of knowledge are insecure in the
quantum setting.

More specifically, sigma-protocols, the Fiat-Shamir construction, and Fischlin’s proof
system are quantum insecure under assumptions that are sufficient for classical
security. Additionally, we show that for similar reasons, computationally binding
commitments provide almost no security guarantees in a quantum setting.

To show these results, we develop the “pick-one trick”, a general technique that allows
an adversary to find one value satisfying a given predicate, but not two.
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1 Introduction

Quantum computers threaten classical cryptography. With a quantum computer, an
attacker would be able to break all schemes based on the hardness of factoring, or on the
hardness of discrete logarithms [31], this would affect most public key encryption and
signature schemes is use today. For symmetric ciphers and hash functions, longer key and
output lengths will be required due to considerable improvements in brute force attacks
[23, 12]. These threats lead to the question: how can classical cryptography be made secure
against quantum attacks? Much research has been done towards cryptographic schemes
based on hardness assumptions not known to be vulnerable to quantum computers,
e.g., lattice-based cryptography. (This is called post-quantum cryptography ; see [7] for a
somewhat dated survey.) Yet, identifying useful quantum-hard assumptions is only half
of the problem. Even if the underlying assumption holds against quantum attackers, for
many classically secure protocols it is not clear if they also resist quantum attacks: the
proof techniques used in the classical setting often cannot be applied in the quantum
world. This raises the question whether it is just our proof techniques that are insufficient,
or whether the protocols themselves are quantum insecure. The most prominent example
are zero-knowledge proofs. To show the security of a zero-knowledge proof system,1 one

1Reminder: a proof or proof system is a protocol where a prover convinces a verifier of the validity of
a statement s. It is zero-knowledge if the view of the verifier can be simulated without knowing a witness

2



typically uses rewinding. That is, in a hypothetical execution, the adversary’s state
is saved, and the adversary is executed several times starting from that state. In the
quantum setting, we cannot do that: saving a quantum state means cloning it, violating
the no-cloning theorem [39]. Watrous [37] showed that for many zero-knowledge proofs,
security can be shown using a quantum version of the rewinding technique. (Yet this
technique is not as versatile as classical rewinding. For example, the quantum security of
the graph non-isomorphism proof system [22] is an open problem.) Unruh [32] noticed
that Watrous’ rewinding cannot be used to show the security of proofs of knowledge; he
developed a new rewinding technique to show that so-called sigma-protocols are proofs
of knowledge. Yet, in [32] an unexpected condition was needed: their technique only
applies to proofs of knowledge with strict soundness (which roughly means that the last
message in the interaction is determined by the earlier ones); this condition is not needed
in the classical case. The security of sigma-protocols without strict soundness (e.g., graph
isomorphism [22]) was left open. The problem also applies to arguments as well (i.e.,
computationally-sound proof systems, without “of knowledge”), as these are often shown
secure by proving that they are actually arguments of knowledge. Further cases where
new proof techniques are needed in the quantum setting are schemes involving random
oracles. Various proof techniques were developed [8, 41, 35, 10, 34], but all are restricted
to specific cases, none of them matches the power of the classical proof techniques.

To summarize: For many constructions that are easy to prove secure classically, proofs
in the quantum setting are much harder and come with additional conditions limiting
their applicability. The question is: does this only reflect our lack of understanding of
the quantum setting, or are those additional conditions indeed necessary? Or could it be
that those classically secure constructions are actually insecure quantumly?

Our contribution. We show, relative to an oracle, that the answer is indeed yes:
• Sigma-protocols are not necessarily quantum proofs of knowledge, even if they are

classical proofs of knowledge. In particular, the strict soundness condition from
[32] is necessary. (Theorem 16)
• In the computational setting, sigma-protocols are not necessarily quantum argu-

ments, even if they are classical arguments. (Theorem 20)
• The Fiat-Shamir construction [19] for non-interactive proofs of knowledge in the

random oracle model does not give rise to quantum proofs of knowledge. And in
the computational setting, not even to quantum arguments. (Theorems 25 and 26)
• Fischlin’s non-interactive proof of knowledge in the random oracle model [20] is not a

quantum proof of knowledge. (This is remarkable because in contrast to Fiat-Shamir,
the classical security proof of Fischlin’s scheme does not use rewinding.) And in
the computational setting, it is not even an argument. (Theorems 28 and 29)
• Besides proof systems, we also have negative results for commitment schemes.

w for the statement s (i.e., the verifier learns nothing about the witness). A proof of knowledge is a proof
which additionally convinces the verifier that the prover could provide a witness w (i.e., not just the
mere existence of w is proven). Arguments and arguments of knowledge are like proofs and proofs of
knowledge, except that they are secure only against computationally limited provers.
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Underlying sigma-protocol Sig.-pr. used directly Fiat-Shamir Fischlin
zero- special strict

knowledge soundness soundness PoK proof PoK proof PoK proof

stat perf comp attack16 stat[37] attack25 ? attack28 ?
stat comp comp attack20 attack20 attack26 attack26 attack29 attack29

stat perf perf stat[32] stat[37] ? ? ? ?

Figure 1: Taxonomy of proofs of knowledge. For different combinations of security properties of the
underlying sigma-protocol (statistical (stat)/perfect (perf)/computational (comp)), is there an attack
in the quantum setting (relative to an oracle)? Or do we get a statistically/computationally secure
proof/proof of knowledge (PoK)? The superscripts refer to theorem numbers in this paper or to literature
references. Note that in all cases, classically we have at least computational security.

The usual classical definition of computationally binding commitments is that the
adversary cannot provide openings to two different values for the same commitment.
Surprisingly, relative to an oracle, there are computationally binding commitments
where a quantum adversary can open the commitment to any value he chooses (just
not to two values simultaneously). (Theorem 12)
• The results on commitments in turn allow us to strengthen the above results for

proof systems. While it is known that even in the quantum case, sigma-protocols
with so-called “strict soundness” (the third message is uniquely determined by
the other two) are proofs and proofs of knowledge [32], using the computational
variant of this property leads to schemes that are not even computationally secure.
(Theorems 16, 20, 25, 26, 28, and 29.)

Figure 1 gives an overview of the results relating to proofs of knowledge. Our main result
are the separations listed in the bullet points above. Towards that goal, we additionally
develop two tools that may be of independent interest in quantum cryptographic proofs:
• Section 4: We develop the “pick-one” trick, a technique for providing the adversary

with the ability to compute a value with a certain property, but not two of them.
(See “our technique” below.) This technique and the matching lower bound on the
adversary’s query complexity may be useful for developing further oracle separations
between quantum and classical security. (At least it gives rise to all the separations
listed above.)
• Section 3: We show how to create an oracle that allows us to create arbitrarily

many copies of a given state |Ψ〉, but that is not more powerful than having many
copies of |Ψ〉, even if queried in superposition. Again, this might be useful for other
oracle separations, too. (The construction of OΨ in Section 4 is an example for
this.)

Related work. Van der Graaf [36] first noticed that security definitions based on
rewinding might be problematic in the quantum setting. Watrous [37] showed how the
problems with quantum rewinding can be solved for a large class of zero-knowledge
proofs. Unruh [32] gave similar results for proofs of knowledge; however he introduced
the additional condition “strict soundness” and they did not cover the computational
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case (arguments and arguments of knowledge). Our work (the results on sigma-protocols,
Section 6) shows that these restrictions are not accidental: both strict soundness and
statistical security are required for the result from [32] to hold. Protocols that are secure
classically but insecure in the quantum setting were constructed before: [40] presented
classically secure pseudorandom functions that become insecure when the adversary is not
only quantum, but can also query the pseudorandom function in superposition. Similarly
for secret sharing schemes [16] and one-time MACs [9]. But, in all of these cases, the
negative results are shown for the case when the adversary is allowed to interact with
the honest parties in superposition. Thus, the cryptographic protocol is different in the
classical case and the quantum case. In contrast, we keep the protocols the same, with
only classical communication and only change adversary’s internal power (by allowing
it to be a polynomial-time quantum computer which may access quantum oracles). We
believe that this is the first such separation. Boneh, Dagdelen, Fischlin, Lehmann,
Schaffner, and Zhandry [8] first showed how to correctly define the random oracle in the
quantum setting (namely, the adversary has to have superposition access to it). For the
Fiat-Shamir construction (using random oracles as modeled by [8]), an impossibility result
was given by Dagdelen, Fischlin, and Gagliardoni [14]. However, their impossibility only
shows that security of Fiat-Shamir cannot be shown using extractors that do not perform
quantum rewinding;2 but such quantum rewinding is possible and used in the existing
positive results from [37, 32] which would also not work in a model without quantum
rewinding. A variant of Fiat-Shamir has been shown to be a quantum secure signature
scheme [14]. Probably their scheme can also be shown to be a quantum zero-knowledge
proof of knowledge.3 However, their construction assumes sigma-protocols with “oblivious
commitments”. These are a much stronger assumption that usual sigma-protocols: as
shown in [33, Appendix A], sigma-protocols with oblivious commitments are by themselves
already non-interactive zero-knowledge proofs in the CRS model (albeit single-theorem,
non-adaptive ones). [33] presents a non-interactive quantum zero-knowledge proof of
knowledge in the random oracle model, based on arbitrary sigma-protocols (it does not
even need strict soundness). That protocol uses ideas different from both Fiat-Shamir
and Fischlin’s scheme to avoid rewinding.

It was known for a long time that it is difficult to use classical definitions for
computational binding in the quantum setting ([17] is the first reference we are aware
of), but none showed so far that the computational definition was truly insufficient.

Our technique. The schemes we analyze are all based on sigma-protocols which
have the special soundness property: In a proof of a statement s, given two accepting
conversations (com, ch, resp) and (com, ch ′, resp′), one can efficiently extract a witness
for s. (The commitment com and the response resp are sent by the prover, and the

2They do allow extractors that restart the adversary with the same classical randomness from the
very beginning. But due to the randomness inherent in quantum measurements, the adversary will then
not necessarily reach the same state again. They also do not allow the extractor to use a purified (i.e.,
unitary) adversary to avoid measurements that introduce randomness.

3The unforgeability proof from [14] is already almost a proof of the proof of knowledge property. And
the techniques from [33] can probably be applied to show that the protocol form [14] is zero-knowledge.
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challenge ch by the verifier.) In the classical case, we can ensure that the prover cannot
produce one accepting conversation without having enough information to produce two.
This is typically proven by rewinding the prover to get two conversations. So in order to
break the schemes in the quantum case, we need to give the prover some information
that allows him to succeed in one interaction, but not in two.

To do so, we use the following trick (we call it the pick-one trick): Let S be a set of
values (e.g., accepting conversations). Give the quantum state |Ψ〉 := 1√

|S|

∑
x∈S |x〉 to

the adversary. Now the adversary can get a random x ∈ S by measuring |Ψ〉. However,
on its own that is not more useful than just providing a random x ∈ S. So in addition, we
provide an oracle that applies the unitary OF with OF |Ψ〉 = −|Ψ〉 and OF |Ψ⊥〉 = |Ψ⊥〉
for all |Ψ⊥〉 orthogonal to |Ψ〉. Now the adversary can use (a variant of) Grover’s
search starting with state |Ψ〉 to find some x ∈ S that satisfies a predicate P (x) of his
choosing, as long as |S|/|{x ∈ S : P (x)}| is polynomially bounded. Note however: once
the adversary did this, |Ψ〉 is gone, he cannot get a second x ∈ S.

How do we use that to break proofs of knowledge? The simplest case is attacking the
sigma-protocol itself. Assume the challenge space is polynomial. (I.e., |ch| is logarithmic.)
Fix a commitment com, and let S be the set of all (ch, resp) that form an accepting
conversation with com. Give com and |Ψ〉 to the malicious prover. (Actually, in the full
proof we provide an oracle OΨ that allows us to get |Ψ〉 for a random com.) He sends
com and receives a challenge ch ′. And using the pick-one trick, he gets (ch, resp) ∈ S
such that ch = ch ′. Thus sending resp will make the verifier accept.

This in itself does not constitute a break of the protocol. A malicious prover is
allowed to make the verifier accept, as long as he knows a witness. Thus we need to
show that even given |Ψ〉 and OF , it is hard to compute a witness. Given two accepting
conversations (com, ch, resp) and (com, ch ′, resp′) we can compute a witness. So we need
that given |Ψ〉 and OF , it is hard to find two different x, x′ ∈ S. We show this below
(under certain assumptions on the size of S, see Theorem 5, Corollary 8). Thus the
sigma-protocol is indeed broken: the malicious prover can make the verifier accept using
information that does not allow him to compute a witness. (The full counterexample
will need additional oracles, e.g., for membership test in S etc.) Counterexamples for the
other constructions (Fiat-Shamir, Fischlin, etc.) are constructed similarly. We stress that
this does not contradict the security of sigma-protocols with strict soundness [32]. Strict
soundness implies that there is only one response per challenge. Then |S| is polynomial
and it becomes possible to extract two accepting conversations from |Ψ〉 and OF .

The main technical challenge is to prove that given |Ψ〉 and OF , it is hard to find
two different x, x′ ∈ S. This is done using the representation-theoretic form of “quantum
adversary” lower bound method for quantum algorithms [2, 3]. The method is based on
viewing a quantum algorithm as a sequence of transformations on a bipartite quantum
system that consists of two registers: one register HA that contains the algorithm’s
quantum state and another register HI that contains the information which triples
(com, ch, resp) belong to S. The algorithm’s purpose is to obtain two elements x1, x2 ∈ S
using only a limited type of interactions betweeen HA and HI . (From a practical
perspective, a quantum register HI holding the membership information about S would
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be huge. However, we do not propose to implement such a register. Rather, we use it as
a tool to prove a lower bound which then implies a corresponding lower bound in the
usual model where S is accessed via oracles.)

We then partition the state-space of HI into subspaces corresponding to group
representations of the symmetry group of HI (the set of all permutations of triples
(com, ch, resp) that satisfy some natural requirements). Informally, these subspaces
correspond to possible states of algorithm’s knowledge about the input data: having no
information about any s ∈ S, knowing one value x ∈ S, knowing two values x1, x2 ∈ S
and so on.

The initial state in which the algorithm has |Ψ〉 corresponds to HI being in the state
“the algorithm knows one x ∈ S”. (This is very natural because measuring |Ψ〉 gives
one value x ∈ S and there is no way to obtain two values x ∈ S from this state with a
non-negligible probability.) We then show that each application of the available oracles
(such as OF and the membership test for S) can only move a tiny part of the state in HI
from the “the algorithm knows one x ∈ S” subspace of HI to the “the algorithm knows
two x ∈ S” subspace. Therefore, to obtain two values x1, x2 ∈ S, we need to apply the
available oracles a large number of times.

While the main idea is quite simple, implementing it requires a sophisticated analysis
of the representations of the symmetry group of HI and how they evolves when the
oracles are applied.

Actually, below we prove an even stronger result: We do not wish to give the state
|Ψ〉 as input to the adversary. (Because that would mean that the attack only works with
an input that is not efficiently computable, even in our relativized model.) Thus, instead,
we provide an oracle OΨ for efficiently constructing this state. But then, since the oracle
can be invoked arbitrarily many times, the adversary could create two copies of |Ψ〉, thus
easily obtaining two x, x′ ∈ S! Instead, we provide an oracle OΨ that provides a state
|ΣΨ〉 which is a superposition of many |Ψ〉 = |Ψ(y)〉 for independently chosen sets Sy.
Now the adversary can produce |ΣΨ〉 and using a measurement of y, get many states
|Ψ(y)〉 for random y’s, but no two states |Ψ(y)〉 for the same y. Taking these additional
capabilities into account complicates the proof further, as does the presence of additional
oracles that are needed, e.g., to construct the prover (who does need to be able to get
several x ∈ S).

On the meaning of oracle separations. At this point, we should say a few words
about what it implies that our impossibility results are relative to a certain oracle.
Certainly, our results do not necessarily imply that the investigated schemes are insecure
or unprovable in the “real world”, i.e., without oracles. However, our results give a number
of valuable insights. Foremost, they tell us which proof techniques cannot be used for
showing security of those schemes: only non-relativizing proofs can work. This cuts
down the search space for proofs considerable. Also, it shows that security proofs would
need new techniques; the proof techniques from [37, 32] at least are relativizing. And
even non-relativizing proof techniques such as (in the classical setting) [5] tend to use
specially designed (and more complicated) protocols than their relativizing counterparts,
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so our results might give some evidence that the specific protocols we investigate here
have no proofs at all, whether relativizing or non-relativizing. Furthermore, oracle-
based impossibilities can give ideas for non-oracle-based impossibilities. If we can find
computational problems that exhibit similar properties as our oracles, we might get
analogous impossibilities without resorting to oracles (using computational assumptions
instead).4 However, we should stress that even if we get rid of the oracles, our results do
not state that all sigma-protocols lead to insecure schemes. It would not be excluded
that, e.g., the graph-isomorphism sigma-protocol [22] is still a proof of knowledge. What
our approach aims to show is the impossibility of general constructions that are secure
for all sigma-protocols.

Finally, we mention one point that is important in general when designing oracle
separations in the quantum world: even relative to an oracle, the structural properties of
quantum circuits should not change. For example, any quantum algorithm (even one that
involves intermediate measurements or other non-unitary operations) can be replaced
by a unitary quantum circuit, and that unitary circuit can be reversed. If we choose
oracles that are not reversible, then we lose this property. (E.g., oracles that perform
measurements or that perform random choices are non-reversible.) So an impossibility
result based on such oracles would only apply in a world where quantum circuits are
not reversible. Thus for meaningful oracle separations, we need to ensure that: (a) all
oracles are unitary, and (b) all oracles have inverses. This makes some of the definitions
of oracles in our work (Definition 7) more involved than would be necessary if we had
used non-unitary oracles.

2 Preliminaries

Security parameter. As usual in cryptography, we assume that all algorithms are
parametric in a security parameter η. Furthermore, parameters of said algorithms can also
implicitly depend on the security parameter. E.g., if we say “Let ` be a superlogarithmic
integer. Then A(`) runs in polynomial time.”, then this formally means “Let ` be a
superlogarithmic function. Then the running time of A(η, `(η)) is a polynomially-bounded
function of η.”

Misc. x
$←M means that x is uniformly randomly chosen from the set M . x← A(y)

means that x is assigned the classical output of the (usually probabilistic or quantum)
algorithm A on input y.

Quantum mechanics. For space reasons, we cannot give an introduction to the
mathematics of quantum mechanics used here. We refer the reader to, e.g., [28]. A

4For example, [1] presents a construction that might allow to implement an analogue to the oracle OF .
Essentially, if the set S (called A in [1]) is a linear code, then they give a candidate for how to obfuscate
OF (called VA in [1]) such that one can apply OF but does not learn A. Of course, this does not give
us a candidate for how to construct the other oracles needed in this work, but it shows that the idea of
actually replacing our custom made oracles by computational assumptions may not be far fetched.
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quantum state is a vector of norm 1 in a Hilbert space, written |Ψ〉. Then 〈Ψ| is its
dual. TD(ρ, ρ′) denotes the trace distance between mixed states ρ, ρ′. We write short
TD(|Ψ〉, |Ψ′〉) for TD(|Ψ〉〈Ψ|, |Ψ′〉〈Ψ′|). SD(X;Y ) in contrast is the statistical distance
between random variables X and Y .

Oracles. We make heavy use of oracles in this paper. Formally, an oracle O is a unitary
transformation on some Hilbert space H. An oracle algorithm A with access to O (written
AO) is then a quantum algorithm which has a special gate for applying the unitary O.
O may depend on the security parameter. O may be probabilistic in the sense that at
the beginning of the execution, the unitary O is chosen according to some distribution
(like the random oracle in cryptography). However, O may not be probabilistic in the
sense that O, when queried on the same value twice, gives two different random answers
(like an encryption oracle for a probabilistic encryption scheme would). Such a behavior
would be difficult to define formally when allowing queries to O in superposition. When
defining O, we use the shorthand O(x) := f(x) to denote O|x, y〉 := O|x, y ⊕ f(x)〉. We
call an oracle of this form classical. Our classical algorithms will only access oracles of
this form. We stress that even for a classical oracle O, a quantum algorithm can query
O(x) in superposition of different x. We often give access to several oracles (O1,O2, . . . )
to an algorithm. This can be seen as a specific case of access to a single oracle by setting
O|i〉|Ψ〉 := |i〉 ⊗ Oi|Ψ〉.

In our setting, oracles are used to denote a relativised world in which those oracles
happen to be efficiently computable. If a unitary U is implemented by an efficient
quantum circuit, U † can also be implemented by an efficient quantum circuit. We would
expect this also to hold in a relativised setting. Thus for any oracle O, algorithms should
have access to their inverses, too. In our work this is ensured because all oracles defined
here are self-inverse (O = O†).

2.1 Security definitions

A sigma-protocol for a relation R is a three message proof system. It is described by
the lengths `com , `ch , `resp of the messages, a polynomial-time prover (P1, P2) and a
polynomial-time verifier V . The first message from the prover is com ← P1(s,w) with
(s,w) ∈ R and is called commitment , the uniformly random reply from the verifier

is ch
$← {0, 1}`ch (called challenge), and the prover answers with resp ← P2(ch) (the

response). We assume P1, P2 to share state. Finally V (s, com, ch, resp) outputs whether
the verifier accepts.

We will make use of the following standard properties of sigma-protocols. Note that
we have chosen to make the definition stronger by requiring honest entities (simulator,
extractor) to be classical while we allow the adversary to be quantum.

Definition 1 (Properties of sigma-protocols) Let (`com , `ch , `resp , P1, P2, V, R) be a
sigma-protocol. We define:

• Completeness: For all (s,w) ∈ R, Pr[ok = 0 : com ← P1(s,w), ch
$←

{0, 1}`ch , resp ← P2(ch), ok ← V (s, com, ch, resp)] is negligible.
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(Intuitively: an honestly generated proof succeeds for overwhelming probability.)
• Perfect special soundness: There is a polynomial-time classical algorithm
EΣ (the extractor) such that for any (s, com, ch, resp, ch ′, resp′) with ch 6= ch ′,
we have that Pr[(s,w) /∈ R ∧ ok = ok ′ = 1 : ok ← V (s, com, ch, resp), ok ′ ←
V (s, com, ch ′, resp′), w ← EΣ(s, com, ch, resp, ch ′, resp′)] = 0.
(Intuitively: given two valid interactions with the same commitment, one can
efficiently extract a witness.)
• Computational special soundness: There is a polynomial-time classical al-

gorithm EΣ (the extractor) such that for any polynomial-time quantum algo-
rithm A (the adversary), we have that Pr[(s,w) /∈ R ∧ ch 6= ch ′ ∧ ok =
ok ′ = 1 : (s, com, ch, resp, ch ′, resp′) ← A, ok ← V (s, com, ch, resp), ok ′ ←
V (s, com, ch ′, resp′), w ← EΣ(s, com, ch, resp, ch ′, resp′)] is negligible.
(Intuitively: given two valid interactions with the same commitment chosen by a
polynomial-time adversary, one can efficiently extract a witness with overwhelming
probability.)
• Statistical honest-verifier zero-knowledge (HVZK):5 There is a polynomial-

time classical algorithm SΣ (the simulator) such that for any (possibly unlimited)
quantum algorithm A and all (s, w) ∈ R, the following is negligible:∣∣Pr[b = 1 : com ← P1(s, w), ch

$← {0, 1}`ch , resp ← P2(ch), b← A(com, ch, resp)]

−Pr[b = 1 : (com, ch, resp)← S(s), b← A(com, ch, resp)]
∣∣

(Intuitively: An interaction between honest verifier and honest prover can be simu-
lated in polynomial-time without knowing the witness.)
• Strict soundness: For any (s, com, ch) and any resp 6= resp′ we have Pr[ok =

ok ′ = 1 : ok ← V (s, com, ch, resp), ok ′ ← V (s, com, ch, resp′)] = 0.
(Intuitively: Given the commitment and the challenge, there is at most one possible
accepted response.)
• Computational strict soundness:6 For any polynomial-time quantum algo-

rithm A (the adversary), we have that Pr[ok = ok ′ = 1 ∧ resp 6= resp′ :
(s, com, ch, resp, resp′) ← A, ok ← V (s, com, ch, resp), ok ′ ← V (s, com, ch, resp′)]
is negligible.
(Intuitively: Given the commitment and the challenge, it is computationally hard to
find more than one accepting response.)
• Commitment entropy: For all (s, w) ∈ R and com ← P1(s, w), the min-entropy

of com is superlogarithmic.
(Intuitively: the commitment produced by the prover cannot be guessed with more
than negligible probability.)

In a relativized setting, all quantum algorithms additionally get access to all oracles, and
all classical algorithms additionally get access to all classical oracles.

5In the context of this paper, HVZK is equivalent to zero-knowledge because our protocols have
logarithmic challenge length `ch [37].

6Also known as unique responses in [20].
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In this paper, we will mainly be concerned with proving that certain schemes are
not proofs of knowledge. Therefore, we will not need to have precise definitions of these
concepts; we only need to know what it means to break them.

Definition 2 (Total breaks) Consider an interactive or non-interactive proof system
(P, V ) for a relation R. Let LR := {s : ∃w.(s, w) ∈ R} be the language defined by R. A
total break is a polynomial-time quantum algorithm A such that the following probability
is overwhelming:

Pr[ok = 1 ∧ s /∈ LR : s← A, ok ← 〈A, V (s)〉]

Here 〈A, V (s)〉 denotes the output of V in an interaction between A and V (s). (Intu-
itively, the adversary performs a total break if the adversary manages with overwhelming
probability to convince the verifier V of a statement s that is not in the language LR.)

A total knowledge break is a polynomial-time quantum algorithm A such that for all
polynomial-time quantum algorithms E we have that:
• Adversary success: Pr[ok = 1 : s← A, ok ← 〈A, V (s)〉] is overwhelming.
• Extractor failure: Pr[(s, w) ∈ R : s← A,w ← E(s)] is negligible.

Here E has access to the final state of A. (Intuitively, the adversary performs a total
knowledge break if the adversary manages with overwhelming probability to convince the
verifier V of a statement s, but the extractor E cannot extract a witness w for that
statement.)

When applied to a proof system relative to an oracle O, both A and E get access to O.
In settings where R and O are probabilistic, the probabilities are averaged over all values
of R and O.

Note that these definitions of attacks are quite strong. In particular, A does not get
any auxiliary state. And A needs to succeed with overwhelming probability and make
the extraction fail with overwhelming probability. (Usually, proofs / proofs of knowledge
are considered broken already when the adversary has non-negligible success probability.)
Furthermore, we require A to be polynomial-time.

In particular, a total break implies that a proof system is neither a proof nor an
argument. And total knowledge break implies that it is neither a proof of knowledge nor
an argument of knowledge, with respect to all definitions the authors are aware of.7

3 State creation oracles

We first show a result that shows that having access to an oracle OΨ for creating copies
of an unknown state |Ψ〉 is not more powerful than having access to a reservoir state |R〉
of polynomially-many copies of |Ψ〉 (some of them in superposition with a fixed state
|⊥〉). (Such an oracle is, in our setting, implemented as OΨ|Ψ〉 = |⊥〉, OΨ|⊥〉 = |Ψ〉, and
is the identity on states orthogonal to |⊥〉, |Ψ〉.) We will need this later, because it allows

7Definitions that would not be covered would be such where the extractor gets additional auxiliary
input not available to the adversary. We are, however, not aware of such in the literature.
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us to assume in our proofs that the adversary has access to such a reservoir state instead
of access to the oracle OΨ. It turns out to be much easier to show that those reservoir
states do not help the adversary in solving the Two Values problem than it is to deal
directly with OΨ in the proof.

Note that the fact that OΨ is no more powerful than |R〉 is not immediate: OΨ can
be queried in superposition, and its inverse applied; this might give more power than
copies of the state |Ψ〉. In fact, we know of no way to generate, e.g., 1√

2
|Ψ〉+ 1√

2
|⊥〉 for

a given (known) state |⊥〉 and unknown |Ψ〉, even given many copies of |Ψ〉 (unless we
have enough copies of |Ψ〉 to determine a complete description of |Ψ〉 by measuring). Yet

1√
2
|Ψ〉+ 1√

2
|⊥〉 can be generated with a single query to OΨ.8 This is why our reservoir

|R〉 has to contain such superpositions in addition to pure states |Ψ〉.

Theorem 3 (Emulating state creation oracles) Let |Ψ〉 be a state, chosen accord-
ing to some distribution. Let |⊥〉 be a fixed state orthogonal to |Ψ〉. (Such a state can
always be found by extending the dimension of the Hilbert space containing |Ψ〉 and using
the new basis state as |⊥〉.) Let OΨ be an oracle with OΨ|Ψ〉 = |⊥〉, OΨ|⊥〉 = |Ψ〉,
and OΨ|Ψ⊥〉 = |Ψ⊥〉 for any |Ψ⊥〉 orthogonal to both |Ψ〉 and |⊥〉. Let O be an oracle,
not necessarily independent of |Ψ〉. Let |Φ〉 be a quantum state, not necessarily inde-
pendent of |Ψ〉. Let n,m ≥ 0 be integers. Let |R〉 := |Ψ〉⊗m ⊗ |α1〉 ⊗ · · · ⊗ |αn〉 where
|αj〉 := (cos jπ2n)|Ψ〉+ (sin jπ

2n)|⊥〉.
Let A be an oracle algorithm that makes qΨ queries to OΨ. Then there is an oracle

algorithm B that makes the same number of queries to O as A such that:

TD
(
BO(|R〉, |Φ〉), AOΨ,O(|Φ〉)

)
≤ πqΨ

2
√
n

+ qΨ o(
1√
n

) +
2qΨ√
m+ 1

≤ O
( qΨ√

n
+

qΨ√
m

)
.

The idea behind this lemma is the following: To implement OΨ, we need a way to
convert |⊥〉 into |Ψ〉 and vice versa. At the first glance this seems easy: If we have a
reservoir R containing |Ψ〉⊗n for sufficiently large n, we can just take a new |Ψ〉 from R.
And when we need to destroy |⊥〉, we just move it into R. This, however, does not work
because the reservoir R “remembers” whether we added or removed |Ψ〉 (because the
number of |Ψ〉’s in R changes). So if we apply OΨ to, e.g., 1√

2
|Ψ〉+ 1√

2
|0〉, the reservoir

R essentially acts like a measurement whether we applied OΨ to |Ψ〉 or |0〉.
To avoid this, we need a reservoir R in a state that does not change when we add

|Ψ〉 or |⊥〉 to the reservoir. Such a state would be |R∞〉 := |Ψ〉⊗∞ ⊗ |⊥〉⊗∞. If we add
or remove |Ψ〉 to an infinite state |Ψ〉⊗∞, that state will not change. Similarly for |⊥〉.
(The reader may be worried here whether an infinite tensor product is mathematically
well-defined or physically meaningful. We do not know, but the state |R∞〉 is only used
for motivational purposes, our final proof only uses finite tensor products.)

8For example, one can initialize a register with 1√
2
|⊥〉 + 1√

2
|0〉 where |0〉 is any fixed state guaranteed

to be (almost) orthogonal to |⊥〉 and |Ψ〉. Applying OΨ yields 1√
2
|Ψ〉 + 1√

2
|0〉. Finally, by applying the

fixed (and thus known) unitary U : |0〉 7→ |⊥〉, we get 1√
2
|Ψ〉 + 1√

2
|⊥〉.
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Thus we have a unitary operation S such that S|⊥〉|R∞〉 = |Ψ〉|R∞〉. Can we use
this operation to realize OΨ? Indeed, an elementary calculation reveals that the following
circuit implements OΨ on X when R,Z are initialized with |R∞〉, |0〉.

X U⊥
S

ORef
S†

U⊥

R

Z H • H • H • H • H • H

(1)

with U⊥ := 1− 2|⊥〉〈⊥|
and ORef := 1− 2|Ψ〉〈Ψ| (2)

Note that we have introduced a new oracle ORef here. We will deal with that oracle
later.

Unfortunately, we cannot use |R∞〉. Even if such a state should be mathematically
well-defined, the algorithm B cannot perform the infinite shift needed to fit in one more
|Ψ〉 into |R∞〉. The question is, can |R∞〉 be approximated with a finite state? I.e., is
there a state |R〉 such that S|⊥〉|R〉 ≈ |Ψ〉|R〉 for a suitable S? Indeed, such a state
exists, namely the state |R〉 from Lemma 41. For sufficiently large n, the beginning
of |R〉 is approximately |Ψ〉 ⊗ |Ψ〉 ⊗ |Ψ〉 ⊗ . . . , while the tail of |R〉 is approximately
· · · ⊗ |⊥〉 ⊗ |⊥〉 ⊗ |⊥〉. In between, there is a smooth transition. If S adds |⊥〉 to the end
and removes |Ψ〉 from the beginning of |R〉, the state still has approximately the same
form (this needs to be made quantitative, of course). That is, S is a cyclic left-shift on
|⊥〉|R〉.

Hence |R〉 is a good approximate drop-in replacement for |R∞〉, and the circuit (1)
approximately realizes OΨ when R,Z are initialized with |R〉, |0〉.

However, we now have introduced the oracle ORef . We need to show how to emulate
that oracle: ORef essentially implements a measurement whether a given state |Φ〉 is
|Ψ〉 or orthogonal to |Ψ〉. Thus to implement ORef , we need a way to test whether a
given state is |Ψ〉 or not. The well-known swap test [13] is not sufficient, because for |Φ〉
orthogonal to |Ψ〉, it gives an incorrect answer with probability 1

2 and destroys the state.
Instead, we use the following test that has an error probability O(1/m) given m copies
of |Ψ〉 as reference: Let |T 〉 := |Ψ〉⊗m. Let V be the space of all (m+ 1)-partite states
that are invariant under permutations. |Ψ〉|T 〉 is such a state, while for |Φ〉 orthogonal
to |Ψ〉, |Φ〉|T 〉 is almost orthogonal to V for large m (up to an error of O(1/m)). So by
measuring whether |Φ〉|T 〉 is in V , we can test whether |Φ〉 is |Ψ〉 or not (with an error
O(1/m)), and when doing so the state |T 〉 is only disturbed by O(1/m). We can thus
simulate any algorithm that uses ORef up to any inversely polynomial precision using a
sufficiently large state |T 〉.

We then get Theorem 3 by extending the state |R〉 to also contain |T 〉.

Formally, the theorem is an immediate consequence of Lemmas 41 and 42 in Ap-
pendix B.
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4 The pick-one trick

In this section, we first show a basic case of the pick-one trick which focusses on the
core query complexity aspects. In Section 4.1, we extend this by a number of additional
oracles that will be needed in the rest of the paper.

Definition 4 (Two values problem) Let X,Y be finite sets and let k ≤ |X| be a
positive integer. For each y ∈ Y , let Sy be a uniformly random subset of X of
cardinality k, let |Ψ(y)〉 :=

∑
x∈Sy |x〉/

√
k. Let |ΣΨ〉 =

∑
y∈Y |y〉|Ψ(y)〉/

√
|Y | and

|ΣΦ〉 =
∑

y∈Y,x∈X |y〉|x〉/
√
|Y | · |X|. The Two Values problem is to find y ∈ Y and

x1, x2 ∈ Sy such that x1 6= x2 given the following resources:

• one instance of the state
⊗h

`=1(α`,0|ΣΨ〉+ α`,1|ΣΦ〉), where h and the coefficients
α are independent of the Sy’s and are such that this state has unit norm;
• an oracle OV such that for all y ∈ Y , x ∈ X, OV (y, x) = 0 if x /∈ Sy and
OV (y, x) = 1 if x ∈ Sy.
• on oracle OF that, for all y ∈ Y , maps |y,Ψ(y)〉 to −|y,Ψ(y)〉 and, for any |Ψ⊥〉

orthogonal to |Ψ(y)〉, maps |y,Ψ⊥〉 to itself.

The two values problem is at the core of the pick-one trick : if we give an adversary
access to the resources described in Definition 4, he will be able to search for one x ∈ Sy
satisfying a predicate P (shown in Theorem 6 below). But he will not be able to find two
different x, x′ ∈ Sy (Theorem 5 below); we will use this to foil any attempts at extracting
by rewinding.

Theorem 5 (Hardness of the two values problem) Let A be an algorithm for the
Two Values problem that makes qV and qF queries to oracles OV and OF , respectively.
The success probability for A to find y ∈ Y and x1, x2 ∈ Sy such that x1 6= x2 is at most

O

(
h

|Y |1/2
+

(qV + qF )1/2k1/4

|X|1/4
+

(qV + qF )1/2

k1/4

)
.

That is, in order to get a constant success probability in finding x1, x2, one would
need at least h ∈ Ω(

√
|Y |) copies of the state |Ψ〉, or make Ω(min{

√
k,
√
|X|/k}) queries.

Or to put it differently, if
√
k and

√
|X|/k are both superpolynomial, a polynomial-time

adversary (who necessarily has polynomially-bounded h, qV , qF ) finds x1, x2 only with
negligible probability.

The proof uses the adversary-method from [2, 3] as described in the introduction and
is given in Appendices C and D. In Section 4.1 we extend this hardness result to cover
additional oracles.

Theorem 6 (Searching one value) Let Sy ⊆ X and OF ,OV be as in Definition 4.
There is a polynomial-time oracle algorithm E1 that on input |ΣΨ〉 returns a uniformly

random y ∈ Y and |Ψ(y)〉. There is a polynomial-time oracle algorithm E2 such that: For
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any δmin > 0, for any y ∈ Y , for any predicate P on X with |{x ∈ Sy : P (x) = 1}|/|Sy| ≥
δmin, and for any n ≥ 0 we have

Pr[x ∈ Sy ∧ P (x) = 1 : x← EOV ,OF ,P2 (n, δmin, y, |Ψ(y)〉)] ≥ 1− 2−n.

(The running time of E2 is polynomial-time in n, 1/δmin, |y|.)

This theorem is proven with a variant of Grover’s algorithm [23]: Using Grover’s
algorithm, we search for an x with P (x) = 1. However, we do not search over all x ∈ {0, 1}`
for some `, but instead over all x ∈ Sy. When searching over Sy, the initial state of
Grover’s algorithm needs to be

∑
x

1√
|Sy |
|x〉 = |Ψ(y)〉 instead of

∑
x 2−`/2|x〉 =: |Φ〉. And

the diffusion operator I−2|Φ〉〈Φ| needs to be replaced by I−2|Ψ(y)〉〈Ψ(y)|. Fortunately,
we have access both to |Ψ(y)〉 (given as input), and to I − 2|Ψ(y)〉〈Ψ(y)| (through the
oracle OF ). To get an overwhelming success probability, Grover’s algorithm is usually
repeated until it succeeds. (In particular, when the number of solutions is not precisely
known [11].) We cannot do that: we have only one copy of the initial state. Fortunately,
by being more careful in how we measure the final result, we can make sure that the
final state in case of failure is also a suitable initial state for Grover’s algorithm. The full
proof is given in Section E.1.

4.1 Additional oracles

In this section, we extend the hardness of the two values problem to cover additional
oracles that we will need in various parts of the paper.

Definition 7 (Oracle distribution) Fix integers `com , `ch , `resp (that may depend on
the security parameter) such that `com , `resp are superlogarithmic and `ch is logarithmic.
Let `rand := `com + `resp.

Let Oall = (OE ,OP ,OR,OS ,OF ,OΨ,OV ) be chosen according to the following distri-
bution:
• Let s0 be arbitrary but fixed (e.g., s0 := 0). Pick w0

$← {0, 1}`rand .
• Choose Sy, OV , OF as in Definition 4 with Y := {0, 1}`com and X := {0, 1}`ch ×
{0, 1}`resp and k := 2`ch+b`resp/3c.

• For each z ∈ {0, 1}`rand , pick y
$← Y and x

$← Sy, and set OS(z) := (y, x).
• Let |⊥〉 be a quantum state orthogonal to all |com, ch, resp〉 (i.e., we extend the

dimension of the space in which |ΣΨ〉 lives by one). OΨ|⊥〉 := |ΣΨ〉, OΨ|ΣΨ〉 :=
|⊥〉, and OΨ|Φ〉 := |Φ〉 for |Φ〉 orthogonal to |ΣΨ〉 and |⊥〉.
• Let OE(com, ch, resp, ch ′, resp′) := w0 iff (ch, resp), (ch ′, resp′) ∈ Scom ∧

(ch, resp) 6= (ch ′, resp′) and OE := 0 everywhere else.
• Let OR(s0, w0) := 1 and OR := 0 everywhere else.
• For each com ∈ {0, 1}`com , ch ∈ {0, 1}`ch , z ∈ {0, 1}`rand , let OP (w0, com, ch, z) be

assigned a uniformly random resp with (ch, resp) ∈ Scom . (Or ⊥ if no such resp
exists.) Let OP (w, ·, ·, ·) := 0 for w 6= w0.
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From these oracles, OP is later used to implement the prover in our sigma-protocols,
OE for the extractor, OR to test membership in the relation R, and OS to implement the
simulator. Notice that OS and OP get an additional input z that seems useless. However,
z is needed to get several independent answers from the oracle given otherwise equal
inputs (i.e., it emulates probabilistic behavior).

Note that both the relation R and the oracles are chosen randomly (but not indepen-
dently of each other). We will assume this implicitly in all further theorems. We could
also get a result relative to a fixed (i.e., non-probabilistic) relation and oracle by using
the probabilistic method. We omit the details from this work.

The following corollary is a strengthening of Theorem 5 to the oracle distribution
from Definition 7. For later convenience, we express the soundness additionally in terms
of guessing w0. Since the formula would become unwieldy, we do not give a concrete
asymptotic bound here. But such a bound can be easily derived from the inequalities
(50–57) in the proof.

Corollary 8 (Hardness of two values 2) Let Oall =
(OE ,OP ,OR,OS ,OF ,OΨ,OV ), w0 be as in Definition 7. Let A be an oracle al-
gorithm making at most qE , qP , qR, qS , qF , qΨ, qV queries to OE ,OP ,OR,OS ,OF ,OΨ,OV ,
respectively. Assume that qE , qP , qR, qS , qF , qV are polynomially-bounded (and `com , `resp

are superlogarithmic by Definition 7). Then:
(i) Pr[w = w0 : w ← AOall ] is negligible.

(ii) Pr[(ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom :
(com, ch, resp, ch ′, resp′)← AOall ] is negligible.

This corollary is shown by reduction to Theorem 5 (Hardness of the two values problem).
Given an adversary that violates (i), we remove step by step the oracles that are not
covered by Theorem 5. First, we remove the oracles OP ,OR. Those do not help
the adversary (much) to find w0 because OP and OR only give non-zero output if
their input already contains w0. Next we change A to output a collision (ch, resp) 6=
(ch ′, resp′)∧ (ch, resp), (ch ′, resp′) ∈ Scom instead of the witness w0; since w0 can only be
found by querying OE with such a collision, this adversary succeeds with non-negligible
probability, too. Furthermore, A then does not need access to OE any more since OE
only helps in finding w0. Next we get rid of OΨ: as shown in Theorem 3 (Emulating state

creation oracles), OΨ can be emulated (up to an inversely polynomial error) using (suitable
superpositions on) copies of the state |ΣΨ〉. Finally we remove OS : Using the “small
range distribution” theorem from [40], OS can be replaced by an oracle that provides
only a polynomial number of triples (com, ch, resp). Those triples the adversary can
produce himself by measuring polynomially-many copies of |ΣΨ〉 in the computational
basis. Thus we have shown that without loss of generality, we can assume an adversary
that only uses the oracles OF ,OV and (suitable superpositions of) polynomially-many
copies of |ΣΨ〉, and that tries to find a collision. But that such an adversary cannot find
a collision was shown in Theorem 5.

And (ii) is shown by observing that an adversary violating (i) leads to one violating
(ii) using one extra OE-query.

The full proof is given in Section E.2.
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5 Attacking commitments

In the classical setting, a non-interactive commitment scheme is usually called com-
putationally binding if it is hard to output a commitment and two different openings
(Definition 9 below). We now show that in the quantum setting, this definition is ex-
tremely weak. Namely, it may still be possible to commit to a value and then to open
the commitment to an arbitrary value (just not to two values at the same time).

Security definitions. To state this more formally, we define the security of commit-
ments: A non-interactive commitment scheme consists of algorithms COM,COMverify ,
such that (c, u)← COM(m) returns a commitment c on the message m, and an opening
information u. The sender then sends c to the recipient, who is not supposed to learn
anything about m. Only when the sender later sends m,u, the recipients learns m.
But, intuitively speaking, the sender should not be able to “change his mind” about m
after sending c (binding property). We require perfect completeness, i.e., for any m and
(c, u)← COM(m), COMverify(c,m, u) = 1 with probability 1. In our setting, c,m, u are
all classical.

Definition 9 (Computationally binding) A commitment scheme COM,COMverify

is computationally binding iff for any quantum polynomial-time algorithm A the following
probability is negligible:

Pr[ok = ok ′ = 1 ∧ m 6= m′ : (c,m, u,m′, u′)← A,

ok ← COMverify(c,m, u), ok ← COMverify(c,m′, u′)]

We will show below that this definition is not the right one in the quantum setting.
[32] also introduces a stronger variant of the binding property, called strict binding,

which requires that also the opening information u is unique (not only the message).
The results from [32] show that strict binding commitments can behave better under
rewinding, so perhaps strict binding commitments can avoid the problems that merely
binding commitments have? We define a computational variant of this property here:

Definition 10 (Computationally strict binding) A commitment scheme COM,
COMverify is computationally strict binding iff for any quantum polynomial-time al-
gorithm A the following probability is negligible:

Pr[ok = ok ′ = 1 ∧ (m,u) 6= (m′, u′) : (c,m, u,m′, u′)← A,

ok ← COMverify(c,m, u), ok ← COMverify(c,m′, u′)]

We will show below that this stronger definition is also not sufficient.

Definition 11 (Statistically hiding) A commitment scheme COM,COMverify is sta-
tistically hiding iff for all m1,m2 with |m1| = |m2| and ci ← COM(mi) for i = 1, 2, c1

and c2 are statistically indistinguishable.
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The attack. We now state the insecurity of computationally binding commitments.
The remainder of this section will prove the following theorem.

Theorem 12 (Insecurity of binding commitments) There is an oracle O and a
non-interactive commitment scheme COM,COMverify such that:
• The scheme is perfectly complete, computationally binding, computationally strict

binding, and statistically hiding.
• There is a quantum polynomial-time adversary B1, B2 such that for all m,

Pr[ok = 1 : c← B1(|m|), u← B2(m), ok ← COMverify(c,m, u)]

is overwhelming. (In other words, the adversary can open to a value m that he did
not know while committing.)

In the rest of this section, when referring to the sets Scom from Definition 7, we will
call them Sy and we refer to their members as x ∈ Sy. (Not (ch, resp) ∈ Scom .) In
particular, oracles such as OS will returns pairs (y, x), not triples (com, ch, resp), etc.

We construct a commitment scheme relative to the oracle Oall from Definition 7.
(Note: that oracle distribution contains more oracles than we need for Theorem 12.
However, we will need in later sections that our commitment scheme is defined relative
to the same oracles as the proof systems there.)

Definition 13 (Bad commitment scheme) Let biti(x) denote the i-th bit of x. We
define COM,COMverify as follows:

• COM(m): For i = 1, . . . , |m|, pick zi
$← {0, 1}`rand and let (yi, xi) :=

OS(zi). Let pi
$← {1, . . . , `ch + `resp}. Let bi := mi ⊕ bitpi(xi). Let c :=

(p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|) and u := (x1, . . . , x|m|). Output (c, u).
• COMverify(c,m, u) with c = (p1, . . . , pn, y1, . . . , yn, b1, . . . , bn) and u = (x1, . . . , xn):

Check whether |m| = n. Check whether OV (yi, xi) = 1 for i = 1, . . . , n. Check
whether bi = mi ⊕ bitpi(xi) for i = 1, . . . , n. Return 1 if all checks succeed.

For the results of the current section, there is actually no need for the values pi which
select which bit of xi is used for masking the committed bit mi. (E.g., we could always
use the least significant bit of xi.) But in Section 8 (attack on Fischlin’s scheme) we will
need commitments of this particular form to enable a specific attack where we need to
open commitments to certain values while simultaneously searching for these values in
the first place.

Lemma 14 (Properties of COM) The scheme from Definition 13 is perfectly complete,
computationally binding, computationally strict binding, and statistically hiding. (Relative
to Oall .)

The computational binding and computational strict binding property are a conse-
quence of Corollary 8 (Hardness of two values 2): to open a commitment to two different values,
the adversary would need to find one yi (part of the commitment) and two xi ∈ Syi (part
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of the two openings). Corollary 8 states that this only happens with negligible probability.
Statistical hiding follows from the fact that for each yi, there are superpolynomially many
xi ∈ Syi , hence bitpi(xi) is almost independent of yi.

The proof is given in Section F.1.

Lemma 15 (Attack on COM) There is a quantum polynomial-time adversary B1, B2

such that for all m,

εCOM := Pr[ok = 1 : c← B1(|m|), u← B2(m), ok ← COMverify(c,m, u)]

is overwhelming.

Basically, the adversary B1, B2 commits to a random commitment. And to unveil to
a message m, he needs to find values xi ∈ Syi with bitpi(xi) = mi ⊕ bi. Since half of all
xi have this property, such xi can be found using Theorem 6 (Searching one value).

The full proof is given in Appendix F.2.

Theorem 12 then follows immediately from Lemmas 14 and 15.

6 Attacking sigma-protocols

We will now show that in general, sigma-protocols with special soundness are not
necessarily proofs of knowledge. [32] showed that if a sigma-protocol additionally has
strict soundness, it is a proof of knowledge. It was left as an open problem whether that
additional condition is necessary. The following theorem resolves that open question by
showing that the results from [32] do not hold without strict soundness (not even with
computational strict soundness), relative to an oracle.

Theorem 16 (Insecurity of sigma-protocols) There is an oracle Oall and a rela-
tion R and a sigma-protocol relative to Oall with logarithmic `ch (challenge length),
completeness, perfect special soundness, computational strict soundness, and statistical
honest-verifier zero-knowledge for which there exists a total knowledge break.

In contrast, a sigma-protocol relative to Oall with completeness, perfect special sound-
ness, and statistical honest-verifier zero-knowledge is a classical proof of knowledge.

Note that a corresponding theorem with polynomially bounded `ch follows immediately
by parallel repetition of the sigma-protocol.

The remainder of this section will prove Theorem 16. As a first step, we construct
the sigma-protocol.

Definition 17 (Sigma-protocol) Let COM,COMverify be the commitment scheme
from Definition 13.9

9The commitment described there has the property that it is computationally binding, but still it is
possible for the adversary to open the commitment to any value, only not to several values at the same
time. The commitment is defined relative to the same oracle distribution as the sigma-protocol here,
which is why we can use it.
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Relative to the oracle distribution from Definition 7, we define the following sigma-
protocol (`com , `ch , `resp , P1, P2, V,R) for the relation R := {(s0, w0)}:
• P1(s, w) picks com

$← {0, 1}`com . For each ch ∈ {0, 1}`ch , he picks zch
$← {0, 1}`rand

and computes respch := OP (w, com, ch, zch) and (cch , uch)← COM(respch). Then
P1 outputs com∗ := (com, (cch)ch∈{0,1}`ch ).
• P2(ch) outputs resp∗ := (respch , uch).
• For com∗ = (com, (cch)ch∈{0,1}`ch ) and resp∗ = (resp, u), let
V (s, com∗, ch, resp∗) := 1 iff OV (com, ch, resp) = 1 and s = s0 and
COMverify(cch , resp, u) = 1.

The commitments cch are only needed to get computational strict soundness. A
slightly weaker Theorem 16 without computational strict soundness can be achieved
using the sigma-protocol from Definition 17 without the commitments cch ; the proofs
stay the same, except that the steps relating to the commitments are omitted.

Lemma 18 (Security of the sigma-protocol) The sigma-protocol from Defini-
tion 17 has: completeness, perfect special soundness, computational strict soundness,
statistical honest-verifier zero-knowledge, commitment entropy.

Perfect special soundness follows from the existence of the oracle OE . That oracle
provides the witness w0 given two accepting conversations, as required by perfect special
soundness. Computational strict soundness stems from the fact that the message com∗

contains commitments cch to all possible answers. Thus to break computational strict
soundness (i.e., to find two different accepting resp∗), the adversary would need to open
one of the commitments cch in two ways. This happens with negligible probability since
COM is computationally strict binding. Statistical honest-verifier zero-knowledge follows
from the existence of the oracle OS which provides simulations. (And the commitment
cch that are not opened can be filled with arbitrary values due to the statistical hiding
property of COM.)

The full proof is given in Appendix G.1.

Lemma 19 (Attack on the sigma-protocol) Assume that `ch is logarithmically
bounded. Then there exists a total knowledge break (Definition 2) against the sigma-
protocol from Definition 17.

To attack the sigma protocol, the malicious prover uses Theorem 6 (Searching one value)

to get a com and a corresponding state |Ψ(com)〉. Then, when receiving ch, he needs to
find (ch ′, resp) ∈ Scom with ch ′ = ch. Since an inversely polynomial fraction of (ch ′, resp)
satisfy ch ′ = ch (`ch is logarithmic), this can be done with Theorem 6. This allows the
prover to succeed in the proof with overwhelming probability. (He additionally needs
to open the commitments cch to suitably. This can be done using Lemma 15 (Attack on

COM).) However, an extractor that has the same information as the prover (namely,
access to the oracle Oall ) will fail to find w0 by Corollary 8 (Hardness of two values 2).

The full proof is given in Appendix G.2.
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Now Theorem 16 follows from Lemmas 18 and 19. (The fact that the sigma-protocol is
a classical proof of knowledge is shown in [15].)

Note that we cannot expect to get a total break (as opposed to a total knowledge
break): Since the sigma-protocol is a classical proof of knowledge, it is also a classical
proof. But a classical proof is also a quantum proof, because an unlimited classical
adversary can simulate a quantum adversary. However, this argument does not apply
when we consider computationally limited provers, see Section 6.1 below.

6.1 The computational case

We now consider the variant of the impossibility result from the previous section. Namely,
we consider sigma-protocols that have only computational security (more precisely, for
which the special soundness property holds only computationally) and show that these
are not even arguments in general (the results from the previous section only say that
they are not arguments of knowledge).

Theorem 20 (Insecurity of sigma-protocols, computational) There is an oracle
Oall and a relation R′ and a sigma-protocol relative to Oall with logarithmic `ch (challenge
length), completeness, computational special soundness, and statistical honest-verifier
zero-knowledge for which there exists a total break.

In contrast, a sigma-protocol relative to Oall with completeness, computational special
soundness, and statistical honest-verifier zero-knowledge is a classical argument.

Note that a corresponding theorem with polynomially bounded `ch follows immediately
by parallel repetition of the sigma-protocol. The remainder of this section is dedicated to
proving Theorem 20.

Definition 21 (Sigma-protocol, computational) We define a sigma-protocol
(`com , `ch , `resp , P1, P2, V,R

′) as in Definition 17, except that the relation is R′ := ∅.

Lemma 22 (Security of the sigma-protocol, computational) The sigma-protocol
from Definition 21 has: completeness. computational special soundness. computational
strict soundness. statistical honest-verifier zero-knowledge. commitment entropy.

Most properties are either immediate or shown as in Lemma 18 (Security of the sigma-

protocol). However, perfect special soundness does not hold for the sigma-protocol from
Definition 21: There exist pairs of accepting conversations (ch, resp), (ch ′, resp′) ∈ Scom .
But these do not allow us to extract a valid witness for s0 (because R′ = ∅, so no
witnesses exist). However, we have computational special soundness: by Corollary 8
(Hardness of two values 2), it is computationally infeasible to find those pairs of conversations.

The full proof is given in Appendix G.3.

Lemma 23 (Attack on the sigma-protocol, computational) Assume that `ch is
logarithmically bounded. Then there exists a total break (Definition 2) against the sigma-
protocol from Definition 21.
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In this lemma, we use the same malicious prover as in Lemma 19 (Attack on the sigma-

protocol). That adversary proves the statement s0. Since R′ = ∅, that statement is not in
the language, thus this prover performs a total break.

The full proof is given in Appendix G.4.

Now Theorem 20 follows from Lemmas 22 and 23. (And sigma-protocols with compu-
tational special soundness are arguments of knowledge and thus arguments; we are not
aware of an explicit write-up in the literature, but the proof from [15] for sigma-protocols
with special soundness applies to this case, too.)

7 Attacking Fiat-Shamir

Definition 24 (Fiat-Shamir) Fix a sigma-protocol (`com , `ch , `resp , P1, P2, V,R) and
an integer r > 0. Let H : {0, 1}∗ → {0, 1}r·`ch be a random oracle. The Fiat-Shamir
construction (PFS , VFS ) is the following non-interactive proof system:
• Prover PFS (s,w): For (s,w) ∈ R, invoke comi ← P1(s,w) for i = 1, . . . , r. Let

ch1‖ . . . ‖chr := H(s, com1, . . . , comr). Invoke respi ← P2(chi). Return π :=
(com1, . . . , comr, resp1, . . . , respr).
• Verifier VFS (s, (com1, . . . , comr, resp1, . . . , respr)): Let ch1‖ . . . ‖chr :=
H(s, com1, . . . , comr). Check whether V (s, comi, chi, respi) = 1 for all i = 1, . . . , r.
If so, return 1.

Theorem 25 (Insecurity of Fiat-Shamir) There is an oracle Oall and a relation R
and a sigma-protocol relative to Oall with logarithmic `ch (challenge length), completeness,
perfect special soundness, computational strict soundness, statistical honest-verifier zero-
knowledge, and commitment entropy, such that there is total knowledge break on the
Fiat-Shamir construction.

In contrast, the Fiat-Shamir construction based on a sigma-protocol with the same
properties is a classical argument of knowledge (assuming that r`ch is superlogarithmic).

As the underlying sigma-protocol, we use the one from Definition 17. The attack on
Fiat-Shamir is analogous to that on the sigma-protocol itself. The only difference is that
the challenge ch now comes from H and not from the verifier; this does not change the
attack strategy.

The full proof is given in Appendix H.1.

7.1 The computational case

Again, we get even stronger attacks if the special soundness holds only computationally.
Theorem 26 (Insecurity of Fiat-Shamir, computational) There is an oracle Oall

and a relation R and a sigma-protocol relative to Oall with logarithmic `ch (challenge
length), completeness, computational special soundness, computational strict soundness,
statistical honest-verifier zero-knowledge, and commitment entropy, such that there is a
total break on the Fiat-Shamir construction.
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In contrast, the Fiat-Shamir construction based on a sigma-protocol with the same
properties is a classical argument of knowledge (assuming that r`ch is superlogarithmic).

The proof is along the lines of those of Theorem 25 and Lemma 23 and given in
Appendix H.2.

8 Attacking Fischlin’s scheme

In the preceding sections we have used the pick-one trick to give negative results for
the (knowledge) soundness of sigma protocols and of the Fiat-Shamir construction.
Classically, both protocols are shown sound using rewinding. This leads to the conjecture
that the pick-one trick is mainly useful for getting impossibilities for protocols with
rewinding-based security proofs. Yet, in this section we show that this is not the case;
we use the pick-one trick to give an impossibility result for Fischlin’s proof system with
online-extractors [20]. The crucial point of that construction is that in the classical
security proof, no rewinding is necessary. Instead, a witness is extracted by passively
inspecting the list of queries performed by the adversary.

Definition 27 (Fischlin’s scheme) Fix a sigma-protocol (`com , `ch , `resp , P1, P2, V, R).
Fix integers b, r,S, t such that br and 2t−b are superlogarithmic, b, r, t are logarithmic,
S ∈ O(r) (S = 0 is permitted), and b ≤ t ≤ `ch .

Let H : {0, 1}∗ → {0, 1}b be a random oracle. Fischlin’s construction (PFis , VFis) is
the non-interactive proof system is defined as follows:
• PFis(s,w): See [20]. (Omitted here since we only need to analyze VFis for our

results.)
• VFis(s, π) with π = (comi, chi, respi)i=1,...,r: Check if V (comi, chi, respi) = 0 for

all i = 1, . . . , r. Check if
∑r

i=1H(x, (comi)i, i, chi, respi) ≤ S (where H(. . . ) is
interpreted as a binary unsigned integer). If all checks succeed, return 1.

The idea (in the classical case) is that, in order to produce triples (comi, chi, respi)
that make H(x, (comi)i, i, chi, respi) sufficiently small, the prover needs try out several
accepting chi, respi for each comi. So with overwhelming probability, the queries made
to H will contain at least two chi, respi for the same comi. This then allows extraction
by just inspecting the queries.

In the quantum setting, this approach towards extraction does not work: the “list of
random oracle queries” is not a well-defined notion, because the argument of H is not
measured when a query is performed. In fact, we show that Fischlin’s scheme is in fact
not an argument of knowledge in the quantum setting (relative to an oracle):

Theorem 28 (Insecurity of Fischlin’s construction) There is an oracle Oall and
a relation R and a sigma-protocol relative to Oall with logarithmic `ch (challenge length),
completeness, perfect special soundness, computational strict soundness, statistical honest-
verifier zero-knowledge, and commitment entropy, such that there is a total knowledge
break of Fischlin’s construction.
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In contrast, Fischlin’s construction based on a sigma-protocol with the same properties
is a classical argument of knowledge.

As the underlying sigma-protocol, we use the one from Definition 17. The basic idea
is that the malicious prover finds conversations (com∗i , chi, resp∗i ) by first fixing the values
com∗i , and then using Theorem 6 to find ch, resp∗ where resp∗i contains respi such that
(chi, respi) ∈ Scomi and H(x, (com∗i )i, i, chi, resp∗i ) = 0. If resp∗i would not additionally
contain commitments cch (see Definition 17), this would already suffice to break Fischlin’s
scheme. To additionally make sure we can open the commitments to the right value, we
use a specific fixpoint property of COM. See the full proof (Appendix I.1) for details.

8.1 The computational case

Theorem 29 (Insecurity of Fischlin’s construction, computational) There is
an oracle Oall and a relation R and a sigma-protocol relative to Oall with logarithmic `ch

(challenge length), completeness, computational special soundness, computational strict
soundness, statistical honest-verifier zero-knowledge, and commitment entropy, such that
there is a total break on Fischlin’s construction.

In contrast, Fischlin’s construction based on a sigma-protocol with the same properties
is a classical argument of knowledge.

The proof is given in Appendix I.2.

Fischlin’s scheme with strict soundness. We conjecture that Theorems 28 and 29
even hold with strict soundness instead of computational strict soundness. We sketch our
reasoning: Consider a variant of the oracle distribution from Definition 7, in which `ch is
superlogarithmic (not logarithmic) and in which the sets Scom are chosen uniformly at
random from all sets S which satisfy ∀ch∃1resp.(ch, resp) ∈ S. Note that the results from
Sections 5–7 do not hold in this setting, because ch must be polynomially-bounded to
show the existence of successful adversaries. (Namely, when Theorem 6 (Searching one value)

is invoked, the predicate P is true on a 2−`ch fraction of the all values.) But the proofs
of Lemma 50 (Attack on Fischlin’s construction) and Lemma 51 (Attack on Fischlin’s construction,

computational) do not require this. We conjecture that Corollary 8 still holds in this
modified setting (the cardinality of the Scom satisfies the conditions of Corollary 8, but
the Scom have additional structure). Then the sigma-protocols from Definitions 17 and 21
(without the commitments cch) will still have the properties shown in Lemmas 18 and 22,
but additionally they will have strict soundness because for any com, ch, there exists
only one resp such that (ch, resp) ∈ Scom .

We leave the proof that Corollary 8 holds even for sets Scom with
∀ch∃1resp.(ch, resp) ∈ Scom as an open problem.
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PhD thesis, Départment d’informatique et de r.o., Université de Montréal, 1998.
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response, 5

(in sigma-protocol), 9
responses

unique, 10

security parameter, 8
sigma-protocol, 9
soundness

computational special (of sigma-
protocol), 10

computational strict, 10
special (of sigma protocol), 10
strict, 10

special soundness
(of sigma protocol), 10
computational (of sigma-protocol), 10

state
quantum, 9

statistical distance, 9
statistically hiding, 17
strict binding

computationally, 17
strict soundness, 10

computational, 10

total break, 11
knowledge, 11

total knowledge break, 11
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trace distance, 9

two values problem, 14

unique responses, 10

values problem
two, 14

zero-knowledge
honest-verifier (of sigma-protocol), 10

A Auxiliary lemmas

Lemma 30
√

2
(
1− (cos π

2n)n
)
∈ π

2
√
n

+ o( 1√
n

).

Proof. By Taylor’s theorem, for x→ 0,

cosx ∈ 1− x2

2 +O(x4), (3)

ln(1− x) ∈ −x+O(x2), (4)

ex ∈ 1 + x+O(x2). (5)

Hence for n→∞,

ln cos π
2n

(3)

∈ ln
(
1− π2

8n2 +O(n−4)
) (4)

⊆ − π2

8n2 +O(n−4).

Hence

2n
(

1−
(
cos π

2n

)n) ∈ 2n
(

1− en
(
− π2

8n2 +O(n−4)
)) (5)

⊆ 2n
(
π2

8n +O(n−2)
)
⊆ π2

4 + o(1).

Thus √
n ·
√

2
(
1− (cos π

2n)n
)
∈ π

2 + o(1)

and √
2
(
1− (cos π

2n)n
)
∈ π

2
√
n

+ o( 1√
n

). �

Lemma 31 Let X be a set. Let P ⊆ X be a set. Let S ⊆ X be uniformly random with
|S| = k. Let ϕ := |P |/|X|. Let δmin ∈ [0, ϕ]. Then

Pr
[ |P ∩ S|
|S|

< δmin

]
≤ e−2k(ϕ−δmin)2

.

Proof. Let N := |X|. Let δ := |P ∩ S|/|S|. We can describe the choice of S as sampling
k elements xi ∈ X without replacement. Let Xi := 0 if xi ∈ P and Xi := 1 else. Then
1− δ =

∑k
i=1Xi/k. And the Xi result from sampling k elements without replacement

from a population C consisting of (1− ϕ)N ones and ϕN zeros. Note that µ := 1− ϕ is
the expected value of each Xi. Thus we get

Pr[δ < δmin] ≤ Pr[1− δ ≥ 1− δmin] = Pr
[∑

Xi
k ≥ 1− δmin

]
= Pr

[∑
Xi
k − µ ≥ ϕ− δmin

] (∗)
≤ e−2k(ϕ−δmin)2

.
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Here (∗) uses Hoeffding’s inequality [24] (and the fact that 0 ≤ t ≤ 1−µ for t := ϕ−δmin).
Note that Hoeffding’s inequality also holds in the case of sampling without replacement,
see [24, Section 6]. �

Lemma 32 Let X be a finite and Y a countable set. Let D be a distribution over Y .
Let H 1

2
(D) denote the Rényi entropy of order 1/2 of D. For each x ∈ X, let O(x) be an

independently chosen y ← D. Let y1 ← D, and y2 := O(x) for x
$← X. Then

SD
(
(O, y1); (O, y2)

)
≤ 1

2
√
|X|

2
1
2
H 1

2
(D) ≤ 1

2

√
|Y |/|X|.

(I.e., we bound the statistical distance between an element y1 chosen according to D, and
an element y2 chosen by evaluating O on a random input, when the function O is known.)

Proof. Let n := |X|. For a function f : X → Y , let Df denote the empirical distribution
of f , i.e., Df (y) = 1

n |{x : f(x) = y}|. Let j(f) := 2 SD(D,Df ). And let Jn := j(O),
i.e., Jn is a real-valued random variable. Then [6, Lemma 8] proves that E[Jn] ≤

1√
n

∑
y∈Y

√
D(y) =: γ. Since H 1

2
(D) = 1

1− 1
2

log
(∑

y∈Y D(y)
1
2

)
by definition, we have

γ = 1√
n

2
1
2
H 1

2
(D)

. Since H1/2(D) ≤ log |Y | for any distribution D on Y , we furthermore

have γ ≤ 1√
n

2
1
2

log |Y | =
√
|Y |/|X|. Let SD(y1, y2|E) denote the statistical distance

between y1 and y2 conditioned on an event E. We can finally compute:

SD
(
(O, y1); (O, y2)

)
=

∑
f :X→Y

Pr[O = f ] · SD(y1, y2|O = f)

=
∑

f :X→Y
Pr[O = f ] · SD(D,Df ) =

∑
f :X→Y

Pr[O = f ] · 1
2j(f) = 1

2 E[Jn] ≤ 1
2γ. �

Lemma 33 Let bitp(x) denote the p-th bit of x. Let X = {0, 1}` for some `, and k ≥ 1,

p ∈ {1, . . . , `} be integers. Let S ⊆ X be uniformly random with |S| = k. Let x
$← S. Let

b∗
$← {0, 1}. Then SD

(
(S, bitp(x)); (S, b∗)

)
≤ 1/2

√
k.

Proof. Let P := {x ∈ S : bitp(x) = 1}. Let SD(X;Y |S) denote the statistical distance
between X and Y conditioned on a specific choice of S. And Pr[S] denote the probability
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of a specific choice of S. Then

SD
(
(S, bitp(x)); (S, b∗)

)
=
∑
S

Pr[S] SD(bitp(x); b∗|S)

=
∑
S

Pr[S] ·
∣∣∣Pr[x ∈ P : x

$← S]− Pr[b∗ = 1 : b∗
$← {0, 1}]

∣∣∣
=
∑
S

Pr[S] ·
∣∣∣ |P ||S| − 1

2

∣∣∣ (∗)
≤
√∑

S

Pr[S]
(
|P |
|S| −

1
2

)2
=

√
E
[( |P |
|S| −

1
2

)2]
=

√
E
[(
|P |
|S| − E

[
|P |
|S|

])2]
=
√

Var
[
|P |/|S|

](∗∗)
= 1

k

√
Var
[
|P |
]
.

Here (∗) uses Jensen’s inequality. And (∗∗) that |S| = k.
|P | is the number of successes when sampling k times without replacement from a

population of size 2` containing 2`−1 successes (the elements x ∈ {0, 1}` with bitp(x) = 1).
That is, |P | has hypergeometric distribution with parameters m = n = 2`−1 and N := k
(in the notation of [38]). Thus (see [38]):

Var
[
|P |
]

=
mnN(m+ n−N)

(m+ n)2(m+ n− 1)
= 1

4k
2` − k
2` − 1

≤ k
4 .

Summarizing,

SD
(
(S, bitp(x)); (S, b∗)

)
≤ 1

k

√
Var
[
|P |
]
≤ 1

k

√
k/4 =

1

2
√
k
. �

Lemma 34 Let C and R be finite sets, let k ≥ 1 be an integer. Let S be a uniformly

chosen subset of C ×R with |S| = k. Let c′
$← C, and r

$← S|c′ := {r : (c′, r) ∈ S} (with

r := ⊥ /∈ R iff S|c′ = ∅). Let (c′′, r′′)
$← S.

Then σ := SD
(
(S, c′, r′); (S, c′′, r′′)

)
≤ 2k2

|C×R| +

√
|C|

2
√
k

.

Proof. In the following calculation, G
ε
≈ H means that the distribution of (S, c) when

picked according to G has statistical distance ≤ ε from the distribution of (S, c) when

picked according to H. And G ≡ H means equality of these distributions (G
0
≈ H). And

[C ×R]k denotes the set of all S ⊆ C ×R with |S| = k. And x1, . . . , xk
6=←M means that
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the xi are chosen uniformly but distinctly from M (drawn without replacing).

S
$← [C ×R]k, (c, r)

$← S

≡ F (1), . . . , F (k)
6=← C ×R, S := imF, j

$← {1, . . . , k}, (c, r) := F (j)
ε1≈ F (1), . . . , F (k)

$← C ×R, S := imF, j
$← {1, . . . , k}, (c, r) := F (j)

≡ F1(1), . . . , F1(k)
$← C, F2(1), . . . , F2(k)

$← R, S := im((F1, F2)),

j
$← {1, . . . , k}, c := F1(j), r := F2(j)

≡ F1(1), . . . , F1(k)
$← C, j

$← {1, . . . , k}, c := F1(j),

F2(1), . . . , F2(k)
$← R, S := im((F1, F2))

ε2≈ F1(1), . . . , F1(k)
$← C, c

$← C, F2(1), . . . , F2(k)
$← R, S := im(F1, F2)

≡ F (1), . . . , F (k)
$← C ×R, S := imF, c

$← C
ε1≈ F (1), . . . , F (k)

6=← C ×R, S := imF, c
$← C

≡ S $← [C ×R]k, c
$← C

Here ε1 is the probability that at least two independently chosen F (i)
$← C×R are equal,

and ε2 = SD
(
(F1, c); (F1, u)

)
for u

$← C.
Thus SD

(
(S, c′); (S, c′′)

)
≤ 2ε1 + ε2. Since r′ given S, c′ has the same distribution as

r′′ given S, c′′, it follows

SD
(
(S, c′, r′); (S, c′′, r′′)

)
≤ 2ε1 + ε2. (6)

We have ε1 ≤
∑

i 6=j Pr[F (i) = F (j)] =
∑

i 6=j 1/|C ×R| ≤ k2/|C ×R|.
For a function f : {1, . . . , k} → C, let Df denote the empirical distribution of f , i.e.,

Df (c) = 1
k

∣∣{i : f(i) = c}
∣∣. Let U denote the uniform distribution on C. Let j(f) :=

2 SD(U ,Df ). And let Jk := j(F1) for F1(1), . . . , F1(k)
$← C, i.e., Jk is a real-valued

random variable. Then [6, Lemma 8] proves that E[Jk] ≤ 1√
k

∑
c∈C

√
U(c) =

√
|C|/k.

Then

ε2 = SD
(
(F1, c); (F1, u)

)
=
∑
f

Pr[F1 = f ] · SD(Df ,U)

=
∑
f

Pr[F1 = f ] · 1
2j(f) = 1

2 E[Jk] ≤ 1
2

√
|C|/k.

With (6), the lemma follows. �

We restate an auxiliary lemma from [35, full version, Lemma 7]:

Lemma 35 Let |Ψ1〉, |Ψ2〉 be quantum states that can be written as |Ψi〉 = |Ψ∗i 〉+ |Φ∗〉
where both |Ψ∗i 〉 are orthogonal to |Φ∗〉. Then TD(|Ψ1〉, |Ψ2〉) ≤ 2‖|Ψ∗2〉‖.

Lemma 36 Let |Ψ1〉, |Ψ2〉 be quantum states. Then TD(|Ψ1〉, |Ψ2〉) ≤
∥∥|Ψ1〉 − |Ψ2〉

∥∥.
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Proof. Fix a basis such that |Ψ1〉 = |0〉 and |Ψ2〉 = α|0〉+ β|1〉. Then |α|2 + |β|2 = 1 and

TD(|Ψ1〉, |Ψ2〉)2
(∗)
≤ 1− |〈Ψ1|Ψ2〉|2 = 1− |α|2 = |β|2 ≤ |1− α|2 + |β2| =

∥∥|Ψ1〉 − |Ψ2〉
∥∥2
.

Here (∗) uses that the trace distance is bounded in terms of the fidelity (e.g., [28, (9.101)]).
Thus TD(|Ψ1〉, |Ψ2〉) ≤

∥∥|Ψ1〉 − |Ψ2〉
∥∥. �

Lemma 37 (Preimage search in a random function) Let γ ∈ [0, 1]. Let Z be a
finite set. Let q ≥ 0 be an integer. Let F : Z → {0, 1} be the following function: For
each z, F (z) := 1 with probability γ, and F (z) := 0 else. Let N be the function with
∀z : N(z) = 0.

If an oracle algorithm A makes at most q queries, then∣∣∣Pr[b = 1 : b← AF ]− Pr[b = 1 : b← AN ]
∣∣∣ ≤ 2q

√
γ.

Proof. We can assume that A uses three quantum registers A,K, V for its state, oracle
inputs, and oracle outputs. For a function f , let Of |a, k, v〉 := |a, k, v ⊕ f(k)〉. Then the
final state of Af () is (UOf )q|Ψ0〉 for some unitary U and some initial state |Ψ0〉. The
output b of Af is then obtained by obtained by performing a projective measurement
Pfinal on that final state.

Let |Ψi
f 〉 := (UOf )i|Ψ0〉 and |Ψi〉 := (UON )i|Ψ0〉 = U i|Ψ0〉. (Recall: N is the

constant-zero function.)
We compute:

Df
i := TD(|Ψi

f 〉, |Ψi〉) = TD(Of |Ψi−1
f 〉, |Ψ

i−1〉)

≤ TD(Of |Ψi−1
f 〉, Of |Ψ

i−1〉) + TD(Of |Ψi−1〉, |Ψi−1〉)

= Df
i−1 + TD(Of |Ψi−1〉, |Ψi−1〉).

Furthermore Df
0 = TD(|Ψ0〉, |Ψ0〉) = 0, thus Df

q ≤
∑q−1

i=0 TD(Of |Ψi〉, |Ψi〉).
Let Qz be the projector projecting K onto |z〉 (i.e., Qz = I ⊗ |z〉〈z| ⊗ I). Qf is

the projector projecting K onto all |z〉 with f(z) = 1 (i.e., Qf =
∑

z:f(z)=1Qz). Let
αf := Pr[F = f ].

We then have∑
f

αf
∥∥Qf |Ψi〉

∥∥2 (∗)
=
∑
f

αf
∑

z:f(z)=1

∥∥Qz|Ψi〉
∥∥2

=
∑
z∈Z

∑
f :f(x)=1

αf
∥∥Qz|Ψi〉

∥∥2

(∗∗)
= λ

∑
z

∥∥Qz|Ψi〉
∥∥2

= λ
∥∥|Ψi〉

∥∥2
= λ. (7)

Here (∗) uses that Qf =
∑

z:f(z)=1Qz and all Qz|Ψi〉 are orthogonal. And (∗∗) uses that∑
f :f(x)=1 αf = Pr[F (x) = 1] = λ.
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Then ∑
f

αf TD(|Ψq
f 〉, |Ψ

q〉) =
∑
f

αfD
f
q ≤

∑
f,i

αf TD(Of |Ψi〉, |Ψi〉)

=
∑
f,i

αf TD
(
OfQf |Ψi〉+ (1−Qf )|Ψi〉, Qf |Ψi〉+ (1−Qf )|Ψi〉

)
(∗)
≤
∑
f,i

αf2‖Qf |Ψi〉‖
(∗∗)
≤ 2

∑
i

√∑
f

αf‖Qf |Ψi〉‖2

(7)
= 2

∑
i

√
λ = 2q

√
λ. (8)

Here (∗) uses Lemma 35. And (∗∗) uses Jensen’s inequality. Finally,∣∣∣Pr[b = 1 : b← AF ]− Pr[b = 1 : b← AN ]
∣∣∣

≤
∑
f

αf

∣∣∣Pr[b = 1 : b← Af ]− Pr[b = 1 : b← AN ]
∣∣∣

≤
∑
f

αf TD(|Ψq
f 〉, |Ψ

q〉)
(8)

≤ 2q
√
λ. �

The following lemma formalizes that an oracle O1 does not help (much) in finding a value
w if O1 only gives answers when w is already contained in its input.

Lemma 38 (Removing redundant oracles 1) Let w, O1, O2 be chosen according to
some joint distribution. Here w is a bitstring, and O1,O2 are oracles, and O1 is classical
(i.e., ∀x, y.∃y′.O1|x〉|y〉 = |x〉|y′〉). Fix a function f . Assume that for all x with f(x) 6= w,
O1(x) = 0. (In other words, O1|x〉|y〉 = |x〉|y〉 for f(x) 6= w.)

Let A be an oracle machine that makes at most q queries to O1 and q′ queries to O2.
Then there is another oracle machine Â that makes at most q′ queries to O2 such that:

Pr[w = w′ : w′ ← AO1,O2 ] ≤ 2(q + 1)

√
Pr[w′ = w : w′ ← ÂO2 ]

Proof. We can assume that A is unitary until the final measurement of its output.
Then the final state of A before that measurement is |Ψ∗〉 := (U2O1)qU2|Ψ〉 for some
unitary U2 depending only on O2, and O1 operating on quantum registers K,V for
oracle input and output, and |Ψ〉 being some initial state independent of O1,O2, w. Let
|Ψi〉 := (U2O1)q−iU i+1

2 |Ψ〉. Note that |Ψ0〉 = |Ψ∗〉. Let PX :=
∑

x:f(x)=w |x〉〈x| ⊗ I and

P̄X := 1−PX . Note that since O1|x〉|y〉 = |x〉|y〉 for f(x) 6= w, we have O1 = O1PX + P̄X .
We have for i = 1, . . . , q:

TD(|Ψi−1〉, |Ψi〉) = TD
(
(U2O1)q−i(U2O1)U i2|Ψ〉, (U2O1)q−iU2U

i
2|Ψ〉

)
= TD(O1U

i
2|Ψ〉, U i2|Ψ〉)

= TD
(
O1PXU

i
2|Ψ〉+ P̄XU

i
2|Ψ〉, PXU i2|Ψ〉+ P̄XU

i
2|Ψ〉

)
(∗)
≤ 2‖PXU i2|Ψ〉‖.
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Here (∗) uses Lemma 35 (using that |Ψ∗1〉 := O1PXU
i
2|Ψ〉 and |Ψ∗2〉 := PXU

i
2|Ψ〉 are both

orthogonal to |Φ∗〉 := P̄XU
i
2|Ψ〉 because O1 is classical and therefore does not leave the

image of PX).
Thus TD(|Ψ∗〉, |Ψq〉) ≤

∑q
i=1 2‖PXU i2|Ψ〉‖. For i = 1, . . . , q, let AO2

i be the oracle
algorithm that computes U i

2|Ψ〉 and measures register K in the computational basis,
giving outcome x, and then outputs f(x). (Note that Ai does not need access to O1

because U2 does not depend on O1.) Then Pr[w = w′ : w′ ← Ai] = ‖PXU i2|Ψ〉‖
2
. Let A0

be the oracle machine that performs the same operations as A, except that it omits all
calls to O1. That is, its state before measuring the output is |Ψq〉. Thus∣∣Pr[w = w′ : w′ ← AO1,O2 ]− Pr[w = w′ : w′ ← AO2

0 ]
∣∣

≤ TD(|Ψ∗〉, |Ψq〉) ≤
q∑
i=1

2

√
Pr[w = w′ : w′

$← AO2
i ]

Let ÂO2 be the algorithm that picks i
$← {0, . . . , q} and runs Ai. Then

Pr[w = w′ : w′ ← AO1,O2 ] ≤
q∑
i=1

2

√
Pr[w = w′ : w′ ← AO2

i ] + Pr[w = w′ : w′ ← AO2
0 ]

≤ 2(q + 1)

q∑
i=0

1
q+1

√
Pr[w = w′ : w′ ← AO2

i ]

(∗)
≤ 2(q + 1)

√√√√ q∑
i=0

1
q+1 Pr[w = w′ : w′ ← AO2

i ]

= 2(q + 1)

√
Pr[w = w′ : w′ ← ÂO2 ].

Here (∗) uses Jensen’s inequality. �

The following lemma formalizes that if w is a random bitstring that can be accessed only
by querying an oracle O1 on some input x ∈ X, then the probability of finding w using
O1 is bounded in terms of the probability of finding some x ∈ X without using O1.

Lemma 39 (Removing redundant oracles 2) Let w, X, O1, O2 be chosen according
to some joint distribution such that w and O2 are stochastically independent. Here X is
a set of bitstrings, and O1,O2 are oracles, and O1 is classical (i.e., ∀x, y.∃y′.O1|x〉|y〉 =
|x〉|y′〉). And w is uniformly distributed on {0, 1}`. Assume that for all x /∈ X, O1(x) = 0.
(In other words, O1|x〉|y〉 = |x〉|y〉 for x /∈ X.)

Let A be an oracle machine that makes at most q queries to O1 and q′ queries to O2.
Then there is another oracle machine Â that makes at most q queries to O2 such that:

Pr[w = w′ : w′ ← AO1,O2 ] ≤ 2q

√
Pr[x ∈ X : x← ÂO2 ] + 2−`
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Proof. Let PX :=
∑

x∈X |x〉〈x| ⊗ I and P̄X := 1− PX . Note that since O1|x〉|y〉 = |x〉|y〉
for x /∈ X, we have O1 = O1PX + P̄X .

Let |Ψ〉, |Ψ∗〉, |Ψq〉 and U2 be defined as in the proof of Lemma 38. (Remember that all
of these only depend on O2, not O1.) Exactly as in Lemma 38, we get TD(|Ψ∗〉, |Ψq〉) ≤∑q

i=1 2‖PXU i2|Ψ〉‖. For i = 1, . . . , q, let AO2
i be the oracle algorithm that computes U i2|Ψ〉

and measures register K in the computational basis and outputs the outcome. Then
Pr[x ∈ X : x← AO2

i ] = ‖PXU i2|Ψ〉‖
2
.

Like in the proof of Lemma 38, let A0 be the oracle machine that performs the same
operations as A, except that it omits all calls to O1. That is, its state before measuring

the output is |Ψq〉. Let ÂO2 pick a random i
$← {1, . . . , q} (not i

$← {0, . . . , q} as in
Lemma 38!) and run AO2

i . Then

Pr[w = w′ : w′ ← AO1,O2 ]− Pr[w = w′ : w′ ← AO2
0 ] ≤ TD(|Ψ∗〉, |Ψq〉)

≤ 2q

q∑
i=1

1
q

√
Pr[x ∈ X : x

$← AO2
i ]

(∗)
≤ 2q

√∑q

i=1

1
q Pr[x ∈ X : x

$← AO2
i ]

= 2q

√
Pr[x ∈ X : x← ÂO2 ]. (9)

Here (∗) uses Jensen’s inequality.
Since w and O2 are independent and w is uniform on {0, 1}`, Pr[w = w′ : w′ ← AO2

0 ] ≤

2−`. With (9), we get 2q

√
Pr[x ∈ X : x← ÂO2 ] ≥ Pr[w = w′ : w′ ← AO1,O2 ]− 2−`. �

Theorem 40 (Small range distributions [40]) Fix sets Z, Y and a distribution DY
on Y , and integers s, q.

Let H : Z → Y be chosen as: for each z ∈ Z, H(z)← DY .
Let G : Z → Y be chosen as: Pick y1, . . . , ys ← DY , then for each z ∈ Z, pick

iz
$← {1, . . . , s}, and set G(z) := yiz .
Let A be an oracle algorithm making at most q queries. Then∣∣∣Pr[b = 1 : b← AH ]− Pr[b = 1 : b← AG]

∣∣∣ ≤ π2(2q)3/6s < 14q3/s.

Proof. This is merely a reformulation of [40, Corollary VII.5]. (Note that the distance
between distributions in [40] is defined to be twice the statistical, this is why in our
formulation of the theorem the bound is only half as large.) �

B Proofs for Section 3

Lemma 41 Let |Ψ〉 be a state, chosen according to some distribution. Let |⊥〉 be a fixed
state orthogonal to |Ψ〉. (Such a state can always be found by extending the dimension of
the Hilbert space containing |Ψ〉 and using the new basis state as |⊥〉.)

Let OΨ be an oracle with OΨ|Ψ〉 = |⊥〉, OΨ|⊥〉 = |Ψ〉, and OΨ|Ψ⊥〉 = |Ψ⊥〉 for
any |Ψ⊥〉 orthogonal to both |Ψ〉 and |⊥〉. Let ORef := I − 2|Ψ〉〈Ψ|.
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Let O be an oracle, not necessarily independent of |Ψ〉. Let |Φ〉 be a quantum state,
not necessarily independent of |Ψ〉.

Let n ≥ 0 be an integer. Let |R〉 := |α1〉 ⊗ · · · ⊗ |αn〉 where |αj〉 := (cos jπ2n)|Ψ〉 +

(sin jπ
2n)|⊥〉.
Then there is an oracle algorithm B that makes qΨ queries to ORef and makes the

same number of queries to O as A such that:

TD
(
BORef ,O(|R〉, |Φ〉), AOΨ,O(|Φ〉)

)
≤ πqΨ

2
√
n

+ qΨ o(
1√
n

).

Proof. In this proof, we use the following shorthand notation: |Φ〉 = |Φ′〉 ± ε means that∥∥|Φ〉 − |Φ′〉∥∥ ≤ ε.
We first show that

S|⊥〉|R〉 = |Ψ〉|R〉±εn and S†|Ψ〉|R〉 = |⊥〉|R〉±εn with εn := π
2
√
n

+o( 1√
n

) (10)

where S|Φ0〉|Φ1〉 . . . |Φn〉 := |Φ1〉 . . . |Φn〉|Φ0〉 (cyclic shift) and |R〉 is as in the statement
of the lemma (the reservoir state).

We have

(S|⊥〉|R〉)†(|Ψ〉|R〉) =
(
|α1〉|α2〉 . . . |αn〉|⊥〉

)†(
|Ψ〉|α1〉 . . . |αn−1〉|αn〉

)
= 〈α1|Ψ〉 ·

n−1∏
j=1

〈αj+1|αj〉 · 〈⊥|αn〉

(∗)
= cos π

2n ·
n−1∏
j=1

cos
( (j+1)π

2n − jπ
2n

)
· sin nπ

2n = (cos π
2n)n.

Here (∗) uses that |Ψ〉 and |⊥〉 are orthogonal (and the definition of |αj〉 from the

statement of the lemma). For any quantum states |Φ〉, |Φ′〉 we have
∥∥|Φ〉 − |Φ′〉∥∥2

=
(|Φ〉 − |Φ′〉)†(|Φ〉 − |Φ′〉) = 1 − 〈Φ|Φ′〉 − 〈Φ′|Φ〉 + 1 = 2(1 − <〈Φ|Φ′〉) where < denote
the real part. Thus ‖S|⊥〉|R〉 − |Ψ〉|R〉‖ ≤

√
2(1− (cos π

2n)n) ∈ π
2
√
n

+ o( 1√
n

) = εn. (The

asymptotic bound uses Lemma 30.) This shows the lhs of (10). The rhs follows from the
rhs by applying the unitary S† on both sides.

Let UΨ denote the unitary computed by circuit (1) on page 13. We will show that for
any |Φ〉,

UΨ|Φ〉|R〉|0〉 = (OΨ|Φ〉)|R〉|0〉 ± εn. (11)

By linearity of UΨ,OΨ and the triangle inequality, it is sufficient to verify this for
|Φ〉 = |Ψ〉, |Φ〉 = |⊥〉, and |Φ〉 orthogonal to both |Ψ〉, |⊥〉. In an execution of circuit (1)
on state |Φ〉|R〉|0〉, we denote the state before S with |Φ1〉, the state after S with |Φ2〉,
the state before S† with |Φ3〉, and the state after S† with |Φ4〉. We denote the final state
with |Φ′〉 = UΨ|Φ〉|R〉|0〉.
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For |Φ〉 = |Ψ〉, we have

|Φ1〉 = |Ψ〉|R〉|0〉, |Φ2〉 = |Ψ〉|R〉|0〉,

|Φ3〉 = |Ψ〉|R〉|1〉, |Φ4〉
(10)
= |⊥〉|R〉|1〉 ± εn,

|Φ′〉 = |⊥〉|R〉|0〉 ± εn = (OΨ|Φ〉)|R〉|0〉 ± εn.

For |Φ〉 = |⊥〉, we have

|Φ1〉 = |⊥〉|R〉|1〉, |Φ2〉
(10)
= |Ψ〉|R〉|1〉 ± εn,

|Φ3〉 = |Ψ〉|R〉|0〉 ± εn, |Φ4〉 = |Ψ〉|R〉|0〉 ± εn,
|Φ′〉 = |Ψ〉|R〉|0〉 ± εn = (OΨ|Φ〉)|R〉|0〉 ± εn.

And for |Φ〉 orthogonal to |Ψ〉 and |⊥〉, we have

|Φ1〉 = |Φ〉|R〉|0〉, |Φ2〉 = |Φ〉|R〉|0〉,
|Φ3〉 = |Φ〉|R〉|0〉, |Φ4〉 = |Φ〉|R〉|0〉,
|Φ′〉 = |Φ〉|R〉|0〉 = (OΨ|Φ〉)|R〉|0〉.

Thus (11) holds.
Without loss of generality, we assume that the algorithm A is unitary and only

(optionally) performs a final measurement at the end. Let B be like A, except that
B has additional register R,Z initialized with |R〉, |0〉, and that B computes circuit
(1) on X,R,Z whenever A invokes OΨ on X. (And when A performs a controlled
invocation of OΨ, then B executes the circuit with all operations accordingly controlled.)
Let |Φ0〉 be the initial state of A and B, and let |ΦA〉, |ΦB〉 be the final state of A,B
(right before the final measurement), respectively. Then by induction, from (11) we get∥∥|ΦA〉 − |ΦB〉

∥∥ ≤ qΨεn. By Lemma 36, TD(|ΦA〉 − |ΦB〉) 5Ψ εn. Thus

TD
(
BORef ,O(|R〉, |Φ〉), AOΨ,O(|Φ〉)

)
≤ qΨεn ≤ πqΨ

2
√
n

+ qΨ o(
1√
n

). �

Lemma 42 Let |Ψ〉 be a state, chosen according to some distribution. Let ORef :=
I − 2|Ψ〉〈Ψ|. Let O be an oracle, not necessarily independent of |Ψ〉. Let |Φ〉 be a
quantum state, not necessarily independent of |Ψ〉. Let A be an oracle algorithm that
makes qRef queries to ORef . Let m ≥ 0 be an integer. Then there is an oracle algorithm B
that makes the same number of queries to O as A such that:

TD
(
BO(|Ψ〉⊗m, |Φ〉), AORef ,O(|Φ〉)

)
≤

2qRef√
m+ 1

.

Proof. Let H be the space in which |Ψ〉 lives (i.e., |Ψ〉 ∈ H). Let S denote a cyclic
shift on (m + 1)-partite states. That is, S|Φ0〉|Φ1〉 . . . |Φm〉 := |Φ1〉 . . . |Φm〉|Φ0〉 for all
|Φi〉 ∈ H. (extended linearly to all of H⊗m+1). S is unitary.

Let V ⊆ H⊗m+1 be the space of states invariant under S. I.e., |Φ〉 ∈ V iff S|Φ〉 = |Φ〉.
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Let UV be the unitary with UV |Φ〉 = −|Φ〉 for |Φ〉 ∈ V , and UV |Φ〉 = |Φ〉 for |Φ〉
orthogonal to V . (That is, UV = I − 2PV where PV is the orthogonal projector onto V .)

In this proof, we use the following shorthand notation: |Φ〉 = |Φ′〉 ± ε means that∥∥|Φ〉 − |Φ′〉∥∥ ≤ ε.
Let |T 〉 := |Ψ〉⊗m.
We show that for any |Φ〉 ∈ H,

UV |Φ〉|T 〉 = (ORef |Φ〉)|T 〉 ± 2√
m+1

. (12)

We first show this for |Φ〉 orthogonal to |Ψ〉. We decompose |Φ〉|T 〉 = α|χ〉 + β|κ〉 for
quantum states |χ〉 ∈ V , and |κ〉 orthogonal to V . Since |χ〉 ∈ V , we have 〈χ| = 〈χ|Sj
for any j. Thus

|α| = |〈χ|(|Φ〉|T 〉)| =
∣∣∣ 1
m+1

m∑
j=0

〈χ|Sj(|Φ〉|T 〉)
∣∣∣

= 1
m+1

∣∣∣〈χ|( m∑
j=0

Sj |Φ〉|T 〉
)∣∣∣ (∗)
≤ 1

m+1

∣∣√m+ 1
∣∣ = 1√

m+1
.

Here (∗) follows from the fact that |Ψ〉 and |Φ〉 are orthogonal, and hence all Sj |Φ〉|T 〉
(j = 0, . . . ,m) are orthogonal, and thus

∥∥∑
j S

j |Φ〉|T 〉
∥∥ =
√
m+ 1. Thus∥∥UV |Φ〉|T 〉 − (ORef |Φ〉)|T 〉

∥∥ =
∥∥|Φ〉|T 〉 − 2α|χ〉 − |Φ〉|T 〉

∥∥ = |2α| ≤ 2√
m+1

.

Thus shows (12) for the case that |Φ〉 is orthogonal to |Ψ〉. If |Φ〉 = |Ψ〉, (12) follows
since |Φ〉|T 〉 = |Ψ〉⊗m ∈ V and thus UV |Φ〉|T 〉 = −|Φ〉|T 〉 = ORef |Φ〉|T 〉. By linearity
and the triangle inequality, (12) then holds for all |Φ〉 ∈ H.

Without loss of generality, we assume that the algorithm A is unitary and only
(optionally) performs a final measurement at the end. Let B be like A, except that
B has additional register T initialized with |T 〉 (which is given as input), and that B
applies UV to X,T whenever A invokes ORef on X. (And when A performs a controlled
invocation of ORef , then B executes the circuit with all operations accordingly controlled.)
Let |Φ0〉 be the initial state of A and B, and let |ΦA〉, |ΦB〉 be the final state of A,B
(right before measuring the output), respectively. Then by induction, from (12) we get∥∥|ΦA〉 − |ΦB〉

∥∥ ≤ 2qRef√
m+1

. By Lemma 36, TD(|ΦA〉 − |ΦB〉) ≤
2qRef√
m+1

. Thus

TD
(
BO(|T 〉, |Φ〉), AORef ,O(|Φ〉)

)
≤

2qRef√
m+ 1

. �

C Proof of Theorem 5

C.1 Preliminaries

Let M = |Y | and N = |X| and, without loss of generality, let Y = {1, . . . ,M} and
X = {1, . . . , N}. Let D ⊂ {0, 1}N be the set of all

(
N
k

)
N -bit strings of Hamming weight
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k. For every y, we associate Sy with a string zy ∈ D whose x-th entry zy,x := (zy)x is 1 if
and only if x ∈ Sy. This association is one-to-one. The black-box oracles essentially hide
an input z = (z1, . . . , zM ) ∈ DM . Let us write |Ψ(zy)〉 and |ΣΨ(z)〉 instead of |Ψ(y)〉 and
|ΣΨ〉, respectively, to emphasize that these states depend on z.

Let SL denote the symmetric group of a finite set L, that is, the group with the
permutations of L as elements and the composition as a group operation. For a positive
integer n, let Sn denote the isomorphism class of the symmetric groups SL with |L| = n.
A permutation σ ∈ SX acts on zy ∈ D in a natural way: we define

σ(zy) := (zy,σ−1(1), . . . , zy,σ−1(N)), (13)

so that (σ(zy))σ(x) = zy,x holds. A permutation π ∈ SY acts on z ∈ DM in the same way:
we define π(z) := (zπ−1(1), . . . , zπ−1(M)).

Consider a pair (σ, π), where σ = (σ1, . . . , σM ) ∈ SMX and π ∈ SY . Let this pair act
on z ∈ DM by first permuting the entries of z with respect to π and then permuting
entries within each (π(z))y with respect to σy. Namely, let

(σ, π) : (z1, . . . , zM ) 7→ (σ1(zπ−1(1)), . . . , σM (zπ−1(M))). (14)

This action defines a (linear) representation of the wreath product W := SX o SY .

Definition 43 ([25, Chapter 4]) The wreath product G o SM of groups G and SM is
the group whose elements are (σ, π) ∈ GM × SM and whose group operation is(

(σ′1, . . . , σ
′
M ), π′

)(
(σ1, . . . , σM ), π

)
:=
(
(σ′1σ(π′)−1(1), . . . , σ

′
Mσ(π′)−1(M)), π

′π
)
.

Let X2 be the set of all
(
N
2

)
size-two subsets of X. In addition to (14), we are also

interested in the following two representations of W defined by its action on the sets
Y ×X and Y ×X2, respectively:

(σ, π) : (y, x) 7→ (π(y), σπ(y)(x)), (15)

(σ, π) : (y, {x1, x2}) 7→ (π(y), {σπ(y)(x1), σπ(y)(x2)}). (16)

The former representation concerns oracle queries and the latter—the output of the
algorithm.

For w = (y, x) ∈ Y ×X, let zw = zy,x. Note that the representations (14) and (15)
are such that, for τ ∈W, we have (τ(z))τ(w) = zw.

C.2 Registers and symmetrization of the algorithm

Let HA be the workspace on which A operates. We express

HA = HQ ⊗HB ⊗HO ⊗HR ⊗HW , (17)

where the tensor factors are defined as follows.
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• HQ := HQY ⊗HQX and HB are the “query” registers that the oracles OV and OF
use, where HQY , HQX , and HB correspond to the sets Y , X, and {0, 1}, respectively.
For all (y, x, b) ∈ Y ×X × {0, 1}, we have

OV |y, x, b〉 := |y, x, b⊕ zy,x〉 (18)

and OF maps |y,Ψ(y), b〉 to −|y,Ψ(y), b〉 and, for every |Ψ⊥〉 orthogonal to |Ψ(y)〉,
maps |y,Ψ⊥, b〉 to itself.

• HO := HOY ⊗HOX2
is the “output” register, where HOY and HOX2

correspond to
the sets Y and X2, respectively.

• HR :=
⊗h

`=1HR(`) is the (initial) “resource” register, where HR(`) = HRY (`) ⊗
HRX(`), in which HRY (`) and HRX(`) correspond to the sets Y and X, respectively.
At the beginning of the algorithm, the register HR is initialized to the resource
state

|ξ′(z)〉 :=
⊗h

`=1
(α`,0|ΣΨ(z)〉+ α`,1|ΣΦ〉). (19)

Also, let HRY :=
⊗h

`=1HRY (`) and HRX :=
⊗h

`=1HRX(`).

• HW is the rest of the workspace.

Let us also define HA−Q, HA−O, and HA−R to be the space corresponding to all the
registers of the algorithm except HQ, HO, and HR, respectively. Let I be the identity
operator. We frequently write subscripts below states and unitary transformations to
clarify, respectively, which registers they belong to or act on. For example, we may write
|ξ′(z)〉R instead of |ξ′(z)〉. We do this especially when the order of registers is not that of
(17). We may also concatenate subscripts when we use multiple registers at once. For
example, we may write IQB instead of IQ ⊗ IB.

Let |ξ∅(z)〉A := |ξ′(z)〉R⊗|ξ′′〉A−R be the initial state of the algorithm, where |ξ′′〉A−R
is independent from z. The algorithm makes in total qT := qV + qF oracle calls. For
q ∈ {0, 1, . . . , qT − 1}, let

|ξq(z)〉A =
∑

w∈Y×X
|w〉Q|ξq,w(z)〉A−Q

be the state of the algorithm A, as a sequence of transformations on HA, just before
(q + 1)-th oracle call, OV or OF , where |ξq,w(z)〉A−Q are unnormalized. Similarly, for
q = qT , let

|ξqT (z)〉A =
∑

w∈Y×X2

|w〉O|ξqT ,w(z)〉A−O

be the final state of the algorithm.
Let UI , and UQ, and UO be unitary transformations corresponding to representations

(14), (15), and (16) of W, respectively, where the register HI is yet to be defined. (That
is, UI , UQ, UO are actually families of unitaries, indexed by elements τ ∈W.) We add a
subscript τ ∈W when we want to specify that we are considering the representation of
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the element τ , for example, we may write UQ,τ . Since HR is essentially the h-th tensor
power of HQ, we define UR := U⊗hQ . The tensor product of two (or more) representations
of W is also a representation of W. Let UIQ := UI ⊗ UQ and UIO := UI ⊗ UO, an we
later use analogous notation for other “concatenations”.

We first “symmetrize” A by adding an extra register HS holding a “permutation”
τ ∈W. Initially, HS holds a uniform superposition over all permutations:

|W〉S :=
1√

M !(N !)M

∑
τ∈W
|τ〉S .

Then, at specific points in the algorithm, we insert unitary transformations controlled by
the content τ of HS .

1. At the beginning of the algorithm, we insert the controlled transformation UR,τ on
the register HR. Recall that, if (and only if) zy,x = 1, then (τ(z))τ(y,x) = 1. Hence,∑

τ∈W
|τ〉S |ξ(z)〉A

τ on HR7−→
∑
τ∈W
|τ〉S |ξ(τ(z))〉A.

2. Before each oracle call, OV or OF , we insert the controlled transformation U−1
Q,τ on

the register HQ. Note that (τ(z))y,x = 1 if and only if zτ−1(y,x) = 1, and OV and
OF use z as the input. After the oracle call, we insert the controlled UQ,τ .

3. At the end of the algorithm, we insert the controlled transformation U−1
O,τ on the

register HO containing the output of A because, again, zτ−1(y,x) = 1 if and only if
(τ(z))y,x = 1.

The effect of the symmetrization is that, on the subspace |τ〉S , the algorithm is effectively
running on the input τ(z). If the original algorithm A succeeds on every input z with
average success probability p, the symmetrized algorithm succeeds on every input with
success probability p.

Next, we recast A into a different form, using an “input” register HI that stores

z ∈ DM . Namely, let HI :=
⊗M

y=1HI(y) be an
(
N
k

)M
-dimensional Hilbert space whose

basis states correspond to possible inputs z, where we define HI(y) to be
(
N
k

)
-dimensional

Hilbert space whose basis states correspond to zy ∈ D. Since all the spaces HI(y) are
essentially equivalent, we write HI instead of HI(y) when we do not care which particular

y ∈ Y we are talking about, and HI = H⊗MI .
Initially, HI is in the uniform superposition of all the basis states of HI . More

precisely, HI ⊗HS ⊗HA takes the following initial state (before applying the controlled
transformation UR,τ in step 1 of the symmetrisation above):(

N

k

)−M/2 ∑
z∈DM

|z〉I ⊗ |W〉S ⊗ |ξ∅(z)〉A.

We transform the symmetrised version of A into a sequence of transformations on a
Hilbert space H = HI ⊗HS ⊗HA . A black-box transformation O (where O = OV or
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O = OF ) is replaced by a transformation O′ =
∑

z∈DM |z〉〈z| ⊗ O(z), where O(z) is the
transformation O for the case when the input is equal to z.

At the end, the algorithm measures the input register HI and the output register
HO = HOY ⊗HOX2

in the computational basis, and outputs the result of this measurement:
z ∈ DM , y ∈ Y , and {x1, x2} ∈ X2. The algorithm is successful if zy,x1 = zy,x2 = 1.

For q ∈ {0, . . . , qT −1}, let |φ−q 〉 be the state of the algorithm just before the controlled

U−1
Q,τ transformation preceding the (q + 1)-th oracle call, and let |φq〉 be the state just

after we apply this U−1
Q,τ and still before the oracle call. Due to the symmetrization, we

have
|φ−q 〉 = γ

∑
z∈Dm

|z〉I
∑
τ∈W
|τ〉S

∑
w∈Y×X

|w〉Q|ξq,w(τ(z))〉A−Q,

where γ = 1/
√
M !(N !

(
N
k

)
)M , and, after we apply U−1

Q,τ , we have

|φq〉 = γ
∑
z∈Dm

|z〉I
∑
τ∈W
|τ〉S

∑
w∈Y×X

|τ−1(w)〉Q|ξq,w(τ(z))〉A−Q. (20)

Recall the representations UI and UQ of W. Let us also consider the right regular
representation of W acting on HS : for κ ∈ W, let US,κ|τ〉 := |τκ−1〉. Let UISQ :=
UI ⊗ US ⊗ UQ, and, for all κ ∈W, we have

(UISQ,κ ⊗ IA−Q)|φq〉 = γ
∑
z∈Dm

|κ(z)〉I
∑
τ∈W
|τκ−1〉S

∑
w∈Y×X

|κτ−1(w)〉Q|ξq,w(τ(z))〉A−Q

= γ
∑
z∈Dm

|κ(z)〉I
∑
τ∈W
|τκ−1〉S

∑
w∈Y×X

|(τκ−1)−1(w)〉Q|ξq,w((τκ−1)(κ(z)))〉A−Q = |φq〉.

(21)

For q ∈ {0, 1, . . . , qT − 1}, let ρ′q be the density matrix obtained from |φq〉〈φq| by
tracing out the HS and HA−Q registers and, in turn, let ρq be obtained from ρ′q by tracing
out the register HQ. Due to (21), we have

UIQ,τρ
′
qU
−1
IQ,τ = ρ′q and UI,τρqU

−1
I,τ = ρq for all τ ∈W. (22)

Similarly, for q = qT , let |φqT 〉 be the final state of the algorithm (i.e., the state
after the controlled U−1

O,τ ), and it satisfies an analogous symmetry to (21): for all κ ∈W,
we have (UISO,κ ⊗ IA−O)|φqT 〉 = |φqT 〉. Let ρ′′qT be the density matrix obtained from
|φqT 〉〈φqT | by tracing out all the registers but HI and HO, let ρqT be obtained from ρ′′qT
by tracing out the register HO. Again, we have

UIO,τρ
′′
qT
U−1
IO,τ = ρ′′qT and UI,τρqTU

−1
I,τ = ρqT for all τ ∈W. (23)

Note that, throughout the algorithm, the density matrix of the HI part of the state of
the algorithm can be affected only by oracle calls. Therefore, for q ∈ {0, 1, . . . , qT }, this
density matrix equals ρq just after q-th oracle call (at the very beginning of the algorithm,
if q = 0) and remains such till (q + 1)-th oracle call (till the end of the algorithm, if
q = qT ).
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C.3 Representation theory of SX
Consider a positive integer n. The representation theory of Sn is closely related to
partitions. A partition λ of n is a non-increasing list (λ1, . . . , λk) of positive integers
satisfying λ1 + · · · + λk = n. There is one-to-one correspondence between irreducible
representations (irreps, for short) of Sn and partitions λ ` n, and we will use these
terms interchangeably. For example, (n) corresponds to the trivial representation and
(1n) = (1, 1, . . . , 1) to the sign representation. (One may refer to [30] for more background
on the representation theory of finite groups and to [25, 29] for the representation theory
of the symmetric group and the wreath product.)

The group action of SX on HI is given by (13), which defines a representation UI
of SX (this representation is independent from y). In order to decompose UI into a
direct sum of irreps of SN (recall that X = {1, . . . , N}), first consider the subgroup
Sk × SN−k of SN , where Sk permutes {1, . . . , k} and SN−k permutes {k + 1, . . . , N}. Let
VI,σ be UI,σ restricted to σ ∈ Sk×SN−k and the one-dimensional space span{|1k0N−k〉I}.
VI is a representation of Sk × SN−k and, since it acts trivially on 1k0N−k, we have
VI ∼= (k)× (N − k). And, since

|SN |
/
|Sk × SN−k| = |D|

/
|{1k0N−k}|,

UI is equal to the induced representation when we induce VI from Sk × SN−k to SN . For
shortness, we write UI = VI ↑ SN . The Littlewood-Richardson rule then implies

((k)× (N − k)) ↑ SN = (N)⊕ (N − 1, 1)⊕ (N − 2, 2)⊕ . . .⊕ (N − k, k). (24)

Hence, we have

HI =
⊕k

i=0
H(N−i,i)
I ,

where UI restricted to H(N−i,i)
I is an irrep of SN corresponding to the partition (N − i, i)

of N . It is also known (see [21, 27]) that H(N−i,i)
I = T iI ∩ (T i−1

I )⊥, where T iI is the space

spanned by all
(
N
i

)
states

|ψx1,...,xi〉 =
1√(
N−i
k−i
) ∑

zy∈D
zy,x1=...=zy,xi=1

|zy〉 (25)

(the value of y is irrelevant here). When i = 0, let us denote this state by |ψ∅〉.

C.4 Framework for the proof

We use the representation-theoretic framework developed in [2] (and used in [4] and [3]).
Let

HI,a := T 1
I = H(N)

I ⊕H(N−1,1)
I , HI,b := HI ∩ (HI,a)⊥,

HI,a := H⊗MI,a , HI,b := HI ∩ (HI,a)
⊥.

46



And let ΠI,a, ΠI,b, ΠI,a, and ΠI,b denote the projections to the spaces HI,a, HI,b, HI,a,
and HI,b, respectively.

Recall that ρq is the density matrix of the HI part of the state of the algorithm
anywhere between q-th and (q + 1)-th oracle calls (interpreting (−1)-st and (qT + 1)-th
oracle calls as the beginning and the end of the algorithm, respectively). Recall that ρq is
fixed under the action of W—for all τ ∈W, we have UI,τρqU

−1
I,τ = ρq—and so are ΠI,a

and ΠI,b. Let

pa,q := Tr(ρqΠI,a) and pb,q := 1− pa,q = Tr(ρqΠI,b).

Theorem 5 (Hardness of the two values problem) then follows from the following three lemmas.

Lemma 44 The success probability of the algorithm is at most 2(k−1)
N−1 +

√
2pb,qT .

Lemma 45 (At the very beginning of the algorithm) we have pb,0 < h2/(2M).

Lemma 46 For all q ∈ {0, . . . , qT −1}, we have |pb,q−pb,q+1| = O(max{
√
k/N,

√
1/k}).

One can see that M , the size of the set Y , does not appear in the statements of
Lemmas 44 and 46. The size of Y indeed does not matter for them, as in we will eventually
reduce the general case for Lemmas 44 and 46 to the case when |Y | = 1.

C.5 Proof of Lemma 45

Let us rewrite (19) as

|ξ′(z)〉R =
h⊗
`=1

( 1√
M

∑
y∈Y
|y〉RY (`)

(
α`,0|Ψ(zy)〉+ α`,1|Φ〉

)
RX(`)

)
=

1√
Mh

∑
y1,...,yh∈Y

|y1, . . . , yh〉RY |ξ
′(y1, . . . , yh)〉RX ,

where |Φ〉 :=
∑

x∈X |x〉/
√
|X| and

|ξ′(y1, . . . , yh)〉RX :=
⊗h

`=1
(α`,0|Ψ(zy`)〉RX(`) + α`,1|Φ〉RX(`))

has unit norm for 〈Ψ(zy)|Φ〉 = 〈ΣΨ(z)|ΣΦ〉 =
√
k/N . Let Yh be the set of all

(y1, . . . , yh) ∈ Y h such that y` 6= y`′ whenever ` 6= `′. Let us write |ξ′(z)〉R = |ξ′a(z)〉R +
|ξ′b(z)〉R, where the unnormalized state |ξ′a(z)〉R corresponds to all (y1, . . . , yh) ∈ Yh in
the register HRY . Then, ‖|ξ′b(z)〉‖2 equals the probability that among h numbers chosen
independently and uniformly at randomly from {1, . . . ,M} at least two numbers are equal.
Analysis of the birthday problem tells us that this probability is at most h(h− 1)/(2M)
[26]. For c ∈ {a, b}, let

|φc〉 :=

(
N

k

)−M/2 ∑
z∈Dm

|z〉I |W〉S |ξ′c(z)〉R|ξ′′〉A−R,
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and note that ‖|φc〉‖ = ‖|ξ′c(z)〉‖. The initial state of the algorithm is |φa〉+ |φb〉. (Note:
in this proof, the subscript of φ does not denote the number of queries.)

Claim 1 We have (ΠI,a ⊗ ISA)|φa〉 = |φa〉.

Claim 1 implies that (ΠI,b ⊗ ISA)|φa〉 = 0, and therefore

pb,0 = Tr(ρ0ΠI,b) = Tr
(

TrSA
(
(|φa〉+ |φb〉)(〈φa|+ 〈φb|)

)
ΠI,b

)
= 〈φb|(ΠI,b ⊗ ISA)|φb〉 ≤ 〈φb|φb〉 < h2/(2M).

Proof of Claim 1. First, let |Ω0(zy`)〉 := |Ψ(zy`)〉 and |Ω1(zy`)〉 := |Φ〉, so that

|ξ′(y1, . . . , yh)〉RX =
∑

β=(β1,...,βh)∈{0,1}h
(α1,β1 . . . αh,βh)|Ωβ1(zy1), . . . ,Ωβh(zyh)〉RX .

For all β ∈ {0, 1}h and all (y1, . . . , yh) ∈ Yh, let

|φa,β(y1, . . . , yh)〉 := γ
∑
z∈Dm

|z〉I |W〉S |y1, . . . , yh〉RY |Ωβ1(zy1), . . . ,Ωβh(zyh)〉RX |ξ
′′〉A−R,

(26)

where γ =
(
N
k

)−M/2
(α1,β1 . . . αh,βh)

/√
Mh. We have

|φa〉 =
∑

β∈{0,1}h

∑
(y1,...,yh)∈Yh

|φa,β(y1, . . . , yh)〉,

and it is enough to show that

(ΠI,a ⊗ ISA)|φa,β(y1, . . . , yh)〉 = |φa,β(y1, . . . , yh)〉

for all β ∈ {0, 1}h and (y1, . . . , yh) ∈ Yh.
Notice that, if β` = 1, then the register HRX(`) contains the state |Φ〉 and this register

is not entangled with any the other registers. Therefore, it suffices to consider the case
when β = 0h. Without loss of generality, let (y1, . . . , yh) = (1, . . . , h).

For simplicity, let |φ̂〉 be the the state |φa,0k(1, . . . , h)〉/γ restricted to registers HI
and HRX , for these registers are not entangled with the other registers and we have

TrSA(|φa,0h(1, . . . , h)〉〈φa,0h(1, . . . , h)|) = γ2TrRX (|φ̂〉〈φ̂|).

We have

|φ̂〉 =
∑
z∈Dm

|z〉I |Ψ(z1), . . . ,Ψ(zh)〉RX =

h⊗
y=1

( ∑
zy∈D

|zy〉I(y)|Ψ(zy)〉RX(y)

)
⊗

M⊗
y=h+1

( ∑
zy∈D

|zy〉I(y)

)
.
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Recall the states |ψx1,...,xi〉 ∈ HI from (25). We have∑
zy∈D

|zy〉|Ψ(zy)〉 ∝
∑
zy∈D

|zy〉
∑
x∈X
zy,x=1

|x〉 =
∑
x∈X

( ∑
zy∈D
zy,x=1

|zy〉
)
|x〉 ∝

∑
x∈X
|ψx〉|x〉 ∈ T 1

I(y) ⊗HRX(y);

∑
zy∈D

|zy〉 ∝ |ψ∅〉 ∈ T 0
I(y) = H(N)

I(y).

The claim follows from the definition of HI,a (Section C.4). �

C.6 Proof of Lemma 44

Reduction to the pqT ,b = 0 case. Let us first reduce the lemma to its special case
when pqT ,b = 0. This reduction was used in [2] for a very similar problem. Recall that the
final state of the algorithm |φqT 〉 satisfies the symmetry (UISO,τ ⊗ IA−O)|φqT 〉 = |φqT 〉
for all τ ∈W, and note that, for c ∈ {a, b}, the state

|φcqT 〉 :=
(ΠI,c ⊗ ISA)|φqT 〉
‖(ΠI,c ⊗ ISA)|φqT 〉‖

=
1

√
pc,qT

(ΠI,c ⊗ ISA)|φqT 〉

satisfies the same symmetry. We have

|φqT 〉 =
√

1− pb,qT |φ
a
qT
〉+
√
pb,qT |φ

b
qT
〉.

Since |φaqT 〉 and |φbqT 〉 are orthogonal, we have

‖|φqT 〉 − |φ
a
qT
〉‖ =

√
(1−

√
1− pb,qT )2 + (

√
pb,qT )2 ≤

√
2pb,qT (27)

From now on, let us assume that pb,qT = 0 and, thus, |ψqT 〉 = |ψaqT 〉. Lemma 36 and

(27) states that this changes the success probability by at most
√

2pb,qT .

Reduction to the |Y | = 1 case. Recall that ρ′′qT = TrS,A−O|φqT 〉〈φqT |, and we have

(ΠI,a ⊗ IO)ρ′′qT = ρ′′qT and ∀τ ∈W : UIO,τρ
′′
qT
U−1
IO,τ = ρ′′qT .

The algorithm makes its final measurement of the HI and HO registers, ignoring all the
other registers, therefore the success probability is completely determined by ρ′′qT . Let us
assume that the algorithm measures (and then discards) the HOY register first, before
measuring HI and HOX2

, and that the outcome of this measurement is y ∈ Y . Due to
the symmetry, we get each outcome y with the same probability 1/M .

Now the algorithm can discard the registers HI(y′) for all y′ 6= y, as their content do
not affect the success probability. We are left with

ρ′′qT ,y = MTrI(y′) : y′ 6=y
(
(IIOX2

⊗ 〈y|OY )ρ′′qT (IIOX2
⊗ |y〉OY )

)
,
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which is a density matrix on the registers HI(y) and HOX2
, and it satisfies

(ΠI,a ⊗ IOX2
)ρ′′qT ,y = ρ′′qT ,y,

∀σ ∈ SX : (UI,σ ⊗ UOX2,σ)ρ′′qT ,y(UI,σ ⊗ UOX2,σ)−1 = ρ′′qT ,y

(we use the subscript I instead of I(y) as y is fixed from now on). The success probability of
the algorithm equals the probability that we measure the state ρ′′qT ,y in the computational
basis and obtain zy ∈ D and {x1, x2} ∈ X2 such that zy,x1 = zy,x2 = 1. Hence, we have
reduced the proof to the case when |Y | = 1.

The |Y | = 1 case. Since y ∈ Y is fixed, to lighten the notation, in the remainder of
the proof of Lemma 44, let us write z′ instead of zy and z′x instead of zy,x.

Let us now assume that the algorithm measures theHOX2
register, obtaining {x1, x2} ∈

X2, and only then measures HI . Due to the symmetry, the measurement yields each
outcome {x1, x2} with the same probability 1/

(
N
2

)
, and let

ρ̂ :=

(
N

2

)
(II ⊗ 〈{x1, x2}|OX2

)ρ′′qT ,y(II ⊗ |{x1, x2}〉OX2
)

be the density matrix of the register HI after the measurement. Without loss of generality,
let {x1, x2} = {1, 2}, and let Ŝ := S{1,2}×S{3,...,N} < SX be the group of all permutations
σ ∈ SX that map {1, 2} to itself. Now we have

ΠI,aρ̂ = ρ̂ and ∀σ ∈ Ŝ : UI,σρ̂U
−1
I,σ = ρ̂. (28)

Let Π̂ denote the projection to the subspace ofHI spanned by all |z′〉 such that z′1 = z′2 = 1.
We note that UI,σΠ̂U−1

I,σ = Π̂ for all σ ∈ Ŝ. One can see that the success probability of

the algorithm is Tr(Π̂ρ̂), and it is left to show

Claim 2 Tr(Π̂ρ̂) ≤ 2(k − 1)/(N − 1).

Proof. We can express ρ̂ as a mixture of its eigenvectors |χi〉, with probabilities that are
equal to their eigenvalues χi: ρ̂ =

∑
i χi|χi〉〈χi|. Hence we have

Tr(Π̂ρ̂) =
∑

i
χiTr(Π̂|χi〉〈χi|) =

∑
i
χi‖Π̂|χi〉‖2,

which is at most
max|χ〉

(
‖Π̂|χ〉‖2

/
‖|χ〉‖2

)
where the maximization is over all eigenvectors of ρ̂ with non-zero eigenvalues. Due to
the symmetry (28), we can calculate the eigenspaces of ρ̂ by inspecting the restriction of
UI to the subspace T 1

I , namely, ÛI := ΠI,aUI . Recall that we defined T 1
I to be the space

spanned by all

|ψx〉 =
1√(
N−1
k−1

) ∑
z′∈D
z′x=1

|z′〉.
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We note that 〈ψx1 |ψx2〉 = k−1
N−1 for all x1, x2 : x1 6= x2.

Both UI and ÛI are representations of both SX and its subgroup Ŝ. We already

studied UI as a representation of SX in Section C.3. Since T 1
I = H(N)

I ⊕H(N−1,1)
I , the

representation ÛI of SX consists of only two irreps: one-dimensional (N) and (N − 1)-

dimensional (N − 1, 1), which correspond to the spaces H(N)
I and H(N−1,1)

I , respectively.

In order to see how ÛI decomposes into irreps of Ŝ, we need to restrict (N) and (N−1, 1)
from SN to S2 × SN−2. The Littlewood-Richardson rule gives us the decomposition of
these restrictions:

(N) ↓ (S2 × SN−2) = ((2)× (N − 2));

(N − 1, 1) ↓ (S2 × SN−2) = ((2)× (N − 2))⊕ ((1, 1)× (N − 2))⊕ ((2)× (N − 3, 1)).

Hence, Schur’s lemma and (28) imply that that eigenspaces of ρ̂ are invariant under UI,σ
for all σ ∈ Ŝ, and they have one of the following forms:

1. one-dimensional subspace spanned by |ψ(α, β)〉 = α(|ψ1〉+ |ψ2〉) + β
∑N

x=3 |ψx〉 for
some coefficients α, β;

2. one-dimensional subspace spanned by |ψ1〉 − |ψ2〉;

3. (N − 3)-dimensional subspace consisting of all
∑N

i=3 αx|ψx〉 with
∑

x αx = 0
(spanned by all |ψx〉 − |ψx′〉, x, x′ ∈ {3, . . . , N});

4. a direct sum of subspaces of the above form.

In the first case,

Π̂|ψ(α, β)〉 =
2α+ (k − 2)β√(

N−1
k−1

) ∑
z′3,...,z

′
N∈{0,1}

z′3+...+z′N=k−2

|1, 1, z′3, . . . , z′N 〉.

Therefore,

‖Π̂|ψ(α, β)〉‖2 =

(
N−2
k−2

)(
N−1
k−1

)∣∣2α+ (k − 2)β
∣∣2 =

k − 1

N − 1

∣∣2α+ (k − 2)β
∣∣2.

We also have

‖|ψ(α, β)〉‖2 = 〈ψ(α, β)|ψ(α, β)〉

= 2

(
1 +

k − 1

N − 1

)
|α|2 +(N−2)

(
1 + (N − 3)

k − 1

N − 1

)
|β|2 +2(N−2)

k − 1

N − 1
(αβ∗+βα∗)

≥ |2α+ (k − 2)β|2

2
. (29)

If αβ∗ ≥ 0, the inequality in (29) follows by showing that coefficients of |α|2, |β|2, and
αβ∗ on the left hand side are all larger than corresponding coefficients on the right hand
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side. Otherwise, without loss of generality, we can assume that α = 1 and β < 0, and
the inequality follows by inspecting the extreme point of the quadratic polynomial (in β)
that is obtained by subtracting the right hand side from the left hand side. Therefore,

‖Π̂|ψ(α, β)〉‖2

‖|ψ(α, β)〉‖2
≤ 2(k − 1)

N − 1
.

In the second case, Π(|ψ1〉 − |ψ2〉) = 0 because basis states |1, 1, z′3, . . . , z′N 〉 have the
same amplitude in |ψ1〉 and |ψ2〉.

In the third case, it suffices to consider a state of the form |ψ3〉 − |ψ4〉, because
{UI,σ(|ψ3〉 − |ψ4〉) : σ ∈ Ŝ} spans the whole eigenspace and Π̂ and UI,σ commute. Then,

Π̂(|ψ3〉 − |ψ4〉) =
1√(
N−1
k−1

) ∑
z′5,...,z

′
N∈{0,1}

z′5+...+z′N=k−3

(|1, 1, 1, 0, z′5, . . . , z′N 〉 − |1, 1, 0, 1, z′5, . . . , z′N 〉)

and

‖Π̂(|ψ3〉 − |ψ4〉)‖2 = 2

(
N−4
k−3

)(
N−1
k−1

) = 2
(k − 1)(k − 2)(N − k)

(N − 1)(N − 2)(N − 3)
.

We also have

‖|ψ3〉 − |ψ4〉‖2 = 2− 〈ψ3|ψ4〉 = 2− 2
k − 1

N − 1
= 2

N − k
N − 1

.

Hence,
‖Π̂(|ψ3〉 − |ψ4〉)‖2

‖|ψ3〉 − |ψ4〉‖2
=

(k − 2)(k − 3)

(N − 2)(N − 3)
= O

(
k2

N2

)
.

�

C.7 Reduction of Lemma 46 to the |Y | = 1 case

First, instead of the oracle OV given by (18), we define

OV (z)|y, x, b〉 := (−1)b·zy,x |y, x, b〉.

Both definitions are equivalently powerful as one is obtained from another by two
Hadamard gates on the register HB.

For all zy ∈ D, let

O′′V (zy) := IQX − 2
∑
x∈X
zy,x=1

|x〉〈x|QX and O′′F (zy) := IQX − 2|Ψ(zy)〉〈Ψ(zy)|QX

act on HQX , so that we have

O′V =
∑

z∈DM
|z〉〈z|I ⊗

∑
y∈Y
|y〉〈y|QY ⊗O

′′
V (zy)⊗ |1〉〈1|B + IIQ ⊗ |0〉〈0|B,

O′F =
∑

z∈DM
|z〉〈z|I ⊗

∑
y∈Y
|y〉〈y|QY ⊗O

′′
F (zy)⊗ IB.

(30)
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Let
ρ′′′q = ρ′q,00 ⊗ |0〉〈1|B + ρ′q,01 ⊗ |0〉〈1|B + ρ′q,10 ⊗ |1〉〈0|B + ρ′q,11 ⊗ |1〉〈1|B

be the state of the algorithm corresponding to the HI , HQ, and HB registers right before
the (q+ 1)-th oracle call (OV or OF ). Note that ρq = TrQB(ρ′′′q ) and, since oracles are the
only gates of the algorithm that interact with the HI register, ρq+1 = TrQB(O′ρ′′′q O′).

Notice that |pb,q − pb,q+1| = |pa,q − pa,q+1|, therefore let us deal with pa,q instead. We
have

|pa,q − pa,q+1| = Tr
(
ΠI,a(ρq − ρq+1)

)
= Tr

(
(ΠI,a ⊗ IQB)(ρ′′′q −O′ρ′′′q O′)

)
, (31)

which for the oracle OV equals

Tr
(
(ΠI,a ⊗ IQ)(ρ′q,11 − Õ′V ρ′q,11Õ′V )

)
,

where Õ′V = (IIQ⊗〈1|B)O′V (IIQ⊗|1〉B). Therefore, without loss of generality, we assume
that the state of HB is always |1〉 throughout the execution of the algorithm. In turn, we
assume that O′V and O′F in (30) act only on HI ⊗HQ, and we take ρ′q instead of ρ′′′q and
IQ instead of IQB in (31).

Since (τ(z))τ(y,x) = 1 if and only if zx,y = 1, we have UIQ,τO′U−1
IQ,τ = O′ for all

τ ∈ W, and recall that the same symmetry holds for ρ′q, namely, (22). Hence, for all
y ∈ Y ,

ρ′q,y = M(IIQX ⊗ 〈y|QY )ρ′q(IIQX ⊗ |y〉QY )

has trace one and (31) equals

MTr
(
(IIQX ⊗ 〈y|QY )(ΠI,a ⊗ IQ)(ρ′q −O′ρ′qO′)(IIQX ⊗ |y〉QY )

)
= Tr

(
(ΠI,a ⊗ IQX )

(
ρ′q,y −

( ∑
z∈DM

|z〉〈z|I ⊗O′′(zy)
)
ρ′q,y
( ∑
z∈DM

|z〉〈z|I ⊗O′′(zy)
)))

.

(32)

Without loss of generality, let y = 1, and let us write∑
z∈DM

|z〉〈z|I =
∑

z1∈D
|z1〉〈z1|I(1) ⊗ I⊗(M−1)

I .

Recall that ΠI,a = Π⊗MI,a . Therefore, for

ρ̂′q,1 := TrI(2),...,I(M)

(
(II(1) ⊗Π

⊗(M−1)
I,a ⊗ IQX )ρ′q,y

)
,

(31) and (32) are equal to

Tr

(
(ΠI(1),a ⊗ IQX )

(
ρ̂′q,1 −

( ∑
z1∈D

|z1〉〈z1|I(1) ⊗O′′(z1)
)
ρ̂′q,1
( ∑
z1∈D

|z1〉〈z1|I(1) ⊗O′′(z1)
)))

.

(33)
Since ρ̂′q,1 is a positive semidefinite operator of trace at most one and it acts onHI(1)⊗HQX ,
we have reduced the lemma to the case when |Y | = 1. We consider this case in Section D.
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D Proof of Lemma 46 when |Y | = 1

Since |Y | = {y}, let us use notation HQ instead of HQX to denote the register corre-
sponding to the query index x ∈ X. Also, now we have z = (zy), so let us use z instead of
zy and zx instead zy,x. Also, now we denote the permutations in SN with π instead of σ.

We will consider the following representations of SN :

1. The computational basis of HQ is labeled by x ∈ {1, . . . , N} = X. We define the
action of π ∈ SN on HQ via the unitary UQ,π|x〉 := |π(x)〉. UQ is known as the

natural representation of SN , and we can decompose HQ = H(N)
Q ⊕ H(N−1,1)

Q so

that UQ restricted to H(N)
Q and H(N−1,1)

Q are irreps of SN isomorphic to (N) and
(N − 1, 1), respectively.

2. The computational basis of HI is labeled by z ∈ D, that is, z = (z1, . . . , zN ) ∈
{0, 1}N such that

∑N
x=1 zi = k. In Section C.3 we already defined and studied the

representation UI : for π ∈ SN ,

UI,π|z1 . . . zN 〉 = UI,π|zπ−1(1) . . . zπ−1(N)〉.

We showed that we can decompose HI =
⊕k

i=0H
(N−i,i)
I so that UI restricted to

H(N−i,i)
I is an irrep of SN isomorphic to (N − i, i).

3. Finally, let U := UQ⊗UI , which acts on H := HQ⊗HI and is also a representation
of SN .

Let Π
(N)
Q and Π

(N−1,1)
Q denote, respectively, the projectors on H(N)

Q and H(N−1,1)
Q . Π

(N)
Q is

the N -dimensional matrix with all entries equal to 1/N , and Π
(N−1,1)
Q is the N -dimensional

matrix with 1 − 1/N on the diagonal and −1/N elsewhere. Let Π
(N)
I , Π

(N−1,1)
I , . . . ,

Π
(N−k,k)
I denote, respectively, the projectors on H(N)

I , H(N−1,1)
I , . . . , H(N−k,k)

I . The

entries of these
(
N
k

)
-dimensional matrices can be calculated using the fact that they

project on the eigenspaces of the Johnson scheme (see [21]).
Let us also denote

ΠHQ⊗S≥2
:= IQ ⊗

∑k

j=2
Π

(N−j,j)
I =

(
Π

(N)
Q + Π

(N−1,1)
Q

)
⊗
∑k

j=2
Π

(N−j,j)
I , (34)

ΠHQ⊗S<2
:= IQI −ΠHQ⊗S≥2

=
(
Π

(N)
Q + Π

(N−1,1)
Q

)
⊗
(
Π

(N)
I + Π

(N−1,1)
I

)
, (35)

which are equal to IQ ⊗ΠI,b and IQ ⊗ΠI,a, respectively.
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D.1 Statement of the lemma

For the oracles, let us write O instead of O′ (where O = OV or O = OF ). Similarly to
(30), we have to consider

OV =
∑
z∈D

( ∑
x∈X
zx=0

|x〉〈x| −
∑
x∈X
zx=1

|x〉〈x|
)
Q
⊗ |z〉〈z|I ,

OF =
∑
z∈D

(
I− |Ψ(z)〉〈Ψ(z)|

)
Q
⊗ |z〉〈z|I ,

where |Ψ(z)〉 =
∑

x : zx=1 |x〉
/√

k. Note that O acts on H and is satisfies UπOU−1
π = O

for all π ∈ SN . Equivalently to (33), it suffices to prove that∣∣Tr
(
ΠHQ⊗S<2

(ρ−OρO)
)∣∣ ≤ O(max{

√
k/N,

√
1/k})

for every density operator ρ on H that satisfies UπρU
−1
π = ρ for all π ∈ SN and both

oracles O = OV and O = OF .
For a subspace H′ ⊂ H such that H′ is invariant under U (i.e., under Uπ for all

π ∈ SN ), let U |H′ be U restricted to this subspace (note: U |H′ is a representation of
SN ). Let ΠH′ denote the projector on H′. Due to Schur’s lemma, there is a spectral
decomposition

ρ =
∑

µ
χµ

Πµ

dimµ
,

where
∑

µ χµ = 1, every µ is invariant under U , and U |µ in an irrep of SN . Hence, it
suffices to show the following.

Lemma 47 For every subspace µ ⊂ H such that U |µ is an irrep and for µ′ being the
subspace that µ is mapped to by OV or OF , we have

1

dimµ

∣∣Tr(ΠHQ⊗S≥2
(Πµ −Πµ′))

∣∣ ≤ O(max{
√
k/N,

√
1/k}). (36)

In order to prove Lemma 47, we need to inspect the representation U in more detail.

D.2 Decomposition of U

Let us decompose U into irreps. We consider two approaches how to do that. That is,
the list of irreps contained in U cannot depend on which approach we take, but we can
choose the way we address individual instances of irreps. For example, we will show
that U contains four instances of (N − 1, 1), and we have as much freedom in choosing a
projector on a single instance of (N − 1, 1) as in choosing (up to global phase) a unit
vector in C4.

For an irrep θ present in U , let Π̂θ be a projector on the space corresponding to all
instances of θ in U .
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Approach 1: via the tensor product of irreps. We know that U = UQ ⊗ UI and
we already know how UQ and UI decomposes into irreps. Thus, all we need to see is how,
for j ∈ {0, . . . , k}, (N)Q⊗ (N − j, j)I and (N − 1, 1)Q⊗ (N − j, j)I decompose into irreps
(we use subscripts Q and I here to specify which spaces these irreps act on, namely, HQ
and HI , respectively, but we will drop these subscripts most of the time later). Note
that (N)⊗ (N − j, j) ∼= (N − j, j) and (N − 1, 1)⊗ (N) ∼= (N − 1, 1) as (N) is the trivial
representation. And, for j ∈ {1, . . . , k}, the decomposition of (N − 1, 1)⊗ (N − j, j) is
given by the following claim.

Claim 3 For j ∈ {1, . . . , k}, we have

(N − 1, 1)⊗ (N − j, j)
= (N − j+1, j−1)⊕ (N − j, j)⊕ (N − j, j−1, 1)⊕ (N − j−1, j+1)⊕ (N − j−1, j, 1),

where we omit the term (N − j, j − 1, 1) when j = 1.

Proof. We use Expression 2.9.5 of [25], which, for j ∈ {2, . . . , k}, gives us

(N − 1, 1)⊗ (N − j, j) = (N − j, j) ↓ (SN−1 × S1) ↑ SN 	 (N − j, j) ↓ SN ↑ SN
= ((N − j, j − 1)× (1)) ↑ SN ⊕ ((N − j − 1, j)× (1)) ↑ SN 	 (N − j, j)
= (N − j + 1, j − 1)⊕ (N − j, j)⊕ (N − j, j − 1, 1)⊕ (N − j, j)
⊕ (N − j − 1, j + 1)⊕ (N − j − 1, j, 1)	 (N − j, j)

= (N − j + 1, j − 1)⊕ (N − j, j)⊕ (N − j, j − 1, 1)⊕ (N − j − 1, j + 1)

⊕ (N − j − 1, j, 1)

and, similarly, for j = 1, gives us

(N − 1, 1)⊗ (N − 1, 1) = (N − 1, 1) ↓ (SN−1 × S1) ↑ SN 	 (N − 1, 1) ↓ SN ↑ SN
= (N)⊕ (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1, 1). �

We can see that, for every ` ∈ {0, 1} and j ∈ {0, . . . , k}, the representation (N − `, `)Q ⊗
(N − j, j)I is multiplicity-free, that is, it contains each irrep at most once. For an irrep θ
present in (N − `, `)Q ⊗ (N − j, j)I , let

Π
(N−`,`)Q⊗(N−j,j)I
θ := Π̂θ

(
Π

(N−`,`)
Q ⊗Π

(N−j,j)
I

)
,

which is the projector on the unique instance of θ in (N−`, `)Q⊗(N−j, j)I . For example,

for θ = (N−1, 1), we have projectors Π
(N)Q⊗(N−1,1)I
(N−1,1) , Π

(N−1,1)Q⊗(N)I
(N−1,1) , Π

(N−1,1)Q⊗(N−1,1)I
(N−1,1) ,

and Π
(N−1,1)Q⊗(N−2,2)I
(N−1,1) .
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Approach 2: via spaces invariant under queries OV and OF . Let us decompose
H as the direct sum of four subspaces, each invariant under the action of U , OV , and OF .
First, let H = H(0)⊕H(1), where H(0) and H(1) are spaces corresponding to, respectively,
the subsets

H0 =
{

(x, z) ∈ X ×D : zx = 0
}

and H1 =
{

(x, z) ∈ X ×D : zx = 1
}
,

of the standard basis X ×D. Let us further decompose H(0) and H(1) as

H(0) = H(0,s) ⊕H(0,t) and H(1) = H(1,s) ⊕H(1,t),

where

H(0,s) := span
{ ∑
x : zx=0

|x, z〉 : z ∈ D
}

and H(1,s) := span
{ ∑
x : zx=1

|x, z〉 : z ∈ D
}
,

and H(0,t) := H(0) ∩ (H(0,s))⊥ and H(1,t) := H(1) ∩ (H(1,s))⊥.
Note that, for a given z,

∑
z : zx=1 |x〉 =

√
k |Ψ(z)〉. Therefore, the query OF acts on

H(1,s) as the minus identity and on H(0) ⊕H(1,t) as the identity. Meanwhile, OV acts on
H(1) as the minus identity and on H(0) as the identity.

For every superscript σ ∈ {(0), (1), (0, s), (0, t), (1, s), (1, t)}, let Πσ be the projector
on the space Hσ, and let Uσ be the restriction of U to Hσ. Let V σ

π be Uσπ restricted to
π ∈ Sk × SN−k and the space

H̃σ := Hσ ∩ (HQ ⊗ |1k0N−k〉I).

V σ is a representation of Sk × SN−k. One can see that

|SN |
/
|Sk × SN−k| = dimHσ

/
dim H̃σ,

so we have Uσ = V σ ↑ SN . In order to see how Uσ decomposes into irreps, we need to
see how V σ decomposes into irreps, and then apply the Littlewood-Richardson rule.

We have dim H̃(0,s) = dim H̃(1,s) = 1, and it is easy to see that V (0,s) and V (1,s) act
trivially on H̃(0,s) and H̃(1,s), respectively. That is, V (0,s) ∼= V (1,s) ∼= (k)× (N − k). Now,
note that

H̃(0) = span
{
|x〉 ⊗ |1k0N−k〉 : x ∈ {k + 1, . . . , N}

}
.

The group Sk (in Sk × SN−k) acts trivially on H̃(0), while and the action of SN−k on H̃(0)

defines the natural representation of SN−k. Hence, V (0) ∼= (k)× ((N −k)⊕ (N −k−1, 1)),
and V (0) = V (0,s) ⊕ V (0,t), in turn, gives us V (0,t) ∼= (k)× (N − k − 1, 1). Analogously
we obtain V (1,t) ∼= (k − 1, 1) × (N − k). The decompositions of U (0,s) = V (0,s) ↑ SN
and U (1,s) = V (1,s) ↑ SN into irreps are given via (24). For U (0,t) = V (0,t) ↑ SN and
U (1,t) = V (1,t) ↑ SN , the Littlewood-Richardson rule gives us, respectively,

((k)× (N − k − 1, 1)) ↑ SN = (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1, 1)

⊕ (N − 3, 3)⊕ (N − 3, 2, 1)⊕ (N − 4, 4)⊕ (N − 4, 3, 1)⊕ . . .
⊕ (N − k, k)⊕ (N − k, k − 1, 1)⊕ (N − k − 1, k + 1)⊕ (N − k − 1, k, 1)
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and

((k − 1, 1)× (N − k)) ↑ SN = (N − 1, 1)⊕ (N − 2, 2)⊕ (N − 2, 1, 1)

⊕ (N − 3, 3)⊕ (N − 3, 2, 1)⊕ (N − 4, 4)⊕ (N − 4, 3, 1)

⊕ . . .⊕ (N − k + 1, k − 1)⊕ (N − k + 1, k − 2, 1)⊕ (N − k, k − 1, 1).

Note that all U (0,s), U (0,t), U (1,s), and U (1,t) are multiplicity-free. For a superscript
σ ∈ {(0, s), (0, t), (1, s), (1, t)} and an irrep θ present in Uσ, let Πσ

θ := Π̂θΠ
σ, which is the

projector on the unique instance of θ in Uσ. For example, for θ = (N − 1, 1), we have all

the projectors Π
(0,s)
(N−1,1), Π

(0,t)
(N−1,1), Π

(1,s)
(N−1,1), and Π

(1,t)
(N−1,1).

D.3 Significant irreps

We noted in Section D.2 that OF acts on H(1,s) as the minus identity and on H(0)⊕H(1,t)

as the identity and OV acts on H(1) as the minus identity and on H(0) as the identity.
This means that, if µ is a subspace of one of the spaces H(0), H(1,s), or H(1,t), then µ′ = µ.
In turn, even if that is not the case, we still have that U |µ and U |µ′ are isomorphic irreps.

Also note that∣∣Tr(ΠHQ⊗S≥2
(Πµ −Πµ′))

∣∣ =
∣∣Tr(ΠHQ⊗S<2(Πµ −Πµ′))

∣∣. (37)

Hence we need to consider only µ such that U |µ is isomorphic to an irrep present in both

(
(N)⊕(N−1, 1)

)
Q
⊗
(
(N)⊕(N−1, 1)

)
I

and
(
(N)⊕(N−1, 1)

)
Q
⊗

k⊕
j=2

(N−j, j)I ,

as otherwise the expression (36) equals 0. From Section D.2 we see that the only such
irreps are (N − 1, 1), (N − 2, 2), and (N − 2, 1, 1).

The representation U contains four instances of irrep (N − 1, 1), four of (N − 2, 2),
and two of (N − 2, 1, 1). Projectors on them, according to Approach 1 in Section D.2, are

Π
(N)Q⊗(N−1,1)I
(N−1,1) , Π

(N−1,1)Q⊗(N)I
(N−1,1) , Π

(N−1,1)Q⊗(N−1,1)I
(N−1,1) , Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ,

Π
(N)Q⊗(N−2,2)I
(N−2,2) , Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) , Π

(N−1,1)Q⊗(N−2,2)I
(N−2,2) , Π

(N−1,1)Q⊗(N−3,3)I
(N−2,2) ,

Π
(N−1,1)Q⊗(N−1,1)I
(N−2,1,1) , Π

(N−1,1)Q⊗(N−2,2)I
(N−2,1,1) ,

(38)

or, according to Approach 2 in Section D.2, are

Π
(0,s)
(N−1,1), Π

(0,t)
(N−1,1), Π

(1,s)
(N−1,1), Π

(1,t)
(N−1,1),

Π
(0,s)
(N−2,2), Π

(0,t)
(N−2,2), Π

(1,s)
(N−2,2), Π

(1,t)
(N−2,2),

Π
(0,t)
(N−2,1,1), Π

(1,t)
(N−2,1,1).

One thing we can see from this right away is that, if U |µ ∼= (N − 2, 1, 1), then µ ⊂
H(0) ⊕H(1,t), so the application of the query OF fixes µ, and the expression (36) equals
0.
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D.4 Necessary and sufficient conditions for irrep (N − 1, 1)

We would like to know what are necessary and sufficient conditions for inequality (36) to
hold. First, let us consider the irrep (N − 1, 1); later, the argument for the other two
irreps will be very similar.

Transporters as the standard basis for irreps. For a1, a2 ∈ {0, 1} and b1, b2 ∈
{s, t}, let Π

(a1,b1)←(a2,b2)
(N−1,1) be, up to a global phase, the unique operator of rank dim(N−1, 1)

such that (
U

(a1,b1)
(N−1,1)

)
π

= Π
(a1,b1)←(a2,b2)
(N−1,1)

(
U

(a2,b2)
(N−1,1)

)
π

(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
.

for all π ∈ SN . We call Π
(a1,b1)←(a2,b2)
(N−1,1) the transporter from irrep U

(a2,b2)
(N−1,1) to U

(a1,b1)
(N−1,1).

One can see that all non-zero singular values of Π
(a1,b1)←(a2,b2)
(N−1,1) are 1. We also have

Π
(a1,b1)←(a2,b2)
(N−1,1)

(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
= Π

(a1,b1)
(N−1,1),

(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
Π

(a1,b1)←(a2,b2)
(N−1,1) = Π

(a2,b2)
(N−1,1).

We can and we do choose global phases of these transporters in a consistent manner so
that(
Π

(a1,b1)←(a2,b2)
(N−1,1)

)∗
= Π

(a2,b2)←(a1,b1)
(N−1,1) and Π

(a1,b1)←(a2,b2)
(N−1,1) Π

(a2,b2)←(a3,b3)
(N−1,1) = Π

(a1,b1)←(a3,b3)
(N−1,1)

for all a3 ∈ {0, 1} and b3 ∈ {s, t}. Together they imply Π
(a1,b1)←(a1,b1)
(N−1,1) = Π

(a1,b1)
(N−1,1).

Fix a3 and b3, and note that(
Π

(a3,b3)←(a1,b1)
(N−1,1)

)∗
Π

(a3,b3)←(a2,b2)
(N−1,1) = Π

(a1,b1)←(a2,b2)
(N−1,1)

is independent of our choice of (a3, b3). Therefore, let us introduce the notation

Π
←(a1,b1)
(N−1,1) := Π

(a3,b3)←(a1,b1)
(N−1,1) .

Fact 1 Let µ ⊂ H be such that U |µ is an irrep isomorphic to (N − 1, 1) and let Πµ

be the projector on this subspace. There exists, up to a global phase, a unique vector
γ = (γ0,s, γ0,t, γ1,s, γ1,t) such that Πµ = Π̄∗γΠ̄γ, where

Π̄γ =
(
γ0,sΠ

←(0,s)
(N−1,1) + γ0,tΠ

←(0,t)
(N−1,1) + γ1,sΠ

←(1,s)
(N−1,1) + γ1,tΠ

←(1,t)
(N−1,1)

)
.

The norm of the vector γ is 1. The converse also holds: for any unit vector γ, Π̄∗γΠ̄γ is a
projector to an irrep isomorphic to (N − 1, 1).

From now on, let us work in this basis of transporters, because in this basis, queries
OV and OF restricted to Π̂(N−1,1) are, respectively,

OV |(N−1,1) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 and OF |(N−1,1) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 .
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Necessary and sufficient condition for the query OV . In the basis of transporters
we have

Πµ =


γ∗0,s
γ∗0,t
γ∗1,s
γ∗1,t

 · ( γ0,s γ0,t γ1,s γ1,t

)
=


|γ0,s|2 γ∗0,sγ0,t γ∗0,sγ1,s γ∗0,sγ1,t

γ∗0,tγ0,s |γ0,t|2 γ∗0,tγ1,s γ∗0,tγ1,t

γ∗1,sγ0,s γ∗1,sγ0,t |γ1,s|2 γ∗1,sγ1,t

γ∗1,tγ0,s γ∗1,tγ0,t γ∗1,tγ1,s |γ1,t|2

 ,

(39)
and note that

|γa,b|2 = Tr
(
ΠµΠ

(a,b)
(N−1,1)

)/
dim(N − 1, 1).

From (38), one can see that

Π̂(N−1,1)ΠHQ⊗S≥2
= Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) .

Hence, for the space µ, the desired inequality (36) becomes

1

dim(N − 1, 1)

∣∣∣Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) (Πµ −Πµ′)

)∣∣∣ ≤ O(max{
√
k/N,

√
1/k}). (40)

Let us first obtain a necessary condition if we want this to hold for all µ.
In the same transporter basis, let

Π
(N−1,1)Q⊗(N−2,2)I
(N−1,1) =


|β0,s|2 β∗0,sβ0,t β∗0,sβ1,s β∗0,sβ1,t

β∗0,tβ0,s |β0,t|2 β∗0,tβ1,s β∗0,tβ1,t

β∗1,sβ0,s β∗1,sβ0,t |β1,s|2 β∗1,sβ1,t

β∗1,tβ0,s β∗1,tβ0,t β∗1,tβ1,s |β1,t|2

 . (41)

For b0, b1 ∈ {s, t} and a phase φ ∈ R, define the space ξb0,b1,φ via the projector on it:

Πξb0,b1,φ
:=

1

2

(
Π

(0,b0)
(N−1,1) + eiφΠ

(0,b0)←(1,b1)
(N−1,1) + e−iφΠ

(1,b1)←(0,b0)
(N−1,1) + Π

(1,b1)
(N−1,1)

)
.

We have

Πξb0,b1,φ
−OV Πξb0,b1,φ

OV = eiφΠ
(0,b0)←(1,b1)
(N−1,1) + e−iφΠ

(1,b1)←(0,b0)
(N−1,1) ,

so, for this space, the inequality (40) becomes∣∣eiφβ∗1,b1β0,b0 + e−iφβ∗0,b0β1,b1

∣∣ ≤ O(max{
√
k/N,

√
1/k}).

Since this has to hold for all b0, b1, and φ (in particular, consider b0 and b1 that maximize
|β∗1,b1β0,b0 |), we must have either

|β1,s|2 + |β1,t|2 ≤ O(max{k/N, 1/k}) or |β1,s|2 + |β1,t|2 ≥ 1−O(max{k/N, 1/k}),
(42)

and note that

|β1,s|2 + |β1,t|2 = Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1)

)/
dim(N − 1, 1).

The condition (42) is necessary, but it is also sufficient for (40). Because, if it
holds, then |β∗1,b1β0,b0 | ≤ O(max{

√
k/N,

√
1/k}) for all b0, b1 ∈ {s, t} and, clearly,

|γ∗1,b1γ0,b0 | ∈ O(1) for all unit vectors γ. Therefore, if we plug (39) and (41) into (40), the
inequality is satisfied.
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Necessary and sufficient condition for the query OF . Almost identical analysis
shows that, in order for Lemma 47 to hold when U |µ is isomorphic to (N − 1, 1) and we
apply OF , it is necessary and sufficient that

|β1,s|2 ≤ O(max{k/N, 1/k}) or |β1,s|2 ≥ 1−O(max{k/N, 1/k}). (43)

Note that
|β1,s|2 = Tr

(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1)

)/
dim(N − 1, 1).

D.5 Conditions for irreps (N − 2, 2) and (N − 2, 1, 1)

For irreps (N − 2, 2) and (N − 2, 1, 1), let us exploit equation (37). Mainly, we do that
because the space HQ ⊗S≥2 contains three instances of irrep (N − 2, 2), while HQ ⊗S<2

contains only one. From (38) we get

Π̂(N−2,2)ΠHQ⊗S<2 = Π
(N−1,1)Q⊗(N−1,1)I
(N−2,2) and Π̂(N−2,1,1)ΠHQ⊗S<2 = Π

(N−1,1)Q⊗(N−1,1)I
(N−2,1,1) .

Condition for the query OV . An analysis analogous to that of the irrep (N − 1, 1)
shows that, in order for the desired inequality (36) to hold for query OV and irreps
(N − 2, 2) and (N − 2, 1, 1), it is sufficient to have

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) ·Π(1)

)
dim(N − 2, 2)

≤ O(k/N) and
Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,1,1) ·Π(1)

)
dim(N − 2, 1, 1)

≤ O(k/N).

Let us prove this. Consider irrep (N − 2, 2) and the hook-length formula gives us
dim(N − 2, 2) = N(N − 3)/2. We have

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) ·Π(1)

)
≤ Tr

(
(Π

(N−1,1)
Q ⊗Π

(N−1,1)
I )·Π(1)

)
,

and we can evaluate the right hand side of this exactly. Π(1) is diagonal (in the standard
basis), and, on the diagonal, it has (N −k)

(
N
k

)
zeros and k

(
N
k

)
ones. The diagonal entries

of Π
(N−1,1)
Q are all the same and equal to N−1

N . The diagonal entries of Π
(N−1,1)
I are

also all the same, because Π
(N−1,1)
I projects to an eigenspace of the Johnson scheme.

More precisely, we have Tr(Π
(N−1,1)
I ) = dim(N − 1, 1) = N − 1, therefore the diagonal

entries of Π
(N−1,1)
I are (N − 1)/

(
N
k

)
. Hence, the diagonal entries of Π

(N−1,1)
Q ⊗Π

(N−1,1)
I

are (N − 1)2/(N
(
N
k

)
), implying that

Tr
(
(Π

(N−1,1)
Q ⊗Π

(N−1,1)
I )Π(1)

)
=
k(N − 1)2

N

and, in turn,

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) Π(1)

)
dim(N − 2, 2)

≤ 2k(N − 1)2

N2(N − 3)
∈ O(k/N)

as required. The same argument works for irrep (N − 2, 1, 1) as, by the hook-length
formula, dim(N − 2, 1, 1) = (N − 1)(N − 2)/2 = dim(N − 2, 2) + 1.
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Condition for the query OF . As we mentioned in the very end of Section D.3, OF
affects no space µ such that U |µ is isomorphic to irrep (N − 2, 1, 1). However, the
following argument for irrep (N − 2, 2) actually works for (N − 2, 1, 1) as well. We have

Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) Π(1,s)

)
dim(N − 2, 2)

≤
Tr
(
Π

(N−1,1)Q⊗(N−1,1)I
(N−2,2) Π(1)

)
dim(N − 2, 2)

≤ O(k/N),

which, similarly to the condition (43) for irrep (N − 1, 1), is sufficient to show that
Lemma 47 holds for irrep (N − 2, 2) and the query OF .

D.6 Solution for irrep (N − 1, 1)

Recall that conditions (42) and (43) are sufficient for Lemma 47 to hold for the queries
OV and OF , respectively. Hence, it suffices for us to show that

Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1)

)
dim(N − 1, 1)

≥
Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1)

)
dim(N − 1, 1)

=

=
k − 1

k
· N(N − k − 1)

(N − 1)(N − 2)
≥ 1−O(max{k/N, 1/k}).

It is easy to see that both inequalities in this expression hold, and we need to concern
ourselves only with the equality in the middle.

Notice that

Π
(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1) = (IQ ⊗Π
(N−2,2)
I )·Π(1,s)

(N−1,1),

and let us evaluate the trace of the latter. We briefly mentioned before that Π
(N)
I ,

Π
(N−1,1)
I , . . . , Π

(N−k,k)
I are orthogonal projectors on the eigenspaces of the Johnson

scheme. Let us now use this fact.

Johnson scheme on HI . For any two strings z, z′ ∈ D, let |z − z′| be the half of
the Hamming distance between them (the Hamming distance between them is an even
number in the range {0, 2, 4, . . . , 2k}). For every i ∈ {0, 1, . . . , k}, let

AIi =
∑
z,z′∈D
|z−z′|=i

|z〉〈z′|,

which is a 01-matrix in the standard basis of HI . Matrices AI0, A
I
1, . . . , A

I
k form an

association scheme known as the Johnson scheme (see [21, Chapter 7]).
There are matrices CI0 , C

I
1 , . . . , C

I
k of the same dimensions as Ai that satisfy

CIj =

k−j∑
i=0

(
k − i
j

)
Ai for all j and AIi =

k∑
j=k−i

(−1)j−k+i

(
j

k − i

)
Cj for all i.

(44)
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These matrices CI
j simplify the calculation of the eigenvalues of AIi , as, for all j ∈

{0, 1, . . . , k}, we have

CIj =

j∑
h=0

(
N − j − h
N − k − h

)(
k − h
j − h

)
Π

(N−h,h)
I for all j. (45)

Hence, we can express AIi uniquely as a linear combination of orthogonal projectors

Π
(N−h,h)
I , and the coefficients corresponding to these projectors are the eigenvalues of AIi .

Here, however, we are interested in the opposite: expressing Π
(N−h,h)
I as a linear

combination of AIi . From (45) one can see that

Π
(N−h,h)
I = (N − 2h+ 1)

h∑
j=0

(−1)j−h

(
k−j
h−j
)

(k − j + 1)
(
N−j−h+1
N−k−h

)CIj (46)

for h = 0, 1, 2. We are interested particularly in Π
(N−2,2)
I , and from (46) and (44) we get

Π
(N−2,2)
I =

1(
N−4
k−2

) k∑
i=0

((
k − i

2

)
− (k − 1)2

N − 2
(k − i) +

k2(k − 1)2

2(N − 1)(N − 2)

)
AIi . (47)

Johnson scheme on H(1,s). Recall that, for z ∈ D, we have |Ψ(z)〉 =
∑

x : zx=1 |x〉/
√
k,

and let us define
A

(1,s)
i =

∑
z,z′∈D
|z−z′|=i

|Ψ(z), z〉〈Ψ(z′), z′|

for all i ∈ {0, 1, . . . , k}. The matrices AIi and A
(1,s)
i have the same eigenvalues corre-

sponding to the same irreps. Analogously to the space HI , we can define matrices C
(1,s)
j

to the space H(1,s). From (46) and (44) we get

Π
(1,s)
(N−1,1) =

1(
N−2
k−1

) k∑
i=0

(
(k − i)− k2

N

)
A

(1,s)
i . (48)

Both Johnson schemes together. Now that we have expressions for both Π
(N−2,2)
I

and Π
(1,s)
(N−1,1), we can compute Tr

(
(IQ ⊗Π

(N−2,2)
I )·Π(1,s)

(N−1,1)

)
. For all i, i′ ∈ {0, 1, . . . , k},

we have

Tr
(
(IQ ⊗AIi )·A

(1,s)
i′

)
= δi,i′

(
N

k

)(
k

i

)(
N − k
i

)
k − i
k

. (49)

Indeed, it is easy to see that this trace is 0 if i 6= i′, and for i = i′ we argue as follows.
The matrix AIi has

(
N
k

)
rows, and each row has

(
k
i

)(
N−k
i

)
entries 1. That is, each z ∈ D

has exactly
(
k
i

)(
N−k
i

)
z′ ∈ D such that |z − z′| = i. And for such z and z′, we have

〈ψz|ψz′〉 = (k − i)/k.
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Now, if we put (47), (48), and (49) together, we get

Tr
(
Π

(N−1,1)Q⊗(N−2,2)I
(N−1,1) ·Π(1,s)

(N−1,1)

)
= Tr

(
(IQ ⊗Π

(N−2,2)
I )·Π(1,s)

(N−1,1)

)
=

=
k∑
i=0

(
(k − i)− k2

N

)
(
N−2
k−1

)
(

(k−i)(k−i−1)
2 − (k−1)2

N−2 (k − i) + k2(k−1)2

2(N−1)(N−2)

)
(
N−4
k−2

) (
N

k

)(
k

i

)(
N − k
i

)
k − i
k

,

which, by using the equality

k∑
i=0

(
k

i

)(
N − k
i

)
(k − i)!

(k − i− l)!
=

k!

(k − l)!

(
N − l
N − k

)
,

can be shown to be equal to k−1
k ·

N(N−k−1)
(N−2) . We get the desired equality by dividing this

by dim(N − 1, 1) = N − 1.
This concludes the proof of Theorem 5 (Hardness of the two values problem).

E Proofs for Section 4

E.1 Proof of Theorem 6

Proof of Theorem 6. Algorithm E1 measures the first half of |ΣΨ〉. This measurement
yields a uniformly random outcome y ∈ Y and leaves |Ψ(y)〉 in the second half.

Let OF (y) := I − 2|Ψ(y)〉〈Ψ(y)|. This notation is justified because OF (y) is how OF
operates its the second input when the first input is |y〉. In particular, given OF we can
implement the unitary OF (y).

The algorithm E2 is as follows:

1 initialize register X with |Ψ(y)〉 (given as input);
2 for i = 1 to n+ 1 do
3 for j = 1, . . . , dlog(π/2

√
δmin)e do

4 for k = 1 to 2j−1 do

5 let UP |x〉 := (−1)P (x)|x〉;
6 apply OF (y)UP to register X

7 let PX :=
∑

P (x)=1 |x〉〈x|;
8 measure register X with projector PX , outcome b;
9 if b = 1 then

10 measure register X in the computational basis, outcome x;
11 return x

We first analyze the one iteration of the j-loop (i.e., lines 4–11). Let Py := {x ∈
Sy : P (x) = 1} and P̄y := {x ∈ Sy : P (x) = 0}. Let |yes〉 :=

∑
x∈Py

√
1/|Py| |x〉

and |no〉 :=
∑

x∈P̄y

√
1/|P̄y| |x〉. For any β ∈ R, let |φβ〉 := sinβ|yes〉 + cosβ|no〉. We

check that UP |φβ〉 = |φ−β〉. Let γ := arcsin
√
|Py|/|Sy|. Then |Ψ(y)〉 = sin γ|yes〉 +
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cos γ|no〉 = |φδ〉. Hence OF (y)|φβ〉 =
(
I−2|Ψ(y)〉〈Ψ(y)|

)
|φβ〉 = |φ−β+2γ〉 for all β. Thus

OF (y)UP |φβ〉 = |φβ+2γ〉.
Assume that at line 4, we have X = |φβ〉. The innermost loop (lines 4–6) thus yields

X = |φβ+2jγ〉. Since |yes〉 ∈ imPX and |no〉 is orthogonal to imPX , measuring X using
PX (line 8) yields b = 1 with probability (sin(β + 2jγ))2. If b = 1, X has state |yes〉,
and if b = 0, X has state |no〉. Thus, if b = 1, measuring X in the computational basis
(line 10) yields and returns x ∈ Sy with P (x) = 1.

Summarizing so far: one iteration of the j-loop (i.e., lines 4–11) returns x ∈ Sy with
probability (sin(β + 2jγ))2 if X has state |φβ〉 initially. And if no such x is returned, X
is in state |no〉 = |ψ0〉.

In the first execution of the j-loop, X contains |Ψ(y)〉 = |φγ〉. Thus in all further
executions of the j-loop, X contains |no〉 = |φ0〉 and the probability of returning x ∈ Sy,
P (x) = 1 in the j-th iteration is (sin 2jγ)2 = 1−

(
sin(π/2− 2jγ)

)2≥ 1− (π/2− 2jγ)2.
Thus any but the first iteration of the j-loop (i.e., lines 4–11) fails to return x ∈ Sy

with probability at most:

χ := min
1≤j≤dlog(π/2

√
δmin)e

(π/2− 2jγ)2.

We distinguish two cases:
• Case γ > π

4 : Since also γ ≤ 1, we have that |π/2− 2γ| ≤ 2 − π/2 < 1
2 and thus

χ ≤ (π/2− 2γ)2 ≤ (1
2)2 ≤ 1

2 .
• Case γ ≤ π

4 : For at least one 1 ≤ j ≤ dlog(π/2
√
δmin)e we have 2jγ ≤ π/2. And

for at least one such j we have

2jγ ≥ 2log π/2
√
δminγ =

πγ

2
√
δmin

≥
π arcsin

√
|Py|/|Sy|

2
√
|Py|/|Sy|

≥ π/2.

Thus the minimum ranges over some j, j + 1 such that 2jγ ≤ π/2 ≤ 2j+1γ. For any
a ≥ 0, min{|π2 − a|, |

π
2 − 2a|} ≤ π

6 if a ≤ π
2 ≤ 2a. Thus χ ≤ (π/6)2 ≤ 1

2 .
Hence in all cases, χ ≤ 1

2 .
The algorithm executes the j-loop n+ 1 times, and each but the first j-loop fails to

return x ∈ Sy, P (x) = 1 with probability at most χ ≤ 1
2 . Thus the algorithm fails to

return x ∈ Sy, P (x) = 1 with probability at most χn ≤ 2−n. �

E.2 Proof of Corollary 8

Proof of Corollary 8. We first show (i). Let PA := Pr[w = w0 : w ← AOall ].
In the remainder of the proof, we will make the probabilistic choice of oracles explicit,

as well as their use by A. That is, PA becomes:

PA = Pr[w = w0 : w0
$← {0, 1}`rand , (Scom)← $,OS ← $,OP ← $,

w ← AOE ,OP ,OR,OS ,OF ,OΨ,OV ].
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Here we used the following shorthands: (Scom) ← $ means that the sets Scom are
uniformly random subsets of {0, 1}`ch × {0, 1}`resp of size k. OS ← $ means that the
oracle OS is randomly chosen as described in Definition 7 (Oracle distribution). OP ← $
means that the oracle OP is randomly chosen as described in Definition 7. Since no
random choices are involved in the definitions of OE ,OR,OF ,OΨ,OV , we do not write
their definitions explicitly here, cf. Definitions 4 and 7.

Removing OP ,OROP ,OROP ,OR: We now remove access to OP ,OR. We then have

PA ≤ 2(qP + qR + 1)
√
P1, (50)

P1 := Pr[w = w0 : w0
$← {0, 1}`rand , (Scom)← $,OS ← $, w ← AOE ,OS ,OF ,OΨ,OV

1 ]

for some A1 by Lemma 38 (with O1 := (OP ,OR), w := w0, O2 := (OE ,OS ,OF ,OΨ,OV ),
∀w′ : f(·, w′) := f(w′, ·, ·, ·) := w′). Here the algorithm A1 makes at most as many oracle
queries as A to the remaining oracles. Note that we also removed OP ← $ because OP is
not used any more.

Removing OEOEOE: We now transform A1 not to output w, but to output the two accepting
conversations (com, ch, resp, ch ′, resp′) needed for extraction. In the following, we write
short Collision for (ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom .

P1 ≤ 2qE
√
P2 + 2−`rand , (51)

P2 := Pr[Collision : (Scom)← $,OS ← $, (com, ch, resp, ch ′, resp′)← AOS ,OF ,OΨ,OV
2 ]

for some A2 by Lemma 39 (with w := w0, ` := `rand , O1 := OE , O2 := (OS ,OF ,OΨ,OV ),
and X := {(com, ch, resp, ch ′, resp′) : Collision}). Here A2 makes at most as many oracles
queries as A1. We also removed the choice of w0 from the formula because none of the
remaining oracles depend on it.

Removing OΨOΨOΨ: Fix integers n,m. We determinate the actual values later. By Theorem 3
(Emulating state creation oracles), we have:

P2 ≤ P3 +O
( qΨ√

n
+

qΨ√
m

)
, (52)

P3 := Pr[Collision : (Scom)← $,OS ← $, (com, ch, resp, ch ′, resp′)← AOS ,OF ,OV3 (|R〉)]

for some A3. Here A3 makes qS , qF , qV queries to OS ,OF ,OV . And |R〉 := |ΣΨ〉⊗m ⊗
|α1〉 ⊗ · · · ⊗ |αn〉 with |αj〉 := (cos jπ2n)|ΣΨ〉+ (sin jπ

2n)|⊥〉.
Removing OSOSOS: For given choice of (Scom)com∈{0,1}`com , let DY be the distribution of

OS(z), i.e., D picks com
$← {0, 1}`com and (ch, resp)

$← Scom and returns (com, ch, resp).
Fix some integers s (we determine the value of s later). Then, for fixed choice of

(Scom)com (OV ,OF are deterministic given Scom anyway), we have by Theorem 40 (Small

range distributions [40]) (with H := OS):∣∣∣Pr[Collision : OS ← $, (com, ch, resp, ch ′, resp′)← AOS ,OF ,OV3 (|R〉)]−

Pr[Collision : G← $, (com, ch, resp, ch ′, resp′)← AG,OF ,OV3 (|R〉)]
∣∣∣ ≤ 14q3/s.
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Here G← $ means that G is chosen as: pick (com1, ch1, resp1), . . . , (coms, chs, resps)←
DY , then for all z, pick iz

$← {1, . . . , s} and set G(z) := (comiz , chiz , respiz).
By averaging over the choice of (Scom), we then get that

|P3 − P4| ≤ 14q3
S/s, (53)

P4 := Pr[Collision : (Scom)← $, G← $, (com, ch, resp, ch ′, resp′)← AG,OF ,OV3 ].

We construct the adversary A4: Let AOF ,OV4 (com1, ch1, resp1, . . . , coms, chs, resps, |R〉)
pick G himself as: for all z, iz

$← {1, . . . , s}, G(z) := (comiz , chiz , respiz). Then A4

executes AG,OF ,OV3 (|R〉). Then

P4 = Pr[Collision : (Scom)← $, (com1, ch1, resp1), . . . , (coms, chs, resps)← DY ,

(com, ch, resp, ch ′, resp′)← AOF ,OV4 (com1, ch1, resp1, . . . , coms, chs, resps, |R〉)].

(Note that the distribution DY depends on the choice of Sy.)

Let AOF ,OV5 (|ΣΨ〉⊗s, |R〉) be the algorithm that does the following: For
each each i, it takes one copy of the state |ΣΨ〉 (given as input) and mea-
sures it in the computational basis to get (comi, chi, respi). Then A5 runs
AOF ,OV4 (com1, ch1, resp1, . . . , coms, chs, resps, |R〉).

By definition of |ΣΨ〉 (Definition 4), each (comi, chi, respi) chosen by A5 is indepen-
dently distributed according to DY . Thus

P4 = P5, (54)

P5 := Pr[Collision : (Scom)← $, (com, ch, resp, ch ′, resp′)← AOF ,OV5 (|ΣΨ〉⊗s, |R〉)].

Converting the |αi〉|αi〉|αi〉: The adversary A5 is almost an adversary as in Theorem 5
(Hardness of the two values problem), with one exception: the input to A5 is a state |R〉 =
|ΣΨ〉⊗m⊗|α1〉⊗· · ·⊗|αn〉 with |αj〉 := (cos jπ2n)|ΣΨ〉+(sin jπ

2n)|⊥〉. Theorem 5 on the other
hand assumes an adversary that takes as input states in the span of |ΣΨ〉 and |ΣΦ〉 :=∑

com,ch,resp 2−(`com+`ch+`resp)/2|com, ch, resp〉. Let |α̃j〉 := (cos jπ2n)|ΣΨ〉 + (sin jπ
2n)|ΣΦ〉.

|R̃〉 = |ΣΨ〉⊗m⊗|α̃1〉⊗· · ·⊗|α̃n〉 Let Uα|ΣΦ〉 := |⊥〉 and Uα|⊥〉 := |ΣΦ〉 and Uα|Φ〉 := |Φ〉
for |Φ〉 orthogonal to |⊥〉, |ΣΦ〉.

Let AOF ,OV6 (|ΣΨ〉⊗s, |R̃〉) be the algorithm that runs AOF ,OV5 (|ΣΨ〉⊗s, (I⊗m ⊗
U⊗nα )|R̃〉). Then

P5 ≤ P6 + TD
(
(I⊗m ⊗ U⊗nα )|R̃〉, |R〉

)
, (55)

P6 := Pr[Collision : (Scom)← $, (com, ch, resp, ch ′, resp′)← AOF ,OV6 (|ΣΨ〉⊗s, |R̃〉)].

Write |ΣΨ〉 as |ΣΨ〉 = γ|ΣΦ〉+ δ|ΣΦ⊥〉 with |ΣΦ⊥〉 a state orthogonal to |ΣΦ〉. Write
short c := (cos jπ2n) and s := (sin jπ

2n). Then

χ := 〈αj |Uα|α̃j〉
= (c|ΣΨ〉+ s|⊥〉)†Uα(c|ΣΨ〉+ s|ΣΦ〉)
= c2〈ΣΨ|Uα|ΣΨ〉+ s2〈⊥|⊥〉+ cs〈ΣΨ|⊥〉+ cs〈⊥|Uα|ΣΨ〉
(∗)
= c2|δ2|+ s2 + cs · 0 + csγ = c2(1− |γ2|) + s2 + csγ = 1− c2|γ2|+ csγ.
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In (∗) we use that |⊥〉, |ΣΦ〉, |ΣΦ⊥〉 are orthogonal. Furthermore,

γ = 〈ΣΦ|ΣΨ〉 =
∑

com,ch,resp
(ch,resp)∈Scom

2−(`com+`ch+`resp)/2 · 2−`com/2/
√
k

= 2`comk · 2−(`com+`ch+`resp)/2 · 2−`com/2/
√
k = 2−(`ch+`resp)/2

√
k ≥ 0.

Thus

χ = 1− c2|γ2|+ csγ ≥ 1− c2γ2 ≥ 1− γ2

and hence

TD(|αj〉, Uα|α̃j〉) =
√

1− χ2 ≤
√

1− (1− γ2) ≤
√

2γ2 = 2−(`ch+`resp−1)/2
√
k.

With (55), we get

P5 ≤ P6 + TD
(
(I⊗m ⊗ U⊗nα )|R̃〉, |R〉

)
= P6 +

n∑
i=1

TD(|αj〉, Uα|α̃j〉)

≤ P6 + n2−(`ch+`resp−1)/2
√
k. (56)

Wrapping up: Note that A6 is an adversary as in Theorem 5 (Hardness of the two values

problem). Thus by Theorem 5 (with h := n+m+ s), we have:

P6 ≤ O

(
(n+m+ s)

2`com/2
+

(qV + qF )1/2k1/4

2(`ch+`resp)/4
+

(qV + qF )1/2

k1/4

)
. (57)

Let n,m, s := bmin{2`resp/4, 2`com/3}c. Since `resp and `com are superlogarithmic, n,m, s
are superpolynomial. The first summand in (57) is negligible since n+m+ s ≤ 3 · 2`com/3.
The second summand is negligible because qV , qF are polynomially-bounded and k =
2`ch+b`resp/3c and `resp is superlogarithmic. The third summand is negligible because qV , qF
are polynomially-bounded and k is superlogarithmic. Thus by (57), P6 is negligible.

Using n ≤ 2`resp/4 and k ≤ 2`ch+`resp/3, we get that the second summand in (56)
is upper bounded by 2`resp/4 · 2−`ch/2−`resp/2−1/2 · 2`ch/2+`resp/6 = 2−1/2−`resp/12 which
is negligible. Since P6 is negligible, (56) implies that P5 is negligible. By (54), P4

is negligible. Since qS is polynomially-bounded and s is superpolynomial, 14q3
S/s is

negligible. Thus by (53), P3 is negligible. Since qΨ is polynomially-bounded and n,m
are superpolynomial, the second summand in (52) is negligible, so P2 is negligible. Since
`rand is superlogarithmic, qE is polynomially-bounded, and P2 is negligible, (51) implies
that P1 is negligible. And since qP , qR are polynomially-bounded and P1 is negligible,
(50) implies that PA is negligible. This shows part (i) of the lemma.

We now show part (ii) of the lemma. For an adversary A outputting
(com, ch, resp, ch ′, resp′), let B be the adversary that runs (com, ch, resp, ch ′, resp′)← A,
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then invokes w ← OE(com, ch, resp, ch ′, resp′) and returns w. Note that B makes qE + 1
queries to OE , and the same number of queries to the other oracles as A. By definition
of OE , we have

Pr[(ch, resp) 6= (ch ′, resp′) ∧ (ch, resp), (ch ′, resp′) ∈ Scom :

(com, ch, resp, ch ′, resp′)← AOall ] ≤ Pr[w = w0 : w ← BOall ].

By (i) the rhs is negligible, thus the lhs is, too. This proves (ii). �

F Proofs for Section 5

F.1 Proof for Lemma 14

Proof of Lemma 14. Perfect completeness: By definition of OS , we have that xi ∈ Syi
for all (yi, xi) := OS(zi). Hence OV (yi, xi) = 1 for all i. Thus COMverify(c,m, u) = 1 for
(c, u)← COM(m). Hence we have perfect completeness.

Computational strict binding: Consider an adversary AOall against the computa-
tional strict binding property. Let µ be the probability that AOall outputs (c,m, u,m′, u′)
such that (m,u) 6= (m′, u′) and ok = ok ′ = 1 with ok = COMverify(c,m, u)
and ok ′ = COMverify(c,m′, u′). We need to show that µ is negligible. Let c =:
(p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|) and u =: (x1, . . . , x|m|) and u′ =: (x′1, . . . , x

′
|m|).

Then (m,u) 6= (m′, u′) implies that for some i, (xi,mi) 6= (x′i,m
′
i). If xi = x′i, then

from ok = ok ′ = 1 we have mi = bi ⊕ bitpi(xi) = bi ⊕ bitpi(x
′
i) = m′i, in contradic-

tion to (xi,mi) 6= (x′i,m
′
i). So xi 6= x′i. Furthermore, ok = ok ′ = 1 implies that

OV (yi, xi) = OV (yi, x
′
i) = 1, i.e., xi, x

′
i ∈ Syi . So AOall finds xi 6= x′i with xi, x

′
i ∈ Syi

with probability µ. By Corollary 8 (Hardness of two values 2), this implies that µ is negligible.

Computational binding: This is implied by computational strict binding.

Statistical hiding: Fix m,m′ ∈ {0, 1}. Let (y, x) := OS(z), z
$← {0, 1}`rand , p ←

{1, . . . , `ch + `resp}, b := m ⊕ bitp(x). Let ŷ
$← `com , x̂

$← Sŷ. Define analogously
y′, x′, z′, p′, b′, ŷ′, x̂′.

Let D be the distribution that returns (ŷ, x̂) with ŷ
$← {0, 1}`com , x̂

$← Sŷ. Note
that by definition of OS , OS(z) is initialized according to D. By Lemma 32, for fixed
choice of the sets Sy, SD

(
(OS , y, x); (OS , ŷ, x̂)

)
≤ 2(`com−`rand )/2−1

√
k =: µ1. (With

X := {0, 1}`rand , Y := {(y, x) : y ∈ {0, 1}`com , x ∈ Sy}, and O := OS .) Thus
for random Sy and random p, SD

(
(Oall , p, y, bitp(x) ⊕ m); (Oall , p, ŷ, bitp(x̂) ⊕ m)

)
≤

µ1. Let b∗
$← {0, 1}. For fixed ŷ and p and random sets Sy and random p,

SD
(
(Sŷ, ŷ, bitp(x̂)); (Sŷ, ŷ, b

∗)
)
≤ 1/2

√
k =: µ2 by Lemma 33. Thus for random ŷ and

p, SD
(
(Oall , p, ŷ, bitp(x̂) ⊕ m); (Oall , p, ŷ, b

∗ ⊕ m)
)
≤ µ2. And (Oall , p, ŷ, b

∗ ⊕ m) has
the same distribution as (Oall , p, ŷ, b

∗) since b∗ ∈ {0, 1} is uniform and independently
chosen from Oall , ŷ. Hence SD

(
(Oall , p, y, bitp(x)⊕m); (Oall , p, ŷ, b

∗)
)
≤ µ1 + µ2. Analo-

gously, SD
(
(Oall , p

′, y′, bitp(x
′)⊕m′); (Oall , p

′, ŷ′, b∗′)
)
≤ µ1 + µ2 with b∗′

$← {0, 1}. Since
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(Oall , p, ŷ, b
∗) and (Oall , p

′, ŷ′, b∗′) have the same distribution, this implies

SD
(
(Oall , p, y, bitp(x)⊕m); (Oall , p

′, y′, bitp(x
′)⊕m′)

)
≤ 2(µ1 + µ2). (58)

Fixm1,m2 with |m1| = |m2|. Let zi
$← {0, 1}`rand , (yi, xi) := OS(zi), pi

$← {1, . . . , `ch+
`resp}, bi := mi⊕ bitpi(xi) and analogously y′i, x

′
i, p
′
i, z
′
i, b
′
i. By induction over n, and using

(58), we get for all 1 ≤ n ≤ |m1|:

SD
(
(Oall , (pi)i=1,...,n, (yi)i=1,...,n, (bitpi(xi)⊕mi)i=1,...,n);

(Oall , (p
′
i)i=1,...,n, (y

′
i)i=1,...,n, (bitpi(x

′
i)⊕m′i)i=1,...,n)

)
≤ 2n(µ1 + µ2).

For n = |m1|, this becomes

SD
(
(Oall , c), (Oall , c

′)
)
≤ 2|m1|(µ1 +µ2) =: µ (with c← COM(m), c′ ← COM(m′)).

Since |m1| is polynomially-bounded, and `rand − `com − k is superlogarithmic, and k is
superpolynomial, µ is negligible. Thus COM is statistically hiding. �

F.2 Proof of Lemma 15

Proof of Lemma 15. Our adversary is as follows:
• B1(|m|) invokes E1 from Theorem 6 (Searching one value) |m| times to get (yi, |Ψ(yi)〉)

for i = 1, . . . , |m|.10 Let p1, . . . , p|m|
$← {1, . . . , `ch +`resp}. Let b1, . . . , b|m|

$← {0, 1}.
Output c := (p1, . . . , p|m|, y1, . . . , y|m|, b1, . . . , b|m|).
• B2(m): Let Pi(x) := 1 iff bitpi(x) = bi ⊕mi. Then, for each i = 1, . . . , |m|, B2

invokes E2(n, δmin, yi, |Ψ(yi)〉) from Theorem 6 with oracle access to P := Pi and
with n := `com and δmin := 1/3 to get xi. Then B2 outputs u := (x1, . . . , xn).

By Theorem 6, the probability that the i-th invocation of E2 fails to return xi with
xi ∈ Sy ∧ Pi(xi) = 1 is at most:

f := 2−`com + fδ with fδ := Pr
[ |{x ∈ Syi : Pi(x) = 1}|

|Syi |
< δmin

]
Let P ′0 := {x : bitpi(x) = 0} and P ′1 := {x : bitpi(x) = 1}. Since Syi ⊆ X is chosen

uniformly at random, by Lemma 31 we have for b = 0, 1:

f bδ := Pr
[
|Syi ∩ P ′b|/|Syi | < δmin

]
≤ e−2k( 1

2
−δmin)2

= e−k/18.

Since Pi = P ′0 or Pi = P ′1, we have fδ ≤ f0
δ + f1

δ ≤ 2e−k/18. (Note: we cannot just apply
Lemma 31 to Pi because Pi might not be independent of Syi .)

The probability that B2 fails to return u with COMverify(c,m, u) is then |m|f . Hence
εCOM ≥ 1 − |m|f ≥ 1 − |m|2−`com + |m|2e−k/18 which is overwhelming since |m| is
polynomial and `com and k are superlogarithmic. �

10E1 expects an input |ΣΨ〉. |ΣΨ〉 can be computed using the oracle OΨ.
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G Proofs for Section 6

G.1 Proof of Lemma 18

Proof of Lemma 18. Completeness: We need to show that with overwhelming
probability, (a) COMverify(cch , respch , uch) = 1 for (cch , uch) ← COM(respch) and
(b) OV (com, ch, respch) = 1 for uniform com, ch and respch := OP (w, com, ch). From
the completeness of COM (Lemma 14), we immediately get (a). We prove (b): By
definition of OP and OV , (b) holds iff ∃resp.(ch, resp) ∈ Scom . We thus need to show
that p1 := Pr[∃resp.(ch, resp) ∈ Scom ] is overwhelming. Scom is a uniformly random
subset of size k = 2`ch+b`respc/3 of X = {0, 1}`ch ×{0, 1}`resp . Thus p1 is lower bounded by
the probability p2 that out of k uniform independent samples from {0, 1}`ch , at least one

is ch. Thus p1 ≥ p2 = 1− (1− 2−`ch )k = 1−
(
(1− 1/2`ch )2`ch

)2b`respc/3 (∗)
≥ 1− e−2b`respc/3

where (∗) uses the fact that (1− 1/n)n converges from below to 1/e for integers n→∞.
Thus p1 is overwhelming for superlogarithmic `resp , and the sigma-protocol is complete.

Commitment entropy: We need to show that com∗ ← P1(s, w) has superlogarithmic
min-entropy. Since com∗ = (com, . . . ), and com is uniformly distributed on {0, 1}`com ,
the min-entropy of com∗ is at least `com which is superlogarithmic.

Perfect special soundness: Observe that V (s, com∗, ch, resp∗) =
V (s, com∗, ch ′, resp∗′) = 1 and ch 6= ch ′ implies (ch, resp), (ch ′, resp′) ∈ Scom

and s = s0 and ch 6= ch ′ which in turn implies OE(com, ch, resp, ch ′, resp′) = w0 and
(s, w0) ∈ R. Thus an extractor E that just outputs OE(com, ch, resp, ch ′, resp′) achieves
perfect special soundness.

Computational strict soundness: We need to show that a polynomial-time A will
only with negligible probability output (com∗, ch, resp∗, resp∗′) such that resp∗ 6= resp∗′

and V (s, com∗, ch, resp∗) = V (s, com∗, ch, resp∗′) = 1. Assume A outputs such a tuple
with non-negligible probability. By definition of V , this implies that resp∗ = (resp, u),
resp∗′ = (resp′, u′), and com∗ contains cch such that COMverify(cch , resp, u) = 1 and
COMverify(cch , resp′, u′) = 1. Since resp∗ 6= resp∗′, this contradicts the computational
strict binding property of COM,COMverify (Lemma 14). Thus the sigma-protocol has
computational strict soundness.

Statistical HVZK: Let S be the simulator that picks z
$← {0, 1}`rand , com-

putes (com, ch, resp) := OS(z), and (cc, uc) ← COM(0`resp ) for all c ∈ {0, 1}`ch \
{ch}, and (cch , uch) ← COM(resp), and returns (com∗, ch, resp∗) with com∗ :=
(com, (cch)ch∈{0,1}`ch ) and resp∗ := (respch , uch). We now compute the difference
between the probabilities from the definition of statistical HVZK (Definition 1) for
(s, w) ∈ R, i.e., for s = s0 and w = w0. In the calculation, com∗ always stands short for
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(com, (cch)ch∈{0,1}`ch ) and resp∗ for (respch , uch).

Pr[b = 1 : com∗ ← P1(s, w), ch
$← {0, 1}`ch , resp∗ ← P2(ch), b← A(com∗, ch, resp∗)]

= Pr
[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [for all c ∈ {0, 1}`ch : zc

$← {0, 1}`rand ,
respc := OP (w, com, c, zc), (cc, uc)← COM(respc)], b← A(com∗, ch, resp∗)

]
ε0≈ Pr

[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [for all c ∈ {0, 1}`ch \ {ch} :

(cc, uc)← COM(0`resp )], zch
$← {0, 1}`rand , respch := OP (w, com, ch, zch),

(cch , uch)← COM(respch), b← A(com∗, ch, resp∗)
]

Here a
ε0≈ b means that |a− b| ≤ ε0 where ε0 := 2`chεCOM and εCOM is the statistical

distance between commitments COM(respc) and COM(0`resp ). We have that εCOM is
negligible by Lemma 14 (statistical hiding of COM).

We abbreviate [for all c ∈ {0, 1}`ch \ {ch} : (cc, uc) ← COM(0`resp )] with [COM(0)]
and continue our calculation:

· · · = Pr
[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [COM(0)], zch

$← {0, 1}`rand ,
respch := OP (w, com, ch, zch), (cch , uch)← COM(respch), b← A(com∗, ch, resp∗)

]
ε1≈ Pr

[
b = 1 : com

$← {0, 1}`com , ch
$← {0, 1}`ch , [COM(0)],

respch ← Dcom,ch , (cch , uch)← COM(respch), b← A(com∗, ch, resp∗)
]

Here Dcom,ch is the uniform distribution on {resp : (ch, resp) ∈ Scom}. (Or, if that set is

empty, Dcom,ch assigns probability 1 to ⊥.) And a
ε1≈ b means that |a− b| ≤ ε1 where

ε1 := 1
2

√
2`resp/2`rand . The last equation follows from Lemma 32, with X := {0, 1}`rand

and Y := {0, 1}`resp and D := Dch,com , and using the fact that for all z, OP (w0, com, ch, z)
is chosen according to Dch,com . (Note that the adversary A has access to OP , but that
is covered since O occur on both sides of the statistical distance in Lemma 32.) We
continue the computation:

· · ·
ε2≈ Pr[b = 1 : (com, ch, respch)

$← D′, [COM(0)], (cch , uch)← COM(respch),

b← A(com∗, ch, resp∗)]

Here D′ is the distribution resulting from choosing com
$← {0, 1}`com , (ch, resp)

$← Scom .

By Lemma 34, ε2 ≤ 2k2

2`ch+`resp
+ 2`ch/2

2
√
k

. We continue

. . .
ε3≈ Pr[b = 1 : z

$← {0, 1}`rand , (com, ch, resp) := OS(z),

[COM(0)], (cch , uch)← COM(respch), b← A(com∗, ch, resp∗)]

Here ε3 =
√

(2`com · k)/2`rand . This follows from Lemma 32 with D := D′ and X :=
{0, 1}`rand and Y := {(com, ch, resp) : (ch, resp) ∈ Scom}. (Note that |Y | = 2`com · k.) We
continue

· · · = Pr[b = 1 : (com∗, ch, resp∗) := S(s), b← A(com∗, ch, resp∗)].
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Thus the difference of probabilities from the definition of statistical HVZK is bounded by
ε := ε0 + ε1 + ε2 + ε3. And ε is negligible since εCOM is negligible, and k = 2`ch+b`respc/3,
and `ch is logarithmic, and `resp , `com are superlogarithmic, and `rand = `com + `resp . �

G.2 Proof of Lemma 19

Proof of Lemma 19. According to Definition 2 (specialized to the case of the sigma-
protocol from Definition 17) we need to construct a polynomial-time quantum adversary
A1, A2, A3 such that:
• Adversary success:

PA := Pr[ok = 1 : s← A1, com∗ ← A2, ch
$← {0, 1}`ch ,

resp∗ ← A3(ch), ok = V (s, com∗, ch, resp∗)]

= Pr[okv = 1 ∧ ok c = 1 ∧ s = s0 : s← A1,
(
com, (cch)ch∈{0,1}`ch

)
← A2,

ch
$← {0, 1}`ch , (resp, u)← A3(ch), okv := OV (com, ch, resp),

ok c = COMverify(cch , resp, u)] (59)

is overwhelming.
• Extractor failure: For any polynomial-time quantum E (with access to the final

state of A1), Pr[s = s0, w = w0 : s← A1, w ← E(s)] is negligible.
Our adversary is as follows:
• Let B1, B2 be the adversary from Lemma 15 (Attack on COM). (That is, B1(|m|)

produces a fake commitment which B2(m) then opens to m.)
• A1 outputs s0.
• A2 invokes E1 from Theorem 6 (Searching one value) to get (com, |Ψ(com)〉).11

Then A2 invokes cc ← B1(`resp) for all c ∈ {0, 1}`ch . A2 outputs com∗ :=
(com, (cch)ch∈{0,1}`ch ).

• Let Pch(ch ′, resp′) := 1 iff ch ′ = ch. A3(ch) invokes E2(n, δmin, com, |Ψ(com)〉)
from Theorem 6 with oracle access to P := Pch and with n := `com and δmin :=
2−`ch−1 to get resp. Then A3 invokes u← B1(resp) to get opening information for
cch . A3 outputs resp∗ := (resp, u).

Adversary success: By Lemma 15, COMverify(cch , resp, u) = 1 with overwhelming
probability. Thus ok c = 1 with overwhelming probability in (59).

By Theorem 6, the probability that E2 fails to return (ch ′, resp) with (ch ′, resp) ∈
Scom ∧ Pch(ch ′, resp) = 1 is at most:

f := 2−`com + fδ with fδ := Pr
[ |{(ch ′, resp) ∈ Scom : Pch(ch ′, resp) = 1}|

|Scom |
< δmin

]
Let P ′ := {x : Pch(x) = 1} and X := {0, 1}`ch × {0, 1}`com . Then |P |′/|X| = 2−`ch . Since
Scom ⊆ X is chosen uniformly at random with |Scom | = k, by Lemma 31 we have:

fδ = Pr
[
|Scom ∩ P ′|/|Scom | < δmin

]
≤ e−2k(2−`ch−δmin)2

= e−k2−2`ch−1
.

11Using OΨ to get the input |ΣΨ〉 for E1.
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Thus f ≤ 2−`com + e−k2−2`ch−1
is negligible since `com is superpolynomial, `ch logarithmic,

and k superpolynomial. Thus with overwhelming probability E2 returns (ch ′, resp) ∈ Scom

with Pch(ch ′, resp) = 1. Pch(ch ′, resp) = 1 implies ch ′ = ch. Hence (ch, resp) ∈ Scom ,
thus OV (com, ch, resp) = 1, thus okv = 1 with overwhelming probability. Since s = s0 by
construction of A1, it follows that PA is overwhelming. Thus we have adversary success.

Extractor failure: It remains to show extractor failure. Fix some polynomial-time E.
Since A1 only returns a fixed s0 and has a trivial final state, without loss of generality
we can assume that E does not use its input s or A1’s final state. Then

PE := Pr[s = s0, w = w0 : s← A1, w ← EOall (s)] = Pr[w = w0 : w ← EOall ]

is negligible by Corollary 8 (Hardness of two values 2). This shows extractor failure.
�

G.3 Proof of Lemma 22

Proof of Lemma 22. Completeness and statistical HVZK and commitment
entropy hold trivially, because they only have to hold for (s, w) ∈ R′ = ∅. Computa-
tional strict soundness is shown exactly as in the proof of Lemma 18 (Security of the

sigma-protocol). (The definition of computational strict soundness is independent of the
relation R′.)

Computational special soundness: Let EΣ be an algorithm that always outputs ⊥.
By Definition 1 (Properties of sigma-protocols) we have to show that the following probability
is negligible:

PS := Pr[(s, w) /∈ R′ ∧ ch 6= ch ′ ∧ ok = ok ′ = 1 : (s, com∗, ch, resp∗, ch ′, resp∗′)← AOall ,

ok ← V (s, com∗, ch, resp∗), ok ′ ← V (s, com∗, ch ′, resp∗′),

w ← EΣ(s, com∗, ch, resp∗, ch ′, resp∗′)]

≤ Pr[ch 6= ch ′ ∧ (ch, resp), (ch ′, resp′) ∈ Scom : (com∗, ch, resp∗, ch ′, resp∗′)← AOall ,

(com, . . . ) := com∗, (resp, . . . ) := resp∗, (resp′, . . . ) := resp∗′]

The right hand side is negligible by Corollary 8 (Hardness of two values 2). Hence PS is
negligible. This shows that the sigma-protocol from Definition 21 has computational
special soundness. �

G.4 Proof of Lemma 23

Proof of Lemma 23. By Definition 2 (specialized to the sigma-protocol from Definition 21),
we need to construct a polynomial-time adversary A1, A2, A3 such that:

PA := Pr[ok = 1 ∧ s /∈ LR′ : s← A1, com∗ ← A2, ch
$← {0, 1}`ch , resp∗ ← A3(ch),

ok := V (com∗, ch, resp∗)] is overwhelming
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We use the same adversary (A1, A2, A3) as in the proof of Lemma 19. Then PA here is
the same as PA in the proof of Lemma 19. (Here we additionally have the condition
s /∈ LR′ , but this condition is vacuously true since R′ = ∅ and thus LR′ = ∅.) And in
the proof of Lemma 19 we showed that PA is overwhelming. �

H Proofs for Section 7

H.1 Proof of Theorem 25

Lemma 48 (Attack on Fiat-Shamir) There exists a total knowledge break (Defini-
tion 2) against the Fiat-Shamir construction based on the sigma-protocol from Defini-
tion 17. (For any r.)

Proof. According to Definition 2 (specialized to the case of the Fiat-Shamir construction
based on the sigma-protocol from Definition 17) we need to construct a polynomial-time
quantum adversary Â1, Â2 such that:
• Adversary success:

P̂A := Pr[∀i.ok i = 1 : s← ÂH,Oall
1 ,

(
(com∗i )i, (resp∗i )i

)
← ÂH,Oall

2 ,

ch1‖ . . . ‖chr := H(s, (com∗i )i), ok i := V (com∗i , chi, resp∗i )]

is overwhelming. Here V is the verifier of the sigma-protocol (Definition 17).
• Extractor failure: For any polynomial-time quantum E (with access to the final

state of Â1), Pr[s = s0, w = w0 : s← ÂH,Oall
1 , w ← EH,Oall (s)] is negligible.

Let A1, A2, A3 be the adversary from the proof of Lemma 19 (Attack on the sigma-protocol).
Our adversary is then as follows:
• Â1 outputs s0. (Identical to A1.)
• Â2 invokes the adversary A2 r times to get com∗1, . . . , com∗r. Then Â2 com-

putes ch1‖ . . . ‖chr := H(s, (com∗i )i). Then Â2 invokes A3 r times to get
resp∗1 ← A3(ch1), . . . , resp∗r ← A3(chr). Then Â2 outputs ((com∗i )i, (resp∗i )i).
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Adversary success: We have

1− P̂A = Pr[∃i.ok i = 0 : s← AOall
1 , ∀i.com∗i ← AOall

2 ,

ch1‖ . . . ‖chr := H(s, (com∗i )i), ∀i.resp∗i ← AOall
3 (chi),

∀i.ok i ← V (com∗i , chi, resp∗i )]
(∗)
= Pr[∃i.ok i = 0 : s← AOall

1 , ∀i.com∗i ← AOall
2 ,

∀i.chi
$← {0, 1}`ch , ∀i.resp∗i ← AOall

3 (chi),

∀i.ok i ← V (com∗i , chi, resp∗i )]

(∗∗)
≤

r∑
i=1

Pr[ok i = 0 : s← AOall
1 , com∗i ← AOall

2 ,

chi
$← {0, 1}`ch , resp∗i ← AOall

3 (chi),

ok i ← V (com∗i , chi, resp∗i )]

(∗∗∗)
=

r∑
i=1

(1− PA) = r(1− PA).

Here (∗) uses the fact that H is only queried once (classically), and thus H(s, (com∗i )i)
is uniformly random. And (∗∗) is a union bound. And (∗∗∗) is by definition of PA
in the proof of Lemma 19. There is was also shown that PA is overwhelming. Thus
1− P̂A ≤ r(1− PA) is negligible and hence P̂A overwhelming. Thus we have adversary
success.

Extractor failure: Extractor failure was already shown in the proof of Lemma 19. (A1

here is defined exactly as Â1 in the proof of Lemma 19, and the definition of extractor
failure depends only on Â1, not on Â2 or the protocol being attacked.)

Note that we have actually even shown extractor failure in the case that the extractor
is allowed to choose the random oracle H before and during the execution of A1, because
A1 does not access H. �

Now Theorem 25 follows from Lemma 18 (Security of the sigma-protocol) and Lemma 48.
(The fact that the Fiat-Shamir protocol is a classical argument of knowledge is shown in
[18].12)

H.2 Proof of Theorem 26

Lemma 49 (Attack on Fiat-Shamir, computational) Then there exists a total
break (Definition 2) against the Fiat-Shamir construction based on the sigma-protocol
from Definition 21. (For any r.)

12Actually, [18] requires perfect completeness instead of completeness as defined here (we allow a
negligible error). However, it is straightforward to see that their proof works unmodified for completeness
as defined here.

Also, [18] assumes that `ch is superlogarithmic, and considers the case r = 1. But [18] can be applied to
our formulation by first parallel composing the sigma-protocol r times (yielding a protocol with challenges
of length r`ch), and then applying the result from [18].
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Proof. By Definition 2 (specialized to the case of the Fiat-Shamir construction based on
the sigma-protocol from Definition 21), we need to construct a polynomial-time adversary
A1, A2 such that:

P̂A := Pr[∀i.ok i = 1 ∧ s /∈ LR′ : s← ÂH,Oall
1 ,

(
(com∗i )i, (resp∗i )i

)
← ÂH,Oall

2 ,

ch1‖ . . . ‖chr := H(s, (com∗i )i), ok i := V (com∗i , chi, resp∗i )] is overwhelming

Here V is the verifier of the sigma-protocol (Definition 21).
We use the same adversary (Â1, Â2) as in the proof of Lemma 48 (Attack on Fiat-Shamir).

Then P̂A here is the same as P̂A in the proof of Lemma 48. (Here we additionally have the
condition s /∈ LR′ , but this condition is vacuously true since R′ = ∅ and thus LR′ = ∅.)
And in the proof of Lemma 48 we showed that P̂A is overwhelming. �

Now Theorem 26 follows from Lemmas 22 and 49. (The fact that the Fiat-Shamir
protocol is a classical argument of knowledge is shown in [18].13)

I Proofs for Section 8

I.1 Proof of Theorem 28

Lemma 50 (Attack on Fischlin’s construction) There exists a total knowledge
break (Definition 2) against the Fischlin construction based on the sigma-protocol from
Definition 17 (Sigma-protocol).

Proof. According to Definition 2 (Total breaks) (specialized to the case of Fischlin’s
construction based on the sigma-protocol from Definition 17) we need to construct a
polynomial-time quantum adversary A1, A2 such that:
• Adversary success:

PA := Pr
[
∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0 : s← AH,Oall

1 ,

(com∗i , chi, resp∗i )i=1...r ← AH,Oall
2 , ok i := V (com∗i , chi, resp∗i ),

σ :=

r∑
i=1

H(x, (com∗i )i, i, chi, resp∗i )
]

is overwhelming. (60)

• Extractor failure: For any polynomial-time quantum E (with access to the final
state of A1), Pr[s = s0, w = w0 : s← AH,Oall

1 , w ← EH,Oall (s)] is negligible.

13Actually, [18] requires perfect special soundness instead of computational special soundness, as well
as perfect completeness instead of completeness as defined here (we allow a negligible error). However,
it is straightforward to see that their proof works unmodified for computational special soundness and
completeness as defined here.

Also, [18] assumes that `ch is superlogarithmic, and considers the case r = 1. But [18] can be applied to
our formulation by first parallel composing the sigma-protocol r times (yielding a protocol with challenges
of length r`ch), and then applying the result from [18].

77



Adversary success: At the first glance, it may seem that it is immediate how to
construct an adversary that has adversary success: Using Theorem 6 (Searching one value),
we can for each i search (chi, respi) ∈ Scomi such that H(x, (com∗i )i, i, chi, resp∗i ) = 0.
However, there is a problem: com∗i contains commitments cich to all responses. Thus, after
finding chi, respi, we need to open cichi

as respi. This could be done with the adversary
against COM from Lemma 15 (Attack on COM). But the problem is, the corresponding
openings have to be contained in resp∗i . So we need to know these openings already
when searching for chi, respi. But at that point we do not know yet to what value the
commitments cichi

should be opened! To avoid this problem, we use a special fixpoint
property of the commitment scheme COM that allows us to commit in a way such that
we can use the (chi, respi) themselves as openings for the commitments.

The fixpoint property is the following: There are functions COM∗, COMopen∗ such
that for any com ∈ {0, 1}`com , and any (ch, resp) ∈ Scom , we have

COMverify(c, resp, u) = 1 for c := COM∗(com) and u := COMopen∗(ch, resp). (61)

These functions are defined as follows: COM∗(com) =
(p1, . . . , p`resp , y1, . . . , y`resp , b1, . . . , b`resp ) with pi := `ch + i, yi := com, bi := 0.
And COMopen∗(ch, resp) := (x1, . . . , x`resp ) with xi := (ch, resp) for all i. It is easy to
verify from the definition of COMverify (Definition 13) that (61) holds if (ch, resp) ∈ Scom .

Our adversary is as follows:
• A1 outputs s0.
• A2 invokes E1 from Theorem 6 (Searching one value) r times to get

(
comi, |Ψ(comi)〉

)
for i = 1, . . . , r. A2 sets cich := COM∗(comi) for all i and all ch ∈ {0, 1}`ch . And
com∗i :=

(
comi, (c

i
ch)ch

)
.

Let Pi(ch ′, resp′) := 1 iff H(s, (com∗i )i, i, ch ′, (resp′,COMopen∗(ch ′, resp′))) = 0.
Then, for each i = 1, . . . , r, A2 invokes E2(n, δmin, comi, |Ψ(comi)〉) from Theorem 6
with oracle access to P := Pi and with n := `com and δmin := 2−b−1 to get
chi, respi. Let resp∗i := (respi,COMopen∗(chi, respi)). Then A2 outputs π :=
(com∗i , chi, resp∗i )i=1,...,r.

Consider an execution of A1, A2 as in (60). Let Succi denote the event that (chi, respi) ∈
Scomi ∧ Pi(chi, respi) = 1 in that execution. We have

Pr[Succi] = Pr[(ch, resp) ∈ Scomi ∧ P (ch, resp) = 1 : ∀j.
(
comj , |Ψ(comj)〉

)
← E1,

∀j.com∗j :=
(
comj , (COM

∗(comj))ch

)
, H

$← ({0, 1}∗ → {0, 1}b),
∀ch ′resp′.P (ch ′, resp′) := 1 iff H(s, (com∗j )j , i, ch ′, (resp′,COMopen∗(ch ′, resp′))) = 0,

(ch, resp)← E2(n, δmin, comi, |Ψ(comi)〉)]. (62)

Hence by Theorem 6 (Searching one value),

Pr[Succi] ≥ 1− 2−`com − Pr
[ |{(ch,resp)∈Scomj :P (ch,resp)=1}|

|Scomj |
< δmin

]
︸ ︷︷ ︸

=:pδ

.

Here P and com are chosen as in the rhs of (62).
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In the rhs of (62), H is chosen after Scomj , s, com∗j , and i are fixed. Thus for every,
(ch, resp) ∈ Scomi it is independently chosen whether P (ch, resp) = 1 or P (ch, resp) = 0,
where Pr[P (ch, resp) = 1] = 2−b. Thus

pδ = Pr
[∑

i∈S
Xi
|S| ≥ 1− δmin

]
= Pr

[∑
i∈S

Xi
|S| − (1− 2−b) ≥ 1− δmin − (1− 2−b)

]
(∗)
≤ e−2|S|(1−δmin−(1−2−b))2

= e−2k(2−b−δmin)2
= e−k(2−2b−1)

where Xch,resp := 1 − P (ch, resp) and S := Scomi . And (∗) follows from Hoeffding’s
inequality [24].

We thus have

Pr[∀i = 1 . . . r. Succi] ≥ 1− 2−`com r − re−k(2−2b−1) =: ps

Since r is polynomially bounded and b is logarithmic and `com , k are superpolynomial, ps
is overwhelming.

For adversary success, it remains to show that PA ≥ ps where PA is as in (60). For
this, we show that ∀i.Succi implies ∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0. First, note that s = s0

always holds by definition of A1. Furthermore, ∀i.Succi implies (by definition of Pi) that

σ =
∑

i
H(s, (com∗i )i, i, chi, resp∗i )

=
∑

i
H
(
s, (com∗i )i, i, chi,

(
respi,COMopen∗(chi, respi)

))
=
∑

i
0 ≤ S.

Finally, if Succi holds, then (chi, respi) ∈ Scomi , thus

COMverify(cichi
, respi,COMopen∗(chi, respi))

= COMverify(COM∗(comi), respi,COMopen∗(chi, respi))
(61)
= 1.

And OV (comi, chi, respi) = 1. Thus ok i = V (com∗i , chi, resp∗i ) = 1. Summarizing,
∀i.Succi implies ∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0 and thus PA ≥ ps. Since ps is overwhelming,
so is PA, thus we have adversary success.

Extractor failure: Extractor failure was already shown in the proof of Lemma 19. (A1

here is defined exactly as in the proof of Lemma 19, and the definition of extractor failure
depends only on A1, not on A2 or the protocol being attacked.)

Note that we have actually even shown extractor failure in the case that the extractor
is allowed to choose the random oracle H before and during the execution of A1, because
A1 does not access H. �

Now Theorem 28 follows from Lemma 18 (Security of the sigma-protocol) and Lemma 50. (The
fact that Fischlin’s construction is a classical argument of knowledge is shown in [20].14)

14Actually, [20] requires perfect completeness instead of completeness as defined here (we allow a
negligible error). However, it is straightforward to see that their proof works unmodified for completeness
as defined here.
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I.2 Proofs for Theorem 29

Lemma 51 (Attack on Fischlin’s construction, computational) Then there ex-
ists a total break (Definition 2) against Fischlin’s construction based on the sigma-protocol
from Definition 21 (Sigma-protocol, computational).

Proof. By Definition 2 (specialized to the case of Fischlin’s construction based on the
sigma-protocol from Definition 21), we need to construct a polynomial-time adversary
A1, A2 such that:

PA := Pr
[
∀i.ok i = 1 ∧ σ ≤ S ∧ s = s0 ∧ s /∈ LR′ : s← AH,Oall

1 ,

(com∗i , chi, resp∗i )i=1...r ← AH,Oall
2 , ok i := V (com∗i , chi, resp∗i ),

σ :=
r∑
i=1

H(x, (com∗i )i, i, chi, resp∗i )
]

is overwhelming.

Here V is the verifier of the sigma-protocol (Definition 21).
We use the same adversary (A1, A2) as in the proof of Lemma 50 (Attack on Fischlin’s

construction). Then PA here is the same as PA in the proof of Lemma 19. (Here we
additionally have the condition s /∈ LR′ , but this condition is vacuously true since R′ = ∅
and thus LR′ = ∅.) And in the proof of Lemma 50 we showed that PA is overwhelming.
�

Now Theorem 29 follows from Lemma 22 (Security of the sigma-protocol, computational) and
Lemma 51. (The fact that Fischlin’s construction is a classical argument of knowledge is
shown in [20].15)

15Actually, [20] requires perfect special soundness instead of computational special soundness, as well
as perfect completeness instead of completeness as defined here (we allow a negligible error). However,
it is straightforward to see that their proof works unmodified for computational special soundness and
completeness as defined here.
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