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Abstract

Most cryptographic security proofs require showing that two systems are indistinguish-
able. A central tool in such proofs is that of a game, where winning the game means
provoking a certain condition, and it is shown that the two systems considered cannot be
distinguished unless this condition is provoked. Upper bounding the probability of winning
such a game, i.e., provoking this condition, for an arbitrary strategy is usually hard, ex-
cept in the special case where the best strategy for winning such a game is known to be
non-adaptive.

A sufficient criterion for ensuring the optimality of non-adaptive strategies is that of
conditional equivalence to a system, a notion introduced in [Mau02]. In this paper, we show
that this criterion is not necessary to ensure the optimality of non-adaptive strategies by
giving two results of independent interest: 1) the optimality of non-adaptive strategies is
not preserved under parallel composition; 2) in contrast, conditional equivalence is preserved
under parallel composition.
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1 Introduction

1.1 Conditional Equivalence

Most security definitions in cryptography [Can01, MR11, Mau11] are phrased as indistinguisha-
bility statements between two discrete systems, where one involves the protocol whose security is
to be proven, while the other corresponds to a specification of the desired goal. A central tool in
deriving such indistinguishability proofs between two systems is to characterize both systems as
being equivalent until a certain condition arises [Mau02, BR06]. Thus, being able to distinguish
both systems requires to provoke this condition, and one is then interested in upper bounding
the probability of this event.

Interacting with a discrete system in order to provoke a certain condition is naturally modeled
by the notion of a game [Mau02]. A game1 is a system which replies to every input Xk by an
output Yk and a bit Ak indicating whether or not the game has been won. A strategy for a game
consists of providing a sequence of inputs X1, X2, . . . to the game, where Xk depends a priori
probabilistically on the past responses Y k−1 of the game as well as on the past queries Xk−1.
Due to this non-trivial dependency, analyzing the maximal probability of winning a game, i.e.,
provoking the event Ak = 1, is in general challenging and sometimes infeasible.

This difficulty can be greatly reduced if the best strategy for winning a game is known to be
non-adaptive, i.e., the optimal distribution of the inputs does not depend on the game’s previous
outputs. Thus, characterizing for which games non-adaptive strategies are optimal is essential
in deriving security proofs. An important tool towards this characterization was given by the
notion of conditional equivalence to a system, introduced in [Mau02] and also studied in [JÖS12],
which can be seen as a sufficient criterion guaranteeing that non-adaptive strategies are optimal
for winning a game. A typical example of this situation is the so-called PRP-PRF switching
lemma [BR06] that we detail informally below.

Example 1 (URF vs. URP). A uniform random function (URF) over some finite set X is a
system that replies to every query Xk ∈ X with a uniformly random value Yk ∈ X , but replies
consistently when a previous input is repeated. In contrast, a uniform random permutation
(URP) over X is a URF which is bijective. The reason for comparing a URP to a URF arises for
example when a block-cipher like AES, which is assumed to be (computationally) indistinguish-
able from a URP, is used for authentication, e.g., via CBC-MAC, whose security proof requires
instead a URF [BR06].

Intuitively, a URF and a URP are indistinguishable unless a collision occurs in the URF’s
outputs, i.e., two distinct inputs to the URF are answered by the same value. It suffices thus
to upper bound the probability of a collision in the URF’s outputs in order to derive an indis-
tinguishability statement between a URF and a URP. This upper bound is easily derived since
the best strategy for provoking a collision in a URF’s outputs is non-adaptive, a consequence
of the fact that a URF and a URP can be shown to be conditionally equivalent (in the sense
of [Mau13]). A more formal analysis of this example is given in [Mau13]. �

Since conditional equivalence is a sufficient criterion to ensure that the best strategy for
winning a game is non-adaptive, a natural question is then whether the opposite direction holds,
i.e., is conditional equivalence necessary for the optimal strategy of winning a game to be non-
adaptive?

1.2 Parallel Composition

We show that conditional equivalence is not necessary for the optimal strategy of winning a game
to be non-adaptive, by giving two results of independent interest in the context of composition.
Two games can naturally be combined into a single game by considering the disjunction of those

1The term “game” is used in this paper in the sense of Definition 2, and not in the sense of game theory.
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two games. Each game in the disjunction of two games can be accessed individually, and the
resulting game is won if at least one of the two original games is won. Such a combination of
two games appears when the security of an application depends on the security of two internal
components (modeled each by an individual game), whose breach in security breaks the security
of the whole application. One concrete example of such an application is the hash-then-sign
paradigm given in the example below.

Example 2 (Hash-then-Sign). A digital signature scheme (DSS) allows a signer who has es-
tablished a public key to sign a message in such a way that any other party who knows this
public key can verify that the received message indeed originated from the signer and was not
modified in any way. The security of a DSS can be defined as a game, where the game is won
if an adversary successfully forges a signature, i.e., the adversary finds a valid signature of a
message which was not previously signed by the legitimate signer.

In order to extend a DSS restricted to messages of `-bits, a collision-resistant hash function
h : {0, 1}∗ → {0, 1}` is used first, i.e., the hash of the message h(m) is signed instead of the
message m itself. Forging a signature for this new scheme requires to win one of the following
two games: finding a collision for the function h, i.e., two distinct messages m and m′ such that
h(m) = h(m′); or finding a forgery for the original length-restricted signature scheme. A more
detailed analysis of the hash-then-sign paradigm can be found in [KL07, Sec. 12.4]. �

We separate the optimality of non-adaptive strategies from conditional equivalence by the
following two results about parallel games:

1. the optimality of non-adaptive strategies is not preserved under parallel composition, i.e.,
adaptivity can help for winning the disjunction of two games, even if the optimal strategies
for winning each game were non-adaptive;

2. in contrast, conditional equivalence is preserved under parallel composition, i.e., if two
games are each conditionally equivalent to some system, then the disjunction of both
games is conditionally equivalent to the parallel composition of the two other systems.

2 Preliminaries

2.1 Basic Notation

We denote sets by calligraphic letters (e.g., X , Y). Throughout this paper, we consider only
discrete random variables. A discrete random variable will be denoted by an upper-case letter
X, its range by the corresponding calligraphic letter X , and a realization of the random variable
X will be denoted by the corresponding lower-case letter x. A tuple of n random variables
(X1, . . . , Xn) will be denoted by Xn. Similarly, xn will denote a tuple of n values (x1, . . . , xn).
The probability distribution of a random variable X will be denoted as PX .

2.2 Discrete Random Systems

Many cryptographic primitives like block ciphers, MAC schemes, random functions, etc., can be
described as (X ,Y)-discrete random systems taking inputs X1, X2, · · · ∈ X and generating for
each input Xk an output Yk ∈ Y. In full generality, such an output Yk depends probabilistically
on all the previous inputs Xk as well as all the previous outputs Y k−1. For an (X ,Y)-system
S, such a dependency for the kth output is captured by a conditional probability distribution,
which will be denoted by pS

Yk|XkY k−1 and where the superscript indicates the system considered.
This motivates the definition from [Mau02] of a random system.

Definition 1 ([Mau02]). An (X ,Y)-system S is a (possibly infinite) sequence of conditional
probability distributions

{
pS
Yk|XkY k−1

}
k≥1

, where Xk ∈ X and Yk ∈ Y for all k ≥ 1.
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Note that an (X ,Y)-system S considered in isolation does not define a random experiment
since the distribution of the inputs to the system S is not defined. Hence, each conditional prob-
ability distribution pS

Yk|XkY k−1 involved in the definition of the system S is actually a function
from Y × X k × Yk−1 to [0, 1], where for all choices of the arguments xk and yk−1 the sum of
the function values over the choices of yk equals 1, and not a probability distribution (which in
contrast would have been denoted by the upper-case letter P).

It is sometimes convenient to use an alternative description of a random system S, namely
the sequence of conditional distributions pS

Y k|Xk , where

pSY k|Xk :=

k∏
j=1

pSYj |XjY j−1 .

Note that the conditional distribution pS
Y k|Xk implies the conditional distribution pS

Y j |Xj for
all j < k and hence the above description of a system is redundant. The conditional distri-
bution pS

Y k|Xk must satisfy a consistency condition which ensures that Yk does not depend on
Xk+1, Xk+2, . . . .

2.3 Parallel Composition of Systems

In the spirit of [MR11], we define the notion of parallel composition between discrete random
systems in order to model that several systems can be combined into a single one. Intuitively,
the system resulting from the parallel composition of an (X1,Y1)-system S1 and an (X2,Y2)-
system S2, denoted S1‖S2, allows access to the independent systems S1 and S2. This requires
that part of the input to the system S1‖S2 specifies which system (S1 or S2) is queried. More
formally, S1‖S2 is an (X ,Y)-system, where X := ({1} × X1) ∪ ({2} × X2) and Y := Y1 ∪ Y2.
The combined system S1‖S2 is depicted in Figure 1.

Let us now describe the conditional probability distribution p
S1‖S2

Yk|XkY k−1 for the system S1‖S2.
For each round k, the system S1‖S2 takes as input an xk := (sk, x̃k) ∈ X , where the first part
of the input sk ∈ {1, 2} is a selector indicating which of the two systems S1 or S2 is to be
queried on the second part of the input x̃k. The output of the system S1‖S2 is then given
by the response yk of the selected system. A transcript of k queries and responses for the
system S1‖S2 corresponds thus to a sequence

((
sk, x̃k

)
, yk
)
which can be split into two parts:((

1k1 , x̃k1(1)

)
, yk1(1)

)
and

((
2k2 , x̃k2(2)

)
, yk2(2)

)
, where x̃

kj
(j) denotes the tuple of kj queries made to

the system Sj and y
kj
(j) the tuple of corresponding responses in the same order as they appeared

in the global transcript
((
sk, x̃k

)
, yk
)
, for all j ∈ {1, 2} and some integers k1 and k2 such that

k1 + k2 = k. Then,

p
S1‖S2

Yk|XkY k−1

(
yk,
(
sk, x̃k

)
, yk−1

)
:=

pS1

Yk1
|Xk1Y k1−1

(
yk, x̃

k1
(1), y

k1−1
(1)

)
if sk = 1,

pS2

Yk2
|Xk2Y k2−1

(
yk, x̃

k2
(2), y

k2−1
(2)

)
if sk = 2.

(1)

2.4 Games and Conditional Equivalence

Following the definition of [MPR07], we model a game as an (X ,Y × {0, 1})-system, where the
binary part of the output indicates whether or not the game has been won. This bit is monotone
in the sense that it is initially set to 0 and that, once it has turned to 1, indicating that the
game is won, it can not turn back to 0.

Definition 2 ([Mau02]). An (X ,Y)-game G is an (X ,Y × {0, 1})-system, where the binary
component Aj of the output Yj = (Y ′j , Aj) satisfies the following monotonicity property

Aj = 1 =⇒ Ak = 1, for all k ≥ j.
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S1

1

2

S2

(Sk, X̃k)
Yk

X̃k

Yk

X̃k

Yk

Figure 1: System S1‖S2: output Yk upon input (Sk, X̃k), where Yk is the output of the system
S1 (resp., S2) when queried on X̃k if Sk = 1 (resp., Sk = 2).

Unless stated otherwise, the monotone binary output of a game will be denoted by the symbol
A. We formalize the notion of winning a game by the concept of a game-winner. Intuitively,
a game-winner W for an (X ,Y)-game G corresponds to a (Y,X )-system which is one query
ahead: the output Xk of W corresponds to a query made to the game G, where Xk depends on
the given responses Y k−1 of the game G and on the previous queries Xk−1 made to it.

Definition 3 ([Mau13]). An (X ,Y)-game-winner W is a (possibly infinite) sequence of condi-
tional probability distributions

{
pW
Xk|Y k−1Xk−1

}
k≥1

, where Yk ∈ Y and Xk ∈ X for all k ≥ 1.

An (X ,Y)-game-winner W is said to be non-adaptive if its queries can be fixed in advance
without interacting with an (X ,Y)-game, i.e.,

pWXk|Y k−1Xk−1 = pWXk|Xk−1 ,

for all k ≥ 1. We denote by W and Wna the set of all game-winners and non-adaptive game-
winners, respectively. Consider the random experiment defined by a game winner W interacting
with an (X ,Y)-game G depicted in Figure 2. Let ΓW

k (G) denote the probability of W winning
the game G within k queries, i.e.,

ΓW
k (G) := PAk

(1),

where the probability is taken in the random experiment defined by the game-winner W inter-
acting with the (X ,Y)-game G. For a class W of game-winners, we define ΓWk (G) as

ΓWk (G) := sup
W∈W

ΓW
k (G) .

Note that whether or not a game-winner W sees the monotone binary output of an (X ,Y)-game
G is irrelevant since the sole purpose of W is to win the game G. For convenience, we will
model the monotone binary output of a game G as not being accessible to a game winner W
(as shown in Figure 2).

W G
Xk

Yk

Ak

Figure 2: A game winner W interacting with an (X ,Y)-game G.

The notion of conditional equivalence introduced in [Mau02] is a binary relation between a
game G and a system S. Conditional equivalence is a central tool for proving indistinguishability
between the system formed by the game G (without its monotone binary output) and the system
S.
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Definition 4 ([Mau13]). An (X ,Y)-game G is said to be conditionally equivalent to an (X ,Y)-
system S, denoted2 G S, if

pGY j |XjAj=0 = pSY j |Xj ,

for all j ≥ 1 and for all arguments for which pG
Y j |XjAj=0

is defined.

We now define two predicates NA (G) and CE (G) for a game G, where NA (G) indicates
that the best strategy for winning the game G is non-adaptive, while CE (G) indicates that G
is conditionally equivalent to some other system S.

Definition 5. For any game G, let NA (G) and CE (G) be the following predicates,

NA (G) = 1 :⇐⇒ ∀k ∈ N : ΓWk (G) = ΓWna
k (G) ,

CE (G) = 1 :⇐⇒ ∃S : G S.

The next theorem, which is only a part of the results in [Mau02, Th. 2], guarantees that if
a game is conditionally equivalent to some system, then non-adaptive strategies are optimal for
winning this game.

Theorem 1 ([Mau02]). For any (X ,Y)-game G,

CE (G) =⇒ NA (G) .

2.5 Disjunctions of Games

Since games as defined in Definition 2 are systems, they can of course be composed by the
parallel operation ‖ defined in Section 2.3. However, note that if G1 is an (X1,Y1)-game and G2

is an (X2,Y2)-game, then the combined system G1‖G2 is not necessarily an (X ,Y)-game, where
X := ({1} × X1) ∪ ({2} × X2) and Y := Y1 ∪ Y2. Indeed, the binary output of G1‖G2 comes
either from G1 or from G2, depending on which sub-game was queried, and thus is in general
not monotone. In order to obtain an (X ,Y) game, we add a logical OR operation between the
monotone binary outputs of both games G1 and G2 to obtain the game denoted by (G1‖G2)

∨

and depicted in Figure 3.

G1

1

2
∨

G2

(Sk, X̃k)
Yk

X̃k

Yk

X̃k

Yk

Ak

Ak

Ak

Figure 3: Game (G1‖G2)
∨: output (Yk, Ak) upon input (Sk, X̃k), where (Yk, Ak) is the output

of the game G1 (resp., G2) when queried on X̃k if Sk = 1 (resp., Sk = 2).

Intuitively, a game-winner wins the game (G1‖G2)
∨ within k queries only if it wins the game

G1 within k1 queries or wins the game G2 within k2 queries, for any integer k1, k2 such that k1+

k2 ≤ k. Following the formalism developed in Section 2.3, if we denote by
((

jkj , x̃
kj
(j)

)
, y

kj
(j)

)
the

queries and responses done to the game Gj in a transcript of k inputs and outputs
((
sk, x̃k

)
, yk
)

done to the game (G1‖G2)
∨ such that it is not yet won (Ak = 0), we have

p
(G1‖G2)

∨

Y kAk=0|Xk

(
yk, (sk, x̃k)

)
:= pG1

Y k1Ak1
=0|Xk1

(
yk1(1), x̃

k1
(1)

)
· pG2

Y k2Ak2
=0|Xk2

(
yk2(2), x̃

k2
(2)

)
. (2)

2The expression G S corresponds to (G−)|A ≡ S in [Mau13], where A denotes the sequence of monotone
binary outputs A0, A1, A2, . . . . The notation we use here emphasizes that the monotone binary output is part of
the game as a formal object.

6



3 Non-Adaptivity and Parallel Composition

If the best strategies in winning the games G1 and G2 are both non-adaptive, does it necessarily
imply that the best strategy in winning the combined game (G1‖G2)

∨ is non-adaptive? The
next theorem shows that this is not true in general.

Theorem 2. If the best strategies for winning the (X1,Y1)-game G1 and the (X2,Y2)-game G2

are both non-adaptive, then the best strategy for winning the game (G1‖G2)
∨ is not necessarily

non-adaptive, i.e.,

NA (G1) and NA (G2) 6=⇒ NA
(
(G1‖G2)

∨) .
Proof. We will define a sequence of games {Gj}j≥2 such that the implication NA (Gj) −→
NA

(
(Gj‖Gj)

∨) does not hold for any integer j ≥ 2. As a side result, we will have proved
the stronger statement that adaptivity can help in any round when trying to win the game
(Gj‖Gj)

∨.
Let j be an integer such that j ≥ 2 and let Gj be the following ({0, 1} , {0, 1})-game. Any

query xi ∈ {0, 1} made to Gj is responded by a bit yi ∈ {0, 1} chosen independently and
uniformly at random. The monotone binary output of Gj is defined as A1 := 0, . . . , Aj−1 := 0,
and for all i ≥ j, we have Ai := Y1, where Y1 is the response of Gj to the first query. We now
show that the game Gj is such that

1. ΓWk (Gj) = ΓWna
k (Gj), for all k ∈ N;

2. ΓWj+1

(
(Gj‖Gj)

∨) > ΓWna
j+1

(
(Gj‖Gj)

∨).
Condition 1). In order to win the game Gj , a game-winner simply needs to make at least

j queries resulting in the event Y1 = 1. Since Y1, the answer of Gj to the first query, is an
independent uniform random variable, the best strategy for winning the game Gj is clearly
non-adaptive. Thus,

ΓWk (Gj) = ΓWna
k (Gj) =

{
0 if k < j,
1
2 otherwise.

(3)

Condition 2). Consider now a non-adaptive game-winnerW trying to win the game (Gj‖Gj)
∨

with j + 1 queries. Since the game-winner W is non-adaptive, it has to fix all its queries in
advance and in particular to which sub-game in (Gj‖Gj)

∨ each query is addressed to. Note
that (3) implies that the game Gj cannot be won by any game-winner making strictly less than
j queries, so that W will not have a better chance of winning the game (Gj‖Gj)

∨ with j + 1
queries than if it had only j queries, i.e.,

ΓWna
j+1

(
(Gj‖Gj)

∨) =
1

2
.

On the other hand, consider the following adaptive game-winner W making j + 1 queries
(s1, x̃1) , . . . , (sj+1, x̃j+1) to the game (Gj‖Gj)

∨, where sk ∈ {1, 2} and x̃k ∈ {0, 1}. The game-
winner W makes a first query (1, x̃1) to the game (Gj‖Gj)

∨, corresponding to a query x̃1 made
to the first sub-game Gj in (Gj‖Gj)

∨, which is replied by Y1 ∈ {0, 1}. If Y1 = 1, then W makes
its remaining j queries to the same sub-game it queried the first time by querying the game
(Gj‖Gj)

∨ on (1, x̃2) , . . . , (1, x̃j+1). Otherwise, if Y1 = 0, then W makes its remaining j queries
to the other sub-game by querying the game (Gj‖Gj)

∨ on (2, x̃2) , . . . , (2, x̃j+1). Note that in
the case where Y1 = 1, which happens with probability 1

2 , W wins the game (Gj‖Gj)
∨ with

probability 1, while when Y1 = 0 the game-winner W wins the game (Gj‖Gj)
∨ with probability

1
2 , i.e.,

ΓW
j+1

(
(Gj‖Gj)

∨) =
3

4
> ΓWna

j+1

(
(Gj‖Gj)

∨) .
The previous equation together with (3) imply that NA (Gj) = 1 and NA

(
(Gj‖Gj)

∨) = 0, for
all j ≥ 2.
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4 Conditional Equivalence and Parallel Composition

If a game G1 (respectively, G2) is conditionally equivalent to a system S1 (respectively, S2),
then the combined game (G1‖G2)

∨ is conditionally equivalent to the combined system S1‖S2,
a statement formalized in Lemma 1. In other words, parallel composition preserves conditional
equivalence statements.

Lemma 1. For any (X1,Y1)-game G1 (respectively, (X2,Y2)-game G2) and any (X1,Y1)-system
S1 (respectively, (X2,Y2)-system S2),

G1 S1 and G2 S2 =⇒ (G1‖G2)
∨ S1‖S2.

Proof. We shall denote by G and S the game (G1‖G2)
∨ and the system S1‖S2, respectively,

within the remainder of the proof. Following the notations of Sections 2.3 and 2.5, G is an
(X ,Y)-game and S is an (X ,Y)-system, where X := ({1} × X1)∪ ({2} × X2) and Y := Y1 ∪Y2.
Consider a transcript

(
(sk, x̃k), yk

)
∈ X k × Yk of k queries such that pG

Y k|XkAk=0

(
yk, (sk, x̃k)

)
is defined. Such a transcript

(
(sk, x̃k), yk

)
can be partitioned into 2 sub-transcripts

(
x̃
kj
(j), y

kj
(j)

)
corresponding to queries made to the game Gj or to the system Sj , for all j ∈ {1, 2}. Note that
pG
Y k|XkAk=0

(
yk, (sk, x̃k)

)
being defined implies that pGj

Y kj |XkjAkj
=0

(
y
kj
(j), x̃

kj
(j)

)
is defined as well.

Then,

pGY k|XkAk=0

(
yk, (sk, x̃k)

)
=

2∏
j=1

p
Gj

Y kj |XkjAkj
=0

(
y
kj
(j), x̃

kj
(j)

)
=

2∏
j=1

p
Sj

Y kj |Xkj

(
y
kj
(j), x̃

kj
(j)

)
= pSY k|Xk

(
yk, (sk, x̃k)

)
,

where the first equality comes from (2), the second equality comes from the fact that Gj Sj

for all j ∈ {1, 2}, and the last equality follows from (1). Thus, the game G is conditionally
equivalent to the system S.

The next theorem trivially follows from Lemma 1 and shows that conditional equivalence is
preserved under the parallel operation ‖.
Theorem 3. For any (X1,Y1)-game G1 and any (X2,Y2)-game G2,

CE (G1) and CE (G2) =⇒ CE
(
(G1‖G2)

∨) .
5 Non-Adaptivity and Conditional Equivalence

It is not hard to see from the previous results that conditional equivalence is strictly stronger
a requirement than non-adaptive strategies being optimal for winning a game, a statement
formalized below in Theorem 4. Assume for the sake of contradiction that for any game G,

NA (G) =⇒ CE (G) . (4)

Consider two games G1 and G2 such that NA (G1) and NA (G2), but not NA
(
(G1‖G2)

∨).
Such games G1 and G2 must exist according to Theorem 2. Then, (4) implies CE (G1) and
CE (G2), which in turn implies by Theorem 3 CE

(
(G1‖G2)

∨). The contradiction then follows
from Theorem 1 which implies NA

(
(G1‖G2)

∨).
Theorem 4. There exists a game G such that the best strategy in winning G is non-adaptive
but there exists no system S such that G and S are conditionally equivalent, i.e.,

NA (G) 6=⇒ CE (G) .
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