
How to Avoid Obfuscation Using Witness PRFs

Mark Zhandry
Stanford University, USA
mzhandry@stanford.edu

Abstract

Recently, program obfuscation has proven to be an extremely powerful tool and has been used
to construct a variety of cryptographic primitives with amazing properties. However, current
candidate obfuscators are far from practical and rely on unnatural hardness assumptions about
multilinear maps. In this work, we bring several applications of obfuscation closer to practice by
showing that a weaker primitive called witness pseudorandom functions (witness PRFs) suffices.
Applications include multiparty key exchange without trusted setup, polynomially-many hardcore
bits for any one-way function, and more. We then show how to instantiate witness PRFs from
multilinear maps. Our witness PRFs are simpler and more efficient than current obfuscation
candidates, and involve very natural hardness assumptions about the underlying maps.

1 Introduction
The goal of program obfuscation in cryptography is to scramble a program with the intention of
hiding embedded secrets. Recently, Garg et al. [GGH+13b] gave the first candidate construction
of a program obfuscator, which has sparked a flurry of research showing many exciting uses of
obfuscation. Such uses include functional encryption [GGH+13b], short signatures and deniable
encryption [SW14], multiparty key exchange and traitor tracing [BZ13], and much more [HSW14,
GGHR14, BCP14, ABG+13, PPS13, KNY14].

While these results are exciting, instantiating these schemes with current candidate obfuscators
[GGH+13b, BR13, BGK+14, PST13, AGIS14] has several drawbacks:

• First, these obfuscators only build obfuscation for formulas. Getting obfuscation for all circuits
currently requires an expensive boosting step involving obfuscating the decryption algorithm
for a fully homomorphic encryption scheme.

• Second, all of these constructions first convert the formula into a branching program that is
either very long (in the case of [GGH+13b, BR13, BGK+14, PST13]) or very wide (in the case
of [AGIS14]). Then, the branching program is encoded in a multilinear map. Long branching
programs require a high level of multilinearity, and long or wide programs both require many
group elements.

1.1 Our Results

In this work, we show that for several applications of obfuscation, a weaker primitive we call witness
pseudorandom functions (witness PRFs) actually suffices. Informally, a witness PRF for an NP
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language L is a PRF F such that anyone with a valid witness that x ∈ L can compute F(x), but for
all x /∈ L, F(x) is computationally hidden. More precisely, a witness PRF consists of the following
three algorithms:

• Gen(λ, L, n) takes as input (a description of) an NP language L and instance length n, and
outputs a secret function key fk and public evaluation key ek.

• F(fk, x) takes as input the function key fk, an instance x ∈ {0, 1}n, and produces an output y

• Eval(ek, x, w) takes the evaluation key ek, and instance x, and a witness w for x, and outputs
F(fk, x) if w is a valid witness, ⊥ otherwise.

For security, we require that for any x ∈ {0, 1}n \ L, F(fk, x) is pseudorandom, even given ek
and polynomially many PRF queries to F(fk, ·).

Witness PRFs are closely related to the concept of smooth projective hash functions (a comparison
is given in Section 1.5), and can be seen as a generalization of constrained PRFs [BW13, KPTZ13,
BGI13] to arbitrary NP languages. We first show how to replace obfuscation with witness PRFs for
certain applications. We then show how to build witness PRFs from multilinear maps. Our witness
PRFs are more efficient than current obfuscation candidates, and rely on very natural assumptions
about the underlying maps. Below, we list our main results:

• We show how to realize the following primitives from witness PRFs

– Multiparty non-interactive key exchange without trusted setup. The first such
scheme is due to Boneh and Zhandry [BZ13], which is built from indistinguishability
obfuscation (iO) and pseudorandom generators (PRGs). We give a closely related
construction, where the obfuscator is replaced with a witness PRF, and prove that
security still holds.

– Poly-many hardcore bits. Bellare, Stepanovs, and Tessaro[BST13] construct a hard-
core function of arbitrary output size for any one-way function. They require differing
inputs obfuscation[BGI+01, BCP14, ABG+13], which is a form of knowledge assumption
for obfuscators. We show how to replace the obfuscator with a witness PRFs that satisfies
an extractability notion of security.

– Reusable Witness Encryption. Garg, Gentry, Sahai, and Waters [GGSW13] define
and build the first witness encryption scheme from multilinear maps. Later, Garg et
al. [GGH+13b] show that indistinguishability obfuscation implies witness encryption. We
show that witness PRFs are actually sufficient. We also define a notion of reusability for
witness encryption, and give the first construction satisfying this notion.

– Rudich Secret Sharing for mNP. Rudich secret sharing is a generalization of secret
sharing to the case where the allowed sets are instances of a monotone NP (mNP)
language, and an allowed set of shares plus the corresponding witness are sufficient for
learning the secret. Komargodski, Naor, and Yogev [KNY14] give the first construction
for all of mNP using iO. We give a simplification that uses only witness PRFs, and
moreover is reusable.

– Fully distributed broadcast encryption. Boneh and Zhandry [BZ13] observe that
certain families of key exchange protocols give rise to distributed broadcast encryption,
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where users generate their own secret keys. However, the notion has some limitations,
which we discuss. We put forward the notion of fully distributed broadcast encryption
which sidesteps these limitations, and give a construction where secret keys, public keys,
and ciphertexts are short.

• Next, we show how to build witness PRFs from multilinear maps. We first define an interme-
diate notion of a subset-sum encoding, and construct such encodings from multilinear maps.
We then show that subset-sum encodings imply witness PRFs.

1.2 Secure Subset-Sum Encodings

As a first step to building witness PRFs, we construct a primitive called a subset-sum encoding.
Roughly, such an encoding corresponds to a set S of n integers, and consists of a secret encoding
function, which maps integers y into encodings ŷ. Additionally, there is a public evaluation function
which takes as input a subset T ⊆ S, and can compute the encoding ŷ of the sum of the elements in
T : y =

∑
i∈T i. For security, we ask that for any y that does not correspond to a subset-sum of

elements of S, the encoding ŷ is indistinguishable from a random element.

We provide a simple secure subset-sum encoding from asymmetric multilinear maps. Recall that
an asymmetric multilinear map [BS03] consists of a sequence of “source” groups G1, . . . ,Gn, a target
group GT , all of prime order p, along with generators g1, . . . , gn, gT . There is also a multilinear
operation e : G1 × · · · ×Gn → GT such that

e(ga1
1 , ga2

2 , . . . , gann ) = ga1a2...an
T

To generate a subset-sum encoding for a collection S = {v1, . . . , vn} of n integers, choose a random
α
R←−Zp, and compute Vi = gα

vi

i for i = 1, . . . , n. Publish Vi for each i. α is kept secret.
The encoding of a target integer t is t̂ = gα

t

T . Given the secret α it is easy to compute t̂. Moreover,
if t =

∑
i∈T i for some subset T ⊆ S, then given the public values Vi, it is also easy to compute

t̂: t̂ = e(V b1
1 , . . . , V bn

n ) where bi = 1 if and only if i ∈ T , and V 0
i = gi. However, if t cannot be

represented as a subset sum of elements in S, then there is no way to pair or multiply the Vi and gi
together to get ŷ. We conjecture that in this case, t̂ is hard to compute. This gives rise to a new
complexity assumption on multilinear maps: we say that the multilinear subset-sum Diffie-Hellman
assumption holds for a multilinear map if, for any set of integers S = {v1, . . . , vn} and any target t
that cannot be represented as a subset-sum of elements in S, that gαtT is indistinguishable from a
random group element, even given the elements {gαvii }i∈[n]

1.

Application to witness encryption Recall that in a witness encryption scheme as defined by
Garg, Gentry, Sahai, and Waters [GGSW13], a message m is encrypted to an instance x, which may
or may not be in some NP language L. Given a witness w that x ∈ L, it is possible to decrypt the
ciphertext and recover m. However, if x /∈ L, m should be computationally hidden.

Our subset-sum encodings immediately give us witness encryption for the language L of subset
sum instances. Let (S, y) be a subset-sum instance. To encrypt a message m to (S, y), generate a
subset-sum encoding for collection S. Then, using the secret encoding algorithm, compute ŷ. The

1We actually use an even stronger assumption, which also allows the adversary to adaptively ask for values gα
t′

T for
any t′ 6= t.
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ciphertext is the public evaluation function, together with c = ŷ ⊕m. To decrypt using a witness
subset T ⊆ S, use the evaluation procedure to obtain ŷ, and then XOR with c to obtain m. Since
subset-sum is NP-complete, we can use NP reductions to obtain witness encryption for any NP
language L. Our scheme may be more efficient than [GGSW13] for languages L that have simpler
reductions to subset-sum than exact set cover, which is used by [GGSW13].

We can also obtain a special case of Rudich secret sharing. Given a subset-sum instance (S, t),
compute the elements Vi, t̂ as above, and compute c = t̂⊕ s where s is the secret. Hand out share
(Vi, c) to user i. Notice that a set U of users can learn s if they know a subset T ⊆ U such that∑

j∈T j = t. If no such subset exists, then our subset-sum Diffie-Hellman assumption implies that s
is hidden from the group U of users.

1.3 Witness PRFs for NP
As defined above, witness PRFs are PRFs that can be evaluated on any input x for which the user
knows a witness w that x ∈ L. For any x /∈ L, the value of the PRF remains computationally
hidden. Notice that subset-sum encodings almost give us witness PRFs for the subset-sum problem.
Indeed, a subset-sum encoding instance only depends on the subset S of integers, and not the target
value y. Thus, a subset-sum encoding for a set S gives us a witness PRF for the language LS of all
integers y that are subset-sums of the integers in S.

To turn this into a witness PRF for an arbitrary language, we give a reduction from any NP
language L to subset-sum with the following property: the set S is determined entirely by the NP
relation defining L (and the instance length), and the target y is determined by the instance x.
Therefore, to build a witness PRF for any fixed NP relation R, run our reduction algorithm to
obtain a set SR, and then build a subset-sum encoding for SR.

1.4 Replacing Obfuscation with Witness PRFs

We now explain how we use witness PRFs to remove obfuscation from certain applications.

Warm-up: No-setup non-interactive multiparty key exchange To illustrate our ideas, we
discuss the application to key exchange. Consider the no-steup multiparty key exchange protocol of
Boneh and Zhandry [BZ13]. Here, each party generates a seed si for a pseudorandom generator
G, and publishes the corresponding output xi. In addition, a designated master party builds the
following program P :

• On input x1, . . . , xn, s, i, check if G(s) = xi.

• If the check fails, output ⊥

• Otherwise, output F(x1, . . . , xn), where F is a pseudorandom function

The master party then publishes an obfuscation of P . Party i can now compute K = F(x1, . . . , xn)
by feeding x1, . . . , xn, si, i into the obfuscation of P . Thus, all parties establish the same shared
key K. An eavesdropper meanwhile only gets to see the obfuscation of P and the xi, and tries to
determine K. He can do so in one of two ways:

• Run the obfuscation of P on inputs of his choice, hoping that one of the outputs is K.

4



• Inspect the obfuscation of P to try to learn K.

The one-wayness of G means the first approach is not viable. Boneh and Zhandry show that by
obfuscating P , the value of K is still hidden, even if the adversary inspects the obfuscated code.

We now explain how witness PRFs actually suffice for this application. Notice that there are
two parts to the input: the xi, on which F is evaluated, and (s, i), which is essentially a witness
that one of the xi has a pre-image under G. We can therefore define an NP language L consisting of
all tuples of xi values where at least one of the xi has a pre-image under G. Instead of obfuscating
the program P , we can simply produce a witness PRF F for the language L, and set the shared key
to be F(x1, . . . , xn), which all the honest parties can compute since they know a witness.

To argue security, note that we can replace the xi with random strings, and the security of G
shows that the adversary cannot detect this change. Now, if the codomain of G is much larger than
the seed space, then with overwhelming probability, none of the xi have pre-images under G. This
means, with overwhelming probability (x1, . . . , xn) is no longer in L. Therefore, the security of the
witness PRF shows that the value K = F(x1, . . . , xn) is computationally indistinguishable from
random, as desired.

1.5 Other Related Work

Obfuscation. Barak et al. [BGI+01, BGI+12] begin the formal study of program obfuscation by
giving several formalizations of program obfuscation, including virtual black box (VBB) obfuscation,
indistinguishability obfuscation (iO), and differing inputs obfuscation (diO). They show that VBB
obfuscation is impossible to achieve for general programs, though VBB obfuscation has since been
achieved for very specific functionalities [CRV10]. Garg et al. [GGH+13b] give the first candidate
construction of a general purpose indistinguishability obfuscator, which has been followed by
several constructions [BR13, BGK+14, PST13] with improved security analyses. Boyle, Chung,
and Pass [BCP14] and Ananth et al. [ABG+13] independently conjecture that current candidate
indistinguishability obfuscators might actually differing inputs obfuscations (also referred to as
extractability obfuscators in [BCP14]).

Smooth Projective Hash Functions. Cramer and Shoup [CS02] define the notion of a smooth
projective hash function (SPHF), a concept is very similar to that of witness PRFs. However,
SPHFs have been mostly studied for “languages of ciphertexts” for specific encryption schemes — no
construction for general NP languages is known. Moreover, the security requirements for SPHFs are
somewhat different than witness PRFs: for example, for x /∈ L, an SPHF requires that the value of
F at x is statistically hidden. Concurrently and independently of our work, Chen and Zhang [CZ14]
define a notion of publicly evaluable PRFs (PEPRFs), which are again similar in concept to witness
PRFs. However, they only consider PEPRFs for a specific language. Also, the security requirements
are somewhat weaker: for example the challenge point for PEPRFs is sampled randomly rather
than adversarially.

Witness Encryption Garg, Gentry, Sahai, and Waters [GGSW13] define witness encryption and
give the first candidate construction for the NP-Complete Exact Cover problem, whose security is
based on the multilinear no-exact-cover problem, which they define. Goldwasser et al. [GKP+13]
define a stronger notion, called extractable witness encryption, which stipulates that anyone who
can distinguish the encryption of two messages relative to an instance x must actually be able to
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produce a witness for x. Subsequently, Garg, Gentry, Halevi, and Wichs [GGHW13] cast doubt on
the plausibility of extractable witness encryption in general, though their results do not apply to
most potential applications of the primitive.

Multiparty Key Exchange. The first key exchange protocol for n = 2 users is the celebrated
Diffie-Hellman protocol. Joux [Jou04] shows how to use pairings to extend this to n = 3 users,
and Boneh and Silverberg [BS03] show that multilinear maps give rise to n-user key exchange for
any n. The first multilinear maps were constructed by Garg, Gentry, and Halevi [GGH13a] and by
Coron, Lepoint, and Tibouchi [CLT13], giving the first n-user key exchange for n > 3. However,
constructing these multilinear maps involves generating secrets, which translates to the key exchange
protocols requiring a trusted setup assumption. Using obfuscation, Boneh and Zhandry [BZ13] give
the first n user key exchange protocol for n > 3 that does not require a trusted setup.

Harcore bits. The Goldreich-Levin theorem [GL89] shows how to build a single hard-core bit
for any one-way function. While this result can be extended to logarithmically-many bits, and
polynomially-many hard-core bits have been constructed for specific one-way functions [HSS93,
CGHG01], a general hard-core function outputting polynomially many bits for all one-way functions
remained an open problem. The obfuscation-based hard-core function of Bellare and Stepanovs and
Tessaro [BST13] is the first and only construction prior to this work.

Broadcast Encryption. There has been an enourmous body of work on broadcast encryption,
and we only mention a few specific works. Boneh and Zhandry [BZ13] give a broadcast scheme
from indistinguishability obfuscation which achieves very short secret keys and ciphertexts. Their
broadcast scheme has the novel property of being distributed, where every user chooses their own
secret key. However, their public keys are obfuscated programs, and are quite large (namely, linear
in the number of users). Ananth et al. [ABG+13] show how to shrink the public key (while keeping
secret keys and ciphertexts roughly the same size) at the expense of losing the distributed property.
Boneh, Waters, and Zhandry [BWZ14] give a broadcast scheme whose concrete parameter sizes are
much better directly from multilinear maps. However, this scheme is also not distributed.

Secret Sharing. The first secret sharing schemes due to Blakely [Bla79] and Shamir [Sha79]
are for the threshold access structure, where any set of users of size at least some threashold t
can recover the secret, and no set of size less than t can learn anything about the secret. In an
unpublished work, Yao shows how to perform (computational) secret sharing where the allowable
sets are decided by a polynomial-sized monotone circuit. Rudich raises the possibility of performing
secret sharing where allowable sets are decided by a non-deterministic circuit. The first such scheme
was built by Komargodski, Naor and Yogev [KNY14], and uses iO.

2 Preliminaries

2.1 Subset-Sum

Let A ∈ Zm×n be an integer matrix, and t ∈ Zn be an integer vector. The subset-sum search
problem is to find an w ∈ {0, 1}n such that t = A ·w. The decision problem is to decide if such an
w exists.
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We define several quantities related to a subset-sum instance. Given a matrix A ∈ Zm×n, let
SubSums(A) be the set of all subset-sums of columns of A. That is, SubSums(A) = {A ·w : w ∈
{0, 1}n}. Define Span(A) as the convex hull of SubSums(A). Equivalently, Span(A) = {A ·w : w ∈
[0, 1]n}. We define the integer range of A, or IntRange(A), as Span(A)

⋂
Zm. We note that given

an instance (A, t) of the subset-sum problem, it is efficiently decidable whether t ∈ IntRange(A).
Moreover, t /∈ IntRange(A) implies that (A, t) is unsatisfiable. The only “interesting” instances of
the subset sum problem therefore have t ∈ IntRange(A). From this point forward, we only consider
(A, t) a valid subset sum instance if t ∈ IntRange(A).

2.2 Multilinear Maps

An asymmetric multilinear map [BS03] is defined by an algorithm Setup which takes as input
a security parameter λ, a multilinearity n, and a minimum group order pmin2. It outputs (the
description of) n + 1 groups G1, . . . ,Gn,GT of prime order p ≥ max(2λ, pmin), corresponding
generators g1, . . . , gn, gT , and a map e : G1 × · · · ×Gn → GT satisfying

e(ga1
1 , . . . , gann ) = ga1...an

T

Approximate Multilinear Maps. Current candidate multilinear maps [GGH13a, CLT13] are
only approximate and do not satisfy the ideal model outlined above. In particular, the maps are noisy.
This has several implications. First, representations of group elements are not unique. Current
map candidates provide an extraction procedure that takes a representation of a group element in
the the target group GT and outputs a canonical representation. This allows multiple users with
different representations of the same element to arrive at the same value.

A more significant limitation is that noise grows with the number of multiplications and pairing
operations. If the noise term grows too large, then there will be errors in the sense that the extraction
procedure above will fail to output the canonical representation.

Lastly, and most importantly for our use, current map candidates do not allow regular users to
compute gαi for any α ∈ Zp of the user’s choice. Instead, the user computes a “level-0 encoding” of a
random (unknown) α ∈ Zp, and then pairs the “level-0 encoding” with gi, which amounts computing
the exponentiation gαi . To compute terms like gαki would require repeating this operation k times,
resulting in a large blowup in the error. Thus, for large k, computing terms like gαki is infeasible for
regular users. However, whomever sets up the map knows secret parameters about the map and can
compute gαi for any α ∈ Zp without blowing up the error. Thus, the user who sets up the map can
pick α, compute αk in Zp, and then compute gαki using the map secrets. This will be critical for our
constructions.

3 Witness PRFs
Informally, a witness PRF is a generalization of constrained PRFs to arbitrary NP relations. That
is, for an NP language L, a user can evaluate the function F at an instance x only if x ∈ L and the
user can provide a witness w that x ∈ L. More formally, a witness PRF is the following:

Definition 3.1. A witness PRF is a triple of algorithms (Gen,F,Eval) such that:
2It is easy to adapt multilinear map constructions [GGH13a, CLT13] to allow setting a minimum group order.
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• Gen is a randomized algorithm that takes as input a security parameter λ and a circuit
R : X ×W → {0, 1}3, and produces a secret function key fk and a public evaluation key ek.

• F is a deterministic algorithm that takes as input the function key fk and an input x ∈ X ,
and produces some output y ∈ Y for some set Y.

• Eval is a deterministic algorithm that takes as input the evaluation key ek and input x ∈ X ,
and a witness w ∈ W, and produces an output y ∈ Y or ⊥.

• For correctness, we require Eval(ek, x, w) =
{

F(fk, x) if R(x,w) = 1
⊥ if R(x,w) = 0

for all x ∈ X , w ∈ W.

3.1 Security

The simplest and most natural security notion we consider is a direct generalization of the security
notion for constrained PRFs, which we call adaptive instance interactive security. Consider the
following experiment EXPRA(b, λ) between an adversary A and challenger, parameterized by a relation
R : X ×W → {0, 1}, a bit b and security parameter λ.

• Run (fk, ek) R←−Gen(λ,R) and give ek to A.

• A can adaptively make queries on instances xi ∈ X , to which the challenger response with
F(fk, xi).

• A can make a single challenge query on an instance x∗ ∈ X . The challenger computes
y0 ← F(fk, x∗) and y1

R←−Y, and responds with yb.

• After making additional F queries, A produces a bit b′. The challenger checks that x∗ /∈ {xi},
and that there is no witness w ∈ W such that R(x,w) = 1 (in other words, x /∈ L)4. If either
check fails, the challenger outputs a random bit. Otherwise, it outputs b′.

Define Wb as the event the challenger outputs 1 in experiment b. Let WPRF.AdvRA(λ) = |Pr[W0]−
Pr[W1]|.

Definition 3.2. WPRF = (Gen,F,Eval) is adaptive instance interactively secure for a relation R if,
for all PPT adversaries A, there is a negligible function negl such that WPRF.AdvRA(λ) < negl(λ).

We can also define a weaker notion of static instance security where A commits to x∗ before
seeing ek or making any F queries. Independently, we can also define non-interactive security where
the adversary is not allowed any F queries.

Fine-grained security notions. While adaptive instance interactive security will suffice for
many applications, it is in some ways stronger than necessary. For example, for several applications,
the witness is chosen by the reduction algorithm, not the adversary. Therefore, we aim to give more
fine-grained notions of security, similar to the obfuscation-based notions of [BST13]. Such notions
might be more plausible than the general purpose notion above, yet suffice for applications.

3By accepting relations as circuits, our notion of witness PRFs only handles instances of a fixed size. It is also
possible to consider witness PRFs for instances of arbitrary size, in which case R would be a Turing machine.

4This check in general cannot be implemented in polynomial time, meaning our challenger is not efficient.
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To that end, we define an adaptive R-instance sampler for WPRF as a PPT algorithm D that
does the following. D is given ek derived as (fk, ek) R←−Gen(λ,R), and is then allowed to make a
polynomial number of queries on instances xi, receiving F(fk, xi) in response. Finally, D produces
an instance x∗ /∈ {xi} and potentially some auxiliary information Aux. We say that D is static if D
does not depend on ek and does not make any F queries (but may still depend on λ). Finally, D is
semi-static if it does not make any F queries, but may depend on ek.

We now define and experiment EXPRD,A(b, λ) between a challenger and an algorithm A, parame-
terized by relation R, adaptive, semin-static, or static R-instance sampler D, and bit b:

• (fk, ek) R←−Gen(λ,R), (x∗,Aux) R←−DF(fk,·)(ek), y0 ← F(fk, x∗), y1
R←−Y. Give ek, x∗,Aux, yb to A

• A is allowed to make F queries on instances xi ∈ X , xi 6= x∗, to which the challenger responds
with F(sk, xi).

• A eventually outputs a guess b′. If there is a witness w ∈ W such that R(x∗, w) = 1 (in other
words, if x∗ ∈ L), then the challenger outputs a random bit. Otherwise, it outputs b′

We define Wb to be the event of outputting 1 in experiment b, and define the advantage of A to
be WPRF.AdvD,AAA(λ) = |Pr[W0]− Pr[W1]|

We now define our main notion of security for witness PRFs:

Definition 3.3. WPRF = (Gen,F,Eval) is interactively secure for relation R and R-instance sampler
D if, for all PPT adversaries A, there is a negligible function negl such WPRF.Adv(D,A)R(λ) < negl(λ).

We can also define non-interactive security where we do not allow A to make any F queries.

We can recast adaptive witness interactive security in this framework:

Fact 3.4. WPRF is adaptive witness interactively secure for a relation R if it is interactively secure
for R and all adaptive R-instance samplers D.

Extractable Witness PRFs. For some applications, we will need an extractable notion of
witness PRF, which roughly states that F(x) is pseudorandom even for instances x ∈ L, unless the
adversary “knows” a witness w for x.

Formally, we modify EXPRD,A(b, λ) to get a new extracting experiment EXPe,RD,A(b, λ) where we
remove the check that x /∈ L, and define WPRF.Adve,RD,A(λ) as the advantage of (D,A) in this new
game. We also define a second experiment for an extractor E :

• (fk, ek) R←−Gen(λ,R), (x∗,Aux) R←−DF(fk,·)(ek), y∗ ← F(fk, x∗), b′ R←−AF(fk,·)(ek, x∗,Aux, y∗)

• Let {(xi, yi)} be the F queries and responses made by A and r the random coins used by A.
Run w∗ R←−E(ek, x∗,Aux, y∗, {xi}, r). Output R(x∗, w∗).

Define the advantage EWPRF.AdvRD,E(λ) as the probability the challenger outputs 1.

Definition 3.5. (Gen,F,Eval) is extractable interactively secure for a relation R and R-instance
sampler D if, for all PPT adversaries A such that WPRF.AdvRD,A(λ) > 1/qA(λ) for some polynomial
qA, there is an efficient extractor E and polynomial qE such that EWPRF.AdvRD,E(λ) > 1/qE(λ).
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Similarly, we define the relaxation to non-interactive security as we did for standard witness
PRFs, where A is not allowed any F queries.

Remark 3.6. Notice that we’ve restricted the extractor to only making the same queries made by A.
This is potentially a stronger requirement than necessary for an extractable witness PRF. However,
this restriction will become important in our constructions. For example, consider constructing
an extractable witness PRF WPRF for a relation R by first building an extractable witness PRF
WPRF′ for an NP-Complete relation R′, and then performing an NP reduction. To prove extractable
security for WPRF, begin with an adversary A for WPRF. Use A and the NP reduction to construct
an adversary A′ for WPRF′. The existence of A′ implies an extractor E ′ for WPRF′. The goal is to
use this extractor to build an extractor E for WPRF. The problem is that, in the reduction, a legal
query to WPRF′ might not correspond to a legal query for WPRF. Thus if E ′ is allowed to make
arbitrary queries, then there is no way for E to simulate them. However, if E ′ can only make queries
made by A′, this is no longer a problem since the queries made by A′ will correspond to queries
made by A, which are legal WPRF queries.

We can now give a general extractability definition for witness PRFs:

Definition 3.7. A witness PRF is extractable static witness interactively secure for relation R if it
is extractable interactively secure for R and any static R-instance sampler D.

Remark 3.8. It is also possible to define semi-static or adaptive variants of the above. However,
these variants are not attainable for many relations R. For example, consider a relation R where it is
easy to sample instances in the language along with witnesses, but given only the instance, finding a
witness is hard (an example of such a language is the language of outputs of a one-way function, where
witnesses are the corresponding inputs). Then consider the following semi-static instance sampler:
sample x∗ ∈ L along with witness w, and use w and ek to compute y∗ = Eval(ek, x∗, w) = F(fk, x∗).
Output x∗ as the instance and y∗ as the auxiliary information. Clearly, given y∗, it is easy to
distinguish F(fk, x∗) from random. However, this is insufficient for extracting a witness w for x∗.

Remark 3.9. We will eventually show that the extractable witness PRFs imply extractable witness
encryption. The recent work of Garg, Gentry, Halevi, and Wichs [GGHW13] shows that extractable
witness encryption is problematic, casting some doubt on the plausability of of building extractable
witness PRFs. The same doubt is cast on our extractable multilienar map assumptions and our
intermediate notion of an extractable subset-sum encoding to be defined later. However, we stress
that the results of [GGHW13] only apply to specific auxilliary inputs Aux, which turn out to be
the obfuscations of certain programs. However, in many applications D will be determined by the
reduction algorithm (that is, not the adversary) and Aux will be very simple or even non-existant.
Therefore, the results of [GGHW13] will often not apply. While it may be impossible to build
extractable witness PRFs for all D, it seems plausible to build extractable witness PRFs for the
specific applications we investigate.

Remark 3.10. We note the counter-intuitive property that extractable witness PRFs to not imply
standard witness PRFs. Consider an R-instance sampler that outputs an instance x /∈ L with
probability 1/2, and outputs an instance x ∈ L with an easy-to-compute witness with probability
1/2. Extractability trvially holds, since it is possible to extract a witness with probability 1/2.
However, non-extracting security may not hold, as the cases where x ∈ L are eliminated by the
challenger.
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4 Applications
In this section, we show several applications of obfuscation, the obfuscator can be replaced with
witness PRFs. We break the applications into several categories:

• Inherent sampler constructions are those whose security is proven relative to a fixed instance
sampler determined entirely by the construction. Of our constructions, these are the most
plausible, since they will not be subject to the impossibility results in the literature [GGHW13].
Our constructions are CCA-secure encryption, non-interactive key exchange, and hardcore
functions for any one-way function.

• Parameterized sampler constructions are those where the security definition of the primitive
depends on an instance sampler D, and security holds relative to D if the underlying witness
PRF is secure for some other instance sampler D′ derived from D. Such constructions
include (reusable) witness encryption, and (resuable) secret sharing for monotone NP. These
constructions are likely to be secure for some samplers, but may not be secure for all samplers.

• Restricted sampler class constructions are those where the instance sampler depends on the
adversary A, meaning the witness PRF must be secure for a large class of samplers. However,
we show that the sampler is still restricted, meaning security must only hold relative to a
restricted set of samplers. Because of the restriction on instance samplers, it is still plausible
that the construction is secure even considering impossibility results. Our fully-dynamic
broadcast encryption scheme falls into this category.

4.1 CCA-secure Public Key Encryption

We demonstrate that the CCA-secure public key encryption of Sahai and Waters [SW14] can be
instantiated from witness PRFs.

Construction 4.1. Let WPRF = (WPRF.Gen,F,Eval) be a witness PRF, and let G : S → Z be a
pseudorandom generator with |S|/|Z| < negl. Build the following key encapsulation mechanism
(Enc.Gen,Enc,Dec):

• Enc.Gen(λ): Let R(z, s) = 1 if and only if G(s) = z. In other words, R defines the language L
of strings z ∈ Z that are images of G, and witnesses are the corresponding pre-images. Run
(fk, ek) R←−WPRF.Gen(λ,R). Set fk to be the secret key and ek to be the public key.

• Enc(ek): sample s R←−S and set z ← G(s). Output z as the header and k ← Eval(ek, z, s) ∈ Y
as the message encryption key.

• Dec(fk, z): run k ← F(fk, z).

Correctness is immediate. For security, we have the following:

Theorem 4.2. If WPRF is interactively secure, then Construction 4.1 is a CCA secure key encap-
sulation mechanism. If WPRF is static instance non-interactively secure, then Construction 4.1 is
CPA secure.

Rather than prove Theorem 4.2, we instead prove security relative to a fine-grained security
notion. Define the following static instance sampler D: sample and output a random z ∈ Z and
Aux = ().
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Theorem 4.3. If G is a secure pseudorandom generator and WPRF is interactively secure for
relation R and R-instance sampler D, then Construction 4.1 is a CCA secure key encapsulation
mechanism. If WPRF is non-interactively secure, then Construction 4.1 is CPA secure.

Proof. We prove the CCA case, the CPA case being almost identical. Let B be a CCA adversary
with non-negligible advantage ε. Define Game 0 as the standard CCA game, and define Game 1
as the modification where the challenge header z∗ is chosen uniformly at random in Z. The security
of G implies that B still has advantage negligibly-close to ε. Let Game 2 be the game where z∗ is
chosen at random, but the game outputs a random bit and aborts if z∗ is in the image space of G.
Since Z is much larger than S, the abort condition occurs with negligible probability. Thus B still
has advantage negligibly close to ε in Game 2. Now we construct an adversary A for WPRF relative
to sampler D. A simulates B, answering decryption queries using its F oracle. Finally, B makes a
challenge query, and A responds with its input z∗. When B outputs a bit b′, A outputs the same
bit. A has advantage equal to that of B in Game 2, which is non-negligible, thus contradicting the
security of WPRF.

We can also relax the requirement on G to be a one-way function if we assume WPRF is
extractable. Let D′ be the following static instance sampler: sample s R←−S and output z = f(s) and
Aux = (). Then we have the following theorem:

Theorem 4.4. If G is a secure one-way function and WPRF is extractable interactively secure for
relation R and R-instance sampler D′, then Construction 4.1 is a CCA secure key encapsulation
mechanism. If WPRF is extractable non-interactively secure, then Construction 4.1 is CPA secure.

The proof is very similar to the proof of Theorem 4.3, and we omit the details.

4.2 Non-interactive Multiparty Key Exchange

A multiparty key exchange protocol allows a group of g users to simultaneously post a message to
a public bulletin board, retaining some user-dependent secret. After reading off the contents of
the bulletin board, all the users establish the same shared secret key. Meanwhile, and adversary
who sees the entire contents of the bulletin board should not be able to learn the group key. More
precisely, a multiparty key exchange protocol consists of:

• Publish(λ, g) takes as input the security parameter and the group order, and outputs a user
secret s and public value pv. pv is posted to the bulletin board.

• KeyGen({pvj}j∈[g], si, i) takes as input g public values, plus the corresponding user secret si
for the ith value. It outputs a group key k ∈ Y.

For correctness, we require that all users generate the same key:

KeyGen({pvj}j∈[g], si, i) = KeyGen({pvj}j∈[g], si′ , i
′)

for all (sj , pvj)
R←−Publish(λ, g) and i, i′ ∈ [g]. For security, we have the following:
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Definition 4.5. A non-interactive multiparty key exchange protocol is statically secure if the
following distributions are indistinguishable:

{pvj}j∈[g], k where (sj , pvj)
R←−Publish(λ, g)∀j ∈ [g], k ← KeyGen({pvj}j∈[g], s1, 1) and

{pvj}j∈[g], k where (sj , pvj)
R←−Publish(λ, g)∀j ∈ [g], k R←−Y

Notice that our syntax does not allow a trusted setup, as constructions based on multilinear
maps [BS03, GGH13a, CLT13] require. Boneh and Zhandry [BZ13] give the first multiparty key
exchange protocol without trusted setup, based on obfuscation. We now give a very similar protocol
using witness PRFs.

Construction 4.6. Let G : S → Z be a pseudorandom generator with |S|/|Z| < negl. Let
WPRF = (Gen,F,Eval) be a witness PRF. Let Rg : Zg× (S × [g])→ {0, 1} be a relation that outputs
1 on input ((z1, . . . , zg), (s, i)) if and only if zi = G(s). We build the following key exchange protocol:

• Publish(λ, g): compute (fk, ek) R←−Gen(λ,Rg). Also pick a random seed s
R←−S and compute

z ← G(s). Keep s as the secret and publish (z, ek).

• KeyGen({(zi, eki)}i∈[g], s). Each user sorts the pairs (zi, eki) by zi, and determines their index
i in the ordering. Let ek = ek1, and compute k = Eval(ek, (z1, . . . , zg), (s, i))

Correctness is immediate. For security, we have the following:

Theorem 4.7. If WPRF is static witness non-interactively secure, the Construction 4.6 is statically
secure.

Rather than prove Theorem 4.7, we instead prove security relative to a fine-grained security
notion. Let Dg be the following Rg-instance sampler: choose random zi

R←−Z for i ∈ [g], and output
(z1, . . . , zg),Aux = ().

We have the following theorem:

Theorem 4.8. If WPRF is non-interactively secure for relation Rg and R-instance sampler Dg,
and G is a secure PRG, then (Publish,KeyGen) is a statically secure NIKE protocol.

We can also trade a stronger notion of security for the witness PRF in exchange for a weaker
security requirement for G. Let D′g be the following static Rg-instance sampler: choose random
si

R←−S, and set zi ← G(si) and output (z1, . . . , zg),Aux = ()

Theorem 4.9. If WPRF is extracting non-interactively secure for relation Rg and R-instance
sampler D′g, and G is a secure one-way function, then (Publish,KeyGen) is a statically secure NIKE
protocol.

Proof. We prove Theorem 4.8, the proof of Theorem 4.9 being similar. Let B be an adversary for
the key exchange protocol with non-negligible advantage. The B sees {(zi, eki)}i∈[g] where zi ← G(si)
for a random si

R←−S, as well as a key k ∈ Y , and outputs a guess b′ for whether k = F(ek1, {(zi)}i∈[g]

or k R←−Y. Call this Game 0. Define Game 1 as the modification where zi
R←−Z. The security of

G implies that Game 0 and Game 1 are indistinguishable. Next define Game 2 as identical to
Game 1, except that the challenger outputs a random bit and aborts if any of the zi are in the
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range of G. Since |S|/|Z| < negl, this abort condition occurs with negligible probability, meaning
B still has non-negligible advantage in Game 2. We construct an adversary A for WPRF relative
to sampler Dg as follows: A, on input ek, {zi}i∈[g], k (where {zi}

R←−Dg), sorts the zi, and then
sets ek1 = ek. For i > 1, A runs (fki, eki)

R←−Gen(λ,Rg). It then gives A {(zi, eki)}i∈[g], k. Note
that for key generation, ek1 = ek is chosen. Also, (z1, . . . , zg) is chosen at random in Zg, and A’s
challenger aborts if any of the zg are in the range of G (that is, if (z1, . . . , zg) has a witness under
Rg). Therefore, the view of B as a subroutine of A and the view of B in Game 2 are identical.
Therefore, the advantage of A is also non-negligible, a contradiction.

Adaptive Security. In semi-static or active security (defined by Boneh and Zhandry [BZ13]), the
same published values pvj are used in many key exchanges, some involving the adversary. Obtaining
semi-static or adaptive security from even the strongest forms of witness PRFs is not immediate.
The issue, as noted by Boneh and Zhandry in the case of obfuscation, is that, even in the semi-static
setting, the adversary may see the output of Eval on honest secrets, but using a malicious key ek.
It may be possible for a malformed key to leak the honest secrets, thereby allowing the scheme
to be broken. In more detail, consider an adversary A playing the role of user i, and suppose the
maximum number of users in any group is 2. A generates and publishes paramsi in a potentially
malicious way (and also generates and publishes some zi). Meanwhile, an honest user j publishes
an honest ekj and zj = G(sj). Now, if zi < zj , user j computes the shared key for the group {i, j}
as Eval(eki, (zi, zj), sj , 2). While an honest eki would cause Eval to be independent of the witness, it
may be possible for a dishonest eki to cause Eval to leak information about the witness.

Boneh and Zhandry circumvent this issue by using a special type of signature scheme, and only
inputting signatures into Eval. Even if the entire signature leaks, it will not help the adversary
produce the necessary signature to break the scheme. Unfortunately, their special signature scheme
requires obfuscation to build, and it is not obvious that such signatures can be built from witness
PRFs. Therefore, we leave obtaining an adaptive notion of security from witness PRFs as an
interesting open problem.

We note that it is straightforward to give a semi-static scheme that requires a trusted setup
from witness PRFs. The idea is to make generation of ek the responsibility of a trusted authority
and make all groups use ek to derive the shared secret. This sidesteps the issues outlined above.
The adaptive witness interactive security of the witness PRF then implies the semi-static security of
the scheme. We omit the details.

4.3 Poly-many hardcore bits for any one-way function

A hardcore function for a function f : S → Z is a function h : S → Y such that (f(s), h(s)) for a
random s

R←−S is indistinguishable from (f(s), y) for a random s
R←−S and random y

R←−Y. We now
give our construction, based on the construction of [BST13]:

Construction 4.10. Let f : S → Z be any one-way function. Let WPRF = (Gen,F,Eval) be a
witness PRF. We build a function h : S → Y as follows:

• Define Rf (x, s) = 1 if and only if x = f(s).

• Run (fk, ek) R←−Gen(λ,R).

• Define h(s) = Eval(ek, f(s), s).
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For security, let Df be the following Rf -instance sampler: choose a random s∗ ∈ S, compute
z∗ = f(s∗), and output (z∗,Aux = ()).

Theorem 4.11. If f is a one-way function and (Gen,F,Eval) is extractable non-interactively secure
for relation Rf and sampler Df , then h in Construction 4.10 is hardcore for f .

Proof. Let A be an adversary that distinguishes h from random with inverse polynomial probability
1/qA. That is, given f(s∗) for a random s∗, A is able to distinguish h(s∗) from a random string.
Then A is actually a non-interactive adversary for WPRF relative to relation R and instance sampler
Df . In other words, WPRF.AdvRD,A(λ) ≥ 1/qA. The extracting security of the witness PRF implies
that there is an extractor E and polynomial qE such that f(E(ek, s∗)) = s∗. In otherwords, E breaks
the one-wayness of f , reaching a contradiction.

4.4 Witness Encryption

We show how to build witness encryption from witness PRFs. A witness encryption scheme is
parameterized by a relation R : X ×W → {0, 1}, and consists of the following algorithms:

• Enc(λ, x,m) outputs a ciphertext c

• Dec(x,w, c) outputs a message m or ⊥. For correctness, we require that if R(x,w) = 1, then
Dec(x,w,Enc(λ, x,m)) = m and if R(x,w) = 0, Dec(x,w, c) = ⊥.

For security, we use a notion similar to Bellare and Hoang [BH13], but with a minor modification.
We have the notion of an R-instance sampler D, which takes the security parameter λ and samples
an instance x and auxilliary information Aux5. Let EXPRD,A(b, λ) denote the following experiment
on an adversary A: Run (x,Aux) R←−D(λ), and then run A(x,Aux). At some point, A produces a
pair of messages (m0,m1), to which the challenger responds with Enc(λ, x,mb). A then outputs
a guess b′ for b. The challenger checks if there is a w such that R(x,w) = 1 (that is, checks if
x ∈ L), and if so, outputs a random bit. Otherwise, the challenger outputs b′. We define Wb to be
the event of outputting 1 in experiment b, and define the advantage of A to be WENC.AdvRD,A(λ) =
|Pr[W0]− Pr[W1]|.

Definition 4.12. A witness encryption scheme is soundness secure for an R-instance sampler D if,
for all adversaries A, there is a negligible function negl such that WENC.AdvRD,A(λ) < negl(λ).

We can also define an extractability definition where we remove the check that x ∈ L, and
require that any distinguishing adversary gives rise to an extractor that can find a witness.

Our construction is the following:

Construction 4.13. Let R be a relation, and let (Gen,F,Eval) be a witness PRF for R. We define
a witness encryption scheme (Enc,Dec) where:

• Enc(λ, x,m) computes (fk, ek) R←−Gen(λ,R), K ← F(fk, x), and c = K ⊕ m. Output the
ciphertext (ek, c).

5In [BH13], the sampler also outputs the challenge messages m0, m1. We let the adversary produce m0, m1. As
Aux can contain the challenge, our notion is potentially stronger
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• Dec(x,w, (ek, c)) checks that R(x,w) = 1, and aborts otherwise. Then it computes K ←
Eval(ek, x, w), and outputs c⊕K.

Correctness is immediate from the correctness of (Gen,F,Eval). Moreover, we have the following
straightforward security theorem:

Theorem 4.14. If WPRF = (Gen,F,Eval) is non-interactively secure for relation R and R-instance
generator D, then Construction 4.13 is soundness secure for relation R and R-instance D (treated as a
static instance generator for WPRF). Moreover, if WPRF is extracting, then so is Construction 4.13.

We omit the proof, and instead present a stronger variant of witness encryption that we will
prove secure.

4.4.1 Reusable Witness Encryption

All current witness encryption schemes, including ours above, have long ciphertexts and relatively
inefficient encryption algorithms. This is due to the inefficient setup procedure for the underlying
multilinear maps. In this section, we explore the setting where various messages are being witness
encrypted to multiple instances, and try to amortize the computation and ciphertext length over
many ciphertexts. More precisely, we define a reusable witness key encapsulation mechanism:

Definition 4.15. A private key (resp. public key) witness encryption scheme is a triple of algorithms
(Gen,Enc,Dec) where:

• Gen takes as input a security parameter λ and a relation R, and outputs public parameters
params as well as a master decryption key dk.

• Enc takes as input an instance x and the parameters params. It outputs a header Hdr and
message encryption key k.

• Dec takes as input an instance x, header Hdr, witness w, and parameters params. It outputs a
message encryption key k or ⊥.

• Alternatively, Dec takes as input the master decryption key dk, instance x, and header Hdr
(no witness), and outputs k

For correctness, we require for all (Hdr, k) outputted by Enc(params, x), and all w such that
R(x,w) = 1, that Dec(params, x,Hdr, w) = k. We also require that Dec(dk, x,Hdr) = k.

We observe that from a functionality perspective, if we ignore the master decryption key, witness
encryption and reusable witness encryption are equivalent concepts: any witness encryption scheme
is a reusable with a Gen algorithm that does nothing but output the security parameter, and any
reusable witness encryption scheme can be converted into a regular witness encryption scheme by
having the encryption procedure run Gen, and output the public parameters with the ciphertext.
However, if the Gen procedure is significantly more inefficient than encryption, or if the public
parameters are much longer than the ciphertext, reusable witness encryption will result in less
computation and communication that standard witness encryption. Therefore, we focus on building
reusable witness encryption where the ciphertext are short and encryption procedures are relatively
efficient.

We now give a security definition for reusable witness encryption. Let D be a PPT algorithm that
takes as input parameters params R←−Gen(λ,R), is allowed to make decryption queries Dec(sk, ·, ·),
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and outputs an instance x∗ along with auxilliary information Aux. We call D an R-instance sampler
for WENC.

For any instance sampler D, let EXPRD,A(b, λ) denote the following experiment on a PPT algorithm
A: run params R←−Gen(λ,R) and (x∗,Aux) R←−D(params). Let (Hdr∗, k0) R←−Enc(params, x) and k1

R←−Y .
Run b′ R←−ADec(sk,·,·)(params, x∗,Aux,Hdr∗, kb), with the requirement that the oracle Dec(sk, ·, ·) out-
puts ⊥ on query (x∗,Hdr∗). If there is a witness w such that R(x∗, w) = 1 (in other words, if
x∗ ∈ L), then output a random bit and abort. Otherwise, output b′.

We define Wb to be the event of outputting 1 in experiment b, and define the advantage of A to
be WENC.AdvRD,A(λ) = |Pr[W0]− Pr[W1]|.

Definition 4.16. (Gen,Enc,Dec) is a CCA secure reusable witness encryption scheme for a relation
R and instance sampler D if, for all PPT adversaries A, there is a negligible function negl such that
WENC.AdvRD,A(λ) < negl(λ).

We can also get a CPA definition is we do not allow A to make decryption queries6. We can
similarly get an extractable definition, where we remove the check that x∗ ∈ L, and instead have
any A with non-negligible advantage imply an extractor that can find a witness that x∗ ∈ L.

Remark 4.17. We note that while our notion of re-usable witness encryption is new and has
not been realized before, it is straightforward to build re-usable encryption from obfuscation by
adapting the construction of [GGH+13b]. However, our scheme will be more efficient as it is built
from witness PRFs instead of obfuscation.

Our Construction Our construction of reusable witness encryption is the following:

Construction 4.18. Let (WPRF.Gen,F,Eval) be a witness PRF, and let G : S → Z be a pseu-
dorandom generator with |S|/|Z| < negl. Construct the following public key witness encryption
scheme (WENC.Gen,Enc,Dec):

• WENC.Gen(λ,R): Suppose R : X ×W → {0, 1}. Assume that S and W are disjoint. Let
X ′ = X × Z and W ′ =W

⋃
S. Finally, let R′ : X ′ ×W ′ → {0, 1} be the following function:

R′((x, z), w′) =


R(x,w) if w′ = w ∈ W
1 if w′ = s ∈ S and G(s) = z

0 if w′ = s ∈ S and G(s) 6= z

That is, if w′ is a witness for R, R′ checks if w is valid for x. Otherwise, w′ is a seed for G,
and R′ checks if the seed generates z.

Now, run (fk, ek) R←−WPRF.Gen(λ,R′) and output params = ek and dk = fk.

• Enc(ek, x): Choose a random seed s
R←−S, and let z ← G(s). Run k ← Eval(ek, (x, z), s).

Output z as the header, and k as the message encryption key.

• Dec(ek, x, z, w) = Eval(ek, (x, z), w)
6If we still consider samplers that can make decryption queries, this notion is similar to CCA1 security for standard

public key encryption.
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• Dec(fk, x, z) = F(fk, (x, z))

Ciphertext size is |z|+ |m|. Thus, the ciphertext size is equal to the length of the message plus a
term proportional to the security parameter, which is essentially optimal for public key encryption
schemes.

Notice that for z = G(s), s is always a witness for (x, z) relative to R′. Moreover, if w is a witness
for x relative to R, it is also a witness for (x, z) relative to R′ for all z. Correctness immediately
follows. For security, note that a valid encryption is indistinguishable from an encryption generated
by choosing a random z

R←−Z and computing k ← F(skR, (x, z)). However, assuming Z is much
bigger than S, with high probability z will not have a pre-image under G. thus, if x has no witness
relative to R, (x, z) will have no witness relative to R′, meaning k is indistinguishable from random.
Security follows. Before proving the statement, we define the following algorithm:

Let DWENC be an R-instance sampler for WENC. We construct a R′-instance sampler for WPRF,
called DWPRF, as follows. On input ek, run DWENC on params = ek. When DWENC makes a CCA
query an instance x ∈ X and header Hdr = z, make a F query on (x, z), and respond with the
resulting value. When DWENC outputs an instance x∗ ∈ X and auxiliary information Aux, produce
a random string z∗ ∈ Z and output the instance (x∗, z∗) and Aux.

Theorem 4.19. If G is a secure pseudorandom generator and WPRF = (WPRF.Gen,F,Eval) is
adaptive witness interactively (resp. non-interactively) secure for relation R′ and instance sampler
DWPRF, then Construction 4.18 is a CCA (resp. CPA) secure re-usable witness encryption scheme
for relation R and R-instance sampler DWENC. Moreover, if WPRF is extracting, then so is WENC.

Proof. We prove the CCA non-extracting case, the others being similar. Let B be a CCA adversary
for (WENC.Gen,Enc,Dec) with non-negligible advantage. We define Game 0 as the standard attack
game, and define Game 1 as the alternate attack game where y∗ is chosen as a random string.
If B can distinguish the two cases, then we could construct an adversary breaking the security
of G. Now we use B to build an adversary A for WPRF and instance sampler DWPRF. On input
(ek, (x∗, z∗),Aux, k), A simulates B on input (ek, x∗,Hdr = z∗,Aux, k). Whenever B makes a CCA
query on (x, z), A makes a F query on (x, z), and forwards the response to B. A outputs the output
of B. Notice that the view of B is identical to that in Game 1. Moreover, with overwhelming
probability, z∗ is not in the image of G, so (x∗, z∗) is a valid instance for relation R′ exactly when x∗
is a valid instance for relation R. Therefore, the advantage of A is negligibly close to the advantage
of B, and is therefore non-negligible.

4.5 Secret Sharing for mNP
We define the notion of re-usable secret sharing for mNP. Similarly to reusable witness encryption,
re-usable secret sharing attempts to amortize an expensive setup procedure over many sharings.
mNP is the class of monotone NP languages, meaning that if x ∈ {0, 1}n is in L with witness w, and
x′ ∈ {0, 1}n is an instance such that xi = 1⇒ x′i = 1, then x′ is also in L and w is also a witness
for x′. Such languages are characterized by a relation R : {0, 1}n ×W → {0, 1} such that there are
no NOT gates in any of the paths from the first set of input wires to the output, and x ∈ L if and
only if there is a w such that R(x, w) = 1.

Intuitively, in re-usable secret sharing for an mNP language L, a trusted party publishes
parameters params, which allows anyone to secret share to sets of users in the language L. More
precisely, we define the notion of a re-usable secret sharing key encapsulation mechanism.
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Definition 4.20. A reusable secret sharing scheme for mNP is a triple of PPT algorithms
(Gen, Share,Recon) where:

• Gen(λ,R) takes as input a relation accepting n-bit instances, produces a public key params
and secret key sk.

• Share(params) produces shares si for user i, and a secret encryption key k ∈ Y.

• Recon(params, {si}i∈S , w) Outputs either ⊥ or a key k ∈ Y. For correctness, we require that
if R(x, w) = 1 where xi = 1 if and only if i ∈ S, then Recon outputs the correct k, and for
R(x, w) = 0, Recon outputs ⊥.

Let D be an algorithm that, on input security parameter λ, outputs an instance x ∈ {0, 1}n and
auxilliary information Aux. Associate x with the set S ⊆ [n] where i ∈ S if and only if xi = 1. We
call D an R-instance sampler. Let EXPRD,A(b, λ) be the following experiment on a PPT adversary
A: run (x,Aux) R←−D(λ) and params R←−Gen(λ,R) and ({si}i∈[n], k0) R←−Share(params) and k1

R←−Y , and
give A the shares {si}i∈S , Aux and the key kb. A produces a guess b′. Let Wb be the event of
outputting 1 in experiment b. Define SS.AdvRD,A(λ) = |Pr[W0]− Pr[W1]|.

Definition 4.21. (Gen,Share,Recon) is secure for a relation R and instance sampler D if, for all
adversaries A, there is a negligible function negl such that SS.AdvRD,A(λ) < negl(λ).

Remark 4.22. We note that while our notion of re-usable secret sharing for mNP is new, and the
obfuscation-based scheme of [KNY14] is not re-usable, it is straightforward to make the scheme
of [KNY14] re-usable using similar ideas as in our construction below. The point here is that our
scheme will be more efficient because it is built from witness PRFs instead of obfuscation.

Construction. For simplicity, we will assume that for every input length n, the language L
contains a string x ∈ {0, 1}n and valid witness w that are both easy to compute7. We require this
so that the sharer can compute the secret encryption key without knowing the secrets used in the
Gen algorithm. It is straightforward to adapt our scheme to the setting where this is not the case.

Construction 4.23. Let G : S → Z be a pseudorandom generator, and (WPRF.Gen,F,Eval) be a
witness PRF.

• SS.Gen(λ,R, ): for a mNP relation R : {0, 1}n ×W → {0, 1}, let R′ : Zn × (Sn ×W)→ {0, 1}
be the following NP relation: on instance {zi}i∈[n] and witness {si}i∈[n], w, compute x ∈ {0, 1}n

where xi =
{

1 if G(si) = zi

0 if G(si) 6= zi
. Then compute R(x, w).

Let L be the langauge defined by R. The language L′ defined by R′ is the set of {zi}i∈[n] such
that there is a subset of S ⊆ [n] where

– zi has a pre-image under G for all i ∈ S
7This is a natural requirement. Consider the setting where every user corresponds to an edge on a graph with m

vertices, and we associate to every set of users the graph graph consisting of the user edges. We secret share to sets of
users whose corresponding graph contains a Hamiltonian cycle. We can set x to be the complete graph on m vertices,
and pick an arbitrary permutation on the vertices as the witness.
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– S corresponds to an instance x ∈ {0, 1}n such that x ∈ L, where xi = 1 if and only if
i ∈ S.

Run (fk, ek) R←−WPRF.Gen(λ,R′). Output params = ek.

• Share(params): Sample si
R←−S for i ∈ [n] and compute zi = G(si). Compute some instance

x and witness w for R, and let w′ = ({si}xi=1, w). Compute k ← Eval(ek, {zi}i∈[n], w
′). The

share for user i is (si, {zj}j∈[n]), and the secret encryption key is k.

• Recon(ek,x, {zi}i∈[n], {si}xi=1, w): check that R(x, w) = 1 and that G(si) = zi for each i
where xi = 1. For each i where xi = 0, let s′i = ⊥, and let s′i = si for all other i. Let
w′ = ({s′i}i∈[n], w), and compute k ← Eval(ek, {zi}i∈[n], w

′).

Note that the size of a share is |s|+ n|z| ∈ O(nλ). However, the {zi}i∈[n] are shared among all
users and can therefore be transmitted in a single broadcast. In this way, the amortized share size
per user is only O(λ).

For security, the idea is that a set S of shares corresponding to an instance x /∈ L cannot tell
whether {zi}i∈[n] is in the language L′ or not. This is because all of the zi where i /∈ S can be
replaced with random strings, and the adversary cannot tell the difference. However, now these zi
have (with overwhelming probability) no pre-image under G. Therefore, all the subsets S′ where zi
have pre-images under G must be subsets of S, and therefore correspond to instances not in L. This
means {zi}i∈[n] is no longer in the language. At this point, witness PRF security shows that the
secret encryption key is hidden from the adversary, as desired.

More formally, let DSS be an R-instance sampler for SS = (SS.Gen,Share,Recon). Define the
following static R′-instance sampler DWPRF for WPRF. Run DSS to obtain (x,Aux). Let S ⊆ [n] be
the set where i ∈ S if and only if yi = 1. For i ∈ S, sample random si

R←−S and zi ← G(si). For all
other i, let zi

R←−Z. Output ({zi}i∈[n],Aux′ = (Aux, {si}i∈S)).

Theorem 4.24. If WPRF is static witness non-interactively secure for relation R′ and instance
sampler DWPRF, then SS is secure for relation R and instance sampler DSS.

Proof. Let B be an adversary for SS. Construct the following adversary A for WPRF. On input
ek,x, {zi}i∈[n],Aux, {si}i∈S , k, A runs B on input ek,x, {zi}i∈[n],Aux, {si}i∈S , k. When B outputs a
bit b′, A outputs b′. Notice that the view of B as a subroutine of A is indistinguishable from the
correct view of B: the only difference are the zi for i /∈ S, which are generated randomly instead of
pseudorandomly. Therefore, the advantage of A is negligible close to the advantage of B, so the
security of WPRF implies that they must both be negligible.

4.6 Distributed Broadcast Encryption

Boneh and Zhandry [BZ13] show that key exchange with small parameters gives a form of distributed
broadcast encryption with short ciphertexts. In distributed broadcast encryption, each user generates
their own secret key rather than having the secret key generated by a trusted authority. However,
their system had large public keys. Ananth et al. [ABG+13] show how to reduce the public key size
as well, but at the cost of losing the distributed property of the system. Achieving small public
keys for a distributed broadcast scheme seems problematic, as each user must publish some value
dependent on their secret key, so the total amount of public data is at least linear in the number of
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users. Another drawback of the distrubted encryption definition of Boneh and Zhandry is that part
of the public key still needs to be computed by a trusted party.

We now put forward the notion of a fully-distributed broadcast scheme. In such a scheme, all
parties are stateful, and keep a small secret key. There is also a small global public key, posted
to some public bulletin board. When a new user joins the system, the user reads off the global
public key, and generates their own secret key. Then the user publishes a user public key. All of the
existing users use the new user public key to update their secret keys. Finally, the global public key
is updated to incorporate the new user. Anyone is able to update the global public key. In this
system, there is no a priori bound on the number of users.

Definition 4.25. Fully-dynamic broadcast encryption.

• Init(λ) outputs an initial global public key params(0).

• Join(params(n)) generates a user secret key sk(n+1)
n+1 and user public key pkn+1 for user n+ 1.

The user then publishes pkn+1.

• Update(sk(n)
i , pkn+1) generates a new user secret key sk(n+1)

i for user i.

• Inc(params(n), pkn+1) produces an updated global public key params(n+1).

• Enc(params(n), S) takes as input a subset S ⊆ [n], and produces a header Hdr and message
encryption key k.

• Dec(sk(n)
i , S,Hdr) checks if i ∈ S, and if so outputs the key k. Otherwise, output ⊥.

For security, we consider an adaptive notion. In this notion, the adversary can control arbitrary
subsets of users, and can adaptively corrupt them. We do not allow the adversary to alter the
public key params(0), except by joining new users to the system. This is a reasonable requirement,
as any of the other users could keep a copy of the global public key and always make sure the key is
correct and not tampered with.

Consider the following experiment EXPA(b, λ), played between an adversary A and a challenger:

• The challenger runs Init(λ) to obtain a global public key params(0), which it then provides to
A. It also initializes a counter n to 0, and a set T to {}.

• A can make register honest queries on empty input. The challenger runs the following:

(sk(n+1)
n+1 , pkn+1) R←−Join(params(n))

sk(n+1)
i ← Update(sk(n)

i , pkn+1) for i ∈ T
params(n+1) ← Inc(params(n), pkn+1)

T ← T
⋃
{n+ 1}

n← n+ 1

The challenger then supplies the new public key params(n+1) and the user public key pk(n+1)
n+1

to A
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• A can make register corrupt queries on input pkn+1. The challenger runs the following:

sk(n+1)
i ← Update(sk(n)

i , pkn+1) for i ∈ T
params(n+1) ← Inc(params(n), pkn+1)

n← n+ 1

The challenger then supplies the new public key params(n+1) to the adversary.

• A can make corrupt user queries on input i ∈ T . The challenger responds by setting
T ← T \ {i}, and giving sk(n)

i to the adversary.

• A can make a single challenge query on target set S ⊆ T . The challenger then computes
(Hdr∗, k0) R←−Enc(params(n), S), and lets k1

R←−K. The challenger gives A the pair (Hdr∗, k∗ = kb).

• Finally, A outputs a guess b′ for b.

We define Wb to be the event of outputting 1 in experiment b, and define the advantage to be
BE.AdvA(λ) = |Pr[W0]− Pr[W1]|.

Definition 4.26. A fully-distributed broadcast encryption scheme is adaptively secure if, for all
adversaries A, there is a negligible function negl such that BE.AdvA(λ) < negl(λ).

Our Construction The idea behind our construction is as follows. Each user of the system will
generate a random input s to a one-way function f , and publish the corresponding output z. Clearly,
if the public parameters contained all published outputs, the parameters would be linear in the size
of the users. Instead, similar to the scheme of Ananth et al. [ABG+13], we use a Merkle hash tree
to hash down the public parameters to a small hash. In particular, we divide the n users into at
most dlogne groups Sj where |Sj | = 2j . For each group, we compute the Merkle tree hash of the
public values of that group. The public parameters are then the hashes hj for each group Gj . The
secret key for a user in Sj will be their random s, as well as a “proof” that the corresponding output
x was one of the leaves in the hash tree for hj . The proof will consist of the nodes in the path from
x to hj in the Merkle tree, as well as all of the neighbors. Any false proof will lead directly to a
collision for the underlying hash function.

Adding a user is simple: the user computes a random input s to f and publishes the output x.
Add x as a new hash to the public parameters. As long as there are two hashes corresponding to
Merkle trees of the same height, merge the two together by hashing their roots, and replacing the
two values with the new hash. Merge the corresponding groups together as well. This can all be
done publicly.

If a user belongs to a group that was merged, it is easy to update their proof by merging the
path to the old root with the path from the old root to the new root.

We now give the construction in more detail:

Construction 4.27. Let f : S → X be a one-way function, (Gen,F,Eval) be a witness PRF, and
H : X 2 → X a collision-resistant hash function.
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• Init(λ): initializes an empty list L = (), and outputs params(0) = (λ, n = 0, L). n will be the
number of users, and L will be a list of hashes. Let n =

∑
j∈T 2j where T ⊆ [0, blognc]. Then

[n] will be divided into |T | different sets Sj , j ∈ T , where |Sj | = 2j (the sets T and Sj can be
inferred from n and do not need to be stored in the public parameters). L will contain a hash
hj , which will be the Merkle tree hash using H of the public values of the users in Sj .

• Join(params(n)): s R←−S, x← f(s). Publish pkn+1 = x. Create a local copy of L, and let jmin
be the minimum non-negative integer not in T . Define hj,L = hj for j = 0, ..., jmin− 1. Create
a local tree π with h0,R = x initially as the root. For j = 0, ..., jmin − 1, create a new root
hj+1,R = H(hj,L, hj,R) with hj,L as the left child and hj,R as the right child. Mark x as the
“target leaf.” Note that π consists of a single path between the “target leaf” and the root, plus
a sibling for every non-root node. We call such a tree a rooted binary caterpillar (RBC) tree.
Define hjmin = hjmin,R, the root of the RBC tree.
Set T = (T \ {0, ..., jmin − 1})

⋃
{jmin}. Remove all hashes hj for j = 0, . . . , jmin − 1 from L,

and add the hash hjmin . The secret key for user n+ 1 is L, π, x, s.

• Update(sk(n)
i , pkn+1): Update the local copy of L as in Join, obtaining an RBC tree π. If the

root of πi (the current tree for user i) became one of the leaves on π, prune the opposite
branch in π, and then merge the two trees together to obtain a new RBC tree πi. The target
leaf of πi is still the original target leaf from πi.

• Inc(params(n), pkn+1): Update L as in Join, and then discard the tree π.

• Enc(params(n), S): Let ` = blognc. Define R≤` to be the relation where instances are tuples
(j, hj , h(j)

S ) with j ≤ `. A witness for (j, hj , hS) is a tuple (π, τ, s) where π, τ are RBC trees of
height j with identical structure (including the same target leaf) such that the root of π is hj ,
the root of τ is hS , the target leaf of π is f(s), and the target leaf of hS is 1.
Choose a random key k. For each j ∈ T , do the following:

– Run (fkj , ekj)
R←−Gen(λ,R≤`).

– Let v(j) ∈ X 2j be the vector defined as follows: iterate through the 2j identities i ∈ Sj ,
and set v(j)

i = 1 if i ∈ S and 0 otherwise.

– Let h(j)
S be the Merkle tree hash of v(j) computed by successively hashing pairs of elements

together.

– Let Kj = k ⊕ F(fkj , (j, hj , h(j)
S ).

Set k to be the message encryption key, and the header to be Hdr = {j,Kj , ekj}j∈T

• Dec(sk(n)
i , S,Hdr): If i /∈ S, output ⊥. Otherwise, let i ∈ Sj for some j ∈ T . Compute the

Merkle hash h(j)
S of v(j) as above. Next prune the tree down to a tree τi that has structure is

identical to πi, including the target leaf at position i. If i ∈ S, the the target leaf will have
value 1. Next, run k ← Kj ⊕ Eval(ekj , (j, hj , h(j)

S ), (πi, τi, s)).

Correctness is immediate from the construction. Also notice that the list L contains at most
` pairs, so the total size ignoring the security parameter is O(logn). The secret key for a user
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contains L, as well as a BCP tree π. π has depth at most `, and has at most two nodes per level.
therefore, the size is O(logn). Finally, each header component contains an evaluation key ekj for a
witness PRF for relation R≤` where ` ≤ logn. The size of R≤` is polynomial in `, so the size of
ekj is poly(logn). In addition, there are at most ` header components, so the total header size is
poly(logn).

For security, we define a class of instance samplers, called acceptable, such that the instance
(j, hj , h(j)

S ) and auxilliary information Aux computed by D satisfies the following:

• hj is computed as the Merkle tree hash of some xi ∈ X for i ∈ [2j ] for some j.

• Each of the xi above are computed as xi = f(si) for some si ∈ S

• h(j)
S is computed as the Merkle tree hash of some v(j) ∈ X 2j where v(j)

i is either 0 or 1 for all
j.

• For each i where v(j)
i = 1, Aux does not depend on si (though it may be computed from xi).

This class of instance samplers is very restricting. In particular, Aux is computed independently
of any of the “easy-to-compute” witnesses for (j, hj , h(j)

S ) (that is, those witness containing the
correct proofs, and not false proofs that lead to collisions). This makes it unlikely the counter
example of [GGHW13] can be adapted to apply to this setting.

Theorem 4.28. Suppose H is collision resistant, f is one-way, and (Gen,F,Eval) is an extracting
non-interactive witness PRF for all static acceptable instance samplers D. Then Construction 4.27
is adaptively secure.

We note that if we require interactive security for WPRF, we can modify Construction 4.27 so
that all header components use a single witness PRF key, and security will be maintained. This will
save roughly a logn factor in the length of the ciphertexts.

We now prove Theorem 4.28:

Proof. Let B be an adaptive adversary for this scheme. Taking only a polynomial hit in the security
parameter, we can assume without loss of generality that there is some polynomial p such that B
always makes the challenge query when exactly p(λ) users are registered. We break B into two
parts: B0, which stops after submitting the challenge query and returns some state state, and B1
which takes as input state, the challenge set S, the challenge header Hdr∗ and the challenge key k∗,
and ultimately outputs a bit b′.

Let D be the following instance sampler. D simulates B0, and plays the role of challenger to B0.
When B0 outputs a challenge set S, D picks a random j

R←−L, computes h(j)
S and hj as above. It

outputs the instance (j, hj , h(j)
S ), and the auxiliary information Aux = state. We assume that state

contains all of the queries made by B0. We also assume that, before the challenge query on S, B0
has asked for all of the secret keys for users outside of S. We note that D is static and acceptable.

Let A be the following adversary for (Gen,F,Eval), derived from B1. On input the tuple
(j, hj , h(j)

S ), state, ek,K, A chooses a random k
R←−K, and sets Kj = k ⊕ K and ekj = ek. For all

j′ ∈ T \ {j}, run (fkj′ , ekj′)
R←−Gen(λ,R≤`). If j′ < j, set Hdrj′ = (Kj′ , ekj′) where Kj′

R←−K. For all
tuples with j′ > j, compute Kj′ ← k⊕ F(fkj′ , (hj′ , h

(j′)
S )) where hj′ and h(j′)

S are computed as above.
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Then it provides A1 the header {Kj′ , ekj′}, state state, and key k. Then A runs B1, playing the
role of challenger to B1.

To analyze the advantage of A, we define the following j hybrids. In hybrid hj , Kj′ for j′ ≤ j
are chosen randomly for the challenge header, whereas Kj′ for j′ > j are chosen correctly. Then
Hybrid 0 corresponds to experiment 0, and hybrid ` corresponds to experiment 1.

Let j be the value chosen by D. Then, in experiment 0, A perfectly simulates the view of B
in Hybrid j − 1. Meanwhile, in experiment 1, A perfectly simulates the view of B in Hybrid j.
Therefore, it is straightforward to show that the advantage of A is at least 1/` times the advantage
of B.

If B had non-negligible advantage, this implies that A has non-negligible advantage. But then
there is an extractor E that, on input (j, hj , h(j)

S ), state, ek, is able to find a witness for j, hj , h(j).
We can use such a witness w = (π, τ, s) to break the collision resistance of H or the one-wayness of
f . Let v(j) be the values that D hashed to obtain hj . Let π′ be the result of pruning the Merkle
tree for hj down to the same structure as π. Let τ ′ be defined similarly. There are several cases:

• π and π′ have different values. This means, π and π′ contain a collision for H.

• τ and τ ′ have different values. This means τ and τ ′ contain a collision for H.

• f(s) is equal to the target leaf in π. Given that neither of the above holds, this means s is a
pre-image of one of the user public keys.

The collision resistance of H implies that the first two cases above happen with at most negligible
probability. Moreover, it is straightforward to use the third case above to invert f , meaning the
third case occurs with negligible probability. This means the extractor must actually succeed with
only non-negligible probability, a contradiction.

5 An Abstraction: Subset-Sum Encoding
Now that we have seen many applications of witness PRFs, we begin our construction. In this
section, we give an abstraction of functionality we need from multilinear maps. Our abstraction is
called a subset-sum encoding. Roughly, a subset sum encoding is a way to encode vectors t such
that (1) the encoding of t = A ·w for w ∈ {0, 1}n is efficiently computable given w and (2) the
encoding of t /∈ SubSums(A) is indistinguishable from a random string. More formally, a subset-sum
encoding is the following:

Definition 5.1. A subset-sum encoding is a triple of efficient algorithms (Gen,Encode,Eval) where:

• Gen takes as input a security parameter λ and an integer matrix A ∈ Zm×n, and outputs an
encoding key sk and an evaluation key ek.

• Encode takes as input the secret key sk vector t ∈ Zm, and produces an encoding t̂ ∈ Y.
Encode is deterministic.

• Eval takes as input the encoding key ek and a bit vector w ∈ {0, 1}n, and outputs a value t̂
satisfying t̂ = Encode(sk, t) where t = A ·w.
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Security Notions. The security notions we define for subset-sum encodings are very similar to
those for witness PRFs. Consider the following experiment EXPA

A(b, λ) between an adversar A and
challenger, parameterized by a matrix A ∈ Zm×n, a bit b, and a security parameters λ:

• Run (sk, ek) R←−Gen(λ,A), and give ek to A

• A can adaptively make queries on targets ti ∈ {0, 1}m, to which the challenger responds with
t̂i ← Encode(sk, ti) ∈ Y.

• A can make a single challenge query on a target t∗. The challenger computes y0 = t̂∗ ←
Encode(sk, t∗) and y1

R←−Y, and responds with yb.

• After making additional Encode queries, A produces a bit b′. The challenger checks that
t∗ /∈ {ti} and t∗ /∈ SubSums(A). If either check fails, the challenger outputs a random bit.
Otherwise, it outputs b′.

Define Wb as the event the challenger outputs 1 in experiment b. Let SS.AdvA
A(λ) = |Pr[W0]−

Pr[W1]|.

Definition 5.2. (Gen,Encode,Eval) is adaptive target interactively secure for a matrix A if, for all
adversaries A, there is a negligible function negl such that SS.AdvA

A(λ) < negl(λ).

We can also define a weaker notion of static target security where A commits to t∗ before seeing
ek or making any Encode queries. Independently, we can also define non-interactive security where
the adversary is not allowed to make any Encode queries.

Fine-grained security notions. Similar to witness PRFs, it is straight forward to define fine-
grained security notions, where security holds relative to a specific instance sampler. We omit the
details.

5.1 A simple instantiation from multilinear maps.

We now construct subset-sum encodings from asymmetric multilinear maps.

Construction 5.3. Let Setup be the generation algorithm for an asymmetric multilinear map. We
build the following subset-sum encoding:

• Gen(λ,A): on input a matrix A ∈ Zm×n, let B = ‖A‖∞, and pmin = 2nB + 1. Run
params R←−Setup(λ, n, pmin) to get the description of a multilinear map e : G1× · · · ×Gn → GT

on groups of prime order p, together with generators g1, . . . , gm, gT . Choose random α ∈ (Z∗p)m.
Denote by αv the product

∏
i∈[m] α

vi
i (since each component of α is non-zero, this operation is

well-defined for all integer vectors vi). Let Vi = gαvi
i where vi are the columns of A. Publish

ek = (params, {Vi}i∈[n]) as the public parameters and sk = α

• Encode(sk, t) = gαt
T , where t ∈ IntRange(A).

• Eval(ek,w) = e(V w1
1 , V w2

2 , . . . , V wn
n ) where we define V 0

i = gi

For correctness, observe that

e(vw1
1 , vw2

2 , . . . , V wn
n ) = e(gαvv1w1

1 , . . . , gαvvnwn
n ) = gα

∑
i∈[n] viwi

T = gαA·w
T = Encode(sk,A ·w)
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Security. We assume the security of our subset-sum encodings, which translates to a new security
assumption on multilinear maps, which we call the (adaptive target interactive) multilinear subset-
sum Diffie Hellman assumption. For completeness, we formally define the assumption as follows.
Let EXPA

A(b, λ) be the following experiment between an adversary A and challenger, parameterized
by a matrix A ∈ Zm×n, a bit b, and a security parameter λ:

• Let B = ‖A‖∞, and pmin = 2nB + 1. Run params R←−Setup(λ, n, pmin).

• Choose a random α ∈ Zmp , and let Vi = gαvi
i where vi are the columns of A. Give

(params, {Vi}i∈[n]) to A.

• A can make oracle queries on targets ti ∈ IntRange(A), to which the challenger responds with
gαti
T .

• A can make a single challenge query on a target t∗ ∈ IntRange(A). The challenger computes
y0 = gαt∗

T and y1 = grT for a random r
R←−Zp, and responds with yb.

• After making additional Encode queries, A produces a bit b′. The challenger checks that
t∗ /∈ {ti} and t∗ /∈ SubSums(A). If either check fails, the challenger outputs a random bit.
Otherwise, it outputs b′.

Define Wb as the event that the challenger outputs 1 in experiment b. Let SSDH.AdvA
A(λ) =

|Pr[W0]− Pr[W1]|.

Definition 5.4. The adaptive target interactive multilinear subset-sum Diffie Hellman (SSDH)
assumption holds relative to Setup if, for all adversaries A, there is a negligible function negl such
that SSDH.AdvA

A(λ) < negl(λ).

Security of our subset-sum encodings immediately follows from the assumption:

Fact 5.5. If the adaptive target interactive multilinear SSDH assumptions holds for Setup, the
Construction 5.3 is an adaptive target interactively secure subset-sum encoding.

We can also consider fine-grained SSDH assumptions and obtain the corresponding fine-grained
security notions:

Fact 5.6. If the (extracting) interactive/non-interactive subset-sum Diffie-Hellman assumption holds
relative to Setup for a matrix A and an instance sampler D, then (Gen,Encode,Eval) is (extracting)
interactively/non-interactively secure for matrix A and instance sampler D.

Flattening The Encodings We can convert any subset-sum encoding form = 1 into a subsetsum
encoding for any m. Let A ∈ Zm×n and define B = ‖A‖∞. Then, for any w ∈ {0, 1}n, ‖A ·w‖∞ ≤
nB. Therefore, we can let A′ = (1, nB+ 1, (nB+ 1)2, . . . , (nB+ 1)m−1) ·A be a single row, and run
Gen(λ,A′) to get (sk, ek). To encode an element t, compute t′ = (1, nB, (nB)2, . . . , (nB)m−1) · t,
and encode t′. Finally, to evaluate on vector w, simply run Eval(ek,w).

Security translates since left-multiplying by (1, nB, (nB)2, . . . , (nB)m−1) does not introduce
any collisions. Therefore, we can always rely on subset-sum encodings, and thus the subset-sum
Diffie-Hellman assumption, for m = 1. However, we recommend not using this conversion for two
reasons:
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• To prevent the exponent from “wrapping” mod p−1, p−1 needs to be larger than the maximum
L1-norm of the rows of A. In this conversion, we are multiplying rows by exponential factors,
meaning p needs to correspondingly be set much larger.

• In Appendix A, we prove the security of our encodings in the generic multilinear map model.
Generic security is only guaranteed if ‖A‖∞/p is negligible. This means for security, p will
have to be substantially larger after applying the conversion.

5.2 Limited Witness PRFs

We note that subset-sum encodings immediately give us witness PRFs for restricted classes. In
particular, for a matrix A, a subset-sum encoding is a witness PRF for the language SubSums(A).
The various security notions for subset-sum encodings correspond exactly to the security notions for
witness PRFs.

Our goal in the next section is to turn this into a witness PRF for any language L. In essence, we
provide a reduction from an instance x to a subset-sum instance A, t, where A is determined entirely
by the relation R defining L, and is independent of x (except for its length). Thus, SubSums(A)
corresponds exactly with L. This means the subset-sum encoding for A is actually a witness PRF
for L.

6 Witness PRFs from Subset-Sum Encodings
We now show how to build witness PRFs from secure subset-sum encodings, completing our
construction.

6.1 Verifying Computation as Subset Sum

Given a circuit C and strings x,y, we would like to prove that C(x) = y. However, we want to
restrict the verification algorithm to be a subset-sum instance, where (x,y) is a satisfying assignment
only if C(x) = y. More formally, we desire the following procedures:

• Convert(C) takes as input a circuit of g gates mapping in bits to out bits, and outputs a
matrix C ∈ Zm×(out+in+r) and vector b ∈ Zm, plus some parameter paramsC , where m, r and
B = ‖A‖∞ are polynomial in g, in, out. We call C,b an enforcer for C.

• Prove(paramsC ,x,y) constructs a proof π ∈ {0, 1}r such that

C ·

 y
x
π

 = b

We require two properties: completeness, which means that Prove always succeeds, and soundness,
which says that if y 6= C(x), then for all proofs π ∈ {0, 1}r,

C ·

 y
x
π

 6= b
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Our construction is relatively straightforward. We first describe the scheme for single gate
circuits, and then show how to piece together many gates to form a circuit.
• AND gates: let CAND consist of a single row (−2, 1, 1,−1) and bAND = 0. Prove, on input

x = (x1, x2) and y = x1ANDx2 = x1x2 computes π = x1XORx2 = x1 + x2 − 2x1x2. Observe
that

CAND · (y, x1, x2, π) = −2x1x2 + x1 + x2 − (x+ 1 + x2 − 2x1x2) = 0 = b
For y = NOT(x1ANDx2) = 1− x1x2 and any π ∈ {0, 1},

CAND · (y, x1, x2, π) = −2 + 2x1x2 + x1 + x2 − π = −2 + 4x1x2 + (x1XORx2)− π

−2 + 4x1x2 ∈ {−2, 2} and x1XORx2 ∈ {0, 1}, so −2 + 4x1x2 + (x1XORx2) ∈ {−2,−1, 2, 3}.
Therefore, no setting of π ∈ {0, 1} will cause CAND · (y, x1, x2, π) to evaluate to 0.

• OR gates: let COR consist of a single row (−2, 1, 1, 1) and bOR = 0. Prove, on input x = (x1, x2)
and y = x1ORx2 = x1 + x2 − x1x2 computes π = x1XORx2 = x1 + x2 − 2x1x2. Observe that

COR · (y, x1, x2, π) = −2(x1 + x2 − x1x2) + x1 + x2 + (x1 + x2 − 2x1x2) = 0 = b

Similarly, for y = NOT(x1ORx2), it is straightforward to show that COR · (y, x1, x2, π) 6= 0 for
all π ∈ {0, 1}.

• NOT gates: let CNOT consist of a single row (1 1) and bNOT = 1. Prove is trivial and outputs
nothing. Verifying the correctness is straightforward.

• PASS gates: a pass gate is a fan-in one gate that just outputs its input. This gate will be
useful for our construction, and we give two implementations:

– The simple pass gate. Let CPASS,0 consist of a single row (1,−1) and bPASS,0 = 0. Prove
is trivial and outputs nothing. Verifying the correctness is straightforward. This is more
direct than implementing the pass gate as two not gates.

– The cheating pass gate. Let CPASS,1 consist of a single row (1, 1,−2) and bPASS,1 = 0.
Prove, on input x and y = x computes π = x. Correctness is straightforward. Notice that
for this gate, if we allow π to be a real number in [0, 1], then we can can set π = 1/2 and
y = NOTx and “prove” the wrong output. This will be important for our construction.

• Other fan-in two gates: it is straightforward to build all fan-in two gates using the above
ideas. Each gate requires just a single row in C, and a single proof bit π. We omit the details.
The advantage of implementing all fan-in two gates is that we can absorb NOT gates into the
fan-in two gates, and therefore get NOT gates for free.

To handle arbitrary circuits, we evaluate the circuit gate by gate. For each gate, we assign a row
of C which will enforce that the output of that row is correct using the above single-gate enforcers.
We will also assign at most two columns, one for the actual result, and possibly one column for the
proof. For any invalid computation with potential proof π, π will give an assignment to the wires.
Since the result is incorrect, there must be some gate where the input wires are correct, but the
output wire is incorrect. Assume the gate has two inputs, the one input gate being similar. For this
gate, look at the corresponding row of C, the two input columns, the output column, and the proof
column. Also look at the row in b. Also look at the restriction of π to these four components. This
will correspond to a single gate enforcer, and the invalid proof π gives an invalid result, which we
know to be impossible.
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6.2 Our Construction

We now give our construction.

Construction 6.1. Let (SSE.Gen,SSE.Encode,SSE.Eval) be a secure subset-sum encoding.

• WPRF.Gen(λ,R): On relation R : {0, 1}k×{0, 1}` → {0, 1} consisting of g gates, let R′(x,w) =
(x,R(x,w)). We can implement R′ using the g gates of R, as well as k simple pass gates
for the x part of the output. We will also add a cheating pass gate on the output of R.
Therefore, we can compute (C, paramsR)← Convert(R) using Convert from above. Notice that
C ∈ Z(k+g+1)×(2k+g+`+2).
Now, rearrange the columns of C so that:

– C = (B,A) where B ∈ Z(k+g+1)×(k+1) and A ∈ Z(m+g+1)×(m+g+n+1)

– On input (x,w) and output b = R(x,w), Prove produces a vector v = (v0,v1) =
((x, b), (x,w,π)) such that

C · v = B · v0 + A · v1 = b

Now, run and output (fk, ek) = (sk, ek) R←−SSE.Gen(λ,A).

• WPRF.F(fk,x): Let t = b−B · (x, 1). Run t̂← SSE.Encode(fk, t)

• WPRF.Eval(ek,x,w): Let v1 = (x,w,π) where π is the proof constructed above. Run and
output t̂← SSE.Eval(ek,v1)

Note that using Convert from above, B ≡ ‖A‖∞ = 2.

Remark 6.2. t = b − BR · (x, 1) ∈ IntRange(A). This is because, on input x and any witness
w, either R(x,w) = 1, in which case we the proof π derived from this instance and witness give
a subset sum. If R(x,w) = 0, we can produce a proof π′ ∈ [0, 1]g+1 by setting all of the gates
correctly, except the last “cheating” pass gate, which we set to 1 by setting π = 1/2 for that gate.

Remark 6.3. For each instance x, the corresponding target t = b−BR · (x, 1) is unique. This is
due to our construction, where the only valid proof π for input x must contain x (since it is part of
the output of R′). Since the proof, and hence the subset, must be different for every x, we have
that the target must also be different for every x. This is crucial for security, since mapping two
instances to the same target would mean F is not a pseudorandom function.

6.3 Security of Our Construction

We now state the security of our construction. For an NP relation R, let A be the matrix defined
above.

Theorem 6.4. If SSE is an adaptive target interactively secure subset-sum encoding, then WPRF
in Construction 6.1 is adaptive instance interactively secure.
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This theorem is an immediate consequence of our construction, and the fact that each instance
maps to a unique target. We can also consider the fine-grained security notions. For an R-instance
sampler DWPRF for WPRF, let DSSE be the following A-target sampler for SSE: On input ek, simulate
DWPRF on input ek. Whenever DWPRF makes a query to F on input x, compute t = b−B · (x, 1),
and make an encode query on t, obtaining t̂. Return t̂ to DWPRF. When DWPRF produces a witness
x∗, compute and output the target t∗ = b−B · (x, 1). Security immediately follows:

Theorem 6.5. If SSE is interactively (resp. non-interactively) secure for A and DSSE, then WPRF
is interactively (resp. non-interactively) secure for R and DWPRF. Moreover, if SSE is extractable,
then so is WPRF.

6.4 Reducing Key Sizes Using Verifiable Computation

Our witness PRF requires a subset-sum encoding a matrix A of width proportional to the size of
the circuit evaluating R. Our subset-sum encodings are in turn constructed from multilinear maps,
and the total multilinearity will be equal to the width of the matrix A. Since multilinearity is very
expensive, it is important to reduce the size of the circuit A.

The role of A is basically to prove that R has the output claimed, and operates by checking
every step of the computation. In order to shrink A, we could have Eval first compute R(x,w), and
simultaneously compute a proof π that the computation was correct. Then A does not check the
evaluation of R(x,w) directly, but instead checks the evaluation of the program that verifies π. If π
and the verification algorithm can be made much smaller than R itself, this will decrease the size of
A.

One candidate approach would be to use PCPs. However, this will not work directly, as the
randomness used by the verification algorithm would need to be hard-coded into the matrix A, but
the proof is generated in Eval, which gets (the ecoding of) A as input. Therefore, the prover could
craft the proof to fool the verifier for the specific random coins used.

Instead, we can use verifiable computation, defined as follows:
Given a circuit R, a verifiable computation scheme consists of:

• Gen(λ,R) which outputs a verification key vk and evaluation key ek.

• Compute(ek, x) computes y = R(x) as well as a proof π.

• Ver(vk, x, y, π) is a deterministic algorithm that outputs 0 or 1.

Given a verifiable computation scheme, we can build the following witness PRF

Construction 6.6. Let (WPRF.Gen,F,Eval) be a witness PRF and (VC.Gen,Compute,Ver) be a
verifiable computation scheme. Build the following:

• WPRF.Gen′(λ,R′): run (vk, ek0) R←−VC.Gen(λ,R′). Then define the relation

R((vk,x), (w, π)) = Ver(vk, (x,w), 1, π)

Run (fk, ek1) R←−WPRF.Gen(λ,R). Output the secret key fk and public parameters ek =
(vk, ek0, ek1).

• F′(fk,x) = F(fk, (vk,x))
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• Eval′(ek,x,w): run Compute(ek0, (x,w)) to obtain b = R′(x,w) and a proof π. If b = 0, abort
and output ⊥. Otherwise, run Eval(ek1, (vk,x), (w, π)).

Correctness is immediate. Now the parameter size ek is the length of the evaluation key ek0
plus the length of the parameter ek1 for WPRF. However, the size of R is independent of the size of
R′, and only depends on the running time of Ver. Using the verifiable computation system of, say,
Parno, Howell, Gentry and Raykova [PHGR13], this is linear in |x| and |w|. The size of ek0 however
does depend linearly on the size of R. Thus, the total parameter size is depends only linearly on
the size of R′, rather than polynomially.

Security. Unfortunately, we need to rely on the strong form of extractable security. This is
because false proofs do exist, and thus the languages defined by R and R′ will not coincide. Since
extracting security does not seem to imply non-extracting security, it is unlikely that we can prove
F′ non-extracting secure.

Given an R′-instance sampler D′ for WPRF′, we construct the following R-instance sampler D
for WPRF. On input ek1, run run (ek0, vk) R←−VC.Gen(λ,R′) and give ek = (ek0, ek1, vk) to D′. When
D′ makes a F′ query on instance x, make a F query on (vk,x). When D′ outputs an instance x∗,
output (vk,x∗), along with auxiliary information, namely Aux outputted by D′ and ek0.

Theorem 6.7. If WPRF is extractable interactively (resp. non-interactively) secure for relation R
and instance sampler D, then WPRF′ is extractable interactively (resp. non-interactively) secure for
instance sampler D′.

Proof. We prove the interactive case, the other case begin similar. Let A′ be an extractable
adversary for WPRF′ relative to instance sampler D′. We construct the following adversary A for
WPRF relative to D. A, on input ek1, (vk,x∗), k,Aux, ek0, runs A′ on ek = (ek0, ek1, vk),x∗, k,Aux.
When A′ makes a F′ query on instance x, answer by making a F query on (vk,x). When A′ outputs
a guess b′, A outputs the same guess.

Suppose A′ has non-negligible advantage ε = 1/qA′ . Observe that A perfectly simulates the
view of A′, so A also has advantage 1/qA′ . This implies an extractor E and polynomial qE such
that E has advantage at least 1/qE . We construct the following extractor E ′ for WPRF′. On
input (ek, x∗,Aux, y∗, {xi, yi}, r), E ′ runs E on input (ek1, (vk, x∗), (Aux, ek0), y∗, {(vk, xi), yi}, r). E ′
perfectly simulates the view of E , so the output (w, π) will satisfy R′((vk,x∗), (w, π)) = 1 with
probability at least 1/qE . Output w as a witness for x∗.

Suppose E ′ has negligible advantage. This implies that R(x∗, w) = 1 with negligible probability.
But then π is an invalid proof, meaning E ′ can be used to break the security of VC, a contradiction.
Therefore, E ′ has non-negligible advantage, say 1/2qE .
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A Generic Hardness
In this section, we prove the generic hardness of our multilinear subset-sum Diffie-Hellman prob-
lem. We prove the hardness of the strongest variant, the extracting adaptive witness interactive
assumption.

Generic Multilienar Group Model. We prove security in the so-called generic multilinear
group model. In this model, rather than having direct access to group elements, the adversary
only has access to âĂćphlabels of group elements. It also has access to an oracle that allows it
to multiply elements of the same group, as well as apply the multilinear operation. We allow the
adversary to successively pair elements together, rather than only providing the full multilinear
map. This reflects the structure of current map candidates.

More precisely, we have a family of groups Gu where u ∈ {0, 1}n. The target group is GT = G1n ,
and Gi = Gei , where ei is the ith unit vector. We represent the groups using a function ξ :
Zp × {0, 1}n → {0, 1}m, which maps elements of the ring Zp (along with a group index u ∈ {0, 1}n)
into bit strings of length m. We provide the adversary with oracles Mult and Pair to compute the
induced group and pairing operations:

• Encode(x,u) returns ξ(x,u). Note that to compute a generator for a group Gu as Encode(1,u)
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• Mult(ξ1, ξ2, b) If ξ1 = ξ(x1,u) and ξ2 = ξ(x2,u) for the same index v, then return ξ(x1 +
(−1)bx2,u). Otherwise output ⊥.

• Pair(ξ1, ξ2) if ξ1 = ξ(x1,u1) and ξ2 = ξ(x2,u2) where u1+u2 ≤ 1n (that is, the component-wise
sum over the integers has all entries less than or equal to 1), then output ξ(x1x2,u1 + u2).
Otherwise output ⊥.

The following theorem shows the hardness of the general multilinear subset-sum Diffie-Hellman
problem:

Theorem A.1. Let A ∈ Zm×n be a matrix with entries bounded by B. Assume B/p is negligible,
where p is the group order. Then for any adaptive instance interactive adversary A for the multilinear
subset-sum Diffie-Hellman problem, A has negligible advantage.

Now we prove Theorem A.1:

Proof. Fix a matrix A ∈ Zm×n with entries bounded by B, and adversary A. We will set m
arbitrarily high so that with overwhelming probability, ξ is injective and moreover the adversary
cannot guess any representations, but must instead make queries to Encode,Mult,Pair

Consider the execution of the experiment on A. A random vector α
R←−(Z∗p)m is chosen at

random, and the labels Vi = ξ(αvi , ei) for i ∈ [n] are given to A. A is allowed to make queries on
vectors t ∈ IntRange(A), to which we respond with Et = ξ(αt, 1n). A can also make a polynomial
number of queries to Encode,Mult,Pair to perform group pairing operations. At some point, A
produces a target t∗ that was not among the queries made so far. Set y0 = Et∗ = ξ(αt∗ , 1n). We
also choose a random β and set y1 = ξ(β, 1n). A is given yb in response. A is allowed to make
additional queries on t 6= t∗ to get values Et. Finally, A produces a guess b′ for b. A has advantage
|Pr[b′ = 1|b = 1]− Pr[b′ = 1|b = 0]| = ε. Our goal is to show that ε is negligible.

Now let B be an (inefficient) algorithm that plays the above game with A. Rather than choose
α, y0, y1, B treats them as formal variables. B maintains a list L = {(pj ,uj , ξj)} where pj is a
polynomial in α, y0, y1, uj ∈ {0, 1}m indexes the groups, and ξj is a string in {0, 1}m. Note that the
exponent of αi in any polynomial may be negative. The list is initialized with the tuples (αvi , ei, ξi,1)
and (1, ei, ξi,0) for i ∈ [n], where ξi,b are randomly generated strings in {0, 1}m.

The game starts with B giving A the tuple of strings {ξi,b}i∈[n],b∈{0,1}. Now A is allowed to
make the following queries:

Encode(r,u): If r ∈ Zp and u ∈ {0, 1}n, then B looks for a tuple (p,u, ξ) ∈ L, where p is the
constant polynomial equal to r. If such a tuple exists, then B responds with ξ. Otherwise, B
generates a random string ξ ∈ {0, 1}m, adds the tuple (π,u, ξ) to L, and responds with ξ.

Mult(ξk, ξ`, b): B looks for tuples (pk,uk, ξk), (p`,u`, ξell) ∈ L. If one of the tuples is not found, B
responds with ⊥. If both are found, but uk 6= u`, then B responds with ⊥. Otherwise, B lets
u ≡ uk = u`, and computes the polynomial p = pk + (−1)bp`. Then B looks for the tuples
(p,u, ξ) ∈ L, and if the tuple is found B responds with ξ. Otherwise, B generates a random
string ξ, adds (p,u, ξ) to L, and responds with ξ.

Pair(ξk, ξ`): B looks for tuples (pk,uk, ξk), (p`,u`, ξ`) ∈ L. If one of the tuples is not found, B
responds with ⊥. If both are found, but uk ∧ u` 6= 0n (in other words, uk and u` have a 1 in
the same locaiton), then B also responds with ⊥. Otherwise, let u = uk + u` (addition over
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Z), and let p = pk · p`. B looks for (p,u, ξ) ∈ L, and if found, responds with ξ. Otherwise, B
generates a random ξ ∈ {0, 1}m, adds (p,u, ξ) to L, and responds with ξ.

O(t): B looks for a tuple (αt, 1n, ξ) ∈ L, and responds with ξ if the tuple is found. Otherwise, B
generates a random ξ ∈ {0, 1}m, adds (αt, 1n, ξ) to L, and responds with ξ. Let Q be the set
of queries to O.

Challenge(t∗): B (inefficiently) tests if t∗ ∈ SubSums(A). If so, B aborts the simulation. Otherwise,
B creates a new formal variable y, and adds the following tuple to L: (y, 1n, ξ). Then B gives
to A the value ξ.

A ultimately produces a guess b′. Now, B chooses a random b ∈ {0, 1}, as well as values for
α ∈ (Z∗p)m. If b = 0, B sets y = αt∗ , and otherwise, B chooses a random y ∈ Zp.

The simulation provided by B is perfect unless the choice for the variables α, y results in an
equality in the values of two polynomials pk, p` in L that is not an equality for polynomials. More
precisely, the simulation is perfect unless for some k, ` the following hold:

• uk = u`

• pk(α, y0, y1) = p`(α, y0, y1), yet the polynomials pk, p` are not equal.

Let Fail be the event that these conditions hold for some k, `. Our goal is to bound the probability
Fail occurs. First, in the b = 0 case, consider setting y = αt∗ as polynomials before assigning
values to α. We claim that this does not create any new polynomial equalities. Suppose towards
contradiction that this setting causes pk = p` for some k, ` where equality did not hold previously.
Then pk − p` = 0. Consider expanding pk − p` out into monomials prior to the substitution. First,
this expansion must contain a y term, and this term cannot have been multiplied by other variables
(since polynomials involving y can only exist in the group G1n). The expansion may also contain αt

terms for all t ∈ Q, also not multiplied by any other variable (since t ∈ Q were only provided in the
group G1n). All other terms came from multiplying and pairing the Vi and gi together. In particular,
each remaining term must come from pairing a subset of the Vi together with the complementing
subset of the gi. Therefore, we can write pk − p` as

pk − p` = C∗y +
∑
t∈Q

Ctα
t +

∑
t∈SubSums(A)

Dtα
t

Recall that α(p − 1) = 1 mod p for all α ∈ Zp \ {0}. This means we should only consider
monomials with exponents reduced mod p− 1 to the range (−(p− 1)/2, (p− 1)/2]. Since all t ∈ Q
are required to satisfy t ∈ IntRange(A), meaning ‖t‖∞ ≤ n‖A‖∞, and p > 2n‖A‖∞, all of the
exponents in αt are already reduced. The same applies to αt∗ . Since t∗ /∈ Q and t∗ /∈ SubSums(A),
the monomial αt∗ did not exist prior to substitution. Therefore substituting y with αt∗ cannot
make the polynomial zero.

Now, notice that all of the Vi are monomials where each αi has exponent at most B and at least
−B. This means the exponent of αi lies in the range [−nB, nB] for any monomial in the expansion
of pk − p`. Consider p = αnB(pk − p`) (where the exponentiation applies to each of the components
of α). p is then a proper polynomial where all coefficients are non-negative, and the total degree is
at most 2mnB. Moreover, p = 0 as a polynomial if and only if pk = p` as polynomials. Lastly, the
only zeros of p are when αi = 0 for some i, or pk − p` = 0. Since α is chosen to have only non-zero
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components, this leaves only the zeros of pk − p`. The Swartz-Zippel lemma then shows that if
p 6= 0, the probability that the polynomial evaluates to zero is at most 2mnB/(p− 1). This means
that pk and p` evaluate to the same value with probability at most 2mnB/(p− 1).

Let qe, qm, qp, qo be the number of encode, multiply, pair, and O queries made by A. Then
the total length of L is at most qe + qm + qp + qo + n + 1. Therefore, the number of pairs is at
most (qe + qm + qp + qo + n+ 1)2/2, and so Fail happens with probability at most mnB(qe + qm +
qp + qo + n + 1)2/2(p − 1). If Fail does not occur, B’s simulation is perfect, and in this case b is
independent from A’s view since b was chosen after the simulation. It is straightforward to show
that A’s advantage is then at most mnB(qe + qm + qp + qo + n+ 2)2/2(p− 1). For any polynomial
number of queries, this is negligible provided B/p is negligible, as desired.
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