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Abstract. Recently, severalfforts to implement and use an unconditionally secure multi-party computation (MPC)
scheme have been put into practice. These implementatiompasse/elysecure MPC schemes in which an adversary
must follow the MPC schemes. Although passively secure MPC schemeSiaieng passive security has the strong
restriction concerning the behavior of the adversary. We investigate how secure we can construct MPC schemes while
maintaining comparabldiciency with the passive case, and propose a constructionasftavelysecure MPC scheme

from passively secure ones. Our construction is secure in¢he/2 setting, which is the same as the passively secure
one. Our construction operates not only the theoretical minimal set for computing arbitrary circuits, that is, addition
and multiplication, but also high-level operations such agiBhg and sorting. We do not use the broadcast channel

in the construction. Therefore, privacy and correctness are achieveddustnesss absent; if the adversary cheats,

a protocol may not be finished but anyone can detect the cheat (and may stop the protocol) without leaking secret
information. Instead of this, our construction requi@gcsn + N?)x) communication that is comparable to one of the

best known passively secure MPC schen@&;yn + n?) logn), wherex denote the security parametes,denotes the

sum of multiplication gates and high-level operations, gndienotes the number of multiplication gates. Furthermore,

we implemented our construction and confirmed thatfiisiency is comparable to the current fastest passively secure
implementation.
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1 Introduction

Multi-party computation (MPC) is a technique that enables parties with inputs to evaluate a function on the inputs while
keeping them secret. MPC has been a central themes of cryptographic study because of its applicability and generality,
and MPC theory was developed in the period from the mid-1980s to the mid-2000s, Recently, some sophisticated method-
ologies to construct MPC schemes have been developed. These includes hardware that is muticierdrthan that of
decades ago, and MPC schemes tlfiatiently compute “high-level” operations such as bit-decompositionfishg and

sorting. Thus, severafiorts to implement and use MPC have been put into practice [5, 6, 18] KJhettireshold uncon-
ditionally secure MPC is the most frequently used MPC scheme since it is rfiimiere compared with other schemes.

It requires no heavy operations that require milliseconds such as modular exponentiations.

Let n andt denote the number of parties and corrupted parties, respectively. Most MPC implementations for practical
use, including the above, are secure againshassiveadversary regarding corruption of the< n/2 setting, i.e., they
are secure against the adversary that follows an MPC scheme with honest majority. Altlotingsecurity, where the
adversary can carry out arbitrary behavior, can be achieved, passively secure MPC schemes are mtictiend thamn
actively secure ones, and the current practical results have been passive secure.

However, passive security requires a somewhat strong restriction concerning the behavior of the adversary. Therefore,
it should be motivated to replace passively secure MPC schemes to more secure (active) ones for practical use. In other
words,“How secure can we construct MPC schemes while maintaining compargllieecy to passive ones?If we
aim to use actively secure MPC schemes in practice the same way we do passively secure ones, the following three
points need to be satisfied. First, the amount of communication should be small and comparable to the passive setting,
which is O(cynlogn + n?logn) [12], wherecy is the number of multiplication gates. The communication cost is the
main bottleneck in unconditionally secure MPC schemes since local operations conducted by parties typically consist
of additiorysubtraction, and multiplicatigdivision on a small field. Second is that it should have the same threshold,

i.e., it should toleraté < n/2 corruptions. An additional party not only increases communications but also results in

a complex MPC system. Third is that high-level operations should be possible. Actual application of MPC schemes
involves computation of complex functions such as statistical analysis and database operations. In the passive setting,
these functions ardiéciently computed by using not only an algebraic circuit but also high-level operations. If the above
three points are satisfied, it is possible to use actively secure MPC schemes instead of passively secure ones.



Table 1. Comparison of current circuit-based MPC protocols

|AdversaryRobustnegd hreshold Communication (bits) | Building blocks | Security
HMO1 [16] | active yes t<n/3 O(cmn?k) + poly(nk) algebraic circuit |unconditional
DNO7[12] | active yes t<n/3 O(cynlogn + dyn? logn) + poly(nk) algebraic circuit {unconditional

BHO08 [2] active yes t<n/3 O(cunlogn + dyn?logn + n® log n) algebraic circuit perfect
CDD+99 [8]| active yes t<n/2 O(cun°k + n*k) + O(cun*k)BC algebraic circuit |unconditional
BHO6 [1] | active yes t<n/2 O(cuMk + N°k?) + O(N%k)BC algebraic circuit |unconditional
BFO12[3] | active yes t<n/2 |O(cy(ng + «) + dyn?c + N"k) + O(N*)BC|  algebraic circuit |unconditional
Ours active no t<n/2 O((cgn + n?)«) passively secure MP@Gnconditional

DNO7 [12] | passive - t<n/2 O((cun + n?) logn) algebraic circuit perfect

“Active” means an adversary can do arbitrary things, “passive” means the adversary must follow the protocol, “yes” means the
protocol must be finished whatever the adversary does, “no” means the protocol may not be finished while the parties can detect
and stop the protocol without leaking secret informatibis, the number of corrupted partiasjs the number of all parties,

cwu is the number of multiplication gates of the circudty is the multiplicative depth of the circuikBC means thak bits are
communicated via the broadcast chanoglis the number of building blocks that consist of multiplication gates and high-level
operations. Note that in Ref. [8], there are two descriptior®(af) andO(n®) communication via broadcast. The correct one is

the former.

1.1 Related Works and Our Results

There have been studies on the communication cost for actively secure MPC schemes that compute algebraic circuits.
We list some studies in Table 1. Regarding n/3, Damgard and Nielsen [12] and Beerls¥rutiniova and Hirt [2]

proposed unconditional and perfect MPC schemes. Their schemes require a small communication cost that is comparable
to passively secure ones but they tolerate smaller corruptions. Regareing/2, Beerliova-Trukiniova and Hirt [1]

proposed an actively secure MPC scheme Wity n°« + n°«?) + O(n*«)BC communications, and Ben-Sasson et al. [3]

also proposed a scheme wil(cy(ng + ) + dyn’k + n'k) + O(N%)BC communications, where denotes a security
parameterdy denotes the multiplicative depth of the circuitjs a larger element either a field size or lpgand BC

denotes droadcast channellThe broadcast channel is a communication channel that guarantees that “all recipients are
convinced that all other parties receive the same data that they received.” To our knowledge, the broadcast channel costs
O(n®) communication at least [17] and requires trusted setup ih the/2 setting. Therefore, the communication cost of

the above two schemes can be regarde@(@gn’« + n°«? + n«) andO(cu (N + «) + dunk + N’«), respectively. If the

circuit is large, i.e.cy is much larger than’, and “wide”, i.e.,dy is much smaller thany, the amortized communication
complexity of Ben-Sasson et al. 's schem@®i®logn) per multiplication, which is the same as the best passively secure
MPC scheme [12].

The above studies mainly focused on the theory of MPC, which idfio@nt for practice use. The circuit is not
always very large or wide, and th&ect of a high-dimensional factor in the communication cost sudd(a%) cannot
be ignored Furthermore, the MPC scheme that computes a high-level operation, for example, bit-decomposition [11],
shufling [21], or sorting [15], is useful forfécient MPC execution, but the above results only support an algebraic circuit
as a building block.

One of the main causes of a high-dimensional factor in communication is the broadcast channel. Therefore, it is natural
that one attempts to construct an actively secure MPC scheme without the broadcast channel. There has been much less
progress in the direction of constructing actively secure without the broadcast channel regarding 2 setting.

One of the reason for this is that in this settimgbustnessannot be achieved. Robustness guarantees that “an MPC
scheme must be finished correctly whatever an adversary does”. However, even i 2 setting, an MPC scheme

can achieveorrectnesandprivacy, which guarantee that if the adversary cheats, everyone can detect it (and may stop
the protocol) without leaking secret information. To achieve the objective of constructing an actively secure MPC scheme
while maintaining the #iciency of a passively secure one, this setting is worth studying.

From the viewpoint of high-level operation, current MPC schemes that compute high-level operations were designed
in the paradigm of computing on shared values. In this paradigm, secret values are preliminarily shared with a secret-
sharing scheme to all parties that participate in the MPC schemes. Then the MPC schemes take secretly shared values as
inputs from each party and output the result in secretly shared form. Therefore, if we generally use MPC schemes in this
paradigm as building blocks for constructing an actively secure MPC scheme, many high-level operations can be used.

We propose a construction of a non-robust, actively and unconditionally secure MPC scheme in th@ set-
ting without the broadcast channel while maintainiriiceency comparable to a passively secure one. Our scheme also
achieves comparable communication complexdfcsn + n?)«), wherecg is the number of building blocks consisting of
multiplication gates and high-level operations. We construct the actively secure MPC scheme from passively secure ones
whose inputs and outputs are in secret-shared form and which should satisfy a weak tamper-resilience. Intuitively, tamper-
resilience means that an adversary can tamper with the results of the protocol only by adding yahe&dmvs, and
in fact, we show that most passively secure MPC protocols satisfy it. Therefore, we can apply various known techniques
of passive security to actively secure MPC schemes as a building block. In addition, to our knowledge, our scheme is the



first actively secure MPC scheme that has no assumption in<thg2 setting since the current results uses the broadcast
channel that implicitly requires a trusted setup.

1.2 Brief Explanation of Our Construction

At the start of the protocol, each party has its own input. The parties distribute their inputs thkonglh¢eshold
secret-sharing, and then check the consistency of the shares. Consistency means that for any subset tHahooettins
parties, the revealed values are the same. It is known that the consistency can be easily batch checked if a negligible error
is allowed by using a plain randomness and random share. A more detailed description can be found in Appendix G.

Each party has consistent shares at this time. This situation is the same in the paradigm of computing on shared values.
We perform a protocol to compute a function by using passively secure MPC schemes as building blocks. More precisely,
our scheme takes the following three phases.

Randomization Phase: This phase converts shares infmdomized shared paits prevent an adversary from tampering
with shared values. Intuitively speaking, the Randomization Phase generates the shares that can be seen as a MAC or
checksum of shared values. In the simplest case, this phase chaadesX[[ a]., [ ra]) and stores [ ], wherer is
uniformly at random and unknown for any party. We formalize it in general as follows. A randomized shared pair is
formed as a pair of an element on a riigwhich parties use to conduct computation, and an elemeXkitalfebra
Y. Namely, in the simplest casea]] belongs toX and [ra] belongs toY. This generalization makes it possible to
use our construction on not only a field but also a ring, as used in [10], and even if the &ize srhall, our scheme
is secure by enlarging.

Computation Phase: This phase computes the target function redundantiXand Y. We denote a simple case as

an example. LeE = f; o f, be the target function'/s,, I7r, be MPC schemes that are designed in the paradigm of
computing on shared values, anda([, [ ra]) be input. The Computation Phase first compute&() 1, [ rf2(2) 1)
from ([al, [ ra]) via i1, then computes (f2 o f2(@)], [ r(fre 2)@1) = ([ F@1.[ rF(a) 1) via I1,. Constitutive
(passively secure) MPC schemés,, I7;,, should satisfy two properties. The first is the operatio/ealgebra, i.e.,
111, can compute from (R],[ ra]) to ([ f2(a)]. [ rfz(a) ). The second isamper-simulatabilitywhich means “An
adversary’s ability to tamper with the results of the protocol is restricted to the addition of valake keows”. This
second property is needed in the next phase. As long as the above two condition3:hdld, are arbitrary so we
use not only multiplication but also high-level operations.

Proof Phase: This phase determines if a computation has been cheated. The results of the computation are all checked
at once by proving that the results ahandY are “equal”. In the above example, the parties reygal]([ a] +
[2@]+T[F@TD) —e([ra] +[rf2(@)] + [ rF(@]) and check if it is O or not, wherg is uniformly at random.

If the adversary changes froma[] to [ a+ ¢], this equation does not hold except with negligible probability since
tamper-simulatability guarantees tldds known to an adversary (and it inherently says thées not depends @i

The concentration of all proofs on one elemenfoiakes the proof veryficient and reduces the number of times
unnecessary information can be revealed.

As a result of the above phases, each player has the share of olf)f][ The parties perform an actively secure
reveal protocol (described in Appendix G) and obtain the result.
1.3 Paper Organization
In Section 2, we introduce known tools and the notations used in the paper, and in Section 3, we explain the building

blocks of our construction. In Section 4, we propose our construction that involves converting passive MPC schemes to an
active one. In Section 5, we describe the experimental results to demonstrate the priiciieaty of our construction.

2 Preliminaries

We introduce some preliminaries, an algebra that is an algebraic structure used in our construction, our notations, and the
passive unconditionally secure MPC protocols used in the examples of our construction.

2.1 Algebra

We use the notion adlgebrain our construction. Roughly speaking, an algebra is a vector space whose scalar space is
not a field but a ring.



Definition 1. (X-algebra)
Aring Y is called anX-algebra if there exist another ringg and an operation, scalar multiplication, betwe&nand Y
that satisfies the following condition for anyxke X and yy € Y.

XYy +Y) =xy+xy,(X+X)y=xy+ Xy, (xX)y = x(Xy), Lxy =y

Example 1.For any field7, its extensior&(7)® with arbitrary positive integed is an -algebra, where scalar multipli-
cation betweerr and&(F)¢ is xy = (Xyo, - - - , XYg_1) for anyx € ¥ andy € &(F)4.

2.2 Secret Sharing

We use thek, n) threshold secret sharing scheme; a secret is separated jpi¢zes called shares and sent to parties.
Parties can then reveal the secret frkror more shares. We assume a secret sharing scheme is Shamir’s on a field, or
a replicated secret sharing scheme on a fiielg. However, another secret sharing scheme that satisfies the following
requirements can be used instead.

— Perfect privacy: the joint distribution of aly~ 1 shares does not depend on the secret.

— Uniqueness of shared value: dnghares determines a unique shared value.

— Existence of mandatory building blocks: there are MPC protocols caltediatory building blockslescribed later in
Section 3. Roughly speaking, we require passively secure scalar multiplication, scalar sum-product/aduiitgation,
and actively secure random number generation and revealing in the secret sharing scheme.

Note that uniqueness of a shared value implies the existence of the share regeneration algorithm, which computes a
share from othek shares. Of course, Shamir’s and replicated secret sharing schemes satisfy the above requirements. For
example, Shamir’s satisfies the second condition dirsteares uniquely determine the- 1 polynomial onf.

Additionally, we say aK, n) threshold secret sharing scheme is an LSSS (Linear Secret Sharing Scheme) if both the
reconstruction and the share regeneration of the scheme are represented by linear combinatiofmgfdiefdents in
shares with fixed cdBicients. Shamir's and replicated secret sharing schemes are both LSSS.

2.3 Common Structures and Notations
We use the following structures in this paper.

— X: An arbitrary ring on which parties wish to conduct their computation

— Y: An X-algebra

— ¥ An arbitrary field as an example of rings

— &(F)": A d-degree extension field ¢f for some positive integet as an example of -algebras
— Xr:{are Y |ae X} for somer eg Y

Additionally, we use the following notations in this paper.

— “Share” and “shared value” denote each party’s share and the tuple of shares of all parties, respectively. Shares of a
shared value are denoted by k].

— A share of a shared valuefor a partyP; is denoted by [k];, and ones for a subset of partigsire denoted by k] ;.

— [ X] denotes the set of arbitrary shared valueXof

— (Xr)denotes [X] x[ Xr].

— (a)y (or(a)) denotes (|].[ar]) € (Xr).
— t, k, andn denote the number of corrupted parties, the threshold of the secret sharing scheme, and the number of

parties, respectively. Note thiat= t + 1.
— F, m, andu denote the function that parties compute, the number of inpuks ahd the number of outputs &,
respectively.

2.4 Known Protocols used in Passive Setting

Our construction is a conversion to an active scheme from passive schemes; thus, we require protocols in the passive
scheme, that is, random number generation, multiplication, and reveal.

Random Number Generation A random number generation (RNG) protocol creates a shared value whose plaintext is
uniformly random inX. If one allows the security of pseudorandom numbers, pseudorandom secret sharing [9], which
realizes an RNG protocol with no communication, can be used. Otherwise, RNG using a Van der Monde matrix with the
O(n) communication and one round [12] (DN-RNG) is dfigent way. Whem = 2t + 1, although these protocols are

very light-weight, both are naturally active secure protocols, even if an overall MPC scheme is passive.



Passive Multiplication Multiplication is the main protocol in most MPC schemes because addition tends to be involved
in the homomorphism of the underlying secret sharing scheme or encryption; thus, multiplicatifiicisrgito compute
arbitrary circuits. Unlike RNG, there is no multiplication protocol that satisfiésiency, active security, and simplicity,
especially in the < n/2 setting.

We introduce two protocols: GRR-(passive) multiplication [13] and DN-(passive) multiplication [12]. They are de-
scribed in detail in Appendix A. Both protocols are based on Shamir’s secret sharing. They are passive protocols; however,
they have a certain weak tamper-resistance as we will discuss in Section 3. GRR-multiplic&jof) isommunication
and one round, and DN-multiplication 8(n) communication and two rounds. Whers small (e.g.t = 1), GRR-
multiplication is better in terms of not only rounéieiency, but also communicatioffieiency thanks to its small constant
codficient.

Reveal The reveal protocol reconstructs a shared value and publishes the reconstructed plaintext to all parties. Although
there areO(n) passive reveal protocols [12], a reveal protocol in our construction requires correctness against an active
adversary. Note that the correct reveal protocol is used only once Prttod Phaseand passively secure protocols are
allowed in other parts such as the sub-protocol of DN-multiplication irCtbenputation PhaseAn example of a correct

reveal protocol in Shamir’s secret sharing scheme is given in Appendix A. This ©¢sts communications and two
rounds.

Passive Shffling Protocol Recently, the shiling operation has come to be recognized as a significant operation in
MPC. It can be used for data filtering [21] and sorting [15]. Although theétihg operation can be realized as a logical
circuit, it is quite heavy. Therefore, moréieient shiiling protocols have been proposed by Laur et al. [21].

They proposed passive and active protocols. The passive protocbls ay@ protocols. However, the active protocols
aret < n/3 protocols. Our construction can convert a passive protocol into/2 non-robust one.

3 Available Building Blocks

In this section, we introduce passive MPC protocols used in our construction as building blocks, and we also introduce
the two required conditions for thetramper-simulatabilityand Y -distribution The building blocks are separated into the
following two types.

1. Mandatory building blockswhich constitute the two phases of our construction: the Randomization Phase and the
Proof Phase. They are required regardless of the funétithhat parties wish to compute. Mandatory building blocks
should satisfy tamper-simulatability, which restricts the adversary’s ability to cheat as only the addition of known
values. (Only one reveal requires active correctness by itself.)

2. Optional building blockswhich are selectively used and constitute the Computation Phase. Parties can construct the
circuit that realizes the desired functiénthrough composition of optional building blocks. Optional building blocks
should satisfy tamper-simulatability and the existenc#/ afistribution, which are their realization on th&algebra
Y.

Readers might assume that the two conditions limit the generality of our construction; however, we show that these
conditions are quite easy to satisfy for various well-known primitive operations in unconditionally secure MPC schemes.

3.1 Tamper-Simulatability

In our construction, all building blocks requitamper-simulatability which is a kind of weak tamper-resistance and
means that “an adversary’s ability to tamper with the results of the protocol is restricted to the addition of vales he
knows.” From the viewpoint of correctness, this property provides the following benefit. In the first phase, namely, the
randomization Phase, each inpw] € [ X] is converted into a randomized shared paia{[[ar]) € [X] x[ Y]

by multiplying [r ], wherer € V is a random value that no party knows, and in the following Computation Phase, all
computations are conducted in the form of randomized shared pairs. Tamper-simulatability guarantees that even if the
adversary tampers with a randomized shared valad ([ ar]) to ([ @ ].[ b’ 1), & andb’ are always representedas x

andar + y usingx andy, which are independent of Therefore, honest parties can detect the existence of tampering by
testing whether(a+ x) — (ra + y)(= rx —y) = 0 holds, sincex — y is random for the adversary and/slge cannot force it

to be zero.

Tamper-simulatability is defined for protocols whose inputs and outputs are in secret-shared form. We call the dif-
ference between a legitimate output and a tampered otapyter-diference(i.e., when the adversary tampers with a
shared value f(a)] to [ f(a) + x], the tamper-diterence isx). We define tamper-simulatability in the manner that for
any adversary, there exists a simulator who has only the same information as the adversarghendamecompute the
tamper-diference.

LetI be the set of corrupted parties and][; be the set of shares of corrupted parties.



Definition 2. (tamper-simulatability)
Let /7; be a protocol that realizes the function:fX™ — X* [&] = ([a].....[ an1]) be inputs ofiI;, |[—b>]| =

([ bol,.-..[bu-1]) be the legitimate outputs of the functiof & J), and [?] = ([byl.....[ bl’l_1 1) be the actual
(possibly tampered with) outputs &% conducted with an active adversary. We say #iathas tamper-simulatability if
and only if, for any adversary with any auxiliary input aux, there exists a simulg\tbat satisfies

Pr|® — S(aux [E].[D ], ViewnR) 8= b - b | = 1,

= L . .
whereb - b is a pair-wise subtraction oX, and View; andR; are the protocol’'s view and random tapes of corrupted
parties, respectively.

(Linear-Combinatorial Protocols)
We consider a class of MPC protocols we dadear-combinatorial protocolsProtocols in this class consist of the fol-
lowing two phases.

1. First, inthe gfline phaseeach party locally computes fier inputs of the next online phase from/hisr inputs by
arbitrary functions.

2. Then, inthe online phasesach party interacts with other parties freely except that in each round, the party sends only
linear combinations of the outputs of thflime phase and received data, wherefioients of the linear combinations
are public.

In fact, the class of linear-combinatorial protocols is quite general and contains various primitive protocols frequently
used in unconditionally secure MPC schemes such as random number generation, multiplication, reveal, and resharing.
(Note that any filine protocols including addition belong to the class of linear-combinatorial protocols sincélthe o
phase allows arbitrary local computations.)

The other significant fact is that any linear-combinatorial protocols on LSSS are tamper-simulatable. Due to space
limitations, we give the proof and the formal definition of linear-combinatorial protocols in Appendix B.

Theorem 1. (informal) Any linear-combinatorial protocols are tamper-simulatable.
Corollary 1. GRR-multiplication, DN-multiplication, DN-RNG, and resharing are all tamper-simulatable.

Next, we claim thaparallel executiorpreserves tamper-simulatability. Parallel execution is a concurrent composition
of protocols, where each protocol’s inputs of honest parties do not depend on the outputs of the other protocols. Intuitively
speaking, parallel execution represents that constitutive protocols are executed simultaneously. Note that parallel execution
does not include so-called sequential composition.

Lemma 1. (closure of tamper-simulatability on independent compositions)
Parallel execution of unconditionally secure tamper-simulatable protocols is tamper-simulatable.

The proof is given in Appendix C.

3.2 Mandatory Building Blocks

The mandatory building blocks are the following seven operations consisting of a uniform RNG, four algebraic operations
on Y, and reveal and synchronization (only in an asynchronous setting). They are used in the Randomization Phase and
the Proof Phase to guarantee the correctness of the computation.

RNG: [r] « RANDy
scalar multiplication: pr]for[ a] e[ X]and [r] e [ V]
scalar product—sum:Ea;ri]lfor deN,[a], -, [ag-1]l el XTand [rol, - ,[ra-21]1 €[ Y]

i<d
additiorisubtraction on [V ]
multiplication on [ ]
correct reveal of shared value o]
synchronization: the protocol SYNC to simulate the synchronous setting

Noouk wbhpE

The first five operations require tamper-simulatability. Only reveal in the Proof Phase requires active correctness.
Except for SYNC, they are all operationst on X, which is the computation space, but & However, there are some
pairs of X andY that allow us to &iciently compute the above building blocks. For instance, wkiéna field¥ andY
is its extensiorE(F )¢ with an arbitraryd € N, they are constructed by parallel executions of RNG, addgidstraction,
multiplication, and correct reveal oki(= #), as shown in Appendix D. Therefore, the set of trivial addjsaibtraction
on Shamir’s secret sharing, DN-multiplication, and DN-RNG and correct reveal on LSSS in Appendix D is an example
of mandatory building blocks.



Simulating Synchronous Setting in Asynchronous SettingSYNC (Scheme 1) is a protocol to simulate the asyn-
chronous setting and forces honest parties to wait to receive all data before SYNC.

Scheme 1[Protocol] SYNC
Input: none
Output: none
1: for eachparty P do
2: P waits to receive all data before this protocol.
3:  If P has received all dat&®, sendsp to all other partiesg is arbitrary fixed data.
4: for each party P do
5: P waits to receivep from all other parties.
6. If P has received from all other partiesP proceeds to the next protocol.

3.3 Optional Building Blocks

Optional building blocks are protocols that realize primitive operations in the computation phase. In theory, addition and
multiplication are sfficient for computing arbitrary functions. Additionally, our construction allows us to add arbitrary
functions that satisfy certain conditions. For functiband its MPC protocal/;, f can be used in the Computation Phase

in our construction iff and/Z; satisfy the following conditions.

Condition 1 (conditions of optional building blocks)

1. II; is tamper-simulatable
2. There exists a tamper-simulatat¥edistribution protocol7s. of f

Roughly speakingV-distribution represents the existence of a protocol that computes the fufiatio&(7)°.

Definition 3. (Y-distribution)
Let f: X! — X™ be an¢-input m-output building block function on a rin, and letY and Z be anX-algebra and a
direct product ringX x Y, respectively. We say a function:fZ¢ x ¥ — Y™ is a Y-distribution of f if for any(@) € X’
andre Y, f’ satisfies f(&,@r,r) = f(@)r, where@ar denotegagr, - - - , a,_1r).

We call a protocol that realizes’ fa Y-distribution protocol of f. In contrast witt¥/-distribution, a protocol that
realizes f is called a passive protocol of f.

For example, with a fieldf, asX and its extensio&(7 )¢ with an arbitrary positive integet, asy, linear transfor-
mations including addition, multiplication, and resharing have #gir)¢-distributions, as shown in Appendix E.

4 Proposed Construction

In this section, we explain our construction, which consists of three phases: Randomization, Computation, and Proof. We
describe these three phases and the overall construction. Then, we analyze the security, that is, privacy and correctness,
of the construction. At the end of this section, we analyze the communicdtioieecy and the roundfiéciency of the
construction.

4.1 Phase 1: Randomization Phase

The Randomization Phase (Scheme 2) converts sharaaimtomized shared paits prevent an adversary from cheating.

In this phase, each input[] € [ X] is randomized by [ ] € [ /], which is also generated in this phase. The pair
(Tal.larD(= &) is called a randomized shared pair. Randomized shared pairs have some verifiability, which is
used in the Proof Phase.

4.2 Phase 2: Computation Phase

The Computation Phase (Scheme 3) computes the target furketiedundantly onX andY. The target functior¥ is
realized by the composition of optional building blocks mentioned in Section 3. After every execution of a building block,
the checksum se&t C { Xr ), which will be used in the Proof Phase, is updated.

This phase allows not only multiplication, but also specifttcéent protocols as primitive operations if the functions
satisfy Condition 1 in the previous section. We have already confirmed that the multiplication, quadratic functions, includ-
ing product-sum, linear transformations, and resharing, satisfy tamper-simulatability angf‘tstgibution protocols.

We describe them in detail in Appendix D and Appendix E. Furthermore, reshare-basBugtipl] is realized by
resharing.



Scheme ZPhase 1]: Randomization Phase
Parameter. the number of inputsn e N
Input: {[ & J}osicme [ X]™

Output: {( & H}o<i<m € L Xr )™

2 [r]:=RANDy

: for eachi < m

[arl:=[allr]

. foreachi <m

Cay=~@al.larD

. Output{€ & H}o<i<m

oUAWNPE

Scheme JPhase 2]: Computation Phase
Parameter. the number of inputs € N, the number of outpuig € N,
and the number of building blockse N
Input: {{ & Mo<icm € L X1 Y™,
m-input u-output functionF consists ofm;-input u;-output optional building block functions; for all j < v
Output: the computation resul F ({a}o<i<m) ) € € Xr M,
the checksum sé&t C ¢ Xr )
. SetC as all input randomized shared pai¢s; »}o<i<m-
: foreachj<v
Let the inputs of thg-th optional building blockF; be {{ bj; Mosi<m;
Computel[ fi J}osi<, = Fj([ AL bij Dosi<m; 1) from {[ 1 Thosicm; in { by H}osi<m; USing a passive realizatidi,; of F;.
Compute([ fir Josic, from {{ by H}osi<m; Using theY-distribution protocon’ of Fj. (Never compute it fronf[ f; J}o<i<, or [r]
by a passive multiplication.)
if eitherHFj or I1; is not correctthen C := C U {{ fi M} o<i<u
. Output{{ f; H}o<i<, andC.

4.3 Phase 3: Proof Phase

arwdbdRE

No

Finally, the Proof Phase (Scheme 4) guarantees the correctness of all the results of the computation at once by proving
that the results oX andY are equal to each other. The concentration of all proofs on one elemghinaikes the proof
very dficient and reduces unnecessary revealing of information.

In this phase, shared values | and [y ] are computed from randomized shared pairg€inf no party cheats with
protocols in the Randomization and Computation Phasesj must hold. Otherwise; # ¢ holds with a high probability,
and the adversary’s cheating is detected by honest parties.

Note that SYNC is inserted to partially simulate the synchronous setting in the asynchronous setting and is unnecessary
in the synchronous setting.

Scheme 4Phase 3]: Proof Phase
Parameter. the random shared value ]| € [ Y],
the checksum st C { Xr )
Input: None
Output: T if no tampering is detected, otherwise
1: ConsidelC asC = {{ fo ), ..., { fig-1 M}
2: foreachi < |C]
3:  [pi]:=RANDy
4

: m::(Z[ fillpilJ[rl
i<|Cl
SO EDY 1 V)
. SYNC -
if REVy([ ¢] -[¥1) # Othen OutputL
elseOutputT

[l

o No

4.4 Overall Construction

Scheme 5 shows our overall construction. The Randomization, Computation, and Proof Phases are executed simply in
series.



Scheme HOverall Construction]72
Parameters the number of inputsn € N and of outputg € N
Input: {[ & Josicm € [ X]™,
mrinput u-output functionF consists of optional building block functions
Output: (7, [ F({ai}o<i<m) 1) if no tampering is detected,
L otherwise
: run the Randomization Phase {fra; ] }o<i<m t0 get{{ & »}o<i<m @nd set as a parameter
: run the Computation Phase fidta; )}o<i<m t0 getF({ a H}o<i<m) € € Xr )" and seC as a parameter
L i Mosicy '= F({C@ Mosi<m)
run the Proof Phase to obtaire {T, L}
if ¢ =T thenoutput (T, {[ fi J}o<i<.)
. elseoutput L

oUuAwWNR

4.5 Security

Theorem 2. (correctness)

Let 7 be a finite field whose order is p N, and let&(#)% be a d-degree extension @f. Then, the output of72°t
computing a function F is correct in the probability- 2p=¢ + p=29 or higher against an adversary who can control up
to t parties. That is/73* has unconditional correctness when considering @s a negligible value.

Theorem 3. (privacy)
Let# be a finite field whose order is N, and let&(F)® be a d-degree extension f. Then/72% computing a function

F is unconditionally private considering P as a negligible value against an adversary who can control up to t parties.

The proof is shown in Appendix G.

4.6 Hficiency

We analyzed the performance of our construction with respect to communicdiicierey and round féiciency. Our
construction is a composition of building blocks; therefore, we can analyze the ov@iadirey by enumerating all the
building blocks.

1. The Randomization Phase requires one RN@@ndm scalar multiplications.

2. The Computation Phase requires the executions of passive protocols and-thisiribution protocols that depend
on the functiorF.

3. The Proof Phase co3§ RNG onY, two scalar sum-products, one multiplication¥nand requires REY and one
SYNC. Note that the size of the checksum |[g2tis the same as the total number of the input§ afnd the outputs
elements oX of F’s optional building blocks that are not correct (but are tamper-simulatable).

Communication Efficiency Communication costs that are additional to those in the passive setting are as follows.

. ICl + 1 RNG onY

. Y-distribution protocols corresponding to passive building blocks.
. mscalar multiplications

. two scalar product-sums

. one correct REY

. one SYNC

OO WNPE

For example, whelX is a field7, Y is an extensio&(7)° of 7, pseudorandom numbers are allowed, and optional
building blocks that are not correct are multiplication andfBimg, the communication cost of our construction is

(d + 1)(NshtCshf + NmuiCrmur) + (M + 2)Cru + Crev,, + Csyne,

wheremis the number of inputs d¥, Csnt, Ciui, Crev, , andCsync are the communication costs of passivefimg, pas-

sive multiplication, REV;, and SYNC, respectively, anfds,s andNny are the numbers of shiings and multiplications

in F, respectively. Recall that the communication cost of the product-sum is the same as multiplication and that scalar
multiplication and multiplication o&(7)¢ are equivalent tal times the multiplications of. Furthermore, whef is a

circuit that consists of addition and multiplication, the cost is as follows:

(d + )NmyCrut + (M + 2)Cryui + Crevy + Csyne

Although Crey, andCsync areO(n?), they are executed only once, in contrastdar(1)Nmy + (M + 2) times of multi-
plications; thus, the example i<3{(cyn + n?)«) bits (per multiplication) scheme, whetg denotes the size of the circuit
(i.e.,cm = Nmu) andx denotes the security parameter (ises |F|d where|F | is the bit length ofF).



Table 2. Performance of Parallel Multiplications

Number of multiplications[100,000]1,000,000[10,000,000
setting processing time [ms] max. throughput [V]
passive 19.7 254.7 1,622.3 6.164
active 100.0 559.3 4,003.3 2.498

Table 3. Performance of Shiing

data size[100,000]1,000,000]10,000,000

setting processing time [ms] max. throughput [Vs]
passive | 48.3 316.0 2,785.3 3.590

active 127.7 802.3 7,134.7 1.402

Round Efficiency Our construction is not onlyficient with respect to communicatioffieiency but also #icient with
respect to roundfiiciency. Passive protocols adftdistribution protocols in the Computation Phase can be executed in
parallel, and the Randomization Phase and Proof Phase include only constant protocols.

For example, in the same condition as the example in Section 4.6, the Randomization Phase costs two rounds, the
Computation Phase costs as much as the passive execuk¢armnd the Proof Phase costs seven rounds. The computation
of p in the Proof Phase can be started two rounds earlier sipdeJindependent of randomization in the Randomization
Phase. Thus,

Rpassivet 7

is the overall round cost of the example, whB¥gssiveiS the round cost of the passive executiorFoindependent of the
size of the circuit of. If we chooses one round multiplication, such as GRR-multiplication, the cost beémeas+ 5.

5 Experimental Results

We implemented our construction with some concrete building blocks. We show the performance of the implementation
in this section.
The setting is as follows.

—t=1(.e,k=2)andn=3.
— The security of pseudorandom numbers is allowed.

Althoughn = 3 is the smallesh and is disadvantageous to show an order improvement, itficisnt to confirm the
absolute #iciency, anch = 3 is the most practical setting.

The environment is as follows. Each party is realized as a notebook PC connected to other PCs by a network through
a switching hub, and all PCs are homogeneous. The specifications of each PC are as follows.

— CPU: Intel Core i7 2640M (2.8 GHz, 2-core)
- RAM: 8 GB
— Network JF: 1000BASE-T portx 1

Multiplication Table 2 summarizes the performance wikeoonsists of parallel multiplicationsl andY are bothz,,
wherep is a Mersenne prime®2— 1. Multiplication isO(n?) GRR-multiplication. Whem = 3, the multiplication is more
efficient thanO(n) DN-multiplication.

Shuffling Table 3 summarizes the performance wikeis shufling and the condition is the same as multiplication. The
passive shifling protocol as the building block is the reshare-based protocol [21] by Laur et al.

Optimized Configuration for Logical Circuits Table 4 summarizes the performance witeconsists of logical gates,
more precisely, wheffr is a 32-bit comparisonX is Z,, andY is an extension fiel@3F(28). On Z,, we can apply
the techniques of XOR-free circuits [20]. Shares are shared using a replicated secret sharing scheme [9]. Although the
scheme is not generallyfieient, it is suficiently eficient whem = 3. Replicated secret sharing supp@isin contrast to
Shamir’'s scheme and other general schemes [7 th@lt are asfiicient as Shamir’s secret sharing scheme. Multiplication
is shown in Appendix A, and its communication and round costs are the same as GRR-multiplicatios \&itindn = 3.
WhenX = Z, andY = GF(28), passive execution should be about nine times faster becaus8. However, the
actual performance is almost the same as that of active execution. This result requires further investigation.

1 Although the scheme by Cramer et al. [10] supports an arbitrary ring, the scheme requires a matrix that satisfies the specific condition
on the ring and cannot be constructedzn



Table 4. Performance of Comparison Circuit

data size[100,000]1,000,000[10,000,000

setting processing time [ms] max. throughput [Vs]
passive | 183.3 867.3 7,898.3 1.266

active | 171.7 937.0 7,682.0 1.302

Comparison with Current High-Performance Passive Implementation For multiplication, shfiling, and comparison,
Sharemind is the fastest implementation, and throughputs are about 0.5, 0.4, and aboyts®dShvee-party server
machine environments [4, 21]. The throughputs on our implementation were aBplii6and 13 M/s on a notebook PC
environment. Thus, our active multiplication, shimg, and comparison were faster than throughputs of passive imple-
mentations. Therefore, we claim that our non-robust active constructioffiisiesotly practical with respect tdféciency.

6 Conclusion

We proposed constructing a non-robust, actively, and unconditionally secure MPC scheme from passively secure schemes
while maintaining éiciency.

Our construction is secure in the: n/2 setting and can use high-level protocols as optional building blocks if the pro-
tocols satisfy tamper-simulatability and haVedistributions. In addition, the communication cost of our construction is
comparable to the known smallest cost in the passive case. We implemented our construction and confifineshidg. e
As a result, our construction is only several times slower than passively secure MPC schemes in theory and is faster than
the current fastest passively secure implementation.
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A Passive Secure Schemes

Here, we describe the tamper-simulatable protocols discussed in the paper. Scheme 6 is GRR-multiplication, Scheme 7
is DN-multiplication (Scheme 8 is a sub-protocol of DN-multiplication), Scheme 9 is RNG in [12], Scheme 10 is pas-
sive resharing, and Scheme 11 is a multiplication ar8)2eplicated secret sharing. These protocols are all the linear-
combinatorial protocols discussed in Section 3 (Proofs are omitted.). Thus, they are all tamper-simulatable by Theorem 1.

Scheme gProtocol] GRR-multiplication
Parameter. the threshold, the number of parties,
the pointsxg, ..., X,-1 € ¥ assigned to parties
Parties. Py, ..., Pn1
Input: [a],[ b] €[ 1. thatis,a;, b € F for each partyP;
Output: [ ab]
1: Each partyP; wherei < 2k — 1 computes (R— 1, n) share(c); := [ a];[ b]; and shares it so that parties obta{o)[ ]. ((-) denotes
(2k — 1, n) shared value.)

2: Parties compute Lagrange interpolati@: ai[(c); ] with proper codficientsay, - - - , @22 to reconstruct (R — 1, 2k — 1)-share
i<2k-1

fromxg,..., X1 € F.

Scheme 7Protocol] DN-multiplication

Parameter. the threshold, the number of parties,

the points assigned to partigs ..., X,-1 € F,

Parties. Py, ..., Pn1

Input: [a],[ b] €[ 1. thatis,a;, b € F for each partyP;

Output: [ ab]
1: Parties execute Double Random (Scheme 8) and obt&impshared value f] and a (% — 1, n) shared valugr), both plaintexts
arer € . ({-) denotes (R - 1, n) shared value.)

. Each partyP; wherei < 2k — 1 computegc); = [ a]i[ b]; + (r) and sends it t®,.

. Pg reconstructs the plaintegtfrom sharegc)o, . . ., (C)_2 Which were received in the previous step.

. Pg distributesc to all other parties.

: Each partyP; computess — [ r ]; and outputs it.

abhwWN

Scheme gProtocol] Double Random (passive)
Parameter. the threshold, the number of parties,
the points assigned to partigs ..., x,-1 € F and Van der Monde matrii
Parties. Py, ..., Pn-1
Input: none
Output: (k, n) random shared valuessf],. ... [ s».x] and (& — 1, n) random shared valué€sy), . . ., (S«)
1: Each partyP; does as follows.
2:  generates uniformly random valgen .
3: P shares; in two manners,K, n) and (k — 1) Shamir's secret sharing schemes, and each pajptains shareq’i,j andr;kvi‘j,
respectively.
4: P obtains & o, - -, Scin-k) = M(r’k’Lo ..... r((’i’nfk) and o, - - - » Soknk) = M(r’ZKO ..... r’zmk), and outputs them.




Scheme gProtocol] Random Number Generation (passive)
Parameter. the threshold, the number of parties,
the points assigned to partigs ..., X,-1 € ¥ and Van der Monde matrii
Parties: Py, ..., Pn1

Input: none

Output: random shared valuessf],....[ Si-k]

1: Each partyP; does as follows.

2.  generates uniformly random valgen F.

3: P, shares; and each part; obtains share%i’j.

4: P obtains &o, - - - Sink) = M(r’k’ivo, . rfq,n_k) and outputs them.

Scheme 1(qProtocol] passive resharing

Parameter. the threshold, the number of parties

Input: [a] e [F]for Pg,...,Px1

Output: [ a] for all parties (the randomness of shares aféedént from the input)

Parties generate a random shared valul Let P;’s share be;.

Parties computed J:=[a] +[r]-

Each partyP; sends [’ ]; to Po.

Py reconstructs the plainteat from shares | Jo. - .., [ & J«.1 Which was received in the previous step.
Py distributesa’ to all other parties.

Each partyP; computest’ — [ r ]; and outpults it.

Scheme 11Protocol] passive multiplication on (3)-replicated sharing
Parties: X, Y, Z
Input: [a],[b] € [ X1, i.e., (a0, a1) and o, by) for X, (a1, az) and fy, by) for Y, and &, ag) and @, by) for Z where
a=a+a +aandb=by +b; + b,
Output: [ ab]
1: X, Y, andZ generatazy, I'xy, andryz, respectively.
2: Xsends,xtoZ, Y sendgyy to X, andZ sendsyzto Y.
3: X sendyy ;= aghy + aybg —rzx to Y, Y sendscy, ;= a;by + a1b, — ryxy to Z, andZ sendscyx := aobg + axbg — ryz to X.
4: Letcy, ¢, andc; becy 1= aghg + Czx + zx, €1 1= a1b; + Cxy + Ixy, andc; := ayb, + cyz + ryz, respectively.
5: Xoutputs €, 1), Y outputs €1, ¢;), andZ outputs €, Co).




B Linear-Combinatorial Protocols

We prove Theorem 1, which states all linear-combinatorial protocols are tamper-simulatable.

First, we show an intuition. For simplicity, the MPC protocol has three rounds, and the adversary sends only one
element in each round. Lety( ¢z, c3) and €;, ¢;, ¢;) be the legitimate values and possibly tampered values, respectively,
sent by the adversary in the first, second, and third round.

The simulator can compute’( ¢, ¢;) since they depend on only the adversary’s knowledge. The simulator can also
computec; andc; since they depend on only the inputs, auxiliary inputs, and values sent by the honest parties in the
first round. The lastz is a bit problematic since the values sent by the honest parties in the second round depend on
c;. However, the simulator can compuig ¢ c;), and the honest parties only compute the linear combination whose
codficienty is public. Therefore, the simulator can compyte, —c;) then computeg; - cz). Consequently, the simulator
can compute the tamperftéirence.

Next, we formally define linear-combinatorial protocols.

Definition 4. (linear-combinatorial protocols)
LetR be a ring, mu,v € N be the numbers of inputs, outputs, and rounds, respectiifedy] },.<m be the inputs, and
{[ b.1}.<, be the outputs.

A Linear-combinatorial protocol consists of two phasggire and online. In the fline phase, each party; Rocally
computes online inputs;,},<,, € RY by an arbitrary function {{[ & 1i}.<m) — {z.}<s;, Wherev; € N is the number of
each party’s online inputs.

In each¢-th round in the online phase, each partydendsy,; ; data{c, julu<,,, € R to each other party Pwhere
neij € N. The sent data are linear combinations gfiae inputs{z_}.,, and all data receivedc, j i }e<c.j i<y ,; BY

the(¢—1)-th round. Thus, the linear combinations are represented as,c= g Yei izt E y}ijuf, j,u,cg/,,-,,i,u/,where
L<Uj U<t
jr#
u'<'7(:’,j’.|

eachy,; |, and?’é,i,j,u,@,jgu/ are public cogficients. Furthermore, the outputb, ] ).« of party R are linear combinations
of {Zi,L}L<Ui and {Cf,j’,i,u' }{’<v,j’¢i,u’<n[/'1g, .

In the online phase, computations are restricted to linear combinations. Howevefflitie ghase is allowed to
perform arbitrary functions including multiplication in GRR-multiplication and DN-multiplication, and generation of all
random numbers used in the protocol. In addition, the linear combinatiofffisient to realize share and reconstruction
schemes of Shamir’s secret sharing and replicated secret sharing.

Finally, we prove the tamper-simulatability of linear-combinatorial protocols.

Theorem 4. (formal version of Theorert) Any linear-combinatorial protocol is tamper-simulatable wihjer] represents
a shared value of an LSSS.

Proof. (Theorem 4)
Let eachc;; ; , denote the actual sent data in the active setting, anc} g} denote imaginary correct data sent in the
passive setting.

First we prove the following lemma by using the induction method.on

Lemma 2. The simulator can compute interim tampeffeliences; . = c;i!j’u — C¢ ju for any round? < v, any parties
P; and P;, and any index of data among the data thasEnds to Rin the protocol.

Proof. (Lemma 2)

(i) When¢ = 0, no data have been sent yet, and all interim tamp@eréinces are 0.

(i) When ¢ > 0, assuming that all ffierences,; j, = C’g/,i,j,u — Cpjju Such that” < ¢ can be computed by the simulator
foralli, j < n,u<mnej;, we prove that;’i’j‘u — Czj.j,u €an be computed by the simulator foriglf < n, u < ;..

WhenP; is honestg,; j, is computed as follows.

— J L. — L. / / .. / L.
Ociju = Cpjju~ Ceiju = Z%-szzt + Z YeijuliwCejivw = ZW-I,J,WZ‘ - Z Yeijue.wCe.yiv

L<yj o<l L<y; <t

jra ja
f— ! i, s
= Z Yo jiwde.yiv

u'<ngr i u’<n,,_ir i
<t

i
u<ngr s
Note that the adversary’s knowledge of suchiedences does not imply eer knowledge of plaintexts. Similarly, when
P; is a corrupted partyi; ;. is computed as follows.

— .. — — - / _c Lo
Ociju = Cpjju— Ceiju = Cpjju E Veijud t E Yeijwe i (“Co jriw + 00 iiw)
1<vj o<t
jr#
“’<'7[',]’<i



Note that bottg, andc), j i are known by the adversasymulator since®; is corrupted.

By the induction hyhéthesis, Lemma 2 has been proven.
o Lemma 2

Similarly, the output$[ b, ];}.<. of party P; are linear combinations @#; ,},«, and{ca,—,,i,u/}kv’i’ii,u/w,)j,_i, and arecon-
struction scheme of LSSS is also a linear combination of shares; therefore, the adversary can comigestieediin

the outputs.
O Theorem 4

C Proof of Lemma 1

Lemma 1. (closure of tamper-simulatability on independent compositions)
Parallel execution of unconditionally secure tamper-simulatable protocols is tamper-simulatable.

Proof. LetI,...,II,_; be constitutive protocols and@* be the entire protocol that is a parallel executioflgf. . ., I1,_1,
andaux, . . ., aux_; be auxiliary inputs on protocoly, .. ., I1,_1, respectively.

We can construct a simulat&* for 77* for an adversary with an auxiliary inpaux as follows. First, we consider a
tamper inllp. The diference between the solo executiom&fand parallel executions for an adversary is that in parallel
executions, the adversary can tamper withwith the help of the views of7y, ..., I1,_; executions. However, tamper-
simulatability guarantees that there exists a simulator for any auxiliary eypgtthat can contain the views of other
executions. Therefore, there exists a simuldgthat computes a tamperfiirence even in parallel executions. Efr
..., IT,_1 there also exists a simulatéy, . . ., S,_; for the same reason.

Consequently, the outputs 8f are the sum of the tamperftérences computed ify, ..., S, 1.

o (Lemma 1)

D Example of Mandatory Building Blocks

The RNG, scalar multiplicatigproduct-sum, additigsubtraction, multiplication, and reveal are all realized 6 ][ by
operations on [ ]. Note that7 ¢ is trivially homeomorphic t&(7)? as a group.

1. RNG: I[rc}l —([rol.--- ,[ra-1]), where each [;] is generated by an RNG orif ], and is also random onf ¢
as [EF)]-

2. scalar multiplication : fr] « ([aro]. - ,[ arg-1]), where[a] e [FJand[r] e [ F ]

3. scalar product-sum :Eairi 1< Zai(ri)o]],~ | Zai(ri)d_l 1), whereme Nandforeach<m,[a] € [ F1

I<m I< I<m

and[ri] e[ F1°.

4. additiorisubtraction : f + s] « ([rol +[ Sol.--- [ ra-1] +[ Sa-11), where [r].[ s] € [ F1°.
5. multiplication: [rs] < ([ ) aijorisil.---.I Zai,j,d_lrisj 1) with a sequence of cdicient matrices, - - - , aq-1 €
i.j<d i.j<d
7% determined by an irreducible polynomial &(7)". For example, whed = 2 and the irreducible polynomial is

10 01
X2+X+1,a'0=(0_l , 1 = 1-1/)

6. (correct) reveal: shown in Scheme 12.

If additiorysubtraction and multiplication are both tamper-simulatable, the above mandatory building blocks are also
tamper-simulatable since they will be (except for reveal) parallel executions of adslifidraction and multiplication.
Reveal in Scheme 12 is correct by itself.

In LSSS, arbitrary quadratic functions, including product-sum functions, are computed with the same communication
and round cost as multiplication in the passive setting. Thus, the communication and round cost of scalar mulfipladiicth
sum and multiplication o&(#)? are the same asparallel multiplications or¥ or 1 multiplication on natives(7 ).

E Examples of Optional Building Blocks

Linear transformations including additisubtraction, and quadratic functions including multiplication are already shown
as mandatory building blocks in Appendix D; They can be used as optional building blocks.

Resharing used in reshare-basedf8img [21] can also be used as an optional building block. In thigfshg, input
shared valuesy, . .., am-1 are randomly permuted bByparties with random permutation datalistributed (as plaintexts)
among thesk parties. Since thefline phase in linear-combinatorial protocols allows arbitrary functions, the permutation
by = of shares is also allowed. Thus, resharing in thefiihg protocol is tamper-simulatablerifis distributed before the
protocol starts. (In fact, this resharing is tamper-simulatable eveisitlynamically distributed.) It&(7)9-distribution
is simplyd parallel executions of resharing ¢n



Scheme 17Protocol] Correct Reveal on LSSS: RE{{ a])
Parameter. the threshold, the number of parties,
the points assigned to partigs ..., X,-1 € F
Parties. Py, ..., Pn-1
Input: [a] € [ 1, thatis,q € F for each partyP;
Output: afor each party and. if [ a] is inconsistent or tampered with
1: foreachi < n, P; do
2 foreachj < ndo
3 sendy; :=[ a]; to P,
4: foreachj <n, P;do
5. ¢j:=true
6
7

foreachk <i<n
compute-th sharea]i from ajo, . . ., aj-1). Note that the secret sharing scheme defined in Section 2 guarantelestthats
determine all other shares uniquely.

8: if &; # a; thenc; := false
9. foreachi<n
10: sendj :=cjto P

11: for eachi < n, P; do
12:  if /\cji = falsethen output.L
j<n

13:  elseoutput the plaintext reconstructed frap, . . . , @jx-1).
F Proof of Theorems 2 and 3

Theorem 2. (correctness)
Let¥ be afinite field whose order isgN and let§(#)? be a d-degree extension®t Then, the output df2° computing
a function F is correct in the probability — 2p=¢ + p~2? or higher against an adversary who can control up to t parties.
That is,/73* has unconditional correctness when considering s a negligible value.
Theorem 3. (privacy)
Let# be a finite field whose order is@N and let&(7)? be a d-degree extension 6t Then /73 computing a function
F is unconditionally private when considering“pas a negligible value against an adversary who can control up to t
parties.
The above correctness and privacy of protocols whose inputs and outputs are both shared values are defined as follows.

Definition 5. We say that a protocdl/+ with consistent inputfa ], outputs] F(_b>)]|, and a functionality F is uncondi-
tionally correct if and only if for any set of k parties, the plaintexts of all outputs reconstructed from the k parties’ shares
are F(&) except for a negligible probability.

Definition 6. We say that a protocal/ with consistent input§ & ], outputs[ F(T)))]], and a functionality F is un-
conditionally private if and only if there exists a fixed distribution f of an adversary’s view and the adversary’s actual
view Viewy in an execution of a real protocol is statistically indistinguishable from a random variable whose distribu-
tion is f. Two random variables,/B on a probability spac® are said to be statistically indistinguishable if and only if
ZlPr(A = x) - Pr(B = )| is negligible.

XeQ

The two theorems are related; thus, we prove them together.
Proof. (Theorem 2 and Theorem 3)

First, I73*' may use one tamper-simulatable building block multiple times @isrdint instances; thus, we distinguish
those instances and call them protocol instances. We give the indices to protocol instances in the Randomization Phase
and Computation Phase according to the following two rules.
(i) For all protocol instance#;, /7; and their indices, j € N, i and | satisfyi < j if any output of/J; is one of the inputs
of Hj.
(i) 17, # IT; impliesi # j.
Next, we prove privacy before REN which is necessary for both correctness and overall privacy.
Lemma 3. (privacy beforeREVy in the Proof Phase)

113 beforeREVy is unconditionally private against the active adversary in Theoeamd Theoren8. Furthermore, r
and eactyp; for all i < |C] are also private befor®&EVy in the Proof Phase.



Proof. (Lemma 3)

Inthe synchronous setting, Lemma 3 holds because all the building blocks are unconditionally private. In the asynchronous
setting, we also need SYNC. In such a setting, the adversary has a strategy to wait before receiving the data of REV
from honest parties to keep ffigr data unsent. The received data may provide some knowledge to the adversary before
all the building blocks (except RE)) are finished. However, due to the existence of SYNC, each honest party waits for

all expected data from all other parties before SYNC. Thus, the adversary cannot obtain any information befpre REV
starts.

O (Lemma 3)

An important fact derived from this lemma is thrais not known to the adversary. This means that the tamgiareihce
is independent of since the adversary’s ability to tamper is at most to add a valirat h¢she knows due to tamper-
simulatability.

In the Proof Phasey — ¢ is computed. This is the most important value since (i) it is the only reveal of a value that
possibly depends on the secrets, and (i) honest parties judge the correctness of the overall auffStity df

Thesep andy values may be tampered with and become tampered valesly’. Let each randomized shared pair
of outputs of a protocol instand@ for anyi < |C| be ([ fi + X 1.[ fir +vi]), wherefi,xi e Xandy; e Y, [¢'] - [¢']
is represented as follows for soee F andv € &(F)Y. Shares might be inconsistent, i.e., the plaintexts are not
uniquely determined. We fix an arbitrary setidfionest parties and define the plaintext of a shared value as the plaintext
reconstructed from theseparties’ shares.

[¢1-1v1
=D+ XM al+DxT|[rT- D L fir+vll il +Lv]
i<|C| i<|C|
=1 D> (1 =yi)pi + (r —v)] (1)
i<|C|

(i) When the adversary actively attackg® before the Proof Phase, there must be the first protocol insfaricewhich
any corrupted party violates the protocol, i.Hj,is correctly executed for any < «. Since the Randomization Phase
and Computation Phase have only correct and tamper-simulatable protocol instances, such a first protocol instance is
tamper-simulatable. (Note that for ¢, x; andy; possibly depend onor secrets.)

Thus, by the definition of tamper-simulatability and privacy before REVthe Proof Phases, andy, turn out to
be values that the adversgsiynulator can compute befof@2® starts. By transforming the plaintext of Formula (1) as
follows,

D068 =i+ (e =) = (xr =Y+ > (%F = Yi)pi + (xr =) )

i<|C| i#0

we can discuss its distribution.

Whenr #y,/x holds, &r-y,)p, is uniformly random in¥ sincep, is uniformly random in the field/ and independent
of r and allp; such that # «. On the other hand, when=y,/x,, we cannot ensure the distribution is “good” in regard to
security; however, = y,/x only occurs in the negligible probability/ p* sincelY was assumed to be a field.

Thereforeyp — y, which is the only possible reveal of the secrets, is indistinguishable from a uniformly random value
in I/ whose order ig; hence/78is unconditionally private.

Furthermore, Pyf—y = 0], which is the probability that an attack on correctness is successful, is at most the following
negligible probability.

d-11 1
e

Inversely, if T is output in the Proof Phase, the outputd3f' are correct in the probability 4 2p=4 + p=2d.

-p ®)

(i) When the adversary cheats only in the Proof Phase, the cheating doe$endtize correctness of the outputs. Re-
garding privacy, we can obtain— ¢ = yr — v from Formula (1). When the adversary setas 0,0 — ¢ = v holds, and
is the value the adversary knows. Otherwise, ¢ is only a uniformly random value.

Finally, since the choice of the set hthonest parties was arbitrary, all plaintexts reconstructed fromkadmnest
parties were correct except for a negligible probability.

O (Theorem 2 and Theorem 3)



G Consistency Check and AmortizedO(n) Communication Correct Reveal

We show a parallel consistency check protocol in Scheme 13. One can use this protocol to check the consistency of inputs
before the Randomization Phase in our construction. The communication complexity per Y/is) field elements.

In a typical multi-party setting where allparties have their inputs, amortized communication complexity can be written
asO(n) field elements. Round complexity &(1).

Scheme 13Parallel Consistency Check]
Inpl'It |[ a'O]I’ o ’I[ am—l]l
Output: Tifallof [ a].--- ,[ an-1] are consistent, ot otherwise
1: Parties generate a random shared valul [
2: SYNC
3: for eachi < n
4:  PartyP; generates a random valgeand distributes it to all other parties.
5. Each party computes:= 2;_,S.
6
7
8
9

. Parties computeq] := 1S [ a ] +S™ am1 ]-

. Parties computed] :=[c-r].

. Parties reveal § — r ] by correct reveal (Scheme 12).

: If any cheating is detected during the reveal protocol, parties outpDtherwise, parties outpat.

Scheme 14 is an amortiz€{n) communication perfectly correct reveal of consistent shares. Note that in linear secret
sharing schemes, the computation of each share frother shares and the reconstruction are both linear combinations,
and thus, they can be executed in parallel on the linear IDA (Information Dispersal Algorithm) shares. (We say an algo-
rithm that satisfies the same condition as LSSS except for privacy is a linear IDAnAlifiear IDAs, a shared value can
storek values.) The total communication complexity of Scheme 1@(i¥) field elements, and amortized complexity is
O(n) field elements. Although Scheme 14 requires consistent shares, the combination with Scheme 13 becomes a correct
reveal of possibly inconsistent shares.

Scheme 14fficient Correct Reveal of Consistent Shares
Input:[ao],....[ &1]
Output: ag, ..., a1

1. foreachO<i<n-1,P do

2. [Ali=2]l--[a1])
3:  share [&]; using a linear IDA scheme. Parties geT[] ], where [] denotes a shared value of a linear IDA.
4: Each party executes the LSSS’s correct reconstructionﬁﬂ]llﬁ on the IDA using homomorphism and geﬁ]ﬁ as follows.
5. foreachj <n, P;do
6: Cj .= true
7: foreachk <i<n
8: compute thé-th share of the LSSS from [ 1o];, ..., [[ @]« and let the result be;.
9: if & # [[@]]; thenc; := false
10: foreachi < ns.t.i #j
11: sendc; = cj to P;
12: foreachi <n, P;do
13: if /\cji = falsethen output_ L
J<n
14: elsecompute the reconstruction of the LSSS ora[] oljs-- [l El k-1]; and let the result bﬁ]j.

15: Parties reconstrucH] in a correct manner as follows.
16: foreachj<n, P;do

17: Cj .= true

18: foreachk <i<n

19: compute thé-th shareg; from [, ..., [A]x1.
20: if &/ # [&] then c; := false

21: foreachi < ns.t.i #j

22: sendc; = cj to P;

23: foreachi <n, P, do

24: if /\cji = falsethen output L

j<n

25: elseoutput@(= (a, . .., 1)) by the reconstruction of the IDA.




