
Publicly Evaluable Pseudorandom Functions and Their

Applications

Yu Chen ∗

yuchen.prc@gmail.com

Zongyang Zhang †

zongyang.zhang@gmail.com

December 1, 2014

Abstract

We put forth the notion of publicly evaluable pseudorandom functions (PEPRFs), which
is a non-trivial extension of the standard pseudorandom functions (PRFs). Briefly, PEPRFs
are defined over domain X containing an NP language L in which the witness is hard to
extract on average, and each secret key sk is associated with a public key pk. For any x ∈ L,
in addition to evaluate Fsk(x) using sk as in the standard PRFs, one is also able to evaluate
Fsk(x) with pk, x and a witness w for x ∈ L. We consider two security notions for PEPRFs.
The basic one is weak-pseudorandomness which stipulates PEPRF cannot be distinguished
from a uniform random function at randomly chosen inputs. The strengthened one is adap-
tively weak-pseudorandomness which requires PEPRF remains weak-pseudorandom even
when the adversary is given adaptive access to an evaluation oracle. We conduct a formal
study of PEPRFs, focusing on applications, constructions, and extensions.

• We show how to construct chosen-plaintext secure (CPA) and chosen-ciphertext secure
(CCA) public-key encryption scheme (PKE) from (adaptive) PEPRFs. The construc-
tion is simple, black-box, and admits a direct proof of security. We provide evidence
that (adaptive) PEPRFs exist by showing the constructions from both hash proof
system and extractable hash proof system.

• We introduce the notion of publicly samplable PRFs (PSPRFs), which is a relaxation
of PEPRFs, but nonetheless imply PKE. We show (adaptive) PSPRFs are implied by
(adaptive) trapdoor relations, yet the latter are further implied by (adaptive) trap-
door functions. This helps us to unify and clarify many PKE schemes from different
paradigms and general assumptions under the notion of PSPRFs. We also view adap-
tive PSPRFs as a candidate of the weakest general assumption for CCA-secure PKE.

• We explore similar extension on recently emerging constrained PRFs, and introduce
the notion of publicly evaluable constrained PRFs, which, as an immediate application,
implies predicate encryption.

• We propose a variant of PEPRFs, which we call publicly evaluable and verifiable
functions (PEVFs). Compared to PEPRFs, PEVFs have an additional promising
property named public verifiability while the best possible security degrades to being
hard to compute on average. We show how to construct PEVFs from EHPS for publicly
verifiable relation. Moreover, we justify the applicability of PEVFs by presenting a

∗State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences, China. Yu Chen is supported by the National Natural Science Foundation of China under Grant No.
61303257, No. 61379141, the IIE’s Cryptography Research Project, the Strategic Priority Research Program of
CAS under Grant No. XDA06010701, and the National 973 Program of China under Grant No. 2011CB302400.
†Research Institute for Secure Systems, National Institute of Advanced Industrial Science and Technology,

Tsukuba, Japan. Zongyang Zhang is an International Research Fellow of JSPS and supported by the National
Natural Science Foundation of China under Grant No. 61303201.

simple construction of “hash-and-sign” signatures, both in the random oracle model
and the standard model.

Keywords: publicly evaluable, PRF, HPS, EHPS, TDF

2

1 Introduction

Pseudorandom functions (PRFs) [GGM86] are a fundamental concept in modern cryptography.
Loosely speaking, PRFs are a family of keyed functions Fsk : X → Y such that: (1) it is easy
to sample the functions and compute their values, i.e., given a secret key (or seed) sk, one can
efficiently evaluate Fsk(x) at all points x ∈ X; (2) given only black-box access to the function,
no probabilistic polynomial-time (PPT) algorithm can distinguish Fsk for a randomly chosen
sk from a real random function, or equivalently, without sk no PPT algorithm can distinguish
Fsk(x) from random at all points x ∈ X.

In this work, we extend the standard PRFs to what we call publicly evaluable PRFs, which
partially fill the gap between the evaluation power with and without secret keys. In a publicly
evaluable PRF, there exists an NP language L ⊆ X, and each secret key sk is associated
with a public key pk. In addition, for any x ∈ L, except via private evaluation with sk, one
can also efficiently compute the value of Fsk(x) via public evaluation with the corresponding
public key pk and a witness w for x ∈ L. Regarding the security requirement for PEPRFs,
we require weak pseudorandomness which ensures that no PPT adversary can distinguish Fsk
from a real random function on uniformly distributed challenge points in L (this differs from
the standard pseudorandomness for PRFs in which the challenge points are arbitrarily chosen
by an adversary).

While PEPRFs are a conceptually simple extension of the standard PRFs, they have sur-
prisingly powerful applications beyond what is possible with standard PRFs. Most notably, as
we will see shortly, they admit a simple and black-box construction of PKE.

1.1 Motivation

PRFs have a wide range of applications in cryptography. Perhaps the most simple application
is an elegant construction of private-key encryption as follows: the secret key sk of PRFs serves
as the private key; to encrypt a message m, the sender first chooses a random x ∈ X, and then
outputs ciphertext (x,m⊕Fsk(x)). It is tempting to think whether PRFs also yield PKE in the
same way. However, the above construction fails in the public-key setting when F is a standard
PRF. This is because without sk no PPT algorithm can evaluate Fsk(x) (otherwise this violates
the pseudorandomness of PRFs) and thus encrypting publicly is impossible. Moreover, since
PRFs and one-way functions (OWFs) imply each other [GGM86, HILL99], the implications of
PRFs are inherently confined in Minicrypt (the hypothetical world defined by Impagliazzo where
one-way functions exist, but public-key cryptography does not [Imp95]). This result rules out
the possibilities of constructing PKE from PRFs in a black-box manner.

Meanwhile, most existing PKE schemes based on various concrete hardness assumptions
can be casted into several existing paradigms or general assumptions in the literature. In de-
tails, hash proof systems [CS02] encompass the PKE schemes [CS98, CS03, KD04, KPSY09],
extractable hash proof systems [Wee10] encompass the PKE schemes [BMW05, Kil06, CKS09,
HK09, HJKS10], one-way trapdoor permutations/functions encompass the PKE schemes [RSA78,
Rab81, PW08, RS10].1 However, the celebrated ElGamal encryption [ElG85] does not fit into
any known paradigms or general assumptions. Motivated by the above discussion, we find the
following intriguing question:

What kind of extension of PRFs can translate the above construction into public-key
setting? Can it be used to explain unclassified PKE schemes? Can it yield CCA-secure
PKE schemes?

1The references [RSA78, Rab81] actually refer to the padded version of RSA encryption and Rabin encryption.

1

1.2 Our Contributions

We give positive answers to the above questions. Our main results (summarized in Figure 1)
are as follows:

• In Section 3, we introduce the notion of publicly evaluable PRFs (PEPRFs), which con-
tains several conceptual extensions of standard PRFs. In a PEPRF, there is an NP
language L over domain X and each secret key sk is associated with a public key pk.
Moreover, for any x ∈ L, except via private evaluation with sk, one can efficiently eval-
uate Fsk(x) using pk and a witness w for x ∈ L. We also formalize security notions for
PEPRFs, namely weak-pseudorandomness and adaptively weak-pseudorandomness.

• In Section 4, we demonstrate the power of PEPRFs by showing that they enable the
construction of private-key encryption to work in the public-key setting, following the
KEM-DEM methodology. In sketch, the public/secret key for PEPRF serves as the pub-
lic/secret key for PKE. To encrypt a message m, a sender first samples a random x ∈ L
with witness w, then publicly evaluates Fsk(x) from pk, x and w, and outputs a ciphertext
(x,m⊕ Fsk(x)). To decrypt, a receiver simply uses sk to compute Fsk(x) privately, then
recovers m. Such construction is simple, black-box, and admits a direct proof of security.2

In particular, in Example 3.1 we show that the well-known ElGamal PKE can be ex-
plained neatly by weak-pseudorandom PEPRFs based on the Diffie-Hellman assumption.
Interestingly, the above KEM construction from PEPRFs is somewhat dual to that from
trapdoor functions (TDFs). In the construction from TDFs, a sender first produces a

DEM key by picking x
R←− X,3 then generates the associated ciphertext TDFek(x); while

in the construction from PEPRFs, a sender first generates a ciphertext by picking x
R←− X,

then produces the associated DEM key Fsk(x).

• In Section 5 and Section 6, we show that both smooth hash proof systems (HPS) and
extractable hash proof systems (EHPS) yield weak-pseudorandom PEPRFs, while both
smooth plus universal2 HPS and all-but-one EHPS yield adaptively weak-pseudorandom
PEPRFs, respectively. This means that the works on HPS and EHPS implicitly con-
structed PEPRFs. Therefore, PEPRFs are an abstraction of the common aspect of the
HPS and EHPS which are not formalized before. The existing constructions of HPS and
EHPS imply that PEPRFs are achievable under a variety of number-theoretic assump-
tions.

• In Section 7, we introduce the notion of publicly samplable PRFs (PSPRFs), which is a
relaxation of PEPRFs, but nonetheless implies PKE. Of independent interest, we rede-
fine the notion of trapdoor relations (TDRs). We show that injective trapdoor functions
(TDFs) imply “one-to-one” TDRs, while the latter further imply PSPRFs. This implica-
tion helps us to unify and clarify more PKE schemes based on different paradigms and
general assumptions from a conceptual standpoint, and also suggests adaptive PSPRFs
as a candidate of the weakest general assumption for CCA-secure PKE.

• In Section 8, we introduce an extension of PEPRFs named publicly evaluable constrained
PRFs. An immediate application of publicly evaluable constrained PRFs is predicate
encryption. We present a concrete construction based on recent attribute-based encryption
from multilinear maps [GGH+13].

2For simplicity, we treat PKE schemes as key encapsulation mechanisms (KEM) in this work. It is well
known that one can generically obtain a fully fledged CCA-secure PKE by combining a CCA-secure KEM (the
requirement on KEM could be weaker [HK07]) and a data encapsulation mechanism (DEM) with appropriate
security properties [CS03, KD04, KV08].

3To obtain semantic security, one should use hc(x) instead of x as the DEM key, where hc is a hardcore
predicate for the TDF.

2

• In Section 9, we propose a variant of PEPRFs named publicly evaluable and verifiable
functions (PEVFs). We show how to construct PEVFs from EHPS for publicly verifiable
relations. Moreover, we demonstrate the utility of PEVFs by presenting a simple construc-
tion of “hash-and-sign” signatures, both in the random oracle model and the standard
model.

HPS EHPS adaptive TDF

adaptive PEPRF adaptive TDR

adaptive PSPRF

CCA-secure PKE

[Wee10] [KMO10]

[Wee10]

[CS02]

Figure 1: Summary of CCA-secure PKEs from paradigms and general assumptions. Here, HPS
refers to smooth plus universal2 HPS, and EHPS refers to its all-but-one variant. The bold
lines and rectangles denote our contributions, while the dashed lines denote those that are
straight-forward or from previous work. All of the constructions from general assumptions are
black-box.

1.3 Related Work

General assumptions vs. Paradigms. We first try to explain the terms of “general as-
sumption” and “paradigm” in the context of cryptography according to our understanding.
Roughly speaking, a general assumption (also referred to generic cryptographic assumption or
primitive) usually consists of one set of algorithms, which is used to fulfill some functionality
and is expected to satisfy some desired security. Examples of general assumption include one-
way (trapdoor) functions/permutations and pseudorandom generators/functions, etc. Different
from general assumption, a paradigm usually consists of two sets of algorithms, where the first
set of algorithms is used to fulfill some functionality, while the second set of algorithms is used
to argue the first one satisfies some desired security. Examples of paradigm include hash proof
system, extractable hash proof system, and lossy trapdoor hash functions, etc. Both general
assumption and paradigm are highly abstracted objects since they are not tied to any specific
“hard” problem. The distinguished feature between them is that the former does not specify
how to attain the desired security, while the latter explicitly provide a template to establish
the desired security. In light of this difference, general assumptions are more abstract than
paradigms.

CCA-secure PKE from general assumptions or paradigms. Except the effort on con-
structing CCA-secure PKE from specific assumptions [HK08, MH14] or from encryption schemes
satisfying some weak security notions [NY90, DDN00, BCHK07, CHK10, HLW12, DS13, LT13],
it is mostly of theoretical interest to build CCA-secure PKE from general assumptions and

3

paradigms. Cramer and Shoup [CS02] generalized their CCA-secure PKE construction [CS98]
to hash proof system (HPS) and used it as a paradigm to construct CCA-secure PKE from
various decisional assumptions. Kurosawa and Desmedt [KD04] and Kiltz et al. [KPSY09] later
improved upon the original HPS paradigm. Peikert and Waters [PW08] proposed lossy trap-
door functions (LTDFs) and showed a black-box construction of CCA-secure PKE from them.
Rosen and Segev [RS10] introduced correlated-product secure trapdoor functions (CP-TDFs)
and also showed a construction of CCA-secure PKE from them. Moreover, they showed that
CP-TDFs are strictly weaker than LTDFs by giving a black-box separation between them. Kiltz
et al. [KMO10] introduced (injective) adaptive trapdoor functions (ATDFs) which are strictly
weaker than both LTDFs and CP-TDFs but suffice to imply CCA-secure PKE. Wee [Wee10]
introduced extractable hash proof system (EHPS) and used it as a paradigm to construct
CCA-secure PKE from various search assumptions. Wee also showed that both EHPS and
ATDFs imply (injective) adaptive trapdoor relations (ATDRs), which are sufficient to imply
CCA-secure PKE. To the best of our knowledge, ATDR is the weakest general assumption that
implies CCA-secure PKE. Very recently, Sahai and Waters [SW14] successfully translated the
PRF-based private-key encryption to PKE by using punctured program technique in conjunc-
tion with indistinguishability obfuscation (iO). Due to the use of obfuscation, their construction
is inherently non-black-box.

Constrained PRFs. Very recently, constrained PRFs are studied in three concurrent and
independent works, by Kiayias et al. [KPTZ13] under the name of delegatable PRFs, by Boneh
and Waters [BW13] under the name of constrained PRFs, and by Boyle, Goldwasser, and
Ivan [BGI14] under the name of functional PRFs. In constrained PRFs, secret key admits
delegation for a family of predicates, and the delegated key for predicate p enable one to compute
the PRF value at points x such that p(x) = 1. This natural extension turns out to be useful
since it has powerful applications out of the scope of standard PRFs, such as identity-based key
exchange, and optimal private broadcast encryption.

Witness PRFs. Independently and concurrently of our work, Zhandry [Zha14] introduces the
notion of witness PRFs (WPRFs), which are similar in concept to PEPRFs. In a nutshell,
both WPRFs and PEPRFs are defined with respect to NP languages and extend the standard
PRFs with the same extra functionality, i.e., one can publicly evaluate Fsk(x) for x ∈ L with
the knowledge of the corresponding witness. The main differences between WPRFs and our
PEPRFs are as follows:

1. WPRFs can handle arbitrary NP languages, while PEPRFs are only for NP languages
whose witness is hard to extract on average.

2. WPRFs require that Fsk(x) is pseudorandom for any adversarially chosen x ∈ X\L, while
PEPRFs only require that Fsk(x) is pseudorandom for randomly chosen x ∈ L.

WPRFs are introduced as a weaker primitive for several obfuscation-based applications. By
utilizing the reduction from any NP language to the subset-sum problem, WPRFs can handle
arbitrary NP languages. However, for applications of WPRFs whose functionalities rely on
Fsk(x) for x ∈ L, such as CCA-secure encryption, non-interactive key exchange, and hardcore
functions for any one-way function, the underlying NP languages have to be at least hard-on-
average. This is because these applications usually need the indistinguishability between x

R←− L
and x

R←− X\L to argue Fsk(x) is computationally pseudorandom for x
R←− L.

4

2 Preliminaries and Definitions

Notations. For a distribution or random variable X, we write x
R←− X to denote the operation

of sampling a random x according to X. For a set X, we use x
R←− X to denote the operation

of sampling x uniformly at random from X, and use |X| to denote its size. We write κ to
denote the security parameter through this paper, and all algorithms (including the adversary)
are implicitly given κ as input. We write poly(κ) to denote an arbitrary polynomial function
in κ. We write negl(κ) to denote an arbitrary negligible function in κ, which vanishes faster
than the inverse of any polynomial. We say a probability is overwhelming if it is 1 − negl(κ),
and said to be noticeable if it is 1/poly(κ). A probabilistic polynomial-time (PPT) algorithm
is a randomized algorithm that runs in time poly(κ). If A is a randomized algorithm, we write
z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r.
We will omit r and write z ← A(x1, . . . , xn). The statistical distance between two random
variables X and Y having a common domain Ω is ∆[X,Y] = 1

2

∑
ω∈Ω |Pr[X = ω]−Pr[Y = ω]|.

We also define the conditional statistical distance as ∆Z [X,Y] = 1
2

∑
ω∈Ω |Pr[X = ω|Z] −

Pr[Y = ω|Z]|. The min-entropy of a random variable X over domain Ω is defined as H∞ =
− log2(maxω∈Ω Pr[X = ω]).

2.1 Pseudorandom Functions

We first recap the definition of standard PRFs in order to compare it with PEPRFs more clearly.

Definition 2.1 (PRFs [GGM86]). A family of PRFs consists of three polynomial-time algo-
rithms as follows:

• Setup(κ): on input a security parameter κ, output public parameters pp = (F, SK,X, Y)
(the sets SK, X, and Y may be parameterized by κ), where F : SK × X → Y can be
viewed as a keyed function indexed by SK, namely F = {Fsk}sk∈SK .

• KeyGen(pp): on input pp, output a secret key sk ∈ SK.

• PrivEval(sk, x): on input sk and x ∈ X, output y ∈ Y . This algorithm is usually deter-
ministic.

Correctness: For any pp← Setup(κ), any sk ← KeyGen(pp), and any x ∈ X, it holds that:

Fsk(x) = PrivEval(sk, x).

Security: The standard security requirement for PRFs is pseudorandomness. LetA = (A1,A2)
be an adversary against PRFs and define its advantage as:

AdvA(κ) = Pr

b = b′ :

pp← Setup(κ);
sk ← KeyGen(pp);
state← A1(pp);
b← {0, 1};
b′ ← AOror(b,·)

2 (state);

− 1

2
,

where Oror(0, x) = Fsk(x), Oror(1, x) = H(x) (here H is chosen uniformly at random from all the
functions from X to Y 4). Note that A can adaptively access the oracle Oror(b, ·) polynomial
many times. We say that PRFs are pseudorandom if for any PPT adversary its advantage
function AdvA(κ) is negligible in κ. We refer to such security as full PRF security.

4To efficiently simulate access to a uniformly random function H from X to Y , one may think of a process in
which the adversary’s queries to Oror(1, ·) are “lazily” answered with independently and randomly chosen elements
in Y , while keeping track of the answers so that queries made repeatedly are answered consistently.

5

Sometimes the full PRF security is not needed and it is sufficient if the function cannot be
distinguished from a uniform random one when challenged on random inputs. The formalization
of such relaxed requirement is weak pseudorandomness (weak PRF security), which is defined
as the full PRF security except that the inputs of oracle Oror(b, ·) is uniformly chosen from X by
the challenger instead of adversarilly chosen by A. PRFs that satisfy weak pseudorandomness
are referred to as weak PRFs. In the remainder of this paper, we will focus on weak PRFs.

2.2 Secret-Coin vs. Public-Coin Weak PRFs

In the original syntax of PRFs, the input-sampling algorithm is not implicitly given. Note that in
the weak PRF security experiment the challenge points are sampled by the challenger, thus it is
convenient to explicitly introduce the input-sampling algorithm to obtain more refined security
notions for weak PRFs. Hereafter, let SampDom be an algorithm that takes as input random
coins r and outputs an element x ∈ X. Without loss of generality, we assume the distribution of
x induced by SampDom(r) conditioned on r

R←− R is statistically close to x
R←− X. Hence, in the

weak PRF security experiment the challenger can sample elements uniformly at random from
X by running SampDom with random coins r

R←− R. Depending on whether the random coins
r can be made public, weak PRFs are further divided into secret-coin and public-coin weak
PRFs [PS08]. Secret-coin weak PRFs require weak pseudorandomness holds if the random
coins are kept secret, whereas public-coin weak PRFs requires the weak pseudorandomness
holds even the random coins are made public. Clearly, whether a weak PRF is public-coin or
just secret-coin secure depends on the input-sampling algorithm.

3 Publicly Evaluable PRFs

Here we define PEPRFs. We begin with the syntax and then define the security.

Definition 3.1 (Publicly Evaluable PRFs). A family of PEPRFs consists of five polynomial-
time algorithms as below:

• Setup(κ): on input a security parameter κ, output public parameters pp which include
(F, PK, SK,X,L,W, Y), where F : SK×X → Y ∪⊥ could be viewed as a keyed function
indexed by SK, L is an NP language defined over X, and W is the set of associated
witnesses.

• KeyGen(pp): on input pp, output a secret key sk and an associated public key pk.5

• SampLan(r): on input random coins r, output a random x ∈ L along with a witness
w ∈W for x.

• PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈ W for x, output
y ∈ Y .

• PrivEval(sk, x): on input sk and x ∈ X, output y ∈ Y ∪ ⊥.

Correctness: For any pp← Setup(κ) and any (pk, sk)← KeyGen(pp), it holds that:

∀x ∈ X : Fsk(x) = PrivEval(sk, x)

∀x ∈ L with witness w : Fsk(x) = PubEval(pk, x, w)

5In standard PRF, it is also harmless to explicitly introduce public key, which includes the information
related to secret key that can be made public. For example, in the Naor-Reingold PRF [NR04] based on the

DDH assumption: F~a(x) = (ga0)
∏

xi=1 ai , where ~a = (a0, a1, . . . , an) ∈ Znp is the secret key, gai for 1 ≤ i ≤ n can
be safely published as the public key. If no information can be made public, one can always assume pk = {⊥}.

6

Security: Let A = (A1,A2) be an adversary against PEPRFs and define its advantage as:

AdvA(κ) = Pr

b = b′ :

pp← Setup(κ);
(pk, sk)← KeyGen(pp);

state← AOeval(·)
1 (pp, pk);

{(x∗i , w∗i)← SampLan(r∗i), r
∗
i

R←− R}p(κ)
i=1 ;

b← {0, 1};
b′ ← AOeval(·)

2 (state, {x∗i ,Oror(b, x
∗
i)}

p(κ)
i=1);

− 1

2
,

where p(κ) is any polynomial, Oeval(x) = Fsk(x), Oror(0, x) = Fsk(x), Oror(1, x) = H(x), and
A2 is not allowed to query Oeval(·) with any x∗i . We say that PEPRFs are adaptively weak-
pseudorandom if for any PPT adversary A its advantage function AdvA(κ) is negligible in κ.6

The adaptive weak-pseudorandomness captures the security against active adversaries, who
are given adaptive access to oracle Oeval(·). We also consider weak-pseudorandomness which
captures the security against static adversaries, who is not given access to oracle Oeval(·).

On the basis of previous works [BK03, BC10, HLAWW13], one can also define more advanced
security notions such as security against related-key attacks and leakage-resilience for PEPRFs.

Remark 3.1. Different from the standard PRFs, PEPRFs require the existence of an NP lan-
guage L ⊆ X and a public evaluation algorithm. Due to this strengthening on functionality, we
cannot hope to achieve full PRF security, and hence settling for weak PRF security is a natural
choice.7 Note that the weak PRF security implicitly requires that in the NP language L the
extraction of witness must be hard to extract on average. In fact, this requirement is strictly
weaker than the NP language L itself is hard on average, which is justified by the construction
in following example 3.1.

Remark 3.2. In some scenarios, it is more convenient to work with a definition that slightly
restricts an adversary’s power, but is equivalent to Definition 3.1. That is, p(κ) is fixed to 1.
Due to the existence of oracle Oeval(·), a standard hybrid argument can show that PEPRFs
secure under this restricted definition are also secure under Definition 3.1. In the remainder of
this paper, we will work with this restricted definition.

Example 3.1. As a warm-up, we present an illustrative construction of PEPRF. Let G be a
cyclic group of prime order p with canonical generator g, then define Fsk : G→ G as xsk, where
the secret key sk ∈ Zp and the public key pk = gsk ∈ G. A natural NP language L defined
over G is {x = gw : w ∈ Zp}, where the exponent w serves as a witness for x. For any x ∈ L,
one can publicly evaluate Fsk(x) via computing pkw. It is easy to verify that the PEPRFs are
weak-pseudorandom assuming the DDH assumption holds in G. Looking ahead, when applying
the construction shown in Section 4 to the PEPRFs, yields exactly the plain ElGamal PKE.

A possible relaxation. To be completely precise, it is not necessary to require the distribution
of x induced by SampLan(r) conditioned on r

R←− R is identical or statistically close to uniform.
Instead, it could be some other prescribed distribution χ. In this case, weak-pseudorandomness
extends naturally to χ-weak-pseudorandomness.

A useful generalization. In some scenarios, it is more convenient to work with a more
generalized notion in which we consider a collection of languages {Lpk}pk∈PK indexed by the

6The readers should not confuse with adaptive PRFs [BH12], where “adaptive” means that instead of deciding
the queries in advance, an adversary can adaptively make queries to Oror(b, ·) based on previous queries.

7In the full PRF security experiment the inputs of Oror(b, ·) are chosen by the adversary, thus it may know
the corresponding random coins and then evaluate Fsk(x∗) publicly.

7

public key rather than a fixed language L. Correspondingly, the sampling algorithm takes pk
as an extra input to sample a random element from Lpk. We refer to such generalized notion
as PEPRFs for public-key dependent languages, and we will work with it when constructing
adaptive PEPRF from hash proof system.

3.1 Relation to Secret-Coin and Public-Coin Weak PRFs

It is easy to see that PEPRFs naturally imply secret-coin weak PRFs by letting the input-
sampling algorithm simply run (x,w)← SampLan(r) and only output x. In fact, PEPRFs can
be viewed as a special case of secret-coin weak PRFs, where the weak PRF security completely
breaks down if the random coins used to sample the challenge inputs are revealed. Also, ev-
ery public-coin weak PRF is clearly a secret-coin weak PRF. We depict the relations among
secret-coin, public-coin, and publicly evaluable PRFs in Figure 2. On one hand, Pietrzak and
Sjödin [PS08] demonstrated that the existence of a secret-coin weak PRF which is not also
a public-coin weak PRF implies the existence of two pass key-agreement and thus two pass
public-key encryption. This result indicates that PEPRFs must be very artificial in Minicrypt.
On the other hand, as we will see shortly, PEPRFs admit a black-box construction of PKE,
which implies that PEPRFs are strictly stronger than PRFs (in a black-box sense). The results
from the above two hands agree with each other.

Interestingly, secret-coin PRFs can be intuitively constructed from PEPRFs and public-coin
PRFs. Suppose {Gsk1 : X1 → Y1}sk1∈SK1 is a public-coin PRF and {Hsk2 : X2 → Y2}sk2∈SK2

is a PEPRF, then {Fsk1,sk2(x1, x2) := (Gsk1(x1),Hsk2(x2))} constitutes a secret-coin PRF from
X1 ×X2 to Y1 × Y2 indexed by SK1 × SK2.

weak PRFs

publicly evaluable
PRFs

secret-coin weak
PRFs

public-coin weak
PRFs

Figure 2: Relations among secret-coin, public-coin, and publicly evaluable PRFs.

4 KEM from Publicly Evaluable PRFs

In this section, we present a simple and black-box construction of KEM from PEPRFs. For
compactness, we refer the reader to Appendix A.1 for the definition and security notion of KEM.

• Setup(κ): run PRF.Setup(κ) to generate pp as public parameters.

• KeyGen(pp): run PRF.KeyGen(pp) to generate (pk, sk).

• Encap(pk; r): run PRF.SampLan(r) to generate a random x ∈ L with a witness w ∈ W
for x, set x as the ciphertext c and compute PRF.PubEval(pk, x, w) as the DEM key k,
output (c, k).

• Decap(sk, c): output PRF.PrivEval(sk, c).

8

Correctness of the above KEM construction follows immediately from correctness of PEPRFs.
For security, we have the following results:

Theorem 4.1. The KEM is CPA-secure if the underlying PEPRFs are weak-pseudorandom.

Proof. The proof is rather straightforward, which transforms an adversary A against IND-CPA
security of the KEM to a distinguisher B against weak-pseudorandomness of PEPRFs. We
proceed via a single game.

Game CPA: B receives (pp, pk) of PEPRFs, then simulates A’s challenger in the IND-CPA
experiment as follows:

Setup: B sends (pp, pk) to A.

Challenge: B receives (x∗, y∗) from its own challenger, where (x∗, w∗) ← PRF.SampLan(r∗)
and y∗ is either Fsk(x

∗) or randomly picked from Y . B sends (x∗, y∗) to A as the challenge.

Guess: A outputs its guess b′ for b and B forwards b′ to its own challenger.

Clearly, A’s view in the above game is identical to that in the real IND-CPA experiment.
Therefore, B can break weak-pseudorandomness of PEPRFs with advantage at least AdvCPA

A (κ).
This concludes the proof.

Theorem 4.2. The KEM is CCA-secure if the PEPRFs are adaptively weak-pseudorandom.

Proof. The proof is also straightforward, which transforms an adversary A against IND-CCA
security of the KEM construction to a distinguisher B against adaptive weak-pseudorandomness
of PEPRFs. We proceed via a single game.

Game CCA: B receives (pp, pk) of PEPRFs, then simulates A’s challenger in the IND-CCA
experiment as follows:

Setup: B sends (pp, pk) to A.

Phase 1 - Decapsulation queries: on decapsulation query 〈x〉, B submits evaluation query
on point x to its own challenger and forwards the reply to A.

Challenge: B receives (x∗, y∗) from its own challenger, where (x∗, w∗)← PRF.Sample(r∗) and
y∗ is either Fsk(x

∗) or randomly picked from Y . B sends (x∗, y∗) to A as the challenge.

Phase 2 - Decapsulation queries: same as in Phase 1 except that the decapsulation query
〈x∗〉 is not allowed.

Guess: A outputs its guess b′ for b and B forwards b′ to its own challenger.

Clearly, A’s view in the above game is identical to that in the real IND-CCA experiment.
Therefore, B can break the adaptively weak-pseudorandomness of PEPRFs with advantage at
least AdvCCA

A (κ). This concludes the proof.

The above results also hold if the underlying PEPRFs are (adaptively) χ-weak-pseudorandom.

5 Connection to Hash Proof System

Hash proof system (HPS) was introduced by Cramer and Shoup [CS02] as a paradigm of con-
structing PKE from a category of decisional problems, named subset membership problems. As
a warm up, we first recall the notion of HPS and then show how to construct PEPRFs from it.

Hash Proof System. HPS consists of the following algorithms:

9

• Setup(κ): on input a security parameter κ, output public parameters pp which includes
an HPS instance (Λ, SK, PK,X,L,W,Π, α), where Λ : SK ×X → Π can be viewed as a
keyed function indexed by SK, L is an NP language defined over X, W is the associated
witness set, and α is a projection from SK to PK.

• KeyGen(pp): on input pp, pick sk
R←− SK, compute pk ← α(sk), output (pk, sk).

• Sample(r): on input random coins r, output a random x ∈ L together with a witness w.

• Sample′(r): on input random coins r, output a random x ∈ X\L.

• Priv(sk, x): on input sk and x, output π such that π = Λsk(x).

• Pub(pk, x, w): on input pk and x ∈ L together with a witness w for x, output π such that
π = Λsk(x).

Following [CS02, KPSY09] we define the following properties and results as below.

Definition 5.1 (sampling indistinguishable). The two distributions induced by Sample and
Sample′ are computationally indistinguishable based on the hardness of the underlying subset
membership problem.

The following notions capture a rich set of properties for Λ on input x ∈ X\L.

Definition 5.2 (collision probability). The collision probability of projective hash Λ is defined
as:

δ = max
x,x∗∈X\L,x 6=x∗

(Pr
sk

[Λsk(x) = Λsk(x
∗)]).

Definition 5.3 (universal1). The projective hash Λ is ε-universal1 if for all x ∈ X\L,

∆[(pk,Λsk(x)), (pk, π)] ≤ ε,

where in the above sk
R←− SK conditioned on α(sk) = pk and π

R←− Π.

[CS02] introduced the following relaxation of the universal1 property which only requires
that it holds in the average case.

Definition 5.4 (smooth). The projective hash Λ is ε-smooth if for x
R←− X\L,

∆[(pk,Λsk(x)), (pk, π)] ≤ ε,

where in the above sk
R←− SK conditioned on α(sk) = pk and π

R←− Π.

[KPSY09] introduced another relaxation of the universal1 property which only requires that
for all x ∈ X\L, given pk = α(sk), Hsk(x) has high min-entropy.

Definition 5.5 (k-entropic). The projective hash Λ is ε-k-entropic if for all x ∈ X\L,

Pr[H∞(Λsk(x)|pk) ≥ k] ≥ 1− ε

where in the above sk
R←− SK conditioned on α(sk) = pk.

Lemma 5.1 ([KPSY09]). Every ε-universal1 projective hash is ε-k-entropic, for k = log2 |Π|.

Definition 5.6 (universal2). The projective hash Λ is ε-universal2 if for all x, x∗ ∈ X\L with
x 6= x∗,

∆[(pk,Λsk(x
∗),Λsk(x)), (pk,Λsk(x

∗), π)] ≤ ε

where in the above sk
R←− SK conditioned on α(sk) = pk and π

R←− Π.

10

A Generic Transform from k-entropic to universal2 HPSs. The following transformation
was given in [KPSY09]. Given a HPS with projective hash Λ : SK×X → Π regarding projection
α : SK → PK and a family of functions H = {H : Π→ {0, 1}`}, we can define its hashed variant
HPSH with projective hash ΛH : SKH × X → {0, 1}` regarding αH : SKH → PKH where
PKH = PK ×H, SKH = SK ×H, ΛH((sk,H), x) = H(Λ(sk, x)) and αH(sk,H) = (α(sk),H).
Note that X and L are the same for HPS and HPSH .

Theorem 5.2 ([KPSY09]). Assume HPS is ε1 k-entropic with collision probability δ ≤ 1/2 and
H = {H : Π → {0, 1}`} (where ` ≥ 6) is a family of 4-wise independent hash functions, then
HPSH is ε2-universal2 for:

ε2 = 2`−
κ−1
2 + 3ε1 + δ

It is easy to see that universal2 property implies universal1 property, while universal1 prop-
erty further implies smooth property. In the designing of CCA-secure PKE, the universal2
property is necessary since the input x∗ of universal2 hash might be dependent on the target
message choice of adversary. While in the designing of KEM, x∗ totally comes from the chal-
lenge instance of external decisional problem, therefore, it is possible to weaken the universal2
property. Of independent interest, we formalize weak-universal2 property as follows:

Definition 5.7 (weak-universal2). The projective hash Λ is ε-weak-universal2 if for x∗
R←− X\L

and all x ∈ X\L with x 6= x∗,

∆[(pk,Λsk(x
∗),Λsk(x)), (pk,Λsk(x

∗), π)] ≤ ε,

where in the above sk
R←− SK conditioned on α(sk) = pk and π

R←− Π.

5.1 Construction from Smooth HPS

From smooth HPS, we construct weak-pseudorandom PEPRFs as follows:

• Setup(κ): on input a security parameter κ, run HPS.Setup(κ) to generate an HPS instance
(Λ, PK, SK,X,L,Π, α), then produces public parameters pp = (F, PK, SK,X,L,W, Y)
for PEPRFs from it, where F = Λ, Y = Π. We assume the public parameters pp of HPS
and PEPRFs contain essentially the same information.

• KeyGen(pp): on input pp, output (pk, sk)← HPS.KeyGen(pp).

• SampLan(r): on input r, output (x,w)← HPS.Sample(r).

• PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈ W for x, output
y ← HPS.Pub(pk, x, w).

• PrivEval(sk, x): on input sk and x ∈ X, output y ← HPS.Priv(sk, x).

The algorithm HPS.Sample′ is not used in the construction, but it is crucial to establish the
security. We have the following theorem of the above construction.

Theorem 5.3. If the underlying subset membership problem is hard, then the PEPRFs from
smooth HPS are weak-pseudorandom.

Proof. The proof is similar to [CS02]. To establish the weak-pseudorandomness based on the
properties of smooth HPS and the hardness of underlying subset membership problem, we
proceed via a sequence of games. Let Si be the event that A outputs the right guess in Game i.

Game 0: CH interacts with A in the weak-pseudorandomness game for PEPRFs as follows:

• Setup: CH runs HPS.Setup(κ) to build public parameters pp for PEPRFs, then runs
HPS.KeyGen(pp) to generate public/secret key pair (pk, sk). CH gives (pp, pk) to A.

11

• Challenge: CH picks r∗
R←− R, sets (x∗, w∗) ← HPS.Sample(r∗), then computes π∗ ←

Λsk(x
∗) via HPS.Pub(pk, x∗, w∗), sets y∗0 = π∗, picks y∗1

R←− Y , picks a random bit b ∈
{0, 1}, then sends (x∗, y∗b) to A as the challenge.

• Guess: A outputs its guess b′ and wins if b′ = b.

According to the definition of A, we have:

AdvA(κ) = |Pr[S0]− 1/2| (1)

Game 1: same as Game 0 except that in the challenge stage CH computes π∗ ← Λsk(x
∗) via

HPS.Priv(sk, x∗). According to the functionality of Priv and Pub, this change is perfectly hidden
from the adversary. Thus, we have:

Pr[S1] = Pr[S0] (2)

Game 2: same as Game 1 except that in the challenge stage CH samples x∗ via algorithm
HPS.Sample′ instead of HPS.Sample. The sampling indistinguishability (based on the hardness
of the subset membership problem) ensures that:

|Pr[S2]− Pr[S1]| ≤ negl(κ) (3)

Game 3: same as Game 2 except that in the challenge stage x∗ is set as π′, where π′
R←− Π. It

now follows directly from the ε-smooth property of HPS that:

|Pr[S3]− Pr[S2]| ≤ ε (4)

It is evident from the definition of Game 3 that A’s output b′ is independent of the hidden bit
b, therefore:

Pr[S3] = 1/2 (5)

Putting all these above, the theorem immediately follows.

5.2 Construction from Smooth and Weak-Universal2 HPS

From smooth HPS and associated weak-universal2 HPS, we can construct adaptively weak-
pseudorandom PEPRFs as follows:

• Setup(κ): on input a security parameter κ, run HPS1.Setup(κ) to generate a smooth
HPS instance pp1 = (Λ1, PK1, SK1, X̃, L̃, W , Π1, α1), run HPS2.Setup(κ) to generate
a weak-universal2 HPS instance pp2 = (Λ2, PK2, SK2, X̃, L̃, W , Π2, α2), then build
public parameters pp = (F, PK, SK,X,L,W, Y) for PEPRFs from pp1 and pp2, where
X = X̃ × Π2, Y = Π1 ∪ ⊥, PK = PK1 × PK2, SK = SK1 × SK2, F, L, and W will
be defined later. We assume the two HPSs share a common sampling algorithm and
pp = pp1 ∪ pp2.

• KeyGen(pp): on input pp = pp1 ∪ pp2, run HPS1.KeyGen(pp1) and HPS2.KeyGen(pp2) to
get (pk1, sk1) and (pk2, sk2) respectively, output pk = (pk1, pk2), sk = (sk1, sk2).

• SampLan(pk; r): on input pk = (pk1, pk2) and random coins r, run (x̃, w)← HPS1.Sample(r),
compute π2 ← HPS2.Pub(pk2, x̃, w). This sampling algorithm defines a collection of lan-
guage L = {Lpk}pk∈PK over X = X̃ × Π2 where each Lpk = {(x̃, π2) : x̃ ∈ L̃ ∧ π2 =
HPS2.Pub(pk2, x̃, w)}. It is easy to see that a witness w for x̃ ∈ L̃ is also a witness for
x = (x̃, π2) ∈ Lpk.

12

• PubEval(pk, x, w): on input pk = (pk1, pk2) and an element x = (x̃, π2) ∈ Lpk together
with a witness w, output y ← HPS1.Pub(pk1, x̃, w).

• PrivEval(sk, x): on input sk = (sk1, sk2) and x = (x̃, π2), output y ← HPS1.Priv(sk1, x̃) if
π2 = HPS2.Priv(sk2, x̃) and ⊥ otherwise.

We have the following theorem of the above construction.

Theorem 5.4. If the underlying subset membership problem is hard, then the PEPRFs from
smooth and weak-universal2 HPSs are adaptively weak-pseudorandom.

Proof. The proof is similar to [CS02]. To base adaptively weak-pseudorandomness on the prop-
erties of smooth and weak-universal2 HPSs and the hardness of underlying subset membership
problem, we proceed via a sequence of games. Let Si be the event that A outputs the right
guess in Game i.

Game 0: CH interacts with A in the adaptively weak-pseudorandomness game for PEPRFs as
follows:

• Setup: CH runs HPS1.Setup(κ) and HPS2.Setup(κ) to generate a smooth HPS instance
pp1 and a weak-universal2 HPS instance pp2 respectively, then builds public parameters
pp for PEPRFs from pp1 and pp2. CH then runs (pk1, sk1) ← HPS1.KeyGen(pp1) and
(pk2, sk2) ← HPS2.KeyGen(pp2), sets pk = (pk1, pk2) and sk = (sk1, sk2). CH sends
(pp, pk) to A as the challenge.

• Phase 1 - Evaluation query: When A queries the PRF value at point x, CH responds
normally with sk = (sk1, sk2). More precisely, CH parses x as (x̃, π2), then responds with
Λ1
sk1

(x̃) if Λ2
sk2

(x̃) = π2 and ⊥ otherwise.

• Challenge: CH picks r∗
R←− R, sets (x̃∗, w∗)← HPS1.Sample(r∗), computes π∗2 = Λ2

sk2
(x̃∗)

via HPS2.Pub(pk2, x̃
∗, w∗), sets x∗ = (x̃∗, π∗2). CH then computes π∗1 = Λ1

sk1
(x̃∗) via

HPS1.Pub(pk1, x̃
∗, w∗), sets y∗0 = π∗1, samples y∗1

R←− Y , picks a random bit b ∈ {0, 1}, and
sends (x∗, y∗b) to A as the challenge.

• Phase 2 - Evaluation query: same as in Phase 1 except that the query 〈x∗〉 is not allowed.

• Guess: A outputs its guess b′ and wins if b′ = b.

According to the definition of A, we have:

AdvA(κ) = |Pr[S0]− 1/2| (6)

Game 1: same as Game 0 except that in the challenge stage CH computes π∗2 = Λ2
sk2

(x̃∗)
via HPS2.Priv(sk2, x̃

∗) and computes π∗1 = Λ1
sk1

(x̃∗) via HPS1.Priv(sk2, x̃
∗). According to the

functionality of HPS.Priv and HPS.Pub, this change is perfectly hidden from A. Thus, we have:

Pr[S1] = Pr[S0] (7)

Game 2: same as Game 1 except that in the challenge stage CH samples x̃∗ via algorithm
HPS.Sample′ instead of HPS.Sample. The sampling indistinguishability (based on the hardness
of the subset membership problem) ensures that:

|Pr[S2]− Pr[S1]| ≤ negl(κ) (8)

Game 3: same as Game 2 except that when answering decapsulation queries 〈x〉 where x =
(x̃, π2), CH returns ⊥ when x̃ /∈ L̃ even Λ2

sk2
(x̃) = π2. For the ease of analysis, we denote by E

the event that A submits some evaluation queries 〈x〉 where x = (x̃, π2) such that x̃ /∈ L but

13

Λ2
sk2

(x̃) = π2. According to the weak-universal2 property of HPS2, we have Pr[E] ≤ Qε, where
Q is the maximum number of PRF evaluation queries that A may make. Since ε is negligible
in κ, we have:

|Pr[S3]− Pr[S2]| ≤ Pr[E] ≤ negl(κ)

Game 4: same as Game 3 except that in the challenge stage y∗0 is set as π′1, where π′1
R←− Π1.

Now, let us condition on a fixed value of pk2, b, and A’s random coins. In this conditional
probability space, since the action of Λ1

sk1
on L̃ is determined by pk1, and all decapsulation

queries x = (x̃, π2) with x̃ ∈ L̃ will be rejected, it follows that A’s view in Game 3 is completely
determined as a function of x̃∗, pk1, and π∗1, while A’s view in Game 4 is determined as the same
function of x̃∗, pk1, and π′1. Moreover, by independence, the joint distributions of (x̃∗, pk1, π

∗
1)

and (x̃∗, pk1, π
′
1) do not change in passing from the original probability space to the conditional

probability space. It now follows directly from the ε-smooth property of HPS1, we have:

|Pr[S4]− Pr[S3]| ≤ ε

It is evident from the definition of Game 4 that A’s output b′ is independent of the hidden bit
b; therefore,

Pr[S4] = 1/2

Putting all these above, the theorem immediately follows.

5.3 Construction from Universal1 HPS

From a universal1 HPS, we can construct adaptively weak-pseudorandom PEPRFs as follows:

• Setup(κ): on input a security parameter κ, run HPS.Setup(κ) to generate a universal1 HPS
instance pp =(Λ, ˜PK, ˜SK, X̃, L̃, W , Π, α), then use the transformation described above
to obtain a universal2 HPSH , where H is a family of 4-wise independent hash functions
from Π to ΠH = {0, 1}`; then build public parameters pp = (F, PK, SK,X,L,W, Y) for
PEPRFs from pp and H, where X = X̃×ΠH , Y = Π∪⊥, PK = ˜PK×H, SK = ˜SK×H,
F, L, and W will be defined later.

• KeyGen(pp): on input pp, run HPS.KeyGen(pp) to get (p̃k, s̃k), pick H
R←− H, set pk =

(p̃k,H), sk = (s̃k,H), output (pk, sk).

• SampLan(pk; r): on input pk = (p̃k,H) and random coins r, run (x̃, w)← HPS.Sample(r),
compute πH ← H(HPS.Pub(p̃k, x̃, w)). This sampling algorithm defines a collection of
language L = {Lpk}pk∈PK over X = X × ΠH where each Lpk = {(x̃, πH) : x̃ ∈ L̃ ∧ πH =
H(HPS.Pub(p̃k, x̃, w))}. It is easy to see that a witness w for x̃ ∈ L̃ is also a witness for
x = (x̃, πH) ∈ Lpk.
• PubEval(pk, x, w): on input pk = (p̃k,H) and an element x = (x̃, πH) ∈ Lpk together with

a witness w, output y ← H(HPS.Pub(p̃k, x̃, w)).

• PrivEval(sk, x): on input sk = (s̃k,H) and x = (x̃, πH), output y ← HPS.Priv(s̃k, x̃) if
πH = H(HPS.Priv(s̃k, x̃)) and ⊥ otherwise.

In the above construction, we implicitly build HPSH , which is universal2 according to Theo-
rem 5.2. We have the following theorem of the above construction.

Theorem 5.5. If the underlying subset membership problem is hard, then the PEPRFs from
universal1 HPS are adaptively weak-pseudorandom.

14

Proof. The proof is similar as that in section 5.2. To base adaptively weak-pseudorandomness
on the properties universal1 HPS and the hardness of underlying subset membership problem,
we proceed via a sequence of games. Let Si be the event that A outputs the right guess in
Game i.

Game 0: CH interacts with A in the adaptively weak-pseudorandomness game for PEPRFs as
follows:

• Setup: CH runs HPS.Setup(κ) to generate a universal1 HPS instance pp and chooses
a family of 4-wise independent hash functions H from Π to {0, 1}`, then builds public
parameters pp for PEPRFs from pp and H. CH then runs (p̃k, s̃k) ← HPS.KeyGen(pp)

picks H
R←− H, sets pk = (p̃k,H) and sk = (s̃k,H). CH sends (pp, pk) to A as the challenge.

• Phase 1 - Evaluation query: When A queries the PRF value at point x, CH responds
normally with sk = (s̃k,H). More precisely, CH parses x as (x̃, πH), then responds with
Λs̃k(x̃) if H(Λs̃k(x̃)) = πH and ⊥ otherwise.

• Challenge: CH picks r∗
R←− R, sets (x̃∗, w∗)← HPS.Sample(r∗), computes πH

∗
= H(Λs̃k(x̃

∗))

via H(HPS.Pub(p̃k, x̃∗, w∗)), sets x∗ = (x̃∗, πH∗). CH then computes π∗ = Λs̃k(x̃
∗) via

HPS.Pub(p̃k, x̃∗, w∗), sets y∗0 = π∗, samples y∗1
R←− Y , picks a random bit b ∈ {0, 1}, and

sends (x∗, y∗b) to A as the challenge.

• Phase 2 - Evaluation query: same as in Phase 1 except that the query 〈x∗〉 is not allowed.

• Guess: A outputs its guess b′ and wins if b′ = b.

According to the definition of A, we have:

AdvA(κ) = |Pr[S0]− 1/2| (9)

Game 1: same as Game 0 except that in the challenge stage CH computes πH∗ = H(Λs̃k(x̃
∗))

via H(HPS.Priv(s̃k, x̃∗)) and computes y∗0 = Λs̃k(x̃
∗) via HPS.Priv(s̃k, x̃∗). According to the

functionality of HPS.Priv and HPS.Pub, this change is perfectly hidden from A. Thus, we have:

Pr[S1] = Pr[S0] (10)

Game 2: same as Game 1 except that in the challenge stage CH samples x̃∗ via algorithm
HPS.Sample′ instead of HPS.Sample. The sampling indistinguishability (based on the hardness
of the subset membership problem) ensures that:

|Pr[S2]− Pr[S1]| ≤ negl(κ) (11)

Game 3: same as Game 2 except that when answering evaluation queries 〈x〉 where x = (x̃, πH),
CH returns ⊥ when x̃ /∈ L̃ even H(Λs̃k(x̃)) = πH . For the ease of analysis, we denote by E
the event that A submits some evaluation queries 〈x〉 where x = (x̃, πH) such that x̃ /∈ L but
H(Λs̃k(x̃)) = πH . According to the universal2 property of HPSH , we have Pr[E] ≤ Qε, where
Q is the maximum number of PRF evaluation queries that A may make. Since ε is negligible
in κ, we have:

|Pr[S3]− Pr[S2]| ≤ Pr[E] ≤ negl(κ)

Game 4: same as Game 3 except that in the challenge stage y∗0 is set as π′, where π′
R←− Π. The

rest reasoning is similar as that presented in 5.2. It now follows directly from the ε1-universal1
property of HPS, we have:

|Pr[S4]− Pr[S3]| ≤ ε1
It is evident from the definition of Game 4 that A’s output b′ is independent of the hidden bit
b; therefore,

Pr[S4] = 1/2

15

Putting all these above, the theorem immediately follows.

Remark 5.1. Construction 5.1 is straightforward, while the construction 5.2 and construction 5.3
are technical involved. The basic idea underlying the latter two constructions are similar as
the CCA-secure PKE from smooth plus universal2 HPSs [CS02]. That is, using a weak HPS to
generate a random DEM key, while using a strong HPS to eliminate “dangerous” decapsulation
queries. As we analyzed above, the minimum requirement for the weak HPS is smoothness,
while the minimum requirement for the strong HPS is weak-universal2. The advantage of
construction 5.2 is that both HPSs are case-tailored, while the disadvantage is that we have
to assume there exists a strong HPS sharing the same X and L as that of the weak HPS. On
the contrary, the advantage of construction 5.3 is that we can start from a weak HPS and then
transform it into a strong one, while the disadvantage is that the weak HPS has to be universal1,
which is strictly stronger than smooth. It seems to us that the generic transformation [KPSY09]
cannot convert a smooth HPS into a universal2 one, or even weak-universal2 one.

6 Connection to Extractable Hash Proof System

Extractable hash proof system (EHPS) was introduced by Wee [Wee10] as a paradigm of con-
structing PKE from search problems. In the following, we recall the notion of EHPS and then
show how to construct PEPRF from it.

Extractable Hash Proof System. EHPS consists of a tuple of algorithms (Setup, KeyGen,
KeyGen′, Pub, Priv, Ext) as below:

• Setup(κ): on input a security parameter κ, output public parameters pp which include an
EHPS instance (H, PK, SK, S, U,Π), where H : PK × U → Π can be viewed as a keyed
function indexed by PK. Let hc(·) : S → {0, 1}l be a hardcore function for one-way
binary relation R over S ×U . We say that R is efficiently verifiable if there is an efficient
algorithm Vefy that on input (s, u) outputs true iff (s, u) ∈ R. We say that an EHPS is
publicly checkable if there is an algorithm Check that on input (pk, u, π) outputs true iff
π = Hpk(u).

• KeyGen(pp): on input public parameters pp, output a key pair (pk, sk).

• KeyGen′(pp): on input public parameters pp, output a key pair (pk, sk′).

• Sample(r): on input random coins r, output a random tuple (s, u) ∈ R, where s can be
viewed as pre-image of u. For our purpose, we further decompose algorithm Sample to
SampLeft and SampRight. The former on input random coins r outputs s ∈ S, while
the latter on input random coins r outputs u ∈ U . For all r ∈ R, we require that
(SampLeft(r), SampRight(r)) ∈ R.

• Pub(pk, r): on input pk and r, output π = Hpk(u) where u = SampRight(r).

• Priv(sk′, u): on input sk′ and u ∈ U , output π = Hpk(u).

• Ext(sk, u, π): on input sk, u ∈ U , and π ∈ Π, output s ∈ S such that (s, u) ∈ R if and
only if π = Hpk(u).

In EHPS, KeyGen′ and Priv work in the hashing mode, which are only used to establish security.
EHPS satisfies the following property:

Definition 6.1 (Indistinguishable). The first outputs (namely pk) of KeyGen and KeyGen′ are
statistically indistinguishable.

All-but-One Extractable Hash Proof System. All-but-one (ABO) EHPS is a richer
abstraction of EHPS, besides algorithms (Setup, KeyGen, KeyGen′, Pub, Priv, Ext), it has an
additional algorithm Ext′.

16

• KeyGen′(pp, u∗): on input public parameter pp and an arbitrary u∗ ∈ U , output a key pair
(pk, sk′).

• Ext′(sk′, u, π): on input sk′, u ∈ U such that u 6= u∗, and π ∈ Π, output s ∈ S such that
(s, u) ∈ R if and only if π = Hpk(u).

In ABO EHPS, KeyGen′, Priv, and Ext′ work in the ABO hashing mode, which are only used
to establish security. All-but-one EHPS satisfies the following property:

Definition 6.2 (Indistinguishable). For any u∗ ∈ U , the first output (namely pk) of KeyGen
and KeyGen′ are statistically indistinguishable.

6.1 Construction from (All-But-One) EHPS

From (ABO) EHPS, we construct PEPRFs as follows:

• Setup(κ): on input κ, run EHPS.Setup(κ) to generate an EHPS instance (H, PK, SK,
S, U , Π), and build public parameters pp = (F, PK, SK,X,L,W, Y) for PEPRFs from
it, where X = U × Π, Y = {0, 1}l, F , L, and W will be defined later. We assume the
publicly parameters pp of PEPRF and EHPS essentially contain same information.

• KeyGen(pp): on input pp, output (pk, sk)← EHPS.KeyGen(pp).

• SampLan(r): on input r, compute u ← EHPS.SampRight(r), and π ← EHPS.Pub(pk, r),
output x = (u, π) and w = r. This algorithm defines a language L = {(u, π) : u ∈
U ∧ π = Hpk(u)} over X, where the random coins r used to sample u serves as a witness
for x = (u, π) ∈ L. Note the witness set W is exactly the randomness space R used by
EHPS.Sample.

• PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈ W for x, compute
s← EHPS.SampLeft(w), output y ← hc(s).

• PrivEval(sk, x): on input sk and x, parse x as (u, π), compute s ← EHPS.Ext(sk, u, π),
output y ← hc(s). This algorithm defines Fsk(x) as hc(Ext(sk, x)).

We have the following two theorems about the above construction.

Theorem 6.1. If the underlying binary relation R is one-way, then the PEPRFs from EHPS
are weak-pseudorandom.

Proof. The proof is similar to [Wee10]. To establish the weak pseudorandomness based on the
properties of EHPS and one-wayness of R, we proceed via a sequence of games. Let Si be the
event that A outputs the right bit in Game i.

Game 0: CH interacts with A in the weak-pseudorandomness game for PEPRFs by operating
EHPS in the extraction mode.

• Setup: CH runs EHPS.Setup(κ) to generate public parameters pp for PEPRFs, runs
EHPS.KeyGen(pp) to generate (pk, sk). CH sends (pp, pk) to A.

• Challenge: CH picks random coins r∗
R←− R, samples s∗ ← EHPS.SampLeft(r∗) and u∗ ←

EHPS.SampRight(r∗), computes π∗ = Hpk(u
∗) via EHPS.Pub(pk, r∗), sets x∗ = (u∗, π∗),

computes y∗0 ← hc(s∗), picks y∗1
R←− {0, 1}l. CH picks a random bit b ∈ {0, 1}, sends

(x∗, y∗b) to A.

• Guess: A outputs its guess b′ and wins if b = b′.

According to the definition, we have:

AdvA(κ) = |Pr[S0]− 1/2| (12)

17

Game 1: same as Game 0 except that CH prepares the challenge at the setup stage: picks r∗
R←−

R, runs EHPS.SampLeft(r∗) and EHPS.SampRight(r∗) to obtain (s∗, u∗), and then computes
π∗ = Hpk(x

∗) via EHPS.Pub(pk, r∗). This change is only conceptual, thus we have:

Pr[S1] = Pr[S0] (13)

Game 2: CH interacts with A in the weak pseudorandomness game for PEPRFs by oper-
ating EHPS in the hashing mode. The differences to Game 1 are that in the setup phase,
CH runs EHPS.KeyGen′(pp) to generate (pk, sk′) and prepares the value π∗ = Hpk(u

∗) via
EHPS.Priv(sk′, u∗). According to indistinguishability between KeyGen(pp) and KeyGen′(pp) as
well as the correctness of the hashing mode, we have:

Pr[S2] = Pr[S1] (14)

We then show that no PPT adversary has non-negligible advantage in Game 2. We prove
this by showing that if such an adversary A exists, then we can construct an algorithm B that
breaks the one-wayness of the underlying binary relation with non-negligible advantage. Given
(y∗, u∗), B determines if b = 0 (meaning that y∗ = hc(s∗) where (s∗, u∗) ∈ R) or b = 1 (meaning
that y∗ is randomly picked from {0, 1}l). B simulates A’s challenger in Game 3 as follows:

• Setup: B runs EHPS.Setup(κ) to generate public parameters pp, runs EHPS.KeyGen′(pp)
to generate (pk, sk′), computes π∗ = Hpk(u

∗) via EHPS.Priv(sk′, u∗), then sends (pp, pk)
to A.

• Challenge: B sets x∗ = (u∗, π∗), sends (x∗, y∗) to A as the challenge.

• Guess: A outputs its guess b′ and B forwards b′ to its own challenger.

Clearly, B’s simulation is perfect. Therefore, we have:

AdvB(κ) = |Pr[S2]− 1/2| = AdvA(κ) (15)

The theorem immediately follows.

Theorem 6.2. If the underlying binary relation R is one-way, then the PEPRFs from ABO
EHPS are adaptively weak-pseudorandom.

Proof. The proof follows immediately from [Wee10]. To base adaptively weak-pseudorandomness
of PEPRFs on the properties of EHPS and one-wayness of R, we proceed via a sequence of games.
Let Si be the event that A outputs the right guess in Game i.

Game 0: CH interacts with A in the adaptively weak pseudorandomness game for PEPRFs
by operating the ABO EHPS in the extraction mode.

• Setup: CH runs EHPS.Setup(κ) to generate public parameters pp for PEPRFs, then runs
EHPS.KeyGen(pp) to generate (pk, sk). CH sends (pp, pk) to A.

• Phase 1 - Evaluation queries: When A issues evaluation query at point x, CH parses x as
(u, π) then computes s← EHPS.Ext(sk, u, π) and responds with hc(s).

• Challenge: CH picks random coins r∗
R←− R, samples s∗ ← EHPS.SampLeft(r∗) and u∗ ←

EHPS.SampRight(r∗), computes π∗ = Hpk(u
∗) via EHPS.Pub(pk, r∗), sets x∗ = (u∗, π∗),

computes y∗0 ← hc(s∗), and picks y∗1
R←− {0, 1}l. CH then picks a random bit b ∈ {0, 1},

sends (x∗, y∗b) to A as the challenge.

• Phase 2 - Evaluation queries: same as in Phase 1 except that the query for x∗ is not
allowed.

18

• Guess: A outputs its guess b′ and wins if b = b′.

According to the definition of A, we have:

AdvA(κ) = |Pr[S0]− 1/2|

Game 1: The same as Game 0 except that CH prepares the challenge at the setup stage:
picks r∗

R←− R, runs EHPS.SampLeft(r∗) and EHPS.SampRight(r∗) to obtain (s∗, u∗), and then
computes π∗ ← Hpk(u

∗) via EHPS.Pub(pk, r∗). This change is only conceptual, thus we have:

Pr[S1] = Pr[S0]

Game 2: The same as Game 1 except that CH will abort if A issues evaluation query at point
x∗ = (u∗, π∗) in Phase 1. We denote the event as F . Suppose Q1 is the maximum evaluation
queries that A may make in Phase 1. Note that u∗ is totally hidden from A in Phase 1, thus
we have Pr[F] ≤ Q1/|X| ≤ negl(κ). By the difference lemma, we have:

|Pr[S2]− Pr[S1]| ≤ Pr[E] ≤ negl(κ)

Game 3: CH interacts with A in the security experiment for PEPRFs by operating the ABO
EHPS in the ABO hashing mode.

• Setup: same as in Game 2 except that CH runs EHPS.KeyGen′(pp, u∗) to generate (pk, sk′)
and prepares the value π∗ ← Hpk(u

∗) via EHPS.Pub(sk′, u∗).

• Phase 1 - Evaluation queries: When A issues evaluation query at point x = (u, π), CH
responds as follows:

– If x = x∗, then CH aborts.

– If u 6= u∗ then computes s = EHPS.Ext′(sk′, u, π), and responds with hc(s).

– If u = u∗ but π 6= π∗, CH responds with ⊥.

• Challenge: CH computes y∗0 = hc(s∗) and picks y∗1 ← {0, 1}l, then picks a random bit
b ∈ {0, 1} and sends (x∗, y∗b) to A as the challenge.

• Phase 2 - Evaluation queries: The same as in Phase 1 except that the evaluation query
at point x∗ is not allowed.

• Guess: A outputs its guess b′ and wins if b′ = b.

According to the indistinguishability between KeyGen(pp) and KeyGen′(pp, x∗) and the correct-
ness of the ABO hashing mode, we have:

Pr[S3] = Pr[S2] (16)

We then show that no PPT adversary has non-negligible advantage in Game 3. We prove this
by showing that if such an adversary A exists, then we can construct an algorithm B that can
break the one-wayness of the underlying binary relation with non-negligible advantage. Given
(y∗, u∗), B is asked to determine if b = 0 (meaning that y∗ = hc(s∗) where (s∗, u∗) ∈ R) or b = 1

(meaning that y∗
R←− {0, 1}l). B simulates A’s challenger in Game 3 as follows:

• Setup: B runs EHPS.Setup(κ) to generate public parameters pp, runs EHPS.KeyGen′(pp, u∗)
to obtain (pk, sk′), computes π∗ ← Hpk(u

∗) via EHPS.Priv(sk′, u∗). B sends (pp, pk) to A.

• Phase 1 - Evaluation queries: B proceeds the same way as CH does in Game 3.

• Challenge: CH sets x∗ = (u∗, π∗), sends (x∗, y∗) to A.

• Phase 2 - Evaluation queries: The same as in Phase 1 except that the evaluation query
〈x∗〉 is not allowed.

19

• Guess: A outputs its guess b′ and B forwards b′ to its own challenger.

Obviously, B’s simulation is perfect. Therefore, we have:

AdvB(κ) = |Pr[S3]− 1/2| ≈ AdvA(κ)

The theorem immediately follows.

7 Publicly Samplable PRFs

In this section, we consider a relaxation of the functionality for PEPRFs, that is, instead of
requiring the existence of NP language L over X and the publicly evaluable property of Fsk(x),
we only require that the distribution (x,Fsk(x)) is efficiently samplable with pk. More precisely,
algorithms SampLan(r) and PubEval(pk, x, w) are replaced by algorithm PubSamp(pk; r), which
on input pk and random coins r outputs a random tuple (x, y) ∈ X × Y such that y = Fsk(x).
We refer to this relaxed notion as publicly samplable PRFs (PSPRFs). The (adaptively) weak
pseudorandomness for PSPRFs can be defined analogously. It is easy to verify that PSPRFs and
KEM imply each other by viewing PSPRF.PubSamp (resp. PSPRF.PrivEval) as KEM.Encap
(resp. KEM.Decap).8 In light of this observation, we view PSPRFs as a high level interpretation
of KEM, which allows significantly simpler and modular proof of security. In what follows, we
revisit the notion of trapdoor one-way relations, and explore its relation to PSPRFs.

7.1 Trapdoor Relations

Before revisiting the notion of trapdoor relations, we first recall a closely related notion, namely
trapdoor functions (TDFs) (c.f. Appendix A.3). Briefly, TDFs are a family of functions that
are easy to compute, invert with trapdoor but hard to invert on average without trapdoor.
Most attention in the literature has focus on injective (i.e. one-to-one) TDFs. It is well known
that injective TDFs suffice for PKE [Yao82, GM84]. Bellare et al. [BHSV98] made a careful
distinction for TDFs based on “the amount of non-injectivity”, measured by pre-image size.
A (trapdoor, one-way) function is said to have pre-image size Q(κ) (where κ is the security
parameter) if the number of pre-images of any range points is at most Q(κ). They demonstrated
that Q(κ) is a crucial parameter with regarding to building PKE out of TDFs by showing two
facts: (i) OWFs imply TDFs with super-polynomial pre-image size; (ii) TDFs with polynomial
pre-image size is sufficient to imply PKE. Kiltz et al. [KMO10] strengthened TDFs to adaptive
TDFs (ATDFs), which requires TDFs remain one-way even the adversary can adaptively access
an inversion oracle. They used injective ATDFs as a general assumption to construct CCA-
secure PKE. Wee [Wee10] introduced the notion of trapdoor relations (TDRs) as a functionality
relaxation of injective TDFs, in which the “easy to compute” property is weakened to “easy to
sample”. Wee also showed how to construct such TDRs from EHPS. We note that the notion of
TDRs defined in [Wee10] is inherently to be “one-to-one”, while the TDRs yielded from EHPS
is potentially to be “one-to-many”. Towards utmost generality, we redefine the notion of TDRs
in a generalized way as follows:

Definition 7.1 (Trapdoor Relations). A family of trapdoor relations consists of four polynomial-
time algorithms as below.

8Without loss of generality, we assume KEM.Decap is deterministic. We note that there do exist probabilistic
decapsulation algorithms, e.g. those that implement “implicit rejection” strategy [KV08]. In that case, we can
view KEM.Decap as randomized PSPRFs.

20

• Setup(κ): on input security parameter κ, output public parameters pp which includes
finite sets EK, TD, S, U (these sets are parameterized by κ), and a binary relation
family R : S × U indexed by EK, which will be defined by PubSamp as below.

• TrapGen(pp): on input pp, output (ek, td) ∈ EK × TD.

• PubSamp(ek; r): on input ek and random coins r, output a tuple (s, u) ∈ S×U . Implicitly,
this gives us the relation Rek = {(s, u) : ∃r s.t. (s, u) = PubSamp(ek; r)}. We extend the
distinction of non-injectivity for functions to the setting of binary relations. Hereafter,
for every element u ∈ U we define Su = {s : (s, u) ∈ Rek}; for every element s ∈ S we
define Us = {u : (s, u) ∈ Rek}. Let Q(κ) = max(|Su|u∈U) and P (κ) = max(|Us|s∈S).
Notationally, we say a binary relation R : S × U is “many-to-one” if Q(κ) > 1 and
P (κ) = 1; say it is “one-to-many” if P (κ) > 1 and Q(κ) = 1; say it is “many-to-many” if
Q(κ) > 1 and P (κ) > 1; say it is “one-to-one” if Q(κ) = P (κ) = 1.

• TdInv(td, u): on input td and u ∈ U , output s ∈ S or a distinguished symbol ⊥ indicating
u is not well-defined with respect to td.9

Correctness: For any pp ← Setup(κ) any (ek, td) ← TrapGen(pp), and any (s, u) ∈ Rek, it
holds that:

Pr[(TdInv(td, u), u) ∈ Rek] = 1

(Adaptive) One-wayness: Let A = (A1,A2) be an inverter against TDRs and define its
advantage as:

AdvA(κ) = Pr

(s, u∗) ∈ Rek :

pp← Setup(κ);
(ek, td)← TrapGen(pp);

state← AOinv(·)
1 (pp, ek);

(s∗, u∗)← PubSamp(ek);

s← AOinv(·)
2 (state, u∗)

 ,

where Oinv(y) = TdInv(td, y), and A2 is not allowed to query Oinv(·) for the challenge u∗. We
say TDRs are adaptively one-way (or simply adaptively) if for any PPT inverter its advantage
is negligible in κ. The standard one-wayness can be defined similarly as above except that the
adversary is not given access to the inversion oracle.

Construction from TDFs. It is easy to see that TDFs imply TDRs. TDRs can be constructed
from TDFs as below:

• Setup(κ): run TDF.Setup(κ) to generate public parameters pp, set S = X, U = Y .

• KeyGen(κ): run TDF.TrapGen(pp) to generate (ek, td).

• PubSamp(ek; r): run TDF.SampDom(r) to sample a random element s ∈ S, compute
u← TDF.Eval(ek, s), then output (s, u).

• TdInv(td, u): output TDF.TdInv(td, u).

The correctness and security of the above construction follows immediately from that of TDFs.
We omit the details here for triviality. Obviously, the resulting TDRs are “many-to-one” (resp.
“one-to-one”) if the underlying TDFs are “many-to-one” (injective).

9We say u is well-defined with respect to td if there exists ek and random coins r1, r2 such that (ek, td) =
KeyGen(pp; r1) and (s, u) = PubSamp(ek; r2).

21

7.2 Publicly Samplable PRFs from TDRs

Construction from TDRs. We show a simple construction of PSPRFs from “one-to-many”
or “one-to-one” TDRs = (R, S, U). Let hc : S → {0, 1}l be a hardcore function for binary
relation R, we construct PSPRFs from U to {0, 1}l ∪ ⊥ as follows:

• Setup(κ): on input a security parameter κ, run TDR.Setup(κ) to generate pp.

• KeyGen(pp): on input pp, compute (ek, td)← TDR.TrapGen(pp), set pk = ek and sk = td,
output (pk, sk).

• PubSamp(pk; r): on input pk and random coins r, compute (s, u)← TDR.PubSamp(pk; r),
output (u, hc(s)).

• PrivEval(sk, u): on input sk and u, compute s ← TDR.TdInv(sk, u), if s = ⊥ output ⊥,
else output hc(s).

The correctness of the above construction is easy to verify. For the security, we have the
following result:

Theorem 7.1. The resulting PSPRFs are (adaptively) weak-pseudorandom if the underlying
TDRs are (adaptively) one-way.

We omit the proof for its straightforwardness. The above result indicates that adaptive
PSPRFs are implied by adaptive TDFs. By the separation result due to Gertner, Malkin,
and Reingold [GMR01] that it is impossible of basing TDFs on trapdoor predicates, as well as
the equivalence among trapdoor predicates, CPA-secure PKEs and PSPRFs, we conclude that
PSPRFs are strictly weaker than TDFs in a black-box sense. We conjecture a similar separation
result also exists between adaptive PSPRFs and ATDFs. Besides, whether adaptive PSPRFs
are strictly weaker than general ATDRs is also unclear to us. We left this as an open problem.

8 Publicly Evaluable Constrained PRFs

In this section, we introduce the notion of publicly evaluable constrained PRFs (PECPRFs),
which is an extension of recent constrained PRFs [KPTZ13, BW13, BGI14] analogous to
PEPRFs of PRFs. We begin with the precise definition, and then proceed to explore possible
applications.

Definition 8.1 (Publicly Evaluable Constrained PRFs). Publicly evaluable constrained PRFs
consists of six polynomial-time algorithms as follows:

• Setup(κ): on input a security parameter κ, output public parameters pp which includes
finite sets MPK, MSK, I, X, Y , a family of predicates P = {p : I → {0, 1}}, a
collection of languages L = {Lind}ind∈I defined over X and a witness set W , as well as
a PRF family F = {Fmsk : I × X → Y }msk∈MSK . Unlike the syntax of constrained
PRFs [KPTZ13, BW13, BGI14], here we explicitly define the domain as a Cartesian
product of I and X. We also assume that for any ind ∈ I one can efficiently find a
predicate p ∈ P satisfying p(ind) = 1.

• KeyGen(pp): on input pp, output master public key mpk and master secret key msk.

• Constrain(msk, p): on input msk and a predicate p ∈ P , output a secret key skp.

• SampLan(ind, r): on input ind ∈ I and random coins r, output a random x ∈ Lind and a
witness w for x.

• PubEval(ind, x, w): on input ind ∈ I and x ∈ Lind together with a witness w ∈ W for x,
output y ∈ Y .

22

• PrivEval(skp, x): on input secret key skp and x ∈ X, output y ∈ Y .

Correctness: For any pp ← Setup(κ), any (mpk,msk) ← KeyGen(pp), any ind ∈ I, and any
x ∈ Lind, it holds that:

∀skp ← Constrain(msk, p) such that p(ind) = 1 : Fmsk(ind, x) = PrivEval(skp, x).

a witness w ∈W for x ∈ Lind : Fmsk(ind, x) = PubEval(ind, x, w).

Pseudorandomness: Let A = (A1,A2) be an adversary against publicly evaluable constrained
PRFs and defines its advantage as:

AdvA(κ) = Pr

b = b′ :

pp← Setup(κ);
(mpk,msk)← KeyGen(pp);

(state, ind∗)← AOeval(·,·),Oconstrain(·)
1 (pp,mpk);

(x∗, w∗)← SampLan(ind∗, r∗), r∗
R←− R;

y∗0 ← Fmsk(ind
∗, x∗), y∗1

R←− Y ;

b
R←− {0, 1};

b′ ← AOeval(·,·),Oconstrain(·)
2 (state, x∗, y∗b)

− 1

2
,

where Oeval(ind, x) = Fmsk(ind, x), Oconstrain(p) = Constrain(msk, p). The adversary A is re-
stricted from querying Oconstrain(·) with p such that p(id∗) = 1, and the A2 is restricted from
querying Oeval(·, ·) with (ind∗, x∗). PECPRF is said to be adaptively weak-pseudorandom if for
any PPT adversary A its advantage function AdvA is negligible in κ.

We can define a weaker security notion by considering adversaries who only adaptively query
oracle Oextract(·) but never query oracle Oeval(·, ·). We refer to the corresponding security notion
as semi-adaptive weak-pseudorandomness.

It is furthermore possible and straightforward to give an analogous relaxation of publicly evalu-
able constrained PRFs, namely requiring that Fmsk(ind, ·) is publicly samplable instead of
publicly evaluable.

8.1 Predicate KEM from Publicly Evaluable Constrained PRFs

Predicate encryption was introduced by Katz et al. [KSW08] as a generalization of identity-
based encryption and attribute-based encryption. Similar to the situation in the public-key
setting and identity-based setting, there are numerous practical reasons to prefer a predicate
key encapsulation mechanism over a predicate encryption. We refer the readers to A.2 for
formal definition of predicate KEM.

The construction of a predicate KEM from a PECPRF is almost immediate, by simply using
the PRF value as a DEM key. In particular, given a PECPRF where the range Y , we construct
a predicate KEM with the same index set I and DEM key set K = Y . The algorithms Setup and
KeyGen are same as that of PECPRF, and the algorithm Extract is same as algorithm Constrain
of PECPRF. The algorithms Encap and Decap are defined by:

• Encap(mpk, ind): on input mpk and ind ∈ I, run PRF.SampLan(ind, r) with fresh ran-
dom coins r to sample a random x ∈ Lind with a witness w for x, compute y ←
PRF.PubEval(ind, x, w), set c = x, k = y and output (c, k).

• Decap(skp, c): on input skp and c, output k ← PRF.PrivEval(skp, c).

Correctness of this construction follows directly from that of PECPRF. For security, we have
the following results:

23

Theorem 8.1. The predicate KEM is CPA-secure if the underlying PECPRF is semi-adaptively
weak-pseudorandom.

Theorem 8.2. The predicate KEM is CCA-secure if the underlying PECPRF is adaptively
weak-pseudorandom.

We omit the proofs here for their triviality.

Remark 8.1. Considering PECPRF that supports a special family of predicates P where p are
indexed by I and pind is defined as pind(ind

′) iff ind = ind′. It is easy to see that such PECPRF
immediately implies identity-based key encapsulation mechanism (IB-KEM), while itself can
be generically constructed from either identity-based hash proof system (IB-HPS) [ADN+10,
CZLC12a] or identity-based extractable hash proof system (IB-EHPS) [CZLC12b].

8.2 A Construction of PECPRFs

Next we present a concrete construction of publicly evaluable predicate PRFs for general circuits
from multilinear maps based on recent attribute-based encryption [GGH+13]. We use the same
notation for circuits as in [GGH+13], which is included in Appendix A.4 for completeness. We
refer the readers to Appendix A.5 for the definition of multilinear maps and related hardness
assumption.

• Setup(κ, `): on input a security parameter κ, the maximum depth ` of a circuit, and the
number of boolean inputs n, run MLGroupGen(κ, k = `+1) to generate multilinear groups
(p, {Gi}i∈[k], {ei,j}i,j≥1,i+j≤k) with canonical generators g1, . . . , gk as public parameters
pp.

• KeyGen(pp): on input public parameter pp, choose α
R←− Zp and h1, . . . , hn

R←− G1, output
mpk = (gαk , h1, . . . , hn) and msk = (gk−1)α. We let I = {0, 1}n, X = Gn

1 . For any
ind ∈ {0, 1}n, let Sind be the set of subscript indices i such that indi = 1. We define a
collection of languages Lind = {(gr1, {hri }i∈Sind)}ind∈I indexed by I, where r ∈ Zp serves
as the witness.

• Constrain(msk, c): on input msk = (gk−1)α and a circuit c, choose s1, . . . , sn+q
R←− Zp

(where randomness sw is associated with wire w), first produce a “header” component
skh = (gk−1)α−sn+q , then produce key components for every wire w. The structure of the
key components depends upon if w is an input wire, an AND gate, or an OR gate. We
describe each case as below:

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Pick tw

R←− Zp,
and create key component skw = (skw,1, skw,2), where

skw,1 = gsw1 htww , skw,2 = g−tw1

– OR gate
Suppose that wire w ∈ Gates and GateType(w) = OR. In addition, let j = depth(w)

be the depth of wire w. Pick aw, bw
R←− Zp, and create key component skw =

(skw,1, skw,2, skw,3, skw,4), where

skw,1 = gaw1 , skw,2 = gbw1 , skw,3 = g
sw−aw·sA(w)

j , skw,4 = g
sw−bw·sB(w)

j

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition, let

24

j = depth(w) be the depth of wire w. Pick aw, bw ← Zp, and create key component
skw = (skw,1, skw,2, skw,3), where

skw,1 = gaw1 , skw,2 = gbw1 , skw,3 = g
sw−aw·sA(w)−bw·sB(w)

j

• Sample(ind, r): on input ind ∈ {0, 1}n and random coins r ∈ Zp, set x0 = gr1, xi = hri for
i ∈ Sind, and output x = (x0, {xi}i∈Sind) ∈ Lind and witness w = r.

• PubEval(ind, x, r): on input ind ∈ {0, 1}n, x ∈ Lind, and a witness r ∈ Zp, output
y = (gαk)r.

• PrivEval(skc, x): on input a secret key skc for a circuit c = (n, q,A,B,GateType) and x
(the associated ind can be simply recovered from x), first compute y′ = e(skh, g

r
1) =

e(g
α−sn+q
k−1 , gr1) = gαrk g

−sn+q ·r
k , then evaluate the circuit from the bottom up: consider wire

w at depth j, if cw(ind) = 1 then computes yw = (gj+1)sw·r, else nothing needs to be
computed for this wire. The evaluation proceeds iteratively starting from y1 to finally
yn+q, with the purpose of the computation on a depth j − 1 wire (that evaluates to 1)
will be defined before computing for a depth j wire. We show how to compute yw for all
w where cw(ind) = 1, again according to whether the wire is an input, AND or OR gate.

– Input wire
By our convention if w ∈ [1, n] then it corresponds to the w-th input. Suppose that
cw(ind) = 1. The algorithm computes:

yw = e(skw,1, g
r
1) · e(skw,2, xw) = e(gsw1 htww , g

r
1) · e(g−tw1 , hrw) = grsw2

– OR gate
Suppose that wire w ∈ Gates and that GateType(w) = OR. In addition, let j =
depth(w) be the depth of wire w. Suppose that cw(ind) = 1. If cA(w)(ind) = 1 (the
first input evaluated to 1), then we compute:

yw = e(yA(w), skw,1) · e(skw,3, gr1) = e(g
rsA(w)
j , gaw1) · e(gsw−aw·sA(w)

j , gr1) = (gj+1)rsw

Alternatively, if cA(w)(ind) = 0, but cB(w)(ind) = 1, then we compute:

yw = e(yB(w), skw,2) · e(skw,4, gr1) = e(g
rsB(w)
j , gbw1) · e(gsw−bw·sB(w)

j , gr1) = (gj+1)rsw

– AND gate
Suppose that wire w ∈ Gates and that GateType(w) = AND. In addition, let
j = depth(w) be the depth of wire w. Suppose that cw(ind) = 1. Then cA(w)(ind) =
cB(w)(ind) = 1 and we compute:

yw = e(yA(w), skw,1) · e(yB(w), skw,2) · e(skw,3, gr1)

= e(g
rsA(w)

j , gaw1) · e(grsB(w)

j , gbw1) · e(gsw−aw·sA(w)−bw·sB(w)

j , gr1) = (gj+1)rsw

Finally, output y′ · yn+q. The correctness is easy to verify by observing that if c(ind) =
cn+q(ind) = 1, then yn+q = g

r·sn+q
k and the final output is gαrk .

The security of the above construction is based on the MDDH assumption, which follows im-
mediately from the analysis of attribute-based encryption [GGH+13].

25

9 Publicly Evaluable and Verifiable Functions

In this section, we introduce a variant of PEPRFs, which we call publicly evaluable and verifiable
functions (PEVFs). Compared to PEPRFs, PEVFs have an additional property named public
verifiability, while the best possible security degrades to “hard to compute” on average.

Definition 9.1 (Publicly Evaluable and Verifiable Functions). A family of PEVFs consist of
the following polynomial-time algorithms:

• Setup(κ): on input a security parameter κ, output public parameters pp = (F, SK, PK,
X, L, W , Y), where F : SK ×X → Y can be viewed as a keyed function indexed by SK.

• KeyGen(pp): on input pp, output a secret key sk and an associated public key pk.

• SampLan(r): on input random coins r, output a random x ∈ L along with a witness
w ∈W for x.

• PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈ W for x, output
y = Fsk(x).

• PrivEval(sk, x): on input sk and x ∈ X, output y = Fsk(x).

• PubVefy(pk, x, y): on input pk, x, and y, output true if y = Fsk(x) and false if not.

Security: Let A = (A1,A2) be an adversary against PEVFs and define its advantage as:

AdvA(κ) = Pr

PubVefy(pk, x∗, y) = 1 :

pp← Setup(κ);
(pk, sk)← KeyGen(pp);
state← A1(pp, pk);

(x∗, w∗)← SampLan(r∗), r∗
R←− R;

y ← A2(state, x∗);

 ,
We say that PEVFs are hard to compute on average if for any PPT adversary A its advantage
function AdvA(κ) is negligible in κ.

9.1 PEVFs from EHPS

From EHPS, we construct PEVFs as follows:

• Setup(κ): on input κ, run EHPS.Setup(κ) to generate an EHPS instance (H, PK, SK,
S, U , Π), and build public parameters pp = (F, PK, SK,X,L,W, Y) for PEVFs from it,
where X = U × Π, Y = S, F , L, and W will be defined later. We assume the publicly
parameters pp of PEPRF and EHPS essentially contain same information.

• KeyGen(pp): on input pp, output (pk, sk)← EHPS.KeyGen(pp).

• SampLan(r): on input r, compute u ← EHPS.SampRight(r), and π ← EHPS.Pub(pk, r),
output x = (u, π) and w = r. This algorithm defines a language L = {(u, π) : u ∈
U ∧ π = Hpk(u)} over X, where the random coins r used to sample u serves as a witness
for x = (u, π) ∈ L. Note the witness set W is exactly the randomness space R used by
EHPS.Sample.

• PubEval(pk, x, w): on input pk and x ∈ L together with a witness w ∈ W for x, output
y ← EHPS.SampLeft(w).

• PrivEval(sk, x): on input sk and x, parse x as (u, π), output y ← EHPS.Ext(sk, u, π). This
algorithm defines Fsk(x) as Ext(sk, x).

• PubVefy(pk, x, y): on input pk, x, and y, parse x as (u, π), output EHPS.Vefy(y, u). Here
we always assume the second input x ∈ L, since it is efficiently recognizable if the under-
lying EHPS is efficiently checkable.

26

We have the following theorem about the above construction.

Theorem 9.1. If the underlying binary relation R is one-way and efficiently verifiable, then
the PEVFs from EHPS are hard to compute on average.

We omit the proof here due to its straightforwardness.

9.2 Signature from PEVFs

Now we show a simple and intuitive construction of “hash-and-sign” signatures from PEVFs.

• Setup(κ): on input a security parameter κ, run PEVF.Setup(κ) to generate public param-
eters pp. Let M be the message space, H : M → L be a hash function.

• KeyGen(pp): run PEVF.KeyGen(pp) to generate (pk, sk), output vk = (pk,H) as the
verification key and sk as the signing key.

• Sign(sk,m): on input sk and m, output signature σ ← PEVF.PrivEval(sk,H(m)).

• Verify(vk,m, σ): on input vk = (pk,H), m and σ, output PEVF.PubVefy(pk,H(m), σ).

Note that algorithms PEVF.SampLan and PEVF.PubEval are not used in the above construction,
but will prove useful in security argument.

Theorem 9.2. The above signature is strongly unforgeable under adaptive chosen-message at-
tack in the random oracle model if the underlying PEVFs are hard to compute on average.
Suppose H is a random oracle, for any adversary A breaking the signature with advantage
AdvA(κ) that makes at most Qh random oracle queries to H, there is an algorithm B that breaks
the security of PEVFs with advantage at least AdvA(κ)/Qh.

Proof. We prove this theorem by showing how to transform an adversaryA against the signature
into an algorithm B breaking the security of the underlying PEVFs. Without loss of generality,
we assume that A: (1) always queries the random oracle H with distinct messages; (2) first
queries H(m) before querying the signing oracle with a message m; (3) first queries H(m) before
outputting a forgery (m,σ). Given pk and the challenged point x∗, B interacts with A as follows,
with the aim to compute Fsk(x

∗).

• Setup: B sends vk = (pk,H) to A. B randomly picks j ∈ {1, . . . , Qh}.
• Random oracle queries: To process random oracle queries, B maintains a list H which

is initially empty. Each entry in H is of the form (m,x,w), where m ∈ M , x ∈ L and
w ∈W . When i-th random query on message mi comes, B responds as follows:

– If i 6= j, B picks ri
R←− R, runs PEVF.SampLan(ri) to obtain (xi, wi), adds the entry

(mi, xi, wi) to the H list, returns xi to A.

– If i = j, B adds the entry (mj , x
∗,⊥) to the H list, returns x∗ to A.

• Signing queries: Upon receiving the singing query on message mi, B responds as follows:

– If i 6= j, B responds with σi ← PEVF.PubEval(pk, xi, wi).

– If i = j, B aborts.

• Forgery: Finally, A outputs a forgery (mi, σi). If i = j, B forwards σi to its own challenger.
Else, B aborts.

It is not difficult to verify that, unless B aborts, the simulation provided for A is perfect and B
correctly computes the PEVF value at point x∗ if A outputs a valid signature for m∗. It is easy
to show the probability that B does not abort is 1/Qh. The theorem immediately follows.

27

Looking ahead, When applying the above generic construction to PEVFs based on the RSA
assumption and the CDH assumption in bilinear groups presented in subsection 9.3, yields
precisely the Bellare-Rogaway signature [BR96] and the Boneh-Lynn-Shacham (BLS) signa-
ture [BLS01]. We also note that the “full domain hash” (FDH) framework cannot encompass
the BLS signature accurately, cause there is no corresponding efficiently computable trapdoor
function/permutation.

Replacing random oracle: Very recently, Hohenberger, Sahai, and Waters [HSW14] utilized
indistinguishability obfuscation (iO) to give a way to instantiate the random oracle with a
concrete hash function in FDH applications. We extend their techniques to replacing the random
oracle in the above construction. In what follows, we sketch how to instantiate H and establish
the security. Let PPRF : K×M → R be a puncturable PRF. To build a concrete hash function
for H, the user first picks a master key k for PPRF, then sets the hash function as an obfuscation
of the program which on input m computes r ← PPRF(k,m), (x,w)← PEVF.SampLan(r), and
outputs x. The security proof will proceed via a sequence of games. Let Game 0 be the
standard selective security game with hash function instantiated as described above. In Game
1, we replace the original program with an obfuscation of a “puncturable program” which on
input m 6= m∗ (here m∗ is the message that A commits to attack before seeing the vk) outputs
PPRF(k({m∗}),m∗), and on input m∗ is hardwired to output z∗ ← PPRF(k,m∗). Since the
input/output behavior is identical, Game 0 and Game 1 are computationally indistinguishable
by the security of iO. In Game 2, we replace z∗ with a random element chosen from L. Due
to the security of PPRF, Game 1 and Game 2 are computationally indistinguishable. At this
moment, we can build an algorithm B that breaks the security of PEVFs by invoking A in Game
2. B receives PEVF challenge x∗ and hardwires it as the output of H(m∗). During Game 2, B
can use k({m∗}) to create a valid signature for any messages other than m∗ without knowing
sk. Finally, B simply forwards the signature σ∗ on m∗ as the solution of Fsk(x

∗). We note that
one could use the usual complexity leveraging arguments to claim adaptive security.

Remark 9.1. We remark that our security proofs both in the random oracle model and the
standard model share some of the spirit of the general RO security proof for FDH signatures,
where the reduction programs the challenge at one point and it is able to produce valid signatures
at all others points. A distinguished aspect is that the reduction creates the signature σ for
message m via different methods. In the general RO security proof for FDH signatures, the
reduction first picks σ randomly from domain, then programs H(m) to its trapdoor permutation
TDP(σ). In contrast, in our security proofs for PEVF signatures, the reductions first programs
H(m) to a random element x with extra information – its witness w, then computes its signature
σ as Fsk(H(m)) using the publicly evaluable property.

Randomized PEVFs. We can further generalize the notion of PEVFs to randomized publicly
evaluable and verifiable functions (RPEVFs). Briefly, RPEVFs are PEVFs whose evaluation is
randomized, and the randomness is added to the image. We believe RPEVFs are suitable for
admitting more applications, such as probabilistic “hash-and-sign” signatures.

9.3 Instantiations of PEVFs

Here we construct PEVFs based on the RSA assumption (c.f. definition in A.6) and the CDH
assumption in bilinear groups, respectively.

PEVFs based on the RSA assumption

• Setup(κ): run RSAGen(κ) to generate (N, p, q), set X = L = W = Y = Z∗N , set PK and
SK as the set of integers that are less than and relatively prime to φ(N).

28

• KeyGen(pp): randomly pick an integer e between 1 and φ(N) such that gcd(φ(N), e) = 1,
compute d ≡ e−1 mod φ(N); output pk = e, sk = d.

• Sample(r): on input random coins r, output x ∈ Z∗N together with a witness w such that
we ≡ x mod N .

• PubEval(pk, x, w): on input pk = e, x and w, output w.

• PrivEval(sk, x): on input sk = d and x, output xd.

• PubVefy(pk, x, y): on input pk = e, x and y, output 1 if x ≡ ye mod N and 0 if not.

PEVFs based on the CDH assumption in bilinear groups

• Setup(κ): run BLGroupGen(κ) to generate (e, g,G,GT), set X = L = Y = PK = G,
SK = W = Zp.
• KeyGen(pp): randomly pick sk

R←− Zp, compute pk = gsk.

• Sample(r): on input random coins r, output x ∈ G together with a witness w such that
x = gw.

• PubEval(pk, x, w): on input pk, x and w, output y = pkw.

• PrivEval(sk, x): on input sk and x, output y = xsk.

• PubVefy(pk, x, y): on input pk, x and y, output 1 if e(pk, x) = e(g, y) and 0 if not.

Acknowledgment

We are grateful to Yi Deng, Qiong Huang, and Dennis Hofheinz for helpful discussions and
advice. We also thank the SCN 2014 reviewers for many useful comments.

References

[ADN+10] Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, and Daniel Wichs.
Public-key encryption in the bounded-retrieval model. In Advances in Cryptology - EU-
ROCRYPT 2010, volume 6110 of LNCS, pages 113–134. Springer, 2010.

[BC10] Mihir Bellare and David Cash. Pseudorandom functions and permutations provably secure
against related-key attacks. In Advances in Cryptology - CRYPTO 2010, volume 6223 of
LNCS, pages 666–684. Springer, 2010.

[BCHK07] Dan Boneh, Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security
from identity-based encryption. SIAM Journal on Computation, 36(5):1301–1328, 2007.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In 17th International Conference on Practice and Theory in Public-Key
Cryptography, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, 2014.

[BH12] Itay Berman and Iftach Haitner. From non-adaptive to adaptive pseudorandom functions.
In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012, volume
7194 of LNCS, pages 357–368. Springer, 2012.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In
ACM Conference on Computer and Communications Security, CCS 2012, pages 784–796.
ACM, 2012.

[BHSV98] Mihir Bellare, Shai Halevi, Amit Sahai, and Salil P. Vadhan. Many-to-one trapdoor func-
tions and their ralation to public-key cryptosystems. In CRYPTO 1998, volume 1462 of
LNCS, pages 283–298. Springer, 1998.

29

[BK03] Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: Rka-
prps, rka-prfs, and applications. In Advances in Cryptology - EUROCRYPT 2003, volume
2656 of LNCS, pages 491–506. Springer, 2003.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the weil pairing. In
Advances in Cryptology - ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532, 2001.

[BMW05] Xavier Boyen, Qixiang Mei, and Brent Waters. Direct chosen ciphertext security from
identity-based techniques. In CCS 2005, pages 320–329. ACM, 2005.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital signatures - how to sign
with rsa and rabin. In Advances in Cryptology - EUROCRYPT 1996, volume 1070 of
LNCS, pages 399–416, 1996.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.
In Advances in Cryptology - ASIACRYPT 2013, volume 8270 of LNCS, pages 280–300.
Springer, 2013.

[CHK10] Ronald Cramer, Dennis Hofheinz, and Eike Kiltz. A twist on the naor-yung paradigm and
its application to efficient cca-secure encryption from hard search problems. In Theory of
Cryptography, 7th Theory of Cryptography Conference, TCC 2010, volume 5978 of LNCS,
pages 146–164. Springer, 2010.

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin diffie-hellman problem and applica-
tions. J. Cryptology, 22(4):470–504, 2009.

[CS98] Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology - CRYPTO 1998,
volume 1462 of LNCS, pages 13–25. Springer, 1998.

[CS02] Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In Advances in Cryptology - EUROCRYPT
2002, volume 2332 of LNCS, pages 45–64. Springer, 2002.

[CS03] Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption
schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing,
33:167–226, 2003.

[CZLC12a] Yu Chen, Zongyang Zhang, Dongdai Lin, and Zhenfu Cao. Anonymous identity-based hash
proof system and its applications. In Provable Security - 6th International Conference,
ProvSec 2012, volume 7496 of LNCS, pages 143–160. Springer, 2012.

[CZLC12b] Yu Chen, Zongyang Zhang, Dongdai Lin, and Zhenfu Cao. Identity-based extractable hash
proofs and their applications. In International Conference on Applied Cryptography and
Network Security - ACNS 2012, volume 7341 of LNCS, pages 153–170. Springer, 2012.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J.
Comput., 30(2):391–437, 2000.

[DS13] Dana Dachman-Soled. A black-box construction of a cca2 encryption scheme from a
plaintext aware encryption scheme. IACR Cryptology ePrint Archive, 2013:680, 2013.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Amit Sahai, and Brent Waters. Attribute-based
encryption for circuits from multilinear maps. In Advances in Cryptology - CRYPTO 2013,
volume 8043 of LNCS, pages 479–499. Springer, 2013.

30

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions.
J. ACM, 33(4):792–807, 1986.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984.

[GMR01] Yael Gertner, Tal Malkin, and Omer Reingold. On the impossibility of basing trapdoor
functions on trapdoor predicates. In 42nd Annual Symposium on Foundations of Computer
Science, FOCS 2001, pages 126–135. IEEE Computer Society, 2001.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[HJKS10] Kristiyan Haralambiev, Tibor Jager, Eike Kiltz, and Victor Shoup. Simple and efficient
public-key encryption from computational diffie-hellman in the standard model. In Public
Key Cryptography - PKC 2010, volume 6056 of LNCS, pages 1–18. Springer, 2010.

[HK07] Dennis Hofheinz and Eike Kiltz. Secure hybrid encryption from weakened key encapsula-
tion. In Advances in Cryptology - CRYPTO 2007, volume 4622 of LNCS, pages 553–571.
Springer, 2007.

[HK08] Goichiro Hanaoka and Kaoru Kurosawa. Efficient chosen ciphertext secure public key
encryption under the computational diffie-hellman assumption. In Advances in Cryptology
- ASIACRYPT 2008, volume 5350 of LNCS, pages 308–325. Springer, 2008.

[HK09] Dennis Hofheinz and Eike Kiltz. Practical chosen ciphertext secure encryption from fac-
toring. In Advances in Cryptology - EUROCRYPT 2009, volume 5479 of LNCS, pages
313–332. Springer, 2009.

[HLAWW13] Carmit Hazay, Adriana López-Alt, Hoeteck Wee, and Daniel Wichs. Leakage-resilient
cryptography from minimal assumptions. In Advances in Cryptology - EUROCRYPT
2013, volume 7881 of LNCS, pages 160–176. Springer, 2013.

[HLW12] Susan Hohenberger, Allison B. Lewko, and Brent Waters. Detecting dangerous queries: A
new approach for chosen ciphertext security. In Advances in Cryptology - EUROCRYPT
2012, volume 7237 of LNCS, pages 663–681. Springer, 2012.

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle: Full
domain hash from indistinguishability obfuscation. In Advances in Cryptology - EURO-
CRYPT 2014, volume 8441 of LNCS, pages 201–220. Springer, 2014.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the
Tenth Annual Structure in Complexity Theory Conference STOC 1995, pages 134–147.
IEEE Computer Society, 1995.

[KD04] Kaoru Kurosawa and Yvo Desmedt. A new paradigm of hybrid encryption scheme. In
Advances in Cryptology - CRYPTO 2004, volume 3152 of LNCS, pages 426–442. Springer,
2004.

[Kil06] Eike Kiltz. On the limitations of the spread of an ibe-to-pke transformation. In Public
Key Cryptography - PKC 2006, volume 3958 of LNCS, pages 274–289. Springer, 2006.

[KMO10] Eike Kiltz, Payman Mohassel, and Adam O’Neill. Adaptive trapdoor functions and chosen-
ciphertext security. In Advances in Cryptology - EUROCRYPT 2010, volume 6110 of
LNCS, pages 673–692. Springer, 2010.

[KPSY09] Eike Kiltz, Krzysztof Pietrzak, Martijn Stam, and Moti Yung. A new randomness extrac-
tion paradigm for hybrid encryption. In Advances in Cryptology - EUROCRYPT 2009,
volume 5479 of LNCS, pages 590–609. Springer, 2009.

31

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-
egatable pseudorandom functions and applications. In 2013 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2013, pages 669–684. ACM, 2013.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunc-
tions, polynomial equations, and inner products. In Advances in Cryptology - EURO-
CRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, 2008.

[KV08] Eike Kiltz and Yevgeniy Vahlis. Cca2 secure ibe: Standard model efficiency through
authenticated symmetric encryption. In CT-RSA, volume 4964 of LNCS, pages 221–238.
Springer, 2008.

[LT13] Huijia Lin and Stefano Tessaro. Amplification of chosen-ciphertext security. In Advances
in Cryptology - EUROCRYPT 2013, volume 7881 of LNCS, pages 503–519. Springer, 2013.

[MH14] Takahiro Matsuda and Goichiro Hanaoka. Chosen ciphertext security via point obfuscation.
In TCC 2014, volume 8349 of LNCS, pages 95–120. Springer, 2014.

[NR04] Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, 2004.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the 22th Annual ACM Symposium on Theory of
Computing, STOC 1990, pages 427–437. ACM, 1990.

[Pei14] Chris Peikert. Lattice cryptography for the internet. IACR Cryptology ePrint Archive,
Report 2014/070, 2014. http://eprint.iacr.org/2014/070.

[PS08] Krzysztof Pietrzak and Johan Sjödin. Weak pseudorandom functions in minicrypt. In
Automata, Languages and Programming, 35th International Colloquium, ICALP (2) 2008,
volume 5126 of LNCS, pages 423–436. Springer, 2008.

[PW08] Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008,
pages 187–196. ACM, 2008.

[Rab81] Michael Rabin. Probabilistic algorithms in finite fields. SIAM Journal on Computation,
9:273–280, 1981.

[RS10] Alon Rosen and Gil Segev. Chosen-ciphertext security via correlated products. SIAM J.
Comput., 39(7):3058–3088, 2010.

[RSA78] Ron Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM, 21(2):120–126, February
1978.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In Symposium on Theory of Computing, STOC 2014, pages 475–
484. ACM, 2014.

[Wee10] Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In Advances
in Cryptology - CRYPTO 2010, volume 6223 of LNCS, pages 314–332. Springer, 2010.

[Yao82] Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract).
In FOCS, pages 80–91. IEEE Computer Society, 1982.

[Zha14] Mark Zhandry. How to avoid obfuscation using witness prfs. IACR Cryptology ePrint
Archive, Report 2014/301, 2014. http://eprint.iacr.org/2014/301.

32

http://eprint.iacr.org/2014/070
http://eprint.iacr.org/2014/301

A Review of Standard Definitions and Assumptions

A.1 Key Encapsulation Mechanism

Following the treatment of [Pei14], we equip key encapsulation mechanism (KEM) with an
explicit setup algorithm run by a trusted party, which generates some global public parameters
shared by all parties. If no trusted party is available, then the setup algorithm can be run by
individual parties as part of key generation algorithm, and the public parameters are included
in the resulting public key. Formally, a KEM consists of four polynomial-time algorithms:

• Setup(κ): on input a security parameter κ, output public parameters pp. We assume
that pp also includes the descriptions of ciphertext space C and DEM (data encapsulation
mechanism) key space K. pp will be used as an implicit input for algorithms Encap and
Decap.

• KeyGen(pp): on input pp, output a public/secret key pair (pk, sk).

• Encap(pk): on input public key pk, output a ciphertext c and a DEM key k ∈ K.

• Decap(sk, c): on input secret key sk and a ciphertext c ∈ C, output a DEM key k or a
reject symbol ⊥ indicating c is invalid.

Correctness: We require that for any pp ← Setup(κ), any (pk, sk) ← KeyGen(pp), and any
(c, k)← Encap(pk), it holds that: Pr[Decap(sk, c) = k] = 1.

Security: Let A = (A1,A2) be an adversary against KEM and define its advantage as:

AdvA(κ) = Pr

b = b′ :

pp← Setup(κ);
(pk, sk)← KeyGen(pp);

state← AOdec(·)
1 (pp, pk);

(c∗, k∗0)← Encap(pk), k∗1
R←− K;

b
R←− {0, 1};

b′ ← AOdec(·)
2 (state, c∗, k∗b);

− 1

2
,

where Odec(c) = Decap(sk, c), and A2 is not allowed to query Odec(·) for the challenge ciphertext
c∗. A KEM is said to be IND-CCA secure if for any PPT adversary A, its advantage defined as
above is negligible in κ. The IND-CPA security for KEM can be defined similarly except that
the adversary is not allowed to access Odec(·).

A.2 Predicate Key Encapsulation Mechanism

A predicate KEM consists of five polynomial-time algorithms:

• Setup(κ): on input a security parameter κ, output public parameters pp. We assume that
pp include the descriptions of index set I (index is also usually referred to as attribute),
a family of predicates P , ciphertext space C, and DEM (data encapsulation mechanism)
key space K. pp will be used as an implicit input for algorithms KeyGen, Encap, and
Decap.

• KeyGen(pp): on input pp, output a master public/secret key pair (mpk,msk).

• Extract(msk, p): on input msk and p ∈ P , output a secret key skp for p.

• Encap(ind; r): on input ind ∈ I, output a ciphertext c and a DEM key k ∈ K.

• Decap(skp, c): on input a secret key skp and ciphertext c ∈ C, output a DEM key k ∈ K
or a reject symbol ⊥ indicating c is invalid.

33

Correctness: We require that for any pp ← Setup(κ), any (mpk,msk) ← KeyGen(pp), any
ind ∈ I, any (c, k)← Encap(ind), and any skp ← KeyGen(msk, p) satisfying p(ind) = 1, it holds
that: Pr[Decap(skp, c) = k] = 1.

Security: Here we only focus on a “basic” level of security named payload hiding which
guarantees, intuitively, that a ciphertext associated with index ind hides all information about
the underlying message m unless one is in possession of a secret key giving the explicit ability
to decrypt, i.e., if an adversary A holds keys skp1 , . . . , skpl , then A learns nothing about the
message if p1(ind) = · · · = pl(ind) = 0. Formally, let A = (A1,A2) be an adversary against
predicate KEM and define its advantage in the following experiment:

AdvA(κ) = Pr

b = b′ :

pp← Setup(κ);
(mpk,msk)← KeyGen(pp);

(state, ind∗)← AOkeygen(·),Odec(·,·)
1 (mpk);

(k∗0, c
∗)← Encap(ind∗), k∗1

R←− K;

b
R←− {0, 1};

b′ ← AOkeygen(·),Odec(·,·)
2 (state, c∗, k∗b);

− 1

2
,

where Odec(ind, c) = Decap(skp, c) where p(ind) = 1, and in the second phase A2 is not allowed
to query Odec(·, ·) with the challenge (ind∗, c∗); Okeygen(p) = KeyGen(msk, p), and throughout
the experiment A is not allowed to query Okeygen(·) with the predicate p such that p(ind∗) = 1.
A predicate KEM is said to be IND-CCA secure if for any PPT adversary A, its advantage
defined as above is negligible in κ. The IND-CPA security for predicate KEM can be defined
similarly except that the adversary is allowed to access Odec(·, ·).

A.3 Trapdoor Functions

A family of trapdoor functions consists of five polynomial-time algorithms as below.

• Setup(κ): on input a security parameter κ, output public parameters pp = (TDF, EK,
TD, X, Y), where TDF : EK × X → Y can be viewed as a keyed function indexed by
EK.

• TrapGen(pp): on input pp, output (ek, td) ∈ EK × TD.

• SampDom(r): on input ek and random coins r, output a random x ∈ X.

• Eval(ek, x): on input ek and x ∈ X, output TDFek(x).

• TdInv(td, y): on input td and y ∈ Y , output x ∈ X or a distinguished symbol ⊥ indicating
y does not have pre-image.

Correctness: For any pp ← Setup(κ) any (ek, td) ← TrapGen(pp), and any y = Eval(ek, x), it
holds that:

Pr[Eval(ek,TdInv(td, y)) = y] = 1

Adaptive One-wayness: Let A = (A1,A2) be an inverter against TDFs and define its ad-
vantage as:

AdvA(κ) = Pr

x ∈ TDF−1
ek (y∗) :

pp← Setup(κ);
(ek, td)← TrapGen(pp);

state← AOinv(·)
1 (pp, ek);

y∗ ← Eval(ek, x∗), x∗ ← SampDom(r∗);

x← AOinv(·)
2 (state, y∗)

 ,

34

where Oinv(y) = TdInv(td, y), and A2 is not allowed to query Oinv(·) for the challenge y∗. We
say TDFs are adaptively one-way (or simply adaptively) if for any PPT inverter its advantage
is negligible in κ. The standard one-wayness can be defined similarly as above except that the
adversary is not given access to the inversion oracle.

A.4 Circuit Notation

We now define our notation for circuits that adapts the model and notation of Bellare, Hoang,
and Rogaway [BHR12, Section 2.3]. For our application we restrict our attention to certain
classes of boolean circuits. First, our circuits have a single output gate. Next, we only consider
layered circuits. In a layered circuit a gate at depth j will receive both of its inputs from wires
at depth j − 1. Finally, we will restrict to monotonic circuits where gates are either AND or
OR gates of two inputs.10

Our circuits is a five tuple c = (n, q,A,B,GateType). We let n be the number of inputs and
q be the number of gates. We define Inputs = {1, . . . , n}, Wires = {1, . . . , n + q}, Gates =
{n + 1, . . . , n + q}. The wire n + q is the designated output wire. A : Gates → Wires is a
function where A(w) identifies w’s first incoming wire and B : Gates → Wires is a function
where B(w) identifies w’s second incoming wire. Finally, GateType : Gates → {AND,OR} is a
function that identifies a gate as either an AND or OR gate.

For any w ∈ Gates we require that w > B(w) > A(w). We also define a function depth(w)
where if w ∈ Inputs then depth(w) = 1 and in general depth(w) of wire w is equal to the shortest
path to an input wire plus 1. Since our circuits is layered we require that for all w ∈ Gates that
if depth(w) = j then depth(A(w)) = depth(B(w)) = j − 1. We will abuse notation and let c(x)
be the evaluation of the circuit c on input x ∈ {0, 1}n. In addition, we let cw(x) be the value of
wire w of the circuit on input x.

A.5 Multilinear Maps and the MDDH Assumption

A k-group system consists of k cyclic groups G1, · · · ,Gk of prime order p, along with bilinear
maps ei,j : Gi ×Gj → Gi+j for all i, j ≥ 1 and i+ j ≤ k. Let gi be a canonical generator of Gi

(included in the group’s description). For any a, b ∈ Zp the map ei,j satisfies ei,j(g
a
i , g

b
j) = gabi+j .

When i, j are clear, we will simply write e instead of ei,j . It will also be convenient to abbreviate
e(h1, . . . , hj) := e(h1, e(h2, . . . , e(hj−1, hj))) for hj ∈ Gij and i1 + · · ·+ ij ≤ k. By induction, it
is easy to see that this map j-linear. Additionally, we define e(g) := g. Finally, it will also be
useful to define the group G0 = Zp of exponents to which this pairing family naturally extends.
In the following, we denote MLGroupGen by multilinear maps parameter generator which on
input security parameter κ and level k, output a k-group system (p, {Gi}i∈[k], {ei,j}i,j≥1,i+j≤k).

Assumption A.1 (k-Multilinear Decisional Diffie-Hellman Assumption: k-MDDH). Let (p,
{Gi}i∈[k], {ei,j}i,j≥1,i+j≤k) be a k-group system generated by MLGroupGen(κ, k). For any PPT
adversary A it holds that:

|Pr[A(g, gc1 , . . . , gck+1 , Tb) = 1]− 1/2| ≤ negl(κ)

where T0 = g
∏k+1
j=1 cj

k ∈ Gk, T1
R←− Gk. The probability is taken over the random coins used by

MLGroupGen(κ, k) and picking g
R←− G1, ci

R←− Zp, b
R←− {0, 1}.

10These restrictions are mostly useful for exposition and do not impact functionality. General circuits can be
built from non-monotonic circuits. In addition, given a circuit an equivalent layered exists that is larger by at
most a polynomial factor.

35

A.6 RSA Assumption

Assumption A.2 (RSA Assumption [RSA78]). Let (N, p, q) be a RSA parameter generated
by RSAGen(κ), where N is the product of two κ-bit, distinct odd primes p, q. For any PPT
adversary A it holds that:

|Pr[A(N, e, x) = y s.t. ye ≡ x mod N]| ≤ negl(κ)

where e be randomly chosen positive integer less than and relatively prime to φ(N) = (p −
1)(q − 1), y

R←− Z∗N .

36

	Introduction
	Motivation
	Our Contributions
	Related Work
	Preliminaries and Definitions
	Pseudorandom Functions
	Secret-Coin vs. Public-Coin Weak PRFs

	Publicly Evaluable PRFs
	Relation to Secret-Coin and Public-Coin Weak PRFs

	KEM from Publicly Evaluable PRFs
	Connection to Hash Proof System
	Construction from Smooth HPS
	Construction from Smooth and Weak-Universal2 HPS
	Construction from Universal1 HPS

	Connection to Extractable Hash Proof System
	Construction from (All-But-One) EHPS

	Publicly Samplable PRFs
	Trapdoor Relations
	Publicly Samplable PRFs from TDRs

	Publicly Evaluable Constrained PRFs
	Predicate KEM from Publicly Evaluable Constrained PRFs
	A Construction of PECPRFs

	Publicly Evaluable and Verifiable Functions
	PEVFs from EHPS
	Signature from PEVFs
	Instantiations of PEVFs

	Review of Standard Definitions and Assumptions
	Key Encapsulation Mechanism
	Predicate Key Encapsulation Mechanism
	Trapdoor Functions
	Circuit Notation
	Multilinear Maps and the MDDH Assumption
	RSA Assumption

