
The Locality of Searchable Symmetric Encryption

David Cash1 Stefano Tessaro2

April 30, 2014

Abstract

This paper proves a lower bound on the trade-off between server storage size and the locality of
memory accesses in searchable symmetric encryption (SSE). Namely, when encrypting an index of
N identifier/keyword pairs, the encrypted index must have size ω(N) or the scheme must perform
searching with ω(1) non-contiguous reads to memory or the scheme must read many more bits than
is necessary to compute the results. Recent implementations have shown that non-locality of server
memory accesses create a throughput-bottleneck on very large databases. Our lower bound shows
that this is due to the security notion and not a defect of the constructions. An upper bound is also
given in the form of a new SSE construction with an O(N logN) size encrypted index that performs
O(logN) reads during a search.

1 Department of Computer Science, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019.
Email: david.cash@cs.rutgers.edu. URL: http://www.cs.rutgers.edu/∼dc789.

2 Department of Computer Science, University of California, Santa Barbara, Santa Barbara, USA. Email: tessaro

@cs.ucsb.edu. URL: http://www.cs.ucsb.edu/∼tessaro/.

1 Introduction

Searchable symmetric encryption (SSE) [24, 15, 13] enables a client to encrypt an index of record/keyword
pairs and later issue tokens allowing an untrusted server to retrieve the (identifiers of) all records
matching a keyword. SSE aims to hide statistics about the index to the greatest extent possible while
maintaining practical efficiency for large indexes like email repositories or personal document stores.
These schemes employ only fast symmetric primitives and recent implementations [10] have shown that,
in contrast to most applications of advanced cryptography, cryptographic processing like encryption is
not the bottleneck for scaling. Instead, lower-level issues dealing with memory layouts required by the
schemes are the limiting factor for large indexes.

This work studies how the security definitions for SSE inherently hamper scaling for large indexes.
It proves an unconditional lower bound on the trade-off between server storage space and the spatial
locality of its accesses to the encrypted index during a search. At a high level, the bound says that, for
an index with N pairs, any secure SSE must either pad the encrypted index to an impractical (super-
linear, ω(N)) size or perform searching in a very non-local way (with ω(1) contiguous accesses or by
reading far more bits than is necessary). Either of these options is likely to incur a large slow-down
over a properly designed plaintext searching system with an O(N)-size index that can search with O(1)
contiguous accesses.

The issue of locality in SSE surfaced in recent works [13, 10] where implementations showed that
the non-local use of external storage was a bottleneck preventing scaling to large indexes. The only
works with a highly local access pattern generated very large (roughly O(N2)) encrypted databases that
also prevented scaling. This paper explains this dichotomy of padding versus spatial locality by proving
it is an unavoidable consequence of the SSE security definition. As more cryptographic applications
are developed for securely outsourcing large amounts of data (while maintaining either authenticity or
secrecy), lower-level issues like locality may become more relevant. While in some contexts (like secure
multiparty computation) it is clear that the entire input must be touched during computation, this
work appears to be the first to study of the effect of security on locality in detail.

The lower bound suggests the question of a matching upper bound. We give a new scheme with an
O(N logN) size encrypted index and O(logN) locality via a different padding strategy, which compares
to a scheme with a O(N2) size encrypted index and O(1) locality.1 This scheme may not be competitive
with prior highly-optimized implementations, but it serves as intermediate point in the trade-off curve
implied by the lower bound. The interesting question of closing the gap is left open.

SSE and locality. Let us describe the issue in more detail, starting with SSE and its security
goals. An input to an SSE scheme, denoted DB, is an index (usually called an inverted index in
information retrieval literature) associating with each keyword w a set of identifiers (bit strings) DB(w) =
{id1, · · · , idtw}, where the number tw can vary. “Searching” means retrieving those identifiers, given
w. An SSE scheme is a system for storing the index in encrypted form and delegating the ability to
retrieving these sets while hiding statistics about the identifier sets matching un-searched keywords such
as their number, size, the size of their intersections, and so on. Security is formally parameterized with
a leakage function L that describes an upper bound on what a server learns. One example of good
leakage is N =

∑

w |DB(w)|, along with the identifier sets DB(w) for each keyword that is searched
for. Other statistics like maxw |DB(w)| and the number of unique keywords are also usually considered
acceptable leakage. In any case, the defined leakage is all the server should learn, so plaintext keywords,
identifiers, and anything else other than the output of L must be hidden.

A scheme of Curtmola et al. [13] forms the basis for most subsequent SSE schemes. This scheme
leaks only N and the number of unique keywords by placing all N of the identifier/keyword pairs in
random order into a large array (along with some auxiliary tables) and enabling retrieval with encrypted
linked lists that could be opened for the server. Performing an encrypted search for w requires walking

1There are various ways to achieve a smaller index (see Figure 1), but these will achieve a slightly different notion of
security.

1

Scheme Leakage EDB Size Locality Read Efficiency

CGKO’06-1 [13] m,N O(N +m) O(tw) O(1)
CGKO’06-2 [13] M · n O(Mn) O(tw) O(1)

CK’10 [12] m,n,M O(Mn) O(1) O(1)
LSDHJ’10 [25] m,n O(mn) O(tw) O(1)
KO’12 [20] n,M O(Mn) O(tw) O(1)
KPR’12 [19] m,N O(N +m) O(tw) O(1)
KP’13 [18] m,n O(mn) O(tw log n) O(n log n)

CJJKRS’13 [10] N O(N) O(tw) O(1)

This paper: Scheme N O(N logN) O(logN) O(1)
This paper: Lower Bound Any from above ω(N) O(1) O(1)

Figure 1: Comparison of some SSE schemes. Legend: Leakage is leakage from EDB only, and all schemes also
leak search results and access pattern. n = total # of unique identifiers, N =

∑

w |DB(w)|, m = total # of unique
keywords, M = maxw |DB(w)|, tw = |DB(w)| for the query w. For [12] we mean the scheme in Section 5.2 of the
full version there. The lower bound is achieved with α = 0 in Theorem 4.1. If a scheme support updates or more
advanced searches then we consider a simplified static version for keyword searching as formalized in Section 2.
Differences in security (simulation versus indistinguishability, adaptivity) are ignored here but explain why some
schemes appear to be strictly worse than others.

through |DB(w)| pseudorandom locations in this large array. When the array is stored on disk, it means
that each retrieved pair requires a disk read at a random location. Since each identifier is on the order
of several bytes but the disk block size is now often 4KB, this searching will sacrifice throughput and
latency compared to a plaintext search system which can store the identifiers together in sectors, and
moreover in contiguous sectors which can be read together more efficiently without additional seeking.
Naive modifications, like packing several identifiers from a single DB(w) set into one sector, render the
scheme insecure for the leakage function they consider.

One work [12] addressed locality by enlarging the index to ω(N) size. This scheme pads every set
DB(w) to size maxw |DB(w)| and then store these padded sets in the own contiguous rows. For very
large indexes (with billions of pairs as in [10]), even doubling the plaintext size may be unreasonable,
so these works do not appear to scale for realistic datasets where the padding will be large.

Results. In the sections that follow a precise model is given for measuring and comparing the memory
usage of SSE schemes. The parameters of locality, read-efficiency, and read overlaps are defined and
discussed in relation to lower bounds. Briefly, locality is the number of non-contiguous memory accesses
made by the server and read-efficiency is the number of bits read beyond the minimum necessary. In
Figure 1 we compare the leakage, locality, and read efficiency of prior SSE constructions. (For read
efficiency, the number listed is a multiplicative factor over the binary encoding of the identifiers matching
the query.)

This paper’s primary results are summarized below. For the following two theorems, let L be any of
the leakage functions in Figure 1 (or any function efficiently computable from them). Below we write
BinEnc(DB) to mean an encoding on DB as a binary string formed by concatening the lists of identifiers
matching each keyword. Moreover, we say that a scheme has α-overlapping reads if reads for a new
search overlaps in at most α bits with all previous reads. See Sections 2 and 3 for definitions.

Theorem 1.1 If Π is an L-IND-secure SSE scheme with locality r as well as α-overlapping reads, then

Π has ω
(

|BinEnc(DB)|
r·(α+1)

)

server storage.

Theorem 1.2 Assuming one-way functions exist, there exists an L-IND-secure SSE scheme with lo-
cality O(logN), O(1) read efficiency and O(N logN) storage.

We remark that the α-overlapping read condition in the first theorem allows multiple queries to read
a shared portion of the encrypted database of length independent of the actual result set. We remark
that a very weak read efficiency requirement is implicit in the condition on overlapping reads, and all
existing schemes (including the one in the proof of the second theorem) have highly non-overlapping

2

reads. We conjecture that information-theoretic techniques can be used to obtain a quantitatively
similar lower bound when allowing arbitrary overlaps, but were unable to prove such a strong result.
We leave this as an open question.

The bulk of the paper is spent proving the first theorem. We now start with an intuitive sketch of
how one might prove a weak lower bound. See Section 4 for a detailed sketch of the actual proof, which
is more complicated.

Lower bound approach. Intuitively, if a scheme is very local, then after some searching the server
can look at what is not read after several searches and infer statistics about what has not been opened.
In particular, if one of the sets DB(w) is very large, then good locality means there is a very large region
of the encrypted index that will not be touched by other searches, and the server will notice that this
happens after several searches with small number of results.

The lower bound develops this intuition, but requires further ideas to achieve a lower bound of ω(N)
on the server storage. For now let us sketch how one shows the server must approximately double the
size of a plaintext index if it is to be perfectly local and read-efficient, meaning it processes a search by
reading exactly the required number of bits from a single contiguous section of EDB, and moreover that
the reads for all searches are disjoint. This seems highly restrictive, but later will we be able to weaken
all of these assumptions to realistic versions.

Now suppose we have a perfectly local SSE scheme. Consider two index inputs, DB0 and DB1,
where DB0 consists of N keywords each matching a single unique document and DB1 consists of 2
keywords matching a single unique document and a third keyword matching N − 2 documents. If two
random keywords matching single documents are searched for then the server learns which locations of
the encrypted index are read in order to respond. If DB0 was encrypted, then pigeon-hole argument
shows that with constant probability, there is no remaining contiguous interval large enough to contain
the bits that would be read for the third keyword (it is here that we use an assumed bound on the
server storage). This is diagrammed in the top part of Figure 2, where when the red regions are read
there is no longer space between them for a larger interval. This is in contrast to the case when DB1 is
encrypted, because after observing the two small reads, a perfectly local scheme there will always be a
contiguous unread region large enough to hold the N − 2 identifiers for the third keyword.

The full lower bound is an extension of this idea to consider a family of indexes with result sets of
several sizes. Later it is argued that the technique above is limited to showing a factor 2 overhead in
server storage, and that the complexity of the main attack seems necessary. We also address several
extensions, such as when the server does not perform a single contiguous read but up to O(1) reads,
the leakage function parameter varies, and the reads are allowed to partially overlap.

Related work on secure searching. Following the initial work of [24] that suggested searchable en-
cryption, Curtmola et al. [13] formalized the version of SSE that we consider in this paper. Subsequently
SSE schemes were given with different efficiency properties [15, 11, 12], support for data updates [19, 18],
authenticity [20] and support more advanced searches [10]. These improvements are rthogonal to the
lower bound, which applies to these schemes when used for basic (non-dynamic, non-authenticated)
SSE.

The problem of searching on encrypted data can be addressed in several ways using generic multi-
party computation protocols, oblivious RAM schemes [16] or fully homomorphic encryption [14]. These
approaches achieve slightly levels of functionality and different notions of security, meaning that the
lower bound does not seem to apply. Order-preserving encryption [6, 7] takes a different approach to
searching that achieves high efficiency for rich queries but is less secure than SSE. Implementations that
use order-preserving encryption, notably CryptDB [22], inherit these properties. Our lower bound does
not apply to them.

There is also a line of work on searching on public-key ciphertexts. Public-key encryption with
keyword search [9, 17, 1, 2] In these schemes and subsequent work, the server performing the search by
testing each encrypted record individually, resulting in a scheme that is trivial from the point of view of

3

too small too small too small

large enough

Figure 2: Intuition for a basic lower bound.

the lower bound. The line of work on deterministic public-key encryption [4, 8, 5] enables fast searching
but achieves different, weaker security meaning our lower bound does not apply.

Related work on locality. Algorithmic performance with data stored on disk has been studied
extensively in external memory models (c.f. [26, 23, 3]). These models usually consider block-oriented
devices with varying degrees of precision (e.g., including modeling parallelism, drive geometry, memory
hierarchies, caching, locality of blocks, etc.). Typically one measures the external memory efficiency of
an algorithm by counting the number of blocks it accesses, and a wide array of techniques have been
developed to optimize disk utilization at the algorithmic level.

Interestingly, matching lower and upper bounds are known for many natural problems like, e.g.,
dictionary retrieval, sorting, range searching – see, e.g., Chapter 6 of [26]. Our lower bound is fun-
damentally different from these results. There, one can give an information theoretic argument that
a certain number of disk accesses are necessary in the worst case, with a flavor similar to the classic
O(n logn) comparison-based sorting lower bound. Our lower bound, however, will proceed by showing
that any SSE scheme that meets a certain level of efficiency will be insecure (rather than incorrect as in
traditional external memory lower bounds). That is, our lower bound comes in the form of an attack.
Due to the nature of our lower bound we opt for an extremely simplified version of locality and leave
its adaptation to fine-grained external memory models to future work.

We are not aware of any prior similar lower bounds on cryptographic primitives, other than the folk-
lore observation that security forces many primitives to touch every bit their inputs (e.g., homomorphic
encryption [14], multiparty computation).

Organization. Preliminaries and definitions are recalled in Section 2. Definitions relating to locality
are given and discussed in Section 3. The lower bound is stated and proved in Section 4, and the upper
bound is in Section 5.

2 Preliminaries

Throughout this paper the security parameter is denoted λ and all algorithms (and adversaries) are
assumed to run in time polynomial in λ. We write [n] for the set {1, . . . , n}. For a vector v we write
|v| for the dimension (length) of v and for i ∈ [|v|] we write v[i] for the i-th component of v. For a
bitstring s, we write s[a, b] for the substring starting with the bit in position a and ending in position
b. For integers a ≤ b we write [a, b] for {a, a+ 1, . . . , b} and (a, b) for {a+ 1, a+ 2, . . . , b− 1}.

Databases and SSE schemes. An index (or database) DB = (idi,Wi)
n
i=1 is a list of identifier/keyword-

set pairs, where each idi ∈ {0, 1}
λ and each Wi is a set of bitstrings. When the DB under consideration

is clear, we will write W =
⋃n

i=1Wi. For a keyword w ∈ W, we write DB(w) for {idi : w ∈ Wi}.
We will always use N =

∑

w∈W |DB(w)| =
∑n

i=1 |Wi| to mean the total number of keyword/identifier
pairs in DB, n to mean the number of unique identifiers, and m = |W| to mean the number of unique
keywords. We will also denote as BinEnc(DB(w)) the binary representation of DB(w), i.e., the concate-
nation of all identifiers represented as bit strings, and BinEnc(DB) to be the concatenation of all the
BinEnc(DB(w)) for each w in the database. Under our assumption that all identifiers are in {0, 1}λ, we
have |BinEnc(DB(w))| = λ|DB(w)| and |BinEnc(DB)| = λN .

A searchable symmetric encryption (SSE) scheme Π consists of algorithms (KeyGen,EDBSetup,

4

TokGen, Search) that satisfy the following syntax. The key generation algorithm KeyGen takes as input
the security parameter and outputs a key K. The algorithm EDBSetup takes as input a key K and a
database DB and outputs an encrypted database EDB. The token generation protocol takes as input
a string w and key K and outputs a token τ . Finally, the searching algorithm Search takes as input τ
and EDB and outputs as set L of results.

We note that formalization of an SSE scheme does not model the storage of actual document
payloads, but only of metadata encoded in a keyword index. This simplifies the definition and makes
it modular, but some care must be taken when combining an SSE scheme with a document storage
scheme (see e.g. [13] for an example of how to store the payloads).

An SSE scheme is correct if the natural usage returns the correct results for the keyword being
searched (i.e., DB(w)), except with negligible probability. Formally, for every database DB, consider

an experiment where K
$
← KeyGen(1λ) and EDB

$
← EDBSetup(K,DB) are initially sampled. Then,

an attacker learns EDB and can issue adaptive queries wi, which are answered by first generating a
token τi ← TokGen(K,wi) and then returning it together with Si ← Search(τi,EDB) to the attacker.
The scheme is correct if for all polynomial-time attackers, Si = DB(wi) for all i, except with negligible
probability.

Finally, we say that the scheme Π has server storage s = s(N,λ, ℓ,m) if on input a key K
$
←

KeyGen(1λ) and a database DB with N keyword/identifier pairs, bit length ℓ = |BinEnc(DB)|, and
m = |W| keywords, EDBSetup outputs EDB with bit length |EDB| at most s(N,λ, ℓ,m). (Note that by
the above discussion we typically have ℓ = Nλ, and ℓ is hence somewhat redundant, and only serves
the purpose of better readability.)

Security. We recall the non-adaptive indistinguishability-based version of security from [13] which
will be considered in the lower bound.

Definition 2.1 Let Π = (KeyGen,EDBSetup,TokGen, Search) be an SSE scheme and let L be a leakage
function and A be an adversary. For b ∈ {0, 1} we define the game IND-SSEb

Π,L,A(λ) as follows: The

adversary chooses DB0,DB1,w. The game runs K
$
← KeyGen(1λ), EDB

$
← EDBSetup(K,DBb) and

t[i] ← TokGen(K,w[i]) for each i ∈ [|w|]. It gives (EDB, t) to A, which outputs a bit b̂. Finally, if
L(DB0,w) 6= L(DB1,w), the game outputs ⊥ and otherwise it outputs b̂.

We define the L-IND advantage of A to be

Advind-sse
Π,L,A (λ) = |Pr[IND-SSE0

Π,L,A(λ) = 1]− Pr[IND-SSE1
Π,L,A(λ) = 1]| ,

and we say that Π is L-IND-secure if Advind-sse
Π,L,A (λ) is negligible for every A.

Our construction will achieve the stronger (adaptive, simulation-based) definition from [13], which
we recall here. (A non-adaptive version is such that in both games A must choose all of its queries
beforehand.)

Definition 2.2 Let Π = (KeyGen,EDBSetup,TokGen, Search) be an SSE scheme and let L be a leakage
function. For algorithms A and S, we define the two games SIM-SSE0

Π,L,A(λ) and SIM-SSE1
Π,L,A,S(λ)

as follows:

SIM-SSE0
Π,L,A(λ): A(1

λ) chooses DB,w. The game then runs (K,EDB)← EDBSetup(DB) and t[i]←
TokGen(K,w[i]) for each i ∈ [|w|]. It gives EDB, t to A, which eventually returns a bit that the game
uses as its own output.

SIM-SSE1
Π,L,A,S(λ): A(1

λ) chooses DB,w. The game then runs (EDB, t) ← S(L(DB,w)) and gives
EDB, t to A, which eventually returns a bit that the game uses as its own output.

We define the L-SIM-advantage of A and S to be

Advsim-sse
Π,L,A,S(λ) = |Pr[SIM-SSE0

Π,L,A(λ) = 1]− Pr[SIM-SSE1
Π,L,A,S(λ) = 1]|,

and we say that Π is L-SIM-secure if for all adversaries A there exists an algorithm S such that
Advsim-sse

Π,L,A,S(λ) is negligible.

5

Leakage functions. Below we will consider two leakage functions Lmin and Lmax. The first is
called the size minimal leakage function,2 which is defined as follows: Lmin(DB,w) outputs N =
∑

w∈W |DB(w)| and the sets (DB(w[1]), . . . ,DB(w[|w|])). The second is called the maximal leakage
function which outputs (N,n,m,M) as well as (DB(w[1]), . . . ,DB(w[|w|])), where N is defined as be-
fore, n is the number of unique identifiers in DB, m = |W| (the number of unique keywords), and
M = maxw |DB(w)|. It is of course possible to consider “more” leakage, but this is more than any
existing scheme leaks, meaning out lower bound will apply to all of them.

3 Read Efficiency and Locality Metrics for SSE Schemes

This section introduces the notions of locality and read efficiency of SSE schemes.

Read patterns. First, we observe that the searching procedure of any SSE scheme can be decomposed
into a sequence of contiguous reads from the encrypted database. To formalize this point of view, fix
an SSE scheme Π, an EDB output by EDBSetup and a token τ output by TokGen. Viewing EDB

as a bitstring of length M , we may express the computation of Search(τ,EDB) as follows: It starts
by computing an interval [a1, b1] that depends only on τ . It then computes another interval [a2, b2]
that depends only on τ and EDB[a1, b1], and continues computing intervals to read based on τ and all
previously read intervals from EDB. We write RdPat(τ,EDB) for these intervals.

Locality of an SSE scheme. We put forward the notion of locality of an SSE scheme, capturing
the fact that every read pattern consists of at most a bounded number of intervals.

Definition 3.1 (Locality) An SSE scheme Π is r-local (or has locality r) if for any λ, DB, and
w ∈ W, we have that RdPat(τ,EDB) consists of at most r intervals with probability 1 when EDB, τ are

computed as K
$
← KeyGen(1λ), EDB

$
← EDBSetup(K,DB), τ ← TokGen(K,w). If r = 1, we say Π has

perfect locality.

In particular, the value r can depend both on the security parameter λ and the index size |DB|.

Read efficiency. The notion of locality alone is not very meaningful. Of course, we can just make
every scheme perfectly local by reading the whole EDB. This is why the notion of locality is directly
tied to the notion of read efficiency, which measures the overall size of the portion read by a search
operation.

Definition 3.2 (Read Efficiency) An SSE scheme Π is c-read efficient (or has read efficiency c) if
for any λ, DB and w ∈ W, we have that RdPat(τ,EDB) consists of intervals of total length at most
c · |BinEnc(DB(w))| bits.

We allow c to depend on the security parameter here.

Read disjointness. The above definition of read efficiency is very general. In particular, for sufficiently
large c, it allows multiple queries to read exactly the same bits. Our lower bound below will apply to
a more restricted class of r-local schemes which read sufficiently many new bits. We feel this class is
natural, and moreover it contains all prior constructions.

Definition 3.3 (Overlapping reads) An SSE scheme Π has α-overlapping reads if for all λ and all
DB, the read pattern induced by the search of each keyword in DB has an overlap of at most α bits with
the read patterns induced by the searches of all other (previous or future) keywords (with probability
1 over the computation of K ← KeyGen(1λ), EDB ← EDBSetup(K,DB), and the computation of the
tokens). When α = 0 we say Π has disjoint reads.

2It appears to be impossible to define a true “minimal” amount of leakage, as we could consider a leakage function that
leaks only some upper bound on N .

6

In general, the value α is independent of N , but may additionally depend on λ or possibly on the
number of words |W| in order for example to take into account a common portion of EDB which can
be read at every search operation. Typically, a scheme will read some metadata like hash table entries
and then perform reads to retrieve the actual results. (Of course we make no assumption on what
computation the scheme actually does, beyond being of the form above.)

4 Lower Bounds

4.1 Theorem Statement and Proof Overview

In this section we sketch our proof that a secure SSE scheme cannot simultaneously achieve O(1) locality
and O(|BinEnc(DB)|) server storage. Concretely, we are going to prove the following theorem, where
Lmax was defined at the end of Section 2 and the locality metrics were defined in the previous section.

Theorem 4.1 If Π is an Lmax-IND-secure SSE scheme with locality r as well as α-overlapping reads,

then Π has ω
(

|BinEnc(DB)|
r·(α+1)

)

server storage.

We note that we consider Lmax for the lower bound as this strengthens the result by considering schemes
that are “very leaky.” In the theorem statement, we assume that α does not depend on N , but may
additionally depend on λ or possibly on the number of words |W|.

Proof approach. We will first sketch our lower bound with a few simplifications. First, we assume
the SSE scheme is has perfect locality and read efficiency, meaning the server always performs exactly
one contiguous read for exactly |BinEnc(DB(w))| = λ · |DB(w)| bits from EDB when searching for a word
w, the minimum required for the response. Second, we assume all reads are perfectly disjoint. Third,
we consider the lower bound against SSE schemes achieving security with leakage function Lmin instead
of Lmax (thus making the result easier). It turns out that this case encompasses most of the technical
difficulties for the general result, which we derive afterwards.

The principle behind the attack extends the idea sketched in Section 1: When an SSE scheme fits
the above assumptions, a curious server can observe the sizes of unread intervals after several searches
and (as we will prove) infer some information about the parts of the index that have not been searched
for.

We will formalize this by giving an adversary that distinguishes the two games in Definition 2.1 for
any Π meets the restrictions. The adversary will choose two indexes DB0,DB1 of the same size in a
careful way so that DB1 has keywords that match a large number of documents while DB0 does not.
Then it will query for tokens for several keywords matching relatively small numbers of documents.
Using the tokens, it will compute the read pattern of the server when searching for those keywords, and
then look at the unread portions of EDB. Since we are assuming perfect locality, if DB1 was encrypted,
there must be large regions that go untouched by any query. On the other hand, we will show that this
is often not the case if DB0 is encrypted, allowing the adversary to distinguish.

To describe the proof it will be useful to introduce a compact notation for the shape of a DB input.

Definition 4.2 We write

DB← (n1 × s1; n2 × s2; . . . ; nt × st)

when DB = (idi,Wi) has shape (n1 × s1; n2 × s2; . . . ; nt × st), which means that it satisfies the
following:

• DB has a keyword set W of size
∑t

j=1 nj comprised of λ-bit strings.

• For each j ∈ [t], there are nj keywords w ∈W such that |DB(w)| = sj.

• For all w 6= w′, the sets DB(w) and DB(w′) are disjoint.

7

Our attack sketched in the introduction corresponded to picking indexes DB0,DB1 with shapes
DB0 ← (N × 1) and DB1 ← (2× 1 ; 1× (N − 2)), meaning that DB0 consists of N “singletons” and DB1

consists of two singletons and one large set of results. It is possible to formalize that attack and show
that a secure perfectly local SSE scheme must produce an EDB that is at least twice as large as the bit
representation of DB, but as we observe at the end of this section, any attack that uses indexes with
such simple shapes will not be able to prove a better lower bound.

We now proceed to extend that attack. Let Π be perfectly local scheme with server storage kλN for
some constant k ≥ 1. Our attack against the security Π will select two random inputs DB0,DB1 with
shapes

DB0 ← (n1 × ε1N ; n2 × ε2N ; . . . ; nk−1 × εk−1N ; n̂k × εkN) (1)

DB1 ← (n1 × ε1N ; n2 × ε2N ; . . . ; nk−1 × εk−1N ; nk × εkN ; n̂k+1 × εk+1N) (2)

where n1 > n2 > · · · > nk > 1 and ε1 < ε2 < . . . < εk < εk+1 < 1 are appropriately chosen constants.
Intuitively, DB0 consists only of many small result sets DB0(w) while DB1 consists of many small result
sets and some relatively large sets of εk+1N keywords.

The attack will query for tokens for all
∑k

i=1 ni keywords matching εiN documents with i ∈ [k] (in
order to note lose the game, the attack ensures that DB0 and DB1 are consistent on these queries). It
then calculates the read patterns of the server. Since Π is perfectly local, the reads are for εiλN bit
intervals respectively, and moreover they are all disjoint. Thus if DB1 is encrypted, then the perfect
locality of Π means there must exist an interval of εk+1λN bits in EDB that was not touched by the
observed reads (actually, there will be at least n̂k+1 such intervals) – These are where the large result
sets are stored (note that the adversary does not query for the keyword corresponding to any of large
sets, but only notices the presence of a suspiciously large untouched interval). However, as we will show,
if DB0 was encrypted then the security of Π will mean there is a noticeable probability that there is no
such interval remaining untouched. We stress that this will be due to the (forced) distribution of the
reads, and not simply because there is no room, as the same number of bits is read when either DB0 or
DB1 in encrypted.

Proving the latter claim on DB0 is the main technical part of the proof. Intuitively, it holds because
security forces the small intervals (say of size εiλN) to be located in random-looking locations which
do not leave large gaps (say of size εi+1λN) between them too often, which implies that large intervals
cannot fit between them while remaining disjoint, effectively “killing” that space for large intervals.

We will show that, for a specific choice of the constants, that for each i = 1, . . . , k, the queried sets
of size εiλN will each kill at least λN bits of the EDB from storing any larger intervals (in particular,
intervals of size εjλN for j > i) with constant probability. Since we have k different read pattern
sets each killing λN bits from storing anything larger with constant probability, we get that kλN bits
are killed with constant probability. But this means the entire EDB has been killed with constant
probability (here we use that k is a constant), and when that happens the adversary can conclude that
DB0 was encrypted – If DB1 had been encrypted this would happen with probability 0.

We now sketch how to show that queries for a constant number of sets of size εiN will kill λN bits
(which is much larger than the actual number of bits – εiλN – read by the server during its perfectly-
local searching). To prove this we use hybrid argument, which can be understood as a sequence of
adversaries A1,A2, . . . ,Ak - the purpose of Ai is to show that the sets of size εiN kill enough space
with constant probability, assuming that the smaller sets each do so. The first adversary A1 is the
simplest to describe, and resembles our original attack from the Introduction. Adversary A1 draws
DB0,DB1 of size N with shapes

DB0 ← (n̂1 × ε1N) (3)

DB1 ← (n1 × ε1N ; n̂2 × ε2N), (4)

8

where n1 < n̂1 = ε−1
1 and ε1 < ε2 are constants. It populates the two databases with a consistent set

of keywords, meaning that the n1 keywords matching ε1N documents DB1 are a random subset of the
n̂1 such keywords in DB0. Intuitively, DB0 has a large number of keywords matching ε1N documents
each, and searching for each keyword induces a read by the server for a disjoint interval of λε1N bits.
Thus searching for a random subset of n1 < n̂1 of those keywords will reveal the location of a random
subset of the disjoint intervals. In DB1, however, there are only n1 of these keywords, but we can show
that security forces their distributions to be as they are in DB0.

Specifically, we have A1 query for the n1 keywords matching ε1N documents in either database,
and then it computes their read patterns. If DB0 was encrypted, then the intervals read by the server
are chosen randomly from amongst n̂1 intervals of that size. We show (unconditionally) with good
probability there is a lot of space (about λN bits) in EDB where intervals of size ε2N or larger cannot
fit after the n1 intervals have been read. This happens because, for randomly chosen intervals, the gap
between them cannot be larger than ε2N too often. Thus the larger intervals must go elsewhere in
EDB. And since the scheme is secure, DB1 must also exhibit this behavior (despite the read intervals
not being chosen from a larger set of intervals). In fact, this shows that when any database contains n1

keywords with εN results each, then the resulting reads for those keywords must be laid out in a way
that eliminates a large amount of space for larger intervals even though the actual bits read for them is
very small, namely n1ε1λN ≪ n̂1ε1λN .

We then iterate this approach; The next adversary A2 queries DB0,DB1 with shapes

DB0 ← (n1 × ε1N ; n̂2 × ε2N) (5)

DB1 ← (n1 × ε1N ; n2 × ε2N ; n̂3 × ε3N). (6)

(So DB0 now has the shape that A1 chose for DB1.) The adversary A2 then queries for tokens for all
n1 keywords matching ε1N documents, and then a random subset of the n̂2 keywords matching ε2N
documents in DB1. (As before these databases are made with consistent keywords and identifiers.)
We show that when DB0 is encrypted, conditioned on the read intervals of size ε1λN disallowing λN
bits for larger intervals, a random subset of intervals of size ε2λN will disallow about another λN bits
for larger intervals. Security again forces this is to be true when DB1 is encrypted despite not being
forced statistically. The result is that with constant probability about 2λN bits of EDB can no longer
accommodate larger intervals.

By considering the sequence of A1, . . . ,Ak of adversaries and applying this reasoning k times, we
have that the entire database has been disallowed by a relatively small number of small reads intervals
with good probability, and then we can finish the proof as sketched above.

Extensions to more general locality. The argument above worked for perfect locality, meaning
the server search algorithm for keyword w worked with a single, contiguous read from EDB for exactly
λ · |DB(w)| bits that is disjoint from the read for any other search. It is easy to extend the lower bound
to when the server works with r = O(1) contiguous reads that total exactly λ · |DB(w)| bits and are
disjoint from all other reads by observing that one of the r reads must have size at least λ · |DB(w)|/r
contiguous bits, and then adjusting the parameters of the above argument to ensure that intervals of
that size can be be disallowed with good probability by the final adversary.

Other relaxations will be given. For instance, to adaptive the attack to work with leakage function
Lmax, we need to additionally arrange for the submitted databases to always have the same number of
documents, keywords, maximum size result set DB(w). This only introduces minor technicalities.

Would a simpler attack work? It is fair to ask if the complexity of this attack is necessary, and
specifically if an attack like A1, which only queries for keyword with |DB(w)| equal to two possible sizes
(either ε1N or ε2N) could give the lower bound and avoid the iterative argument.

While it is always possible in principle to simplify proofs, we can argue that no such simple adversary
could prove a lower bound better than M ≥ 2λN by observing read patterns alone. This is because an
SSE scheme, knowing that it will only be queried for keywords with two different sizes |DB(w)|, could

9

have EDB reserve λN bits for the first size, and another λN bits for the second size. Then it could
simply store sets DB(w) of the first size in random order first half of EDB with padding, then the sets
DB(w) with the second size in the second half.

This reasoning generalizes to show that any attack proving M ≥ kλN must query keywords with
|DB(w)| having at least k + 1 different sizes, as our attack does.

4.2 Tools for the Proof of Theorem 4.1

The proof will use technical, but elementary, facts about how intervals of integers can be packed together.
The intervals in the proof will be the read patterns of the searches, and whether or not they can be
arranged in certain ways will allow the attack to work. We start with some tools to formalize the
meaning of intervals “killing” space for larger intervals. This is captured in the definition of closure
below. At first reading, it may be helpful to proceed without worrying about the details of the definitions
and lemmas below because it is possible to understand the proof structure without them.

Recall that we write [a, b] for {a, a+ 1, . . . , b} and (a, b) for {a+ 1, . . . , b− 1}.

Definition 4.3 Let S ⊆ I ⊆ [M] be a subset of an interval I = [α, β], and write S uniquely as a disjoint
union of increasing intervals, S =

⋃t
i=1[ai, bi] (with bi < ai+1), and let d > 0. We define the d-closure

of S in I to be the set

cld,I(S) = S ∪
⋃

{(bi, ai+1) : 0 ≤ i ≤ t, ai+1 − bi ≤ d}

where we define b0 = α− 1 and at+1 = β + 1.
More generally, if S ⊆ F ⊆ [M] where F =

⋃s
i=1 Ii is the union of non-adjacent disjoint intervals,

then we define the d-closure of S in F to be

cld,F (S) =
s
⋃

i=1

cld,Ii(S ∩ Ii).

In words, the d-closure of S in F consists of S along with all of the intervals between its members or
endpoints of intervals F that are strictly smaller than d. (The condition ai+1− bi ≤ d implies there are
at most d − 1 positions between x and y.) We also observe that |cld,F (S)| ≥ |S| always. To give some
further intuition, in our attack below, [M] are the indices of the bits of the given encrypted database,
whereas F is the set of live indices which can still be used, and S ⊆ F is the read pattern associated
with a set of search operation.

It is easy to check that the notion of closure is well-defined over S in the sense that any choice of
an interval-decomposition of S will result in the same d-closure. This is not true for the decomposition
of F , which is why we write it to be decomposed uniquely as the union of non-empty, non-adjacent
intervals.

The motivation for the prior definition is that intervals of size d or larger that are disjoint from a
set must also be disjoint from its d-closure, as summarized by the following lemma.

Lemma 4.4 Let S ⊆ F ⊆ [M] and J ⊆ F be an interval. If an interval J is disjoint from S then it is
also disjoint from cld,F (S) for any d ≥ |J |.

Proof: Suppose that J is disjoint from S but intersects cld,F (S). Since J ⊆ F , we have J ⊆ Ik where Ik
is some interval in the unique decomposition of F . Since J is disjoint from S, it must be contained one
of the extra intervals added when forming cld,F (S). But these intervals all contain at most d− 1 < |J |
elements, a contradiction.

A helping lemma. We discuss an important helping lemma about closures that we will use in the
attack. A first-time reader may want to jump ahead to the discussion of our attacks to better identify
the context in which they are used.

10

It says that for any set S =
⋃t

i=1 Ji expressed as a union of intervals, we can always pick relatively
few of the intervals the union of which will have the same d-closure.

Lemma 4.5 If S =
⋃t

i=1 Ji ⊆ F ⊆ [M] is written as a union of (possibly adjacent) intervals, then we
can select a set T ⊆ [t] of size at most 3M/d such that cld,F (S) = cld,F (

⋃

i∈T Ji).

Proof: Now, we are going to choose a subset T ⊆ [t] such that cld,F (
⋃

i∈T Ji) = cld,F (S).

From now on, we can assume without loss of generality that F = [M]. To see that this is true, assume
that it is not the case and let F =

⋃s
i=1 Ii, where Ii are disjoint intervals in increasing order. We now

define F := [M] and let S := S∪S∆, where S∆ is the union of disjoint intervals chosen as follows: For any
two consecutive intervals Ii = [ai, bi] and Ii+1 = [ai+1, bi+1], we add the interval Ji,i+1 = (ai, bi+1) to S∆,
together with [1, a1) (if a1 > 1) and (bs,M] (if bs < M). It is easy to verify that cld,F (S)∩F = cld,F (S).

Now, if we can find a subset S′ ⊆ S consisting of at most 3M
d

of the intervals of S and such that
cld,F (S) = cld,F (S

′), we also note that by removing the intervals in S∆ from S′, obtaining S′′ ⊆ F , we
have

cld,F (S
′′) = cld,F (S

′) ∩ F = cld,F (S) ∩ F = cld,F (S) .

Write now cld,F (S) =
⋃u

i=1Ci as the union of disjoint non-adjacent intervals. We will choose the
indices for T by showing how to choose the elements from each partition S ∩ Ci. For each Ci, we let
[a1, b1] ≤ [a2, b2] ≤ · · · ≤ [aℓ, bℓ] be the subset of the (possibly adjacent) intervals among J1, . . . , Jt which
are in S ∩ Ci, and we will take a subset of these, denoted [a′1, b

′
1] < · · · < [a′ℓ′ , b

′
ℓ′]. We start by taking

[a′1, b
′
1] = [a1, b1]. Then we take [a′2, b

′
2] to be the interval with largest aj such that aj − b′1 ≤ d. Then

we pick the next interval [a′3, b
′
3] to have the largest aj such that aj − b′2 ≤ d, and continue in this way

until we have taken [a′ℓ′ , b
′
ℓ′] = [aℓ, bℓ]. We can always pick another element because there is no interval

of size d between [ai, bi] and [ai+1, bi+1] by Lemma 4.4.

We define T to be the indices of intervals chosen in this way. To bound the size of T , we first observe
that the number u of intervals composing cld,F (S) is at most |F |/d < M/d because the space between
those intervals is at least d. Next, we have that all the [a′j , b

′
j] are strictly increasing, and moreover that

for j ∈ [ℓ′ − 2],

a′j+2 > a′j + d,

because otherwise a′j+2 > a′j+1 would have been chosen as a′j+1. Let Ti be the set of indices j ∈ T such
that Jj ⊆ Ci. Then,

|Ti| ≤ ⌈2|Ci|/d⌉ ,

and we have

|T | =
u
∑

i=1

|Ti| ≤
u
∑

i=1

⌈

2|Ci|

d

⌉

≤ u+
u
∑

i=1

2|Ci|

d
≤

M

d
+

2|cld,Fd
(S)|

d
≤

3M

d
.

Finally, it is easy to check that the selected intervals have same d-closure in F as S.

4.3 The Basic Attack

We are now ready to state our attack for the case of perfect locality and read efficiency with disjoint
reads. We will ignore round-off errors computing values that not necessarily integers. To address these
formally we can simply choose constants that divide N and satisfy other divisibility conditions. We
discuss how to extend the result to the more general case in the next section.

Theorem 4.6 (Basic Attack) If Π is an Lmin-IND-secure SSE scheme with perfect locality, perfect
read efficiency, and disjoint reads, then Π has ω(|BinEnc(DB)|) server storage.

11

Adversary Aj : Computing DB0,DB1,w:

01 Select random V ⊂ [n̂j] such that |V | = |nj |
02 Initialize DB0,DB1 to empty lists
03 for i ∈ [j − 1] and ℓ ∈ [ni] do:

04 wi,ℓ
$
← {0, 1}λ ; Si,ℓ

$
← ({0, 1}λ)εiN ; Add wi,ℓ 7→ Si,ℓ to DB0 and DB1

05 for ℓ ∈ [n̂j] do:

06 wj,ℓ
$
← {0, 1}λ ; Sj,ℓ

$
← ({0, 1}λ)εjN ; Add wj,ℓ 7→ Sj,ℓ to DB0

07 if ℓ ∈ V then : Add wj,ℓ 7→ Sj,ℓ to DB1

08 for ℓ ∈ [n̂j+1] do:

09 wj+1,ℓ
$
← {0, 1}λ ; Sj+1,ℓ

$
← ({0, 1}λ)εj+1N ; Add wj+1,ℓ 7→ Sj+1,ℓ to DB1

10 w = {wi,ℓ : i ∈ [j − 1], ℓ ∈ [ni]} ∪ {wj,ℓ : ℓ ∈ V }
11 Output DB0,DB1,w

Adversary Aj : Computing output bit:

12 Input EDB, t = {τi,ℓ : i ∈ [j − 1], ℓ ∈ [ni]} ∪ {τj,ℓ : ℓ ∈ V }
13 L1 ← [|EDB|]
14 for i ∈ [j − 1] do :
15 Compute read patterns induced by τi,1, . . . , τi,ni

; Let Ri be their union
16 if |clεi+1λN,Li

(Ri)| < n̂iεiλN then Output 0
17 else Li+1 ← Li \ clεi+1λN,Li

(Ri)
18 Compute read patterns induced by {τj,ℓ : ℓ ∈ V }; Let Rj be their union
19 if |clεj+1λN,Lj

(Rj)| < n̂jεjλN then Output 0
20 else Output 1

Figure 3: Adversary Aj for the proof of Theorem 4.6.

Proof: Suppose for contradiction that Π has perfect locality and perfect read efficiency and server
storage M = k · |BinEnc(DB)| for some constant k and all sufficiently large DB. We are going to show
that the scheme cannot be Lmin-IND-secure. Without loss of generality, we will assume that k > 2; this
obviously implies impossibility for all k, as schemes with smaller storage can be padded to have k > 2.

Our attack will fix some sufficiently large N as well as constants D,n1 > n2 > · · · > nD > 1,
n̂1 > n̂2 > . . . > n̂D+1 and ε1 < ε2 < · · · < εD+1 < 1. Looking ahead, we will set these constants

D = k, εj =

(

1

3k3

)D−j+2

, nj =
3k

εj+1
, and n̂j =

1−
∑j−1

i=1 niεi
εj

, (7)

where N = poly(λ) is sufficiently large.
For each j ∈ [D] we define an adversary Aj using the code in Figure 3. Our plan is to show,

unconditionally, that at least one of these adversaries has non-negligible advantage in attacking Π.
Each Aj plays the game IND-SSEb

Π,Lmin,Aj
(λ), which starts by having the adversary supply indices

DB0,DB1 and a list of keywords w such that Lmin(DB0,w) = Lmin(DB1,w).
Let us give some intuition for how the adversaries are design. Aj generates generates DB0 and DB1,

which will have shapes

DB0 ← (n1 × ε1N ; . . . ; nj−1 × εj−1N ; n̂j × εjN)

DB1 ← (n1 × ε1N ; . . . ; nj−1 × εj−1N ; nj × εjN ; n̂j+1 × εj+1N) .

These shapes are chosen so that DB0 has a large (n̂j , but still constant) number of keywords matching
εjN random (i.e., unique w.h.p.) documents each, while DB1 has only a few, nj < n̂j and instead has
some keywords matching εj+1N documents each.

Formally, for each i = 1, . . . , j−1, Aj picks ni random keywords wi,1, . . . , wi,ni
, and then it associates

each of these with εiN random identifiers (we ignore the case where the identifiers repeat, which happens
with negligible probability), which in the code are the sets Si,1, . . . , Si,ni

. It adds these keywords and
identifier sets to both DB0 and DB1.

12

Next it generates n̂j random keywords wj,1, . . . , wj,n̂j
and associated identifier sets Sj,1, . . . , Sj,n̂j

(each of size εjN), and adds them to DB0. Now it uses the randomly chosen subset V ⊂ [n̂j] to select
nj < n̂j of those keywords and sets to add to DB1.

At this point DB0 is complete, but DB1 is smaller because not all of the keywords wj,1, . . . , wj,n̂j

were added (only those determined by V were added to DB1). The next “for” loop adds n̂j+1 random
keywords, each matching εj+1N random identifiers, to DB1. By our choice of parameters, this will bring
DB1 to have the same size of DB0.

This completes the computation of DB0 and DB1. The adversary sets its query vector w to be

w = {wi,ℓ : i ∈ [j − 1], ℓ ∈ [ni]} ∪ {ŵj,ℓ : ℓ ∈ V }.

This means Aj queries for tokens for all keywords w with |DB(w)| = εiN with i ∈ [j − 1], and then
for the nj keywords w ∈ V that have |DB(w)| = εjN and are common to both DB0 and DB1. In DB1,
these are all of the keywords matching εjN documents, but in DB0 this will be a strict subset of the n̂j

such keywords. This will be crucial in our analysis because it means in DB0 we will observe statistical
patterns when choosing a subset of keywords to search, and security will force the searching to exhibit
the same patterns when searching DB1. We will reason along these lines to conclude that DB1 must
read regions of memory in an inefficient way in order to “look like” DB0.

The adversary Aj gives (DB0,DB1,w) to its game, and receives EDB with M := |EDB| = k ·
|BinEnc(DB)| = kλN and the tokens corresponding to the queries.

Finally Aj determines its output bit by performing a series of checks which ensure that the read
patterns of the searched keywords “kill” large regions of the memory, meaning they prevent those regions
from storing intervals of a given size. It starts by setting L1 = [M]. During i-th round of checking, Li

will be the set of “live” regions of EDB where intervals of size εiλN may fit without overlapping with
any of the previously read regions.

There is one detail to verify in Aj . For the checks involving closures to make sense, we need that
Ri ⊆ Li for each i ∈ [j] so that the closures are defined. Perfect locality says that the intervals in Ri

must avoid R1, R2, . . . , Ri−1, and so by Lemma 4.4 the intervals comprising Ri (which are of size εiN)
must avoid clε2λN,L1(R1), . . . , clεiλN,Li−1(Ri−1). This implies Ri ⊆ Li.

For i = j we can prove something slightly stronger that will be used below. If we let Tj be the union
of read patterns of {wj,ℓ : ℓ ∈ [n̂j]}, then obviously Rj ⊆ Tj . We also have Tj ⊆ Lj by an argument
nearly identitcal to the one in the previous paragraph.

Analysis. Theorem 4.6 will follow by combining the the next two Lemmas. After stating them we
show how to derive the theorem, and then we prove them in turn.

Lemma 4.7 Let Π be an SSE scheme with perfect locality, perfect read efficiency and k · |BinEnc(DB)|
server storage, and AD the adversary defined in Figure 3 with parameter settings in (7). Then

Pr[IND-SSE1
Π,Lmin,AD+1

(λ)⇒ 1] = 0.

Lemma 4.8 Let Π be an Lmin-IND-secure SSE scheme with perfect locality, perfect read efficiency and
k · |BinEnc(DB)| server storage, and Aj the adversary defined in Figure 3 with parameter settings in (7).
Then for each j ∈ [D] and b ∈ {0, 1},

Pr[IND-SSEb
Π,Lmin,Aj

(λ)⇒ 1] ≥
1

Πj
i=1

(

n̂j

nj

) − negl(λ).

Moreover, for our setting of parameters in (7), this probability is at least some positive constant inde-
pendent of λ of N and dependent on k.

Proof of Theorem 4.6 using Lemmas 4.7 and 4.8: Let Π be an SSE scheme satifying the
conditions in the theorem and Aj the the previously defined adveraries with the specified parameters.

13

By Lemma 4.7,

Pr[IND-SSE1
Π,Lmin,AD

(λ)⇒ 1] = 0. (8)

However, since Π is Lmin-IND-secure, by Lemma 4.8 with j = D and b = 0, we have

Pr[IND-SSE0
Π,Lmin,AD

(λ)⇒ 1] ≥
1

ΠD
i=1

(

n̂D

nD

) − negl(λ), (9)

where the right hand side is at least an absolute constant for sufficiently large λ. Subtracting (8) and (9),
we get that Advind-sse

Π,Lmin,AD
(λ) is a positive constant. Since AD is efficient this contradicts the assumed

security of Π and finishes the proof.

Proof of Lemma 4.7: If the AD outputs 1, then for all i = 1, . . . , D, we have |clεi+1λN,Li
(Ri)| ≥

n̂iεiλN for all i = 1, . . . , D, where L1 := [kλN] and Li+1 := Li \ clεi+1λN,Li
(Ri). We will show that this

condition cannot hold when Π has perfect locality and read efficiency.

The key observation is that, for the DB1 chosen by AD, it must be that |LD+1| > n̂D+1 · ǫD+1 ·λN . This
is because perfect locality and perfect read efficiency mean the remaining n̂D+1 keywords, if searched
for, would result in reading overall a set I consisting of n̂D+1 · ǫD+1 · λN bits within LD+1.

We assume that AD outputs 1 and get a contradiciton by showing that I is larger than LD+1. Using
(7), |I| is

|I| = n̂D+1εD+1λN =
1−

∑k
j=1 niεi

εk+1
· εk+1λN =

1−
k
∑

j=1

3k

εj+1
εj

 · λN

=

1− 3k
k
∑

j=1

1

3k3

 · λN =

(

1− 3k · k ·
1

3k3

)

· λN =

(

1−
1

k

)

· λN.

The first equality uses the definition n̂D+1, the second uses the definition of ni, and the third uses
εj/εj+1 = 1/3k3.

Next we bound |LD+1| when AD outputs 1. In this case, AD must have calculated |clεi+1λN,Li
(Ri)| ≥

n̂iεiλN for each i ∈ [D]. This means, since the clεi+1λN,Li
(Ri)’s are disjoint,

|LD+1| = kλN −

∣

∣

∣

∣

∣

D
⋃

i=1

clεi+1λN,Li
(Ri)

∣

∣

∣

∣

∣

≤ kλN −
D
∑

i=1

|clεi+1λN,Li
(Ri)| ≤ kλN −

D
∑

i=1

n̂iεiλN.

For our setting of parameters (see (7)), we can simplify this as

kλN −
k
∑

i=1

n̂iεiλN = kλN −
k
∑

i=1

(

1− 3k
i−1
∑

l=1

εl
εl+1

)

λN = kλN − kλN + 3kλN
k
∑

i=1

(k − i)
εi
εi+1

= 3kλN
k
∑

i=1

(k − i)
1

3k3
=

λN

k2
·

k
∑

i=1

(k − i) ≤
λN

2

Recall that we assumed WLOG that k > 2, from which we get that |I| > |LD+1|.

Proof of Lemma 4.8: We use induction on j. We first observe that the game will never output ⊥
because Lmin(DB0,w) = Lmin(DB1,w) by our construction of Aj .

For j = 1, b = 0, we first examine the probability that A1 outputs 1. Here A1 chooses DB0 that consists
of n̂1 = 1/ε1 keywords {ŵ1,1, . . . , ŵ1,n̂1}, each satisfying |DB0(ŵ1,ℓ)| = ε1N . Then it chooses a set
V ⊂ {ŵ1,1, . . . , ŵ1,n̂1} of size n1 < n̂1 at random and produces a DB1 that is consistent with DB0 on those

14

keywords and has some additional keywords added. The adversaryA1 queries for tokens for the keywords
in V , computes the read pattern R1 induced by them, and tests if clε2λN,[M](R1) < n̂1λε1N = λN .

Since Π is perfectly local, each of the n̂1 keywords induces a disjoint read of ε1λN bits out of the
M = kλN total bits in the EDB server memory. Let T1 be the set of read patterns for all n̂1 keywords,
queried or not. We have that |T1| = n̂1ε1λN = λN .

Now consider R1, which is the union of the read patterns for keywords in V . This is a uniformly random
set of n1 intervals chosen from the n̂1 intervals making up T1. We will show that

|clε2λN,[M](R1)| ≥ |clε2λN,[M](S1)| ≥ |T1| = λN

for at least one choice of the set V . Since the total number of choices for V is
(

n̂1

n1

)

this will give
the bound for the base case. This follows because using Lemma 4.5 we can choose a set of at most
n1 = 3k/ε2 of the intervals making up T1 that will have the same ε2λN -closure in [M]. The adversary
A1 will output 1 when it selects V that contains this set. Thus we have

Pr[IND-SSE0
Π,Lmin,A1

(λ)⇒ 1] ≥
1
(

n̂1

n1

) ,

proving the base case.

We now let j > 1 be arbitrary. It enough to prove the statement for b = 0 because, by the security of
Π, we have that

Pr[IND-SSE1
Π,Lmin,Aj

(λ)⇒ 1] = Pr[IND-SSE0
Π,Lmin,Aj

(λ)⇒ 1]± negl(λ)

We claim that

Pr[IND-SSE0
Π,Lmin,Aj

(λ)⇒ 1] ≥
1
(

n̂j

nj

) · Pr[IND-SSE1
Π,Lmin,Aj−1

(λ)⇒ 1].

We will prove this first by showing that Aj selects DB0 from the same distribution that Aj−1 selects
DB1 from, and then showing Aj outputs 1 exactly when Aj−1 would have output 1 and an additional
condition holds.

For the first part, by construction we have that Aj picks DB0 with the same shape that Aj−1 uses for
DB1, and all that remains to check is that the identifiers and keywords are all uniform and independent
in both cases. For Aj this is obviously true when generating DB0, and for Aj−1 it only complicated by
the fact that the adversary first generates its own DB0 and then picks a subset of its identifiers along
with some fresh ones to use in DB1. But it is easy to check that this process also gives random identifiers
and keywords, establishing the first part.

We now examine the extra condition Aj checks before outputting 1. By construction we have that Aj

runs the same code as Aj−1 to determine if it outputs 1, except for two differences. First, Aj−1 will run
its final test that |clεjλN,Lj−1(Rj−1)| < n̂j−1εj−1λN with the read pattern Rj−1 for keywords indexed
by the set V of size nj while Aj will run the same test with the read pattern Rj−1 calculated from all
nj keywords matching εjN documents. But in either case, the adversaries are checking the condition
of the read pattern for the same keywords.

The second difference is that Aj performs the additional check on the read pattern of nj keywords
that each match εjN documents chosen at random from the n̂j such keywords. We will show that,
conditioned on the event that Aj has not output 0 before this point, the probability that it outputs 1

is at least 1/
(

n̂j

nj

)

, which proves the claim.

This check selects nj keywords {ŵj,ℓ : ℓ ∈ V } where each has |DB(ŵj,ℓ)| = εjN , and computes the
union of their read patterns Rj . These keywords are chosen from amongst n̂j total such keywords

15

(namely, {ŵj,ℓ : ℓ ∈ [n̂j]}). Let Tj be the read pattern induced by all n̂j such keywords, queries
and unqueried. By the claim after the description of Aj , we know that Tj ⊆ Lj . And by Lemma 4.5,
there exists a subset of nj = 3k/εj+1 intervals out of the total n̂j comprising Tj that have the same
εj+1λN -closure in Lj as Tj . If the set of intervals corresponding to the keywords chosen in V contain
this set, then the test will pass because then

|clεj+1λN,Lj
(Rj)| ≥ |clεj+1λN,Lj

(Tj)| ≥ |Tj | = n̂jεjλN.

Thus this happens with probability at least 1/
(

n̂j

nj

)

. Moreover, this bound is also true conditioned on

the prior checks passing, which gives the inductive step and completes the proof of Lemma 4.8.

4.4 Extending the Basic Attack

The above theorem considers prefect locality (r = 1), perfect read efficiency γ, as well as disjoint reads.
In other words, every search operations reads exactly γ · |DB(w)| bits, and all of these have not been
read before. We now extend our result to prove Theorem 4.1. Below, we also discuss extensions to
other leakage metrics.

To this end, we present a generalization of the attack of the previous section which allows us to
extend the result to more complex read patterns. To this end, let us denote the read pattern induced
by querying a keyword w in some arbitrary execution as Rw. For the theorem below, we assume that
for an SSE scheme Π there exists a value ρ (independent of N , but possibly dependent on λ and |W|)
such that for every queried keyword w ∈ W with |DB(w)| = cw · N for some constant cw, there must
a subset R′

w ⊆ Rw consisting of exactly ρ · |DB(w)| contiguous bits which are not part of Rw′ for any
w′ 6= w. Then, a lower bound of ω(ρ · N) can be computed using the same proof technique as above,
as stated in the next lemma, for which we only sketch a proof. We stress that we are not asking for
efficient computability of R′

w, only for its existence.

Lemma 4.9 Assume that Π is an Lmin-IND-secure SSE scheme with the above property on its read
patterns. Then, its server storage is ω(ρ ·N).

Proof: The proof is very similar to the one of Theorem 4.6, and we only sketch the main modifications.
In particular, the attackers use the same databases DB0 and DB1 used in the proof of Theorem 4.6.
The main difference is that we cannot guarantee any more in the attacker Aj that Ri ⊆ Li. For this
reason, the attacker Aj is now going to do the following: It sets L1 = [M] (Li will be the set of “live”
indices, where intervals of size εiNρ may fit). Then it does the following for i = 1, . . . , j − 1:

• Compute the read pattern of the server for keywords {wi,ℓ : ℓ ∈ [nj]}. Call the union of their read
patterns Ri ⊆ [M].

• If |clεi+1Nρ,Li
(Ri ∩ Li)| < n̂iεiNρ then output 0. Else set Li+1 = Li \ clεi+1Nρ,Li

(Ri ∩ Li).

Finally, Aj computes the read patterns for the keywords {wj,ℓ : ℓ ∈ V } and calls their union Rj . It
tests if |clεj+1Nρ,Lj

(Rj ∩ Lj)| < n̂jεjNρ and outputs 0 if so. Otherwise, it outputs 1.

In order to show that the proof still applies, we need to make the following observations:

1. For all words wi,ℓ (i ∈ [j]), we have that the associated subset of the read pattern R′
wi,ℓ
⊆ Rw,ℓ

must be contained in Li by construction, as it consist of ρ·|DB(wi,ℓ)| contiguous bits, which cannot
be made to fit into [M] \ Li.

2. We also need to modify the proof of Claim 4.8: We are going to replace Rj with R′
j consisting of

the union of the R′
w for w ∈ V . As in the original proof, we show that there exists a subset of size

16

nj of the R′
w’s corresponding associated with the n̂j keywords with closure as large as n̂jǫjNρ,

and that therefore

|clǫj+1Nρ,Lj
(R′

j)| ≥ n̂jǫjNρ

with probability at least 1/
(

n̂j

nj

)

. The attacker does not necessarily know R′
j , but since R

′
j ⊆ Rj∩Lj ,

we have also have |clǫj+1Nρ,Lj
(Rj∩Lj)| ≥ n̂jǫjNρ, as the closure can only become larger by taking

supersets.

Proof of Theorem 4.1 with Lmin. We now use Lemma 4.9 to derive Theorem 4.1 with Lmin in
place of Lmax. In contrast to the setting of Theorem 4.6, we make no a-priori assumption on the size
of the read pattern when searching of a keyword w. A simple compression argument shows that every
search operation for w should read at least B0(w) bits, where for some universal constant C0,

B0(w) ≥ λ · |DB(w)| −O(λ) ≥ λ · (|DB(w)| − C0) ,

where the O(λ) term takes into account the secret-key length (assumed wlog to have length smaller
than C0 ·λ) and some possible slackness. If the above were not true, then correctness of the SSE scheme
Π implies that we could compress the random indices in DB(w) to less than λ · |DB(w)| bits using
the secret key and the portion of EDB read upon searching for w on that key. (We dispense with the
standard proof of this simple fact.) Moreover, since the scheme has locality r, we can guarantee that
when query of a keyword w, the read pattern must contain a set of contiguous locations of size at least
B1(w), where

B1(w) ≥
B0(w)

r
≥

λ · (|DB(w)| − C0)

r
.

Still, we cannot guarantee that these bits have not been read by previous queries or will be read by later
queries. However, by the α-overlapping assumption, we know that among these B1(w) bits, at most
α can ever be contained in the read patterns associated with other search queries. By an elementary
counting argument, this means that there must still exist an interval of B2(w) contiguous locations
which are read solely when searching w, where

B2(w) ≥
B1(w)− α

α+ 1
≥

λ · |DB(w)|

r(α+ 1)
−

C0 · λ+ α

r(α+ 1)
≥

λ · |DB(w)|

2r(α+ 1)
,

for sufficiently large N . The right-most inequality holds because for the databases used by the attacker
in Lemma 4.9, we have |DB(w)| = ǫ · N for some constant ǫ, and moreover α does not grow with N
(when keeping all other parameters constant). Hence, for sufficiently large N ,

C0 · λ+ α

r(α+ 1)
=

C0 · λ

r(α+ 1)
+

α

r(α+ 1)
≤

λ · |DB(w)|

2r(α+ 1)
.

To conclude the proof of Theorem 4.1, we invoke Lemma 4.9 with ρ = λ
2r(α+1) .

Extension to Lmax. The proof of Theorem 4.6 constructs adversaries Aj that always produce
(DB0,w0), (DB1,w1) with Lmin(DB0,w0) = Lmin(DB1,w1). We cannot immediately use these ad-
versaries to prove Theorem 4.1 because they will immediately lose the game with leakage Lmax because
we will have Lmax(DB0,w0) 6= Lmax(DB1,w1). In particular, DB0,DB1 will have a different number of
unique keywords, and they will also have different values for maxw∈W |DBb(w)|. (They will contain the
same number of unique identifiers, N , however.)

Thus in order to prove theorem 4.1 with leakage function Lmax we must adapt the attack above so
that all of the index/query choices by the Aj satisfy the equality condition with Lmax. This amounts

17

to modifying Aj so that DB0 and DB1 have the contain the same number of unique keywords, and have
the same maximum size set maxw∈W |DBb(w)|.

We sketch the modifications to Aj . We start by modifying the number of unique keywords. Orig-

inally, Aj submits DB0 containing
(

∑j−1
i=1 ni

)

+ n̂j keywords while DB0 contains
∑j

i=1 ni keywords.

To address this issue we change Aj to always submit both DB0 and DB1 with
∑D

i=1 ni keywords by
padding with additional random keywords that match some previously used identifier (so that n will
not change). We then adjust the parameters so that these additional keyword/identifier pairs will not
affect the main argument. This is not difficult as m =

∑D
i=1 ni is still a constant independent of N .

Finally we modify Aj to construct DB0 and DB1 so that maxw |DB0(w)| = maxw |DB1(w)|. In
Aj these are εjN and εj+1N respectively. Now instead Aj will insert into both DB0 and DB1 a set
of identifiers of size ε′N that match a single new keyword, for a constant (say) ε′ = 2εD+1. It then
carries proceeds as in basic the attack with N replaced by (1− ε′)N everywhere. With these adjusted
parameters, each step in the induction will “disallow” about (1−ε′)λN bits for the next step (instead of
above λN). Finally, when computing its output bit, Aj will test if the remaining allowed area contain
intervals large enough for both the set of ε′N identifiers and εj+1N identifiers, instead of only the latter.

5 A Positive Result: SSE with Logarithmic Locality

In the previous section, we have seen that any scheme with constant locality produces encrypted index
of size ω(N). To complement this result, we provide a new scheme with logarithmic locality, at the cost
of an asymptotically larger encrypted index of size roughly N logN . At the same time, our scheme is
going to only leak the database size N , i.e., it is going to be Lmin-secure. None of the previous SSE
schemes achieved such locality level without additional leakage or a larger worst-case blow-up of the
encrypted database.

Hash tables. The scheme below relies on hash tables. Concretely, a hash table implementation
consists of a pair of algorithms (HTCreate,HTGet). The function HTCreate takes as input a list L =
{(li, di)}1≤i≤k of pairs (li, di) of strings, where li ∈ {0, 1}

ℓ is the label and di ∈ {0, 1}
r is the data, and

outputs the hash table HT. After running HT ← HTCreate(L), we have that HTGet(HT, l) returns d if
and only if (l, d) ∈ L, and returns ⊥ otherwise.

There exist hash-table implementations (for example, via variants of cuckoo hashing [21]) with the
following properties: The overall size of HT is O(k(r + ℓ) + log2 k), and the algorithm HTGet needs to
read from the hash table HT a constant number (e.g. two) of blocks of ℓ contiguous bits, as well as one
r-bit block, when searching for a label l = li. Moreover, HT does not depend on the ordering of the list
L.

Description of the scheme. We now proceed to specify our new SSE scheme Π = (KeyGen,
EDBSetup,TokGen, Search) with logarithmic locality. It relies on two keyed functions F and F ′, where
F : K × {0, 1}∗ → K × K′ and F ′ : K × N → {0, 1}ℓ (both later to be assumed as pseudorandom).
Moreover, it uses a symmetric encryption scheme (E ,D) with key space K′ and m-bit ciphertexts. In
particular, we are going to use the latter scheme to encrypt document identifiers and we are going to
assume that all identifiers are in the message space of the scheme (E ,D) and their encryption results in
ciphertext of exactly length s.

The four algorithms of Π now operate as follows:

Key Generation. Algorithm KeyGen simply generates a key K
$
← K for F .

Setup. Assume that we are given DB with size N = 2t for some t ≥ 1, and for every word w ∈ W, we
use the notation DB(w) = {id1, . . . , idnw} to denote its nw associated identifiers. We also need to
consider the binary expansion nw =

∑t−1
i=0 nw,i · 2

i. (If N is not a power of two, we need to pad
DB to satisfy this by adding some dummy keyword-identifier pairs.)

18

Algorithm EDBSetup, on input DB and K, proceeds as follows: It initially sets up t empty lists
L0, L1, . . . , Lt−1. For every word w ∈W, it then computes two derived keys FK(w) = (Kw,0,Kw,1)
and sets c = 0. Subsequently, for all i = 0, . . . , t − 1, if nw,i = 1, we define the ℓ-bit label
l = F ′

Kw,0
(i) and the (2i · s)-bit data

d = E(Kw,1, idc) ‖ . . . ‖ E(Kw,1, idc+2i) ,

increase c by 2i, and add (l, d) to Li. Once done with the iteration, for all i = 0, . . . , t− 1, we first
add pairs (l, d) to Li until it contains exactly 2t−i elements, where l is a random label and d is a
random (2i · s)-bit string, and then compute HTi ← HTCreate(Li). The final output is

EDB = HT0 ‖HT1 ‖ . . . ‖HTt−1 .

Token Generation. Algorithm TokGen, on inputs K and w, computes and outputs the two derived
keys (Kw,0,Kw,1)← FK(w).

Search. The search algorithm Search, on input EDB = HT0 ‖HT1 ‖ . . . ‖HTt−1 and (K0,K1), initially
defines an empty response set R = ∅. Then, for all i = 0, . . . , t − 1, it computes l ← F ′

K0
(i) and

d ← HTGet(HTi, l). If d = C1 ‖ . . . ‖C2i 6= ⊥, it adds D(K1, C1), . . . ,D(K1, C2i) to the response
set R. At the end, it outputs R.

Correctness, complexity and locality. Correctness of the SSE scheme Π holds with high prob-
ability assuming pseudorandomness of F and F ′ – we dispense with a formal analysis.

Assume now that we use the space- and lookup-efficient hash-table implementation mentioned above.
Note first that every Li is going to always contain 2t−i elements consisting of a pair (l, d) where |l| = ℓ
and |d| = 2i · s. Indeed, we cannot add more than 2t−i pairs (before possibly filling up Li) because each
such pair is associated with 2i keyword-identifier pairs, and overall there are N = 2t such pairs. For
this reason, the size of HTi is going to be O(N(ℓ+ s) + log(N)2), and thus the overall size of EDB is

|EDB| = O(N logN · (ℓ+ s) + log(N)3) .

As for locality, by the property of the hash tables, we are going to read O(1) blocks of consecutive values
for every i = 0, . . . , t− 1, thus obtaining locality O(logN). Also, read efficiency is constant.

Security. We turn to the security of the SSE scheme Π. We start with non-adaptive security, and
below discuss the changes necessary in order to prove adaptive security in the random-oracle model.
Here, we are going to prove that the scheme achieves the strong notion Lmin-SIM-security. Recall that
we say that (E ,D) has pseudorandom ciphertexts if no polynomial-time attacker can decide whether a
given oracle is behaving as EK(·) for random secret key K or whether it is returning a fresh random
string upon each invocation, except with negligible advantage.

Theorem 5.1 (Non-adaptive Security of Π.) The above SSE-scheme Π is Lmin-SIM-secure against
non-adaptive attacks if F and F ′ are pseudorandom functions and (E ,D) has pseudorandom ciphertexts.

Proof: Recall that in a non-adaptive attack, the attacker A first commits to key-word queries w and a
database DB. We also recall that in the real experiment SIM-SSE0

Π,Lmin,A(λ), KeyGen is run, resulting
in a key K, and then EDBSetup is run, producing the encrypted database EDB. The attacker A is then
given EDB, together with the search tokens (K

w[i],0,Kw[i],1) = FK(w[i]) for i ∈ [|w|]. In contrast, in the
ideal experiment SIM-SSE1

Π,Lmin,A,S(λ), the simulator S initially only obtains N = |DB| and DB(w[i])
for i ∈ [|w|], and needs to output EDB′ as well as search tokens (K ′

w[i],0,K
′
w[i],1) such that

Pr[SIM-SSE0
Π,Lmin,A(λ)⇒ 1]− Pr[SIM-SSE1

Π,Lmin,A,S(λ)⇒ 1] = negl(λ) .

19

Concretely, the simulator S operates as follows, assuming N = 2t. First, it creates random and inde-
pendent tokens (K

w[i],0,Kw[i],1) for i ∈ [|w|] and initializes empty sets L0, . . . , Lt−1. For every i ∈ [|w|],

it then does the following, with DB(w[i]) = {id1, . . . , idnw} and n
w[i] =

∑t−1
j=0 nw[i],j · 2

j . It sets c = 0,
and for every j = 0, . . . t− 1, if n

w[i],j = 1, it computes

d = E(K
w[i],1, idc) ‖ . . . ‖ E(Kw[i],1, idc+2j) ,

adds (FK
w[i],0

(j), d) to Lj , and increases c by 2j . Once done with the iteration, for all j = 0, . . . , t− 1,

the simulator adds pairs (l, d) to Lj until it contains exactly 2t−j elements (where l is a random ℓ-bit
label and d is a random (2j · s)-bit string) and computes HTj ← HTCreate(Lj). The final output is
EDB′ = HT0 ‖HT1 ‖ . . . ‖HTt−1, together with the tokens (K

w[i],0,Kw[i],1) for i ∈ [|w|].

The proof now proceeds via a hybrid argument. The first hybrid experiment H0 behaves the real-world
experiment, in particular returning the distribution [EDB, {(K

w[i],0,Kw[i],1)}i∈[|w|]] to A. In the second
hybrid, the function FK is replaced by a truly random function when running EDBSetup and when
producing the tokens (K

w[i],0,Kw[i],1) given to A, i.e., every search token is replaced with a truly-
random key pair. It is easy to see that Pr[H0 ⇒ 0] − Pr[H1 ⇒ 1] = negl(λ) by the pseudorandomness
of F .

For the next hybrid H2, when running EDBSetup, we are going to replace F ′
K

w[i],0
with an independent

random function for every i ∈ [|w|]. In particular, this means that every label l of a pair (l, d) added to
Lj when processing the key-word w in EDBSetup is independent and uniform. Similarly to the above,
Pr[H1 ⇒ 0]− Pr[H2 ⇒ 1] = negl(λ) by the pseudorandomness of F ′.

Finally, in H3, for all i ∈ [|w|], we replace every data-block d containing encryptions of identifiers in
DB(w[i]) produced in EDBSetup with a randomly chosen string of the appropriate length. It is not hard
to see thatH3 behaves exactly as SIM-SSE1

Π,Lmin,A,S , and moreover, Pr[H2 ⇒ 0]−Pr[H3 ⇒ 1] = negl(λ)
by the pseudorandomness of (E ,D).

Adaptive security. We additionally propose an efficient instantiation of the above scheme which
is actively secure in the random oracle model. Note that, in this case, the security notion allows the
simulator to program the random oracle.

Concretely, we instantiate (E ,D) with the scheme encrypting M under secret key K as EK(M) =
R ‖ (H(K ‖R)⊕M), where R is a random λ-bit string, andH is a hash function with output length equal
the message length, to be modeled as a random oracle in the proof. (As above, the total ciphertext
length is denoted as s.) Moreover, we also instantiate F ′ using the same hash function H, letting
F ′(Kw,0, i) = H(Kw,0‖〈i〉), where 〈i〉 is a binary encoding of the integer i ∈ N.

In the proof, the simulator S handles the random oracle queries, setting H(x) to a random value
whenever handling a query on input x ∈ {0, 1}∗. Moreover, when the attacker chooses an index DB, S
is given N = 2t and for all i = 0, 1, . . . , t − 1, adds 2t−i pairs (l, d) to the set Li, where l is a random
ℓ-bit label and d is a random (2i · s)-bit string. It then generates EDB as the concatenation of the hash
table created from L0, . . . , Lt−1, and hands EDB over to the attacker. (Still, S keeps L0, L1, . . . , Lt−1

as its state.)
Later, upon each query w from the attacker, the simulator learns DB(w) = {id1, . . . , idnw}, where

nw =
∑t−1

i=0 nw,i · 2
i. In this case, it generates random Kw,0 and Kw,1 as the corresponding token.

Moreover, it sets c = 0, and for every i = 0, 1, . . . , t− 1, if nw,i = 1, the simulator picks a random pair
(l, d) ∈ Li where d = R1 ‖C1 ‖ . . . ‖R2i ‖C2i , removes (l, d) from Li, and programs the random oracle
so that

H(Kw,0‖〈i〉) = l , H(Kw,1‖Rj)⊕ Cj = idc+j for all j = 1, . . . , 2i ,

and adds 2i to c. If the programming cannot succeed (because the corresponding values are already set
for H), the simulator aborts.

We omit a formal analysis that the above is a good simulation strategy, as it follows from standard
techniques. Overall, we obtain the following theorem.

20

Theorem 5.2 (Adaptive Security of Π.) The above hash-based instantiation of the SSE-scheme Π
is Lmin-SIM-secure in the random oracle model if F is a pseudorandom function.

Acknowledgments. Part of this work was done when the second author was with MIT CSAIL,
partially supported by NSF Contract CCF-1018064. Moreover, this material is based on research
sponsored by DARPA under agreement number FA8750-11-2-0225. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied,
of DARPA or the U.S. Government.

References

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and
H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions.
In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 205–222. Springer, Aug. 2005. 3

[2] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and
H. Shi. Searchable encryption revisited: Consistency properties, relation to anonymous IBE, and extensions.
Journal of Cryptology, 21(3):350–391, July 2008. 3

[3] R. D. Barve, E. A. M. Shriver, P. B. Gibbons, B. Hillyer, Y. Matias, and J. S. Vitter. Modeling and
optimizing i/o throughput of multiple disks on a bus. In SIGMETRICS, pages 83–92, 1999. 4

[4] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable encryption. In A. Menezes,
editor, CRYPTO 2007, volume 4622 of LNCS, pages 535–552. Springer, Aug. 2007. 4

[5] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. Deterministic encryption: Definitional equivalences
and constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 360–378. Springer, Aug. 2008. 4

[6] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill. Order-preserving symmetric encryption. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 224–241. Springer, Apr. 2009. 3

[7] A. Boldyreva, N. Chenette, and A. O’Neill. Order-preserving encryption revisited: Improved security analysis
and alternative solutions. In CRYPTO 2011, LNCS, pages 578–595. Springer, Aug. 2011. 3

[8] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and efficient
constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages
335–359. Springer, Aug. 2008. 4

[9] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search. In
C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 506–522. Springer,
May 2004. 3

[10] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M. Rosu, and M. Steiner. Highly-scalable searchable symmetric
encryption with support for boolean queries. Crypto 2013, Mar. 2013. http://eprint.iacr.org/2013/169.
1, 2, 3

[11] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote encrypted data. In
J. Ioannidis, A. Keromytis, and M. Yung, editors, ACNS 05, volume 3531 of LNCS, pages 442–455. Springer,
June 2005. 3

[12] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In ASIACRYPT 2010, LNCS,
pages 577–594. Springer, Dec. 2010. 2, 3

[13] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: improved
definitions and efficient constructions. In A. Juels, R. N. Wright, and S. Vimercati, editors, ACM CCS 06,
pages 79–88. ACM Press, Oct. / Nov. 2006. 1, 2, 3, 5

[14] C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher, editor, 41st ACM STOC,
pages 169–178. ACM Press, May / June 2009. 3, 4

21

http://eprint.iacr.org/2013/169

[15] E.-J. Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http://eprint.iacr.org/.
1, 3

[16] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the
ACM, 43(3):431–473, 1996. 3

[17] P. Golle, J. Staddon, and B. R. Waters. Secure conjunctive keyword search over encrypted data. In M. Jakob-
sson, M. Yung, and J. Zhou, editors, ACNS 04, volume 3089 of LNCS, pages 31–45. Springer, June 2004.
3

[18] S. Kamara and C. Papamanthou. Parallel and dynamic searchable symmetric encryption. In FC 2013.
Springer, 2013. 2, 3

[19] S. Kamara, C. Papamanthou, and T. Roeder. Dynamic searchable symmetric encryption. In ACM CCS 12,
pages 965–976. ACM Press, 2012. 2, 3

[20] K. Kurosawa and Y. Ohtaki. UC-secure searchable symmetric encryption. In FC 2012, LNCS, pages 285–298.
Springer, 2012. 2, 3

[21] R. Pagh and F. F. Rodler. Cuckoo hashing. J. Algorithms, 51(2):122–144, 2004. 18

[22] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: protecting confidentiality with
encrypted query processing. In SOSP, pages 85–100, 2011. 3

[23] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer, 27(3):17–28, 1994. 4

[24] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In 2000 IEEE
Symposium on Security and Privacy, pages 44–55. IEEE Computer Society Press, May 2000. 1, 3

[25] P. van Liesdonk, S. Sedhi, J. Doumen, P. H. Hartel, and W. Jonker. Computationally efficient searchable
symmetric encryption. In Proc. Workshop on Secure Data Management (SDM), pages 87–100, 2010. 2

[26] J. S. Vitter. Algorithms and data structures for external memory. Foundations and Trends in Theoretical
Computer Science, 2(4):305–474, 2006. 4

22

http://eprint.iacr.org/

	Introduction
	Preliminaries
	Read Efficiency and Locality Metrics for SSE Schemes
	Lower Bounds
	Theorem Statement and Proof Overview
	Tools for the Proof of Theorem 4.1
	The Basic Attack
	Extending the Basic Attack

	A Positive Result: SSE with Logarithmic Locality

