
Indistinguishability Obfuscation

from the Multilinear Subgroup Elimination Assumption

Craig Gentry Allison Lewko Amit Sahai Brent Waters

April 30, 2014

Abstract

We revisit the question of constructing secure general-purpose indistinguishability obfusca-
tion (iO), with a security reduction based on explicit computational assumptions. Previous to
our work, such reductions were only known to exist based on instance-dependent assumptions
and/or ad-hoc assumptions: In the original constructive work of Garg et al. (FOCS 2013), the
underlying explicit computational assumption encapsulated an exponential family of assump-
tions for each pair of circuits to be obfuscated. In the more recent work of Pass et al. (ePrint
2013), the underlying assumption is a meta-assumption that also encapsulates an exponential
family of assumptions, and this meta-assumption is invoked in a manner that captures the spe-
cific pair of circuits to be obfuscated. The assumptions underlying both these works substantially
capture (either explicitly or implicitly) the actual structure of the obfuscation mechanism itself.

In our work, we provide the first construction of general-purpose indistinguishability obfus-
cation proven secure via a reduction to an instance-independent computational assumption over
multilinear maps, namely, the Multilinear Subgroup Elimination Assumption. Our assumption
does not depend on the circuits to be obfuscated (except for its size), and does not correspond
to the underlying structure of our obfuscator. The technical heart of our paper is our reduction,
which gives a new way to argue about the security of indistinguishability obfuscation.

1 Introduction

Program obfuscation has been a longstanding goal in cryptography, though for many years general
solutions seemed elusive. Recently, this changed dramatically with the introduction of a gen-
eral indistinguishability obfuscation (iO) candidate by Garg, Gentry, Halevi, Raykova, Sahai, and
Waters [GGH+13b]. This candidate was constructed in two stages: First a candidate iO con-
struction was given for NC1 circuits, and then it was proven that assuming the Learning With
Errors (LWE) assumption, iO for NC1 circuits implies iO for all polynomial-size circuits. Sub-
sequently, several papers have shown a wide range of cryptographic applications of iO, including
core primitives [SW13], functional encryption [GGH+13b], deniable encryption [SW13], two round
multi-party computation [GGHR13], non-interactive multi-party key exchange [BZ13], and many
others.

The combination of an indistinguishability obfuscation candidate plus the demonstration of
myriad cryptographic applications raises the possibility that iO could serve as a type of “central
hub” - a foundation on which most cryptographic primitives, new and old, can be built. However,
it is imperative that we gain greater confidence in the security of iO constructions for NC1 circuits.
The works of [GGH+13b, BR13, BGK+13] made one kind of progress toward this goal by providing
proofs of security in an idealized adversary model, where the adversary is limited to “generic
multilinear” attacks.

However, ideally, we would like to follow the Golwasser-Micali [GM84] paradigm and base the
security of iO on a believable assumption using a reduction in the standard model that considers
arbitrary (computationally bounded) adversaries. Ideally, this assumption should be as different
from our obfuscation techniques as possible, so the reduction carries significant information about
how security is achieved.

Achieving this goal is the central focus of this paper. To this end, we provide a qualitatively
new security reduction for a candidate iO construction that we believe significantly advances our
understanding of the security of iO. We reduce security to the Multilinear Subgroup Elimination
Assumption, recently introduced by [GLW14]. Informally speaking, the Multilinear Subgroup Elim-
ination Assumption can be seen as a natural analogue in the multilinear setting of the Subgroup
Decision Assumption [BGN05] from the bilinear setting. An important feature of this assumption
is that it is instance-independent, as we elaborate below.

To describe the challenges that must be overcome to prove iO security from different kinds of
assumptions, we first give a brief overview of what iO security entails and how previous construction
candidates have been analyzed. Informally, indistinguishability obfuscation requires that for any
two program descriptions P0 and P1 from some class that are functionally equivalent (i.e. for all
inputs x we have that P0(x) = P1(x)), no computationally bounded attacker can distinguish iO(P0)
from iO(P1) with better than negligible advantage.

The dangers of instance-dependent assumption families. In all previous constructions of
indistinguishability obfuscation based on concrete assumptions [GGH+13b, PST13], the security of
the construction is based on an instance dependent family of assumptions over multilinear maps.
By this, we mean that the assumption needed to prove security can depend quite intricately on
the underlying indistinguishability obfuscation scheme. In essence, such previous assumptions were
really an exponential family of assumptions: In [GGH+13b], this was stated explicitly, with the
assumption specifically quantifying over every pair of equivalent circuits. In the more recent work

1

of [PST13], a “meta-assumption” is given that contains another exponential family of assumptions,
that in particular includes a separate assumption for every pair of equivalent circuits.

The essential danger in exponential assumption families is that there may be a special instance
of the assumption (for example corresponding to a particular contrived pair of circuits) that is
“hidden” among the assumptions, for which the assumption turns out to be false, but this possibility
is hidden by the statement of the assumption. This danger is even more pronounced in meta-
assumptions (as in [PST13]), where the succinct statement of the assumption effectively hides the
variety of assumptions implied by the meta-assumption. We elaborate more on this in our Related
Work section below.

Furthermore, such assumptions can also (explicitly or implicitly) embed the actual structure of
the iO construction into the assumption, thus “assuming away” a great deal of the computational
hardness underlying the construction. This is quite explicitly done in [GGH+13b], and done im-
plicitly in [PST13] where the structure of the iO scheme is embedded within the invoked instance
of the meta-assumption.

Our work: iO security from an instance-independent assumption. With this motivation,
we set out to answer the following question:

Can we prove the security of indistinguishability obfuscation
from an instance-independent assumption?

In fact, our result works with a natural instance-independent sub-exponential hardness as-
sumption over multilinear encodings recently introduced by [GLW14], that we call the Multilinear
Subgroup Elimination Assumption, under which we can prove the security of our construction of
indistinguishability obfuscation. This assumption makes no reference, explicitly or implicitly, to
pairs of circuits, or even circuits at all. The assumption only depends on the maximum length of
a matrix branching representation for the family of programs to be obfuscated. This assumption
also provides a concrete target for the cryptanalysis of multilinear maps, since it focuses attention
on a single assumption.

The Multilinear Subgroup Elimination Assumption states the following: In a composite-order
k-multilinear setting, suppose there is one special prime factor c together with k distinguished
prime factors a1, . . . , ak, along with other prime factors. Then the assumption requires that given
generators of all prime-order subgroups except for the subgroup of order c, and random elements
of all composite-order subgroups that include c and exactly k − 1 distinguished prime factors, the
adversary cannot distinguish a random element in a composite-order subgroup of order c · a1 · · · ak,
from a random element in a composite-order subgroup of order a1 · · · ak. The formal statement of
this assumption is given in Section 5.3.

We prove security based on this assumption by means of a new reduction technique that yields
significant insight into the nature of iO. Critically, the new hybrid argument underlying our
assumption allows us to isolate the “key” step at which the actual program switches in a new
way: this isolation lets us deal with this key transformation in an information-theoretic manner,
which departs fundamentally from previous reduction-based security arguments for iO. Our new
hybrid argument technique is the technical heart of our paper. We elaborate on our techniques in
Section 1.1.

2

The necessity of 2n security loss. Our hybrid argument has a 2n security loss, where n is the
length of the inputs to the two programs P0 and P1. However, such a security loss seems inherent
(this issue was first observed by [GGSW13] in the context of witness encryption) whenever we
consider a natural (black-box) reduction to an instance-independent assumption. To see why such
a security loss seems inherent, let us suppose that we want to prove security of an iO scheme under
an instance-independent assumption α, but without such a security loss. A (black-box) reduction of
security must be able to take an attacker on a candidate iO system for any functionally equivalent
pair P0, P1 of programs and turn it into an attacker on the underlying assumption α. However:
any such reduction should confirm that the programs are functionally equivalent – something that
in general should take roughly 2n time (barring a major and unexpected advance in complexity
theory). Otherwise, if the reduction doesn’t confirm this, then it should also apply to programs that
are almost functionally equivalent. As a result, one could use the reduction algorithm to directly
and efficiently break the assumption: In particular, consider an attacker that first receives the
challenge from the assumption and then chooses a program pair P0, P1 that have different outputs
on some secret input x∗, where the secret x∗ is known to the attacker, but x∗ is hidden from the
reduction inside the programs P0, P1. For instance, the attacker constructs a program Pb such that
Pb(x) outputs 0 unless PRG(x) = y∗, where y∗ = PRG(x∗) is a constant embedded in the programs
and PRG is a pseudo-random generator1. If this condition holds, then P0(x) outputs 0, but P1(x)
outputs 1. It then runs the reduction and gets a challenge obfuscated program P ∗. The attack
algorithm is trivially able to simulate a distinguisher between P ∗ ← iO(P0) and P ∗ ← iO(P1)
by querying P ∗(x∗). It then continues to run the reduction algorithm, which eventually must
break the assumption. This strategy will actually work in the case of a reduction algorithm that
proceeds obliviously without learning whether the two program descriptions are indeed functionally
equivalent. Therefore, such a reduction without a 2n security loss is implausible.

Note that in contrast, a reduction to a family of instance-dependent assumptions can essentially
choose which assumption it wishes to use based on the program descriptions P0, P1. For example,
in the case of [GGH+13b], the assumption chosen simply embeds an actual obfuscation of one
of the program descriptions. If one ever fed the reduction a pair of non-functionally equivalent
programs, then the reduction would map this to a false assumption. Since this false assumption
is by definition not in the family of assumptions, there is no contradiction. Similarly in [PST13],
for a pair of non-functionally equivalent programs, the [PST13] reduction would attempt to invoke
their meta-assumption on an underlying distribution for which (existentially) there is a generic
attack – and the meta-assumption is defined so that it does not have to hold in this case. Thus, we
can see how such a reduction can avoid the need for discovery of functional equivalence by simply
“passing” the problem of dealing with problematic instances into the assumption description itself.

As a result, strictly speaking, our assumption is incomparable to [GGH+13b] or [PST13], since
those works rely on a family of assumptions against polynomial-time adversaries, whereas our
assumption requires security against sub-exponential adversaries.

Finally, we believe that because our new reduction technique more directly deals with the
complexity introduced by obfuscation, it will likely have other implications. Indeed, thinking more
speculatively, we believe that our reduction ideas are the most likely to set us on an eventual path
to a reduction under a classic assumption such as (sub-exponentially secure) LWE. At the same
time, getting such a reduction appears quite challenging at the moment, as it remains unknown

1Note that by the pseudorandomness property, given only y∗ it is computationally difficult to determine if y∗ ∈
Range(PRG), and thus to determine if P0 and P1 are functionally equivalent.

3

how to emulate the key features of multilinear maps that we need using only LWE.

1.1 Our Techniques

An intuitive overview. Let us first step back, and think about our central goals when building
a reduction to argue the security of iO. Recall that iO demands that iO(P0) is indistinguishable
from iO(P1) whenever P0 and P1 are functionally equivalent. In any hybrid argument that proceeds
from iO(P0) to iO(P1), apparently there will be some critical hybrid step(s) in which some actual
underlying computation switches in some way from “something like P0” to “something like P1.” In
all previous works based on explicit computational assumptions [GGH+13b, PST13], the assump-
tion itself was invoked to handle this case: In [GGH+13b], the iO property itself followed directly
from the assumption; in [PST13], the assumption was invoked to argue that a “merged version” of
P0 and P1 can switch from using P0 to using P1 to perform the underlying computation. In this
way, previous work relied on an underlying assumption that was powerful enough to encapsulate
the actual workings of the obfuscation mechanism – but this is very unsatisfying, and it is the
central drawback that we seek to avoid.

Clearly, if we wish to avoid this, we need to find some other way of dealing with this critical
moment when some computation shifts from P0 to P1. For inspiration, we look to the original
argument on the security of obfuscation in a generic security model [GGH+13b]: this generic
proof does not contain a reduction at all, so it may seem (and it indeed mostly is) of little use
to us. However, this generic proof identifies a powerful information-theoretic manner of dealing
with the shift from P0 to P1 as it manifests itself in the generic security argument, specifically in
the context of the obfuscated computation on a single input. This is done by means of Kilian’s
simulation [Kil88]. We begin by asking, can we invoke this information-theoretic argument in the
context of a reduction?

In order to do so, we will need to establish a hybrid argument that essentially changes the
computation from P0 to P1 input-by-input, and thereby isolates the critical computation to a single
input. As such, there will be a number of technical hurdles – most notably, we need the obfuscation
scheme itself to be decomposable into 2n variations that somehow isolate each individual input.
This will involve a security loss of 2n, but we have already argued above that such a security loss
seems inherent.

A trivial “straw man” idea for allowing our obfuscation to be decomposable into 2n variations
would be to have 2n separate parallel copies of the obfuscator, where only one is “active” for each
possible input. In fact, this idea of parallel copies of obfuscation, each of which is active only on
certain inputs, does turn out to be quite useful intuitively. However, clearly we cannot afford a 2n

blowup in the actual obfuscation size. So instead, we must find a succinct way to decompose the
space of 2n possible inputs into a polynomial set of different buckets, which cover all 2n inputs2.
Each such bucket will be associated with the partial obfuscation of one particular program P , where
P = P0 or P = P1, but there will be many different buckets of inputs that will be associated with
the same program. The obfuscation can be partial, because each such obfuscation only has to work
with the set of active inputs associated with the bucket to which it is connected. Crucially, we will
want to move to a collection of buckets where there is one particular bucket that only corresponds

2For building intuition, it is useful to think of these buckets as forming a partition of all 2n inputs. However, in
our actual argument, there will be hybrids where an input is in multiple buckets (in our actual proof, these “buckets”
correspond to “columns of an input-activated matrix”). However, the set of inputs in buckets associated with P0 will
always be disjoint from the set of inputs in buckets associated with P1.

4

to a single active input x∗. We will maintain the invariant that only when there is at most a single
active input x∗ isolated in a bucket, do we switch the associated program from P = P0 to P = P1.
As we discussed above, the key argument of this step will turn out to be information-theoretic in
nature, thus letting us address the thorny issue of how to move from an obfuscation of one program
to the obfuscation of another3.

Another primary motivation of this invariant is what it means for every other hybrid step in
our argument: In other hybrid steps, we will need to transfer inputs from one bucket to another,
so that we can proceed to isolate some other input x̂∗. But when we transfer some inputs from
one bucket to another, critically we only move inputs from buckets associated with a program P to
other buckets that are associated with the same program P . This means that the hybrid arguments
associated with such transfers of inputs between buckets intuitively do not care about hiding any
program. They can hold with respect to adversaries that fully know which programs are associated
with which buckets. As such, we can design algebraic (computational) reduction techniques for all
of these hybrids.

The above discussion is intended to give some intuitive “flavor” of our techniques. To actually
implement these ideas, we proceed to define a number of intermediate abstractions that we use to
translate this intuition to rigorous constructions and proofs.

Progress on the Witness Encryption Front. The starting point of our exploration will be the
recent work of Gentry, Lewko, and Waters [GLW14]. As we already noted, the assumption under
which we are able to base security is the Multilinear Subgroup Elimination Assumption introduced
in [GLW14]. However, the problem addressed in this earlier work was different – witness encryption.
In a witness encryption system [GGSW13], an encryptor will encrypt a message m to an instance
x of some NP language L. A user can decrypt if they have an `-bit witness w ∈ {0, 1}` that x ∈ L.
A witness encryption system is secure if for any instance x /∈ L, it should be hard to distinguish
an encryption of m0 from an encryption of m1. Although witness encryption does not deal with
obfuscating programs, it proves quite instructive to think about witness encryption.

In particular, the task of designing a security reduction for a witness encryption system involves
a similar challenge to the one described above for iO, as a reduction to an instance independent
problem should intuitively discover if x is indeed not in L. To address this, [GLW14] introduces a
high level abstraction called positional witness encryption, that is inspired by work on fully collusion-
resilient traitor tracing and broadcast encryption [BSW06, BW06]. Positional witness encryption
behaves as standard witness encryption with the exception that the encryption algorithm takes an
additional position input t ∈ [0, 2`]. The added semantics are that decryption will work as long
as the witness w (interpreting it as an `-bit integer) used for decrypting is greater or equal to the
position t. A security property for positional witness encryption asks that for any instance x, no
attacker should be able to distinguish an encryption to index t from one to index t + 1, as long a
t is not a valid witness that x ∈ L. In this way, one can build a sequence of hybrids across all the
possible witnesses one-by-one when x /∈ L, since in this case no witnesses are valid.

This suggests to us an analogue that we call positional indistinguishability obfuscation, where a
pair of programs are obfuscated, but where one program is active for the first t inputs, while the
other is active for inputs greater than or equal to t. (We elaborate on this further momentarily.)

3We do also employ other non-information-theoretic arguments even when dealing with a bucket with only a single
active input, but these arguments are intuitively about how to securely “zero out” parts of an obfuscation that are
only needed for inactive inputs.

5

At a high level, the [GLW14] strategy uses a hybrid where the position t is embedded in a
compact cryptographic data structure. This data structure is used to “save” the work done in the
hybrid steps for each witness candidate tested so far. This data structure in turn is implemented
by multilinear encodings and proven under assumptions that depend only on the instance size.
We draw from [GLW14] in developing our own compact cryptographic data structure and encod-
ing techniques, although since we must deal with programs, our constructions will also depart in
fundamental ways from [GLW14]. In particular, the data structure of [GLW14] uses a kind of
“divide-and-conquer” technique to attack each clause of a CNF formula separately. Since our work
deals with general programs that we do not know how divide in this way, such a strategy will not
work for us, and we develop a different strategy for building and using a compact cryptographic
data structure for obfuscation. A significant technical contribution of our work is to construct the
“individual security components” of our cryptographic data structure for obfuscation in such a way
that we are then able to “embed” these components into the Multilinear Subgroup Elimination
Assumption to argue security.

Positional Indistinguishability Obfuscation. As we mentioned above, our outermost layer of
abstraction inserts a positional parameter t into a new variant of indistinguishability obfuscation.
In our context, this parameter t will control an interpolation of two programs, allowing us to invoke
one program for inputs less than t and another program for the remaining inputs. The precision of
t will allow us to argue about a single isolated input, which we can then translate into a proof of
security for all inputs through a hybrid argument. More precisely, a positional indistinguishability
obfuscation scheme takes in two programs, P0 and P1, and a position t that partitions the possible
inputs. It will produce an obfuscated program that evaluates to P0(x) for inputs x ≥ t and evaluates
to P1(x) for inputs x < t.

There are three required security properties. The first requires that when t = 0, an obfuscation
of P0 and P1 is indistinguishable from an obfuscation of P0 and P0. This makes sense because P1

does not effect the evaluation in this case. Analogously, the second security property requires that
when t = 2n (where n represents the bit length of inputs), an obfuscation of P0 and P1 is indistin-
guishable from an obfuscation of P1 and P1. The most interesting security property, termed position
indistinguishability, requires that an obfuscation of P0, P1 with position t is indistinguishable from
one with position t+ 1 when P0(t) = P1(t). These properties allow us to perform a simple hybrid
argument to obtain standard iO. Naturally, this hybrid iterates over all the 2n possible inputs, so
it incurs 2n security loss and thus necessitates complexity leveraging.

Input-Activated Obfuscation. We construct positional indistinguishability obfuscation from a
mid-layer abstraction that we call input-activated obfuscation. This primitive defines a mild notion
of obfuscation for a data structure that consists of an n× `× 2 matrix M with entries in {0, 1} and
an ordered set of ` programs P1, . . . , P` associated to the columns of M . Jointly, this matrix and
these programs describe a function on n-bit inputs that behaves as follows. First, each column j of
M defines a boolean function fj : {0, 1}n → {0, 1} that describes on which inputs the jth column
is active. On each input x, the evaluation of the obfuscated structure must agree with the value of
Pj(x) for every index j ∈ [`] such that fj(x) = 1. (This imposes a constraint on the combinations
of matrices and programs that are valid to consider. Correctness is simply not required on any
input for which these constraints are violated.)

There are four required security properties for an input-activated obfuscation scheme. Two of

6

the security properties, inter-column and intra-column security, describe small, localized changes to
the matrix M that can be made indistinguishably when the relevant columns have equal associated
programs and precise conditions are met by the matrix entries involved. The remaining two security
properties describe conditions under which a single program Pj in the list can be changed, namely
when its associated column function fj never evaluates to 1 (we call this completely inactive program
security), or when fj evaluates to 1 on a single input where old and new program agree (we call
this single-input program switching security).

Of course, one could imagine generalizing these properties to encompass a larger class of changes
to the data structure that do not affect the evaluation, but this would be a step in the wrong
direction. The fact that we can articulate very precise, very localized properties that suffice for
our purposes is exactly what allows us to ultimately instantiate our abstraction from an instance
independent assumption. The key features of our abstraction here are the program switching
properties.

Using Input-Activated Obfuscation. We then show how to build positional indistinguisha-
bility obfuscation from input-activated obfuscation. Recall that an instance of our positional in-
distinguishability obfuscation is described by two programs P0, P1 and a position t. These can be
embedded into the data structure of an input-activated obfuscation scheme by using t to determine
the matrix entries and using P0, P1 to populate the list of associated programs. More precisely, we
form our matrix as a concatenation of three pieces, which we call M t−1

L , M t
R, and a scratch column

S. The columns of M t−1
L will all be associated to the program P0, while the columns of M t

R will
all be associated to P1. Initially, the scratch column S will be associated to P0. The main idea is
that the columns of M t−1

L will be “activated” only on the inputs x ≥ t, meaning their associated
boolean functions fj evaluate to 0 for all inputs x < t. Analogously, the columns of M t

R will be
activated only on inputs x < t. This ensures that the evaluation rules of the input-activated obfus-
cation scheme match up with the desired behavior of the positional indistinguishability obfuscation
scheme.

To prove the position indistinguishability security property for the resulting positional indis-
tinguishability obfuscation scheme, we must employ the security properties of the input-activated
obfuscation primitive in a hybrid fashion to gradually change the encodings M t−1

L ,M t
R to M t

L,M
t+1
R .

To get from M t−1
L to M t

L, we need to “deactivate” the input t. The techniques from [GLW14] give
us a way of doing this using the scratch column, essentially allowing us to change to M t−1

L while
populating the scratch column with entries that will activate solely on the input t. These adjust-
ments can be accomplished with our inter-column and intra-column security properties because the
scratch column and all the columns of the left matrix are associated to the same program P0.

Once we have isolated this input t in the scratch column, we can use our single-input program
switching property to change the program associated with the scratch column to P1. This relies
on the fact that P0(t) = P1(t). We can then use the intra-column and inter-column security
properties similarly within M t

R and the scratch column to obtain M t+1
R . We can then restore

the scratch column to its original state. To prove the remaining security properties for positional
indistinguishability obfuscation (ensuring that a program that is never activated can be switched),
we can simply invoke completely inactive program security.

Our framework thus far is agnostic with respect to the type of program descriptions employed.
To instantiate our framework from concrete assumptions about multilinear encodings, we will use
matrix branching programs. However, if one obtained a different low-level instantiation for a

7

different form of program description, all of our abstractions and security reductions described so
far could be reused.

An Instantiation in a Model of Composite Order Multilinear Groups. To instantiate
our framework, we construct an input-activated obfuscation scheme in the setting of symmetric,
composite order multilinear groups. We then show how the security properties of our construction
follow from the Multilinear Subgroup Elimination Assumption. In the Appendix, we also discuss
how to execute our construction from the candidate multilinear encodings of [CLT13].

Our construction draws upon the candidate constructions of iO in [GGH+13b, BR13, BGK+13],
and essentially runs several instances of those constructions in parallel in different subgroups.
We are able to simplify some aspects of the construction by developing alternative techniques
to prevent “input mixing” and “partial evaluation” attacks. In [GGH+13b, BR13, BGK+13],
additional algebraic structure was inserted to thwart such attacks, but we observe that these can
be defeated already by the subgroup structures we are employing.

We focus our work on instantiating our methods in the symmetric, composite order setting as
we feel it is the most instructive setting for our techniques. The work of [GLW14] describes methods
for conversion to asymmetric and prime order multilinear groups. We expect the same variations
could be obtained analogously for our input-activated obfuscation scheme, since at the lowest level
we obtain an identical assumption to [GLW14].

1.2 Related Work

To more precisely compare the assumptions used in prior work to build obfuscation, we give a more
detailed description of instance dependent assumption families. In such a family, an attacker will
be given a set of group elements ~H by a challenger and either a set ~T0 or ~T1 depending on the
challenger’s coin flip. The job of the attacker is to guess whether it was given the set ~T0 or ~T1

in addition to ~H with better than negligible advantage. We (informally) say that an assumption
is instance dependent if the distributions of ~T0, ~T1, ~H can depend on knowledge of the specific
programs P0, P1 of the iO security game. The GGHRSW family of assumptions in particular was
such that ~T0 and ~T1 were simply respective obfuscations of the programs P0 and P1 and ~H was
empty.

The original work of GGHRSW also, separately, gave a proof of security for their construction
against a highly idealized class of “generic matrix” attacks. Brakerski and Rothblum [BR13] and
Barak et. al. [BGK+13] showed that variations of the GGHRSW construction were secure against
all generic multilinear attacks.

The work of Pass, Seth, and Telang [PST13] gives a proof under an instance-dependent family
of multilinear assumptions that is best characterized as a “meta-assumption.” A meta-assumption
is a succinct description of a class of assumptions, which essentially says that any assumption that
satisfies some set of properties is a true assumption. At a high level, the meta-assumption made
in [PST13] states that, for all vectors ~H of group elements (with certain entropy guarantees), if no
generic multilinear attack can distinguish two constant-length tuples ~T0 and ~T1 with respect to this
vector ~H, then no polynomial-time adversary can distinguish encodings of (~T0, ~H) from encodings
of (~T1, ~H). However, the validity of this meta-assumption depends heavily on what class of “generic
multilinear attacks” are considered. If one only requires that no polynomial-time generic multilinear
attack can distinguish, then the assumption is actually false, as observed by [PST13]: this fact is
quite hidden, and in essence it follows because one can embed a clever pair of circuits based on

8

the counterexample of [BGI+01] and use this to defeat the assumption. However, if the “generic
multilinear attacks” considered are more restricted, then no such counter-example is known, and
this forms the basis of the assumption actually made in [PST13].

2 Positional Indistinguishability Obfuscation

We will first give our definition of positional indistinguishability obfuscation system. Then we show
how it implies (standard) indistingusihability obfuscation by a hybrid argument.

We define a positional indistinguishability obfuscation scheme for for a program description class
{Pλ} with inputs of size n(λ). (For ease of exposition we will sometimes refer to n(λ) as just n
when it is clear from context.) For our purposes a program description 4 will be an encoding of a
computable function. The system consists of two algorithms:

Obfuscation. The algorithm ObfuscatePIO(1λ, P0, P1, t) takes as input a security parameter
1λ, two program descriptions P0, P1 ∈ {Pλ}, and a position index t ∈ [0, 2n] and outputs an
obfuscated program description P .

Evaluation. The algorithm EvalPIO(P, x) takes as input a program description P (con-
structed from program description class {Pλ}) and a length n input x and gives an output in
the image of {Pλ}.

Given an input string x ∈ {0, 1}n we will sometimes slightly abuse notation and also refer to
x as an integer in [0, 2n − 1] where the most significant bit is the leftmost bit. In other words, we
consider the integer x = Σn

i=1xi · 2n−1, where xi is the i-th bit of the string x. Similarly, sometimes
we will abuse notation in the other way, and consider an integer x ∈ [0, 2n − 1] to be a string.

Definition 2.1 ((Perfect) Correctness of Positional Indistinguishability Obfuscation). For any
security parameter λ, any pair of program descriptions P0, P1 ∈ {Pλ} and for any input x ∈ {0, 1}n
we have that

EvalPIO

(
ObfuscatePIO(1λ, P0, P1, t), x

)
=

{
P0(x) if x ≥ t
P1(x) if x < t.

2.1 Security of Positional Indistinguishability Obfuscation

The security of positional indistinguishability obfuscation is given in terms of three security prop-
erties.

Program Description Hiding A. The first property is parameterized by two program descrip-
tions P0, P1. Informally, the security property states that if one encrypts to the “first’ position t = 0
(where n is the input length for program description class {Pλ}) that no attacker can distinguish
whether an obfuscated program description P is a positional obfuscation to the pair of program
descriptions (P0, P1) or (P0, P0). Intuitively, this is because there is no input that will actually
“use” P1.

We define the (parameterized) advantage of an attacker as

A : HidingPIOAdvA,P0,P1
(λ) =

4We will sometimes use the terms program and program description interchangeably.

9

Pr[A(ObfuscatePIO(1λ, P0, P1, t = 0)) = 1]− Pr[A(ObfuscatePIO(1λ, P0, P0, t = 0)) = 1].

Definition 2.2 (Program Description Hiding A Security of Positional Indistinguishability Ob-
fuscation). We say that a positional indistinguishability obfuscation for program description class
{Pλ} is Program Hiding A secure if for any probabilistic poly-time attack algorithm A there exists
a negligible function in the security parameter negl(·) such that for all program description pairs
P0, P1 ∈ {Pλ} we have A : HidingPIOAdvA,P0,P1

(λ) ≤ negl(λ).

Program Description Hiding B. The second property is very similar to the first except it
is stated for the opposite end (t = 2n) of the index spectrum. Here no attacker can distinguish
whether an obfuscated program description P is a positional obfuscation to the pair of program
descriptions (P0, P1) or (P1, P1).

We define the (parameterized) advantage of an attacker as

B : HidingPIOAdvA,P0,P1
(λ) =

Pr[A(ObfuscatePIO(1λ, P0, P1, t = 2n)) = 1]− Pr[A(ObfuscatePIO(1λ, P1, P1, t = 2n)) = 1].

Definition 2.3 (Program Description Hiding B Security of Positional Indistinguishability Obfusca-
tion). We say that a positional indistinguishability obfuscation for program description class {Pλ}
is Program Description Hiding B secure if for any probabilistic poly-time attack algorithm A there
exists a negligible function in the security parameter negl(·) such that for all program description
pairs P0, P1 ∈ {Pλ} we have B : HidingPIOAdvA,P0,P1

(λ) ≤ negl(λ).

Position Indistinguishability. The third, and most significant, security game is positional in-
distinguishability. Informally, this security game states that it is hard to distinguish between a
positional obfuscation to position t from an encryption to t + 1 when the program descriptions
P0, P1) have the same output on input t: i.e. P0(t) = P1(t). Positional indistinguishability security
is parameterized by program descriptions P0, P1 ∈ {Pλ} and a position t ∈ [0, 2n − 1] where n is
the input length. We define the (parameterized) advantage of an attacker as

PosPIOAdvA,P0,P1,t(λ) =

Pr[A(EncryptPWE(1λ, P0, P1, t+ 1)) = 1]− Pr[A(EncryptPWE(1λ, P0, P1, t)) = 1].

Definition 2.4 (Position Indistinguishability Security of Positional Indistinguishability Obfus-
cation). We say that a positional indistinguishability obfuscation scheme for program description
class {Pλ} is Position Indistinguishability secure if for any probabilistic poly-time attack algorithm
A there exists a negligible function in the security parameter negl(·) such that for all P0, P1 ∈ {Pλ},
and any t ∈ [0, 2n − 1] where P0(t) = P1(t) we have PosPIOAdvA,P0,P1,t(λ) ≤ negl(λ).

We let PosPIOAdvA,P0,P1(λ) be the maximum value of PosPIOAdvA,P0,P1,t(λ) over t ∈ [0, 2n]
for each λ.

10

2.2 Building Indistinguishability Obfuscation from Positional Indistinguisha-
bility Obfuscation

We now describe how to build indistinguishability obfuscation from positional indistinguishability
obfuscation, in a rather simple way. To obfuscate a program description P ∈ {Pλ} simply do
a positional indistinguishability obfuscation to position t = 0 and use P as the inputs for both
program descriptions.

Like for positional witness encryption, the proof comes from a hybrid security argument. Con-
sider two program descriptions P0, P1 ∈ {Pλ} that are different, but are functionally equivalent,
I.e. for all x ∈ [0, 2n − 1] : P0(x) = P1(x). Then no attacker can distinguish an obfuscation to
position t to one of t+ 1. This argument is repeatedly applied to “move” the encryption position
from 0 to 2n. The cost of performing this hybrid is a security factor of 2n and thus it innately
requires complexity leveraging. The utilization of the abstraction is that each individual step of
the hybrid is only concerned with whether the two program descriptions agree on one particular
input. This isolation will eventually lead to security from instance independent assumptions.

We now formally describe the construction of indistinguishability obfuscation from positional
indistinguishability obfuscation. We follow with a security proof.

iO(1λ, P) calls ObfuscatePIO(1λ, P, P, t = 0).

Eval(P, x) calls EvalPIO(P, x).

The correctness of the indistinguishability obfuscation system follows immediately from the
correctness properties of positional indistinguishability obfuscation.

We now state and prove our the security theorem.

Theorem 2.5. Consider the constructed indistinguishability obfuscation scheme for a program
description class {Pλ} and the indistinguishability property for any pairs of program descriptions
P0, P1 ∈ {Pλ} where P0(x) = P1(x) ∀x. We have that for any polynomial time attacker A

IOAdvA,P0,P1(λ) ≤ 2n · PosPIOAdvA,P0,P1(λ) + 2n · PosPIOAdvA,P1,P1(λ)+

A : HidingPIOAdvA,P0,P1
(λ) + B : HidingPIOAdvA,P0,P1

(λ).

Proof. We now give prove the theorem by a simple hybrid argument. The hybrid sequence defines
a how an obfuscated program description is generated. We enumerate the hybrid steps below to
for program descriptions P0, P1 where P0(x) = P1(x) ∀x.

• Hybstart: The first hybrid generates the obfuscated program description as:

ObfuscatePIO(1λ, P0, P0, t = 0)

We observe that this is defined to be an obfuscation of P0 as iO(1λ, P0).

• Hybi for i ∈ [0, 2n]: In Hybi the obfuscated program description is generated as

ObfuscatePIO(1λ, P0, P1, t = i)

11

We observe that for any algorithm A, its advantage in distinguishing between Hybstart and
Hyb0 can be at most A : HidingPIOAdvA,P0,P1

(λ). In addition, for all i ∈ [0, 2n − 1], the ad-
vantage of A in distinguishing between Hybi and Hybi+1 can be at most PosPIOAdvA,P0,P1(λ).
This follows from the fact that P0(i) = P1(i). It follows that the advantage in distinguishing
between Hyb0 and Hyb2n is at most 2n · PosPIOAdvA,P0,P1(λ).

• Hyb′i for i ∈ [0, 2n]: In Hyb′i the obfuscated program description is generated as

ObfuscatePIO(1λ, P1, P1, t = i)

Note that the proof will proceed through these hybrids in the reverse order, starting with Hyb′2n
and proceeding to Hyb′0. We observe that for any algorithm A, its advantage in distinguishing
between Hyb2n and Hyb′2n can be at most B : HidingPIOAdvA,P0,P1

(λ). In addition, for all
i ∈ [0, 2n − 1], the advantage of A in distinguishing between Hyb′i+1 and Hyb′i can be at most
PosPIOAdvA,P1,P1(λ). It follows that the advantage in distinguishing between Hyb′2n and Hyb′0
is at most 2n · PosPIOAdvA,P1,P1(λ).

• We finally note that Hyb′0 is defined to be an obfuscation of P1 as iO(1λ, P1).

Using the above hybrids we can draw a sequence that connects between an obfuscation. The
sequence is Hybstart,Hyb0,Hyb1 . . .Hyb2n ,Hyb

′
2n ,Hyb

′
2n−1, . . . ,Hyb

′
0. The theorem follows from the

observations about the adversarial advantages between each hybrid.

Required Security from Positional Indistinguishability Obfuscation. If all of the terms
in our reduction were polynominal in n (and thus λ) then the only requirement we would have is
that any poly-time algorithm have negligible advantage in each of our security games. However,
there is an exponential term of 2n attached to the positional game. Therefore we will need to use
complexity leveraging and for all poly-time algorithms A and all P0, P1 ∈ Pλ we demand that:

PosPIOAdvA,P0,P1(λ) = negl(λ) · 2−n

where negl(λ) is some negligible function. This requirement will be passed down to our next level
of abstraction and eventually to our multi-linear encoding instantiation. At the instantiation level
the security parameter will be increased to match this condition.

3 Input-Activated Obfuscation

In this section, we will describe an abstraction that we call Input-Activated Obfuscation (iaO). The
core of this abstraction will be a n × ` × 2 matrix M with entries in {0, 1}, and an ordered set
of ` programs, P = (P1, P2, . . . , P`) from a specified family of programs {Pλ}, parameterized by
a security parameter λ. We abuse standard terminology slightly by saying that such a matrix M
has n rows and ` columns. We say that every row-column pair (i, j) where i ∈ [n], j ∈ [`] has two
associated “slots,” denoted by Mi,j,0 and Mi,j,1.

We will call the matrix M an input-activated matrix. This is because for each column j of an
input-activated matrix M , we define a corresponding boolean function fj : {0, 1}n → {0, 1}, where

12

program Pj is active on input x iff fj(x) = 1. These functions fj are defined as follows:

fj(x) =

{
1, if Mi,j,xi = 1 for all i ∈ [n];
0, otherwise.

We will sometimes abuse terminology and say that column j of an input-activated matrix itself
evaluates to 1 on an input x iff fj(x) = 1.

An input-activated obfuscation scheme consists of two algorithms:

Creation. The creation algorithm Create(λ,M,P) takes in a security parameter λ, an n× `× 2
input-activated matrix M , and an ordered set P = (P1, P2, . . . , P`) of ` programs from Pλ. It
produces an input-activated obfuscation T .

Evaluation. The evaluation algorithm Eval(T, x ∈ {0, 1}n) takes in an input-activated obfusca-
tion T and an n-bit input x, and outputs 0 or 1.

These two algorithms should satisfy several properties. Note that because iaO deals with the
parallel obfuscation of several programs simultaneously, even the correctness property requires some
care to define.

Correctness. We define perfect correctness as follows. Consider an input x ∈ {0, 1}n. We let
Sx ⊆ [`] denote the set of column indices j that are active on input x, i.e. such that fj(x) = 1.
Then if Sx 6= ∅ and Pj = Pj′ for all j, j′ ∈ Sx, we require that Eval(T, x) = Pj(x) for all j ∈ Sx.
(This must hold for all inputs x.)

Observe that correctness only imposes a restriction on the output of the evaluation algorithm
in certain cases. Indeed, we take care that these are the only cases that will arise in our use of the
iaO abstraction.

We next define security properties for an input-activated obfuscation scheme. We define each
property in terms of a game between a challenger and an attacker.

Inter-column Security Game. This game is parameterized by a security parameter λ, an
n× `×2 input-activated matrix M , an ordered set of programs P = (P1, . . . , P`) in Pλ, two column
indices j and k in [`], a row index i∗ in [n], and a slot index β ∈ {0, 1} such that Mi∗,j,β = 1. We
require that Pj = Pk. By this, we mean that the program descriptions must be identical. Note
that this is a more stringent requirement than simply saying they must agree on all inputs. We
further require the following conditions on the jth and kth columns of M . For every row i and slot
γ ∈ {0, 1}, except for i = i∗ and γ = 1 − β, if Mi,k,γ = 1, then Mi,j,γ = 1 as well. When this
condition holds, we say that column j dominates column k, although strictly speaking this is not
required in slot 1−β of row i∗. All of these parameters are given both to the challenger and to the
attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P)
to produce an input-activated obfuscation T . If b = 1, it forms M ′ by copying M except for
flipping just one entry: M ′i∗,k,β = 1 if Mi∗,k,β = 0, and M ′i∗,k,β = 0 if Mi∗,k,β = 1. It then runs
Create(λ,M ′, P) to produce T . The challenger gives T to the attacker, who finally must guess the
value of the bit b.

Note that because we require Mi∗,j,β = 1, the change imposed by the inter-column game does
not change the actual set of inputs that are active across the union of columns j and k. This is

13

because any inputs that become active or become inactive on column k when Mi∗,k,β changes are
active in column j.

Definition 3.1. We say an input-activated obfuscation scheme has inter-column security if for
every polynomial attacker A, there exists a negligible function negl(λ) such that the attacker’s
advantage in the Inter-Column Game is ≤ negl(λ), for any valid settings of M,P, j, k, i∗, β.

Intra-column Security Game. This game is parameterized by a security parameter λ, a n×`×2
input-activated matrix M , an ordered set of programs P = (P1, . . . , P`), an index j of a column
in M such that there is some row i∗ where both slots take the value 0, and an alternate column
C ∈ {0, 1}n×2 such that the i∗ row also has both slots equal to 0. All of these parameters are given
both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P)
to produce T . If b = 1, it forms M ′ by replacing the jth column of M with C, and then runs
Create(λ,M ′, P) to produce T . It gives T to the attacker, who must then guess the value of the
bit b.

Definition 3.2. We say an input-activated obfuscation scheme has intra-column security if for
every polynomial attacker A, there exists a negligible function negl(λ) such that the attacker’s
advantage in the Intra-column Game is ≤ negl(λ), for any valid settings of M,P, j, C.

Completely Inactive Program Security Game. This game is parameterized by a security
parameter λ, a n× `× 2 input-activated matrix M , an ordered set of programs P = (P1, . . . , P`),
an alternate program P ∗, and an index j ∈ [`] such that the jth column of M contains all zero
entries. All of these parameters are given both to the challenger and to the attacker.

The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P) to
produce T . If b = 1, it forms P ′ by modifying P to replace the jth program with P ∗, and then runs
Create(λ,M ′, P ′) to produce T . It gives T to the attacker, who must then guess the value of the
bit b.

Definition 3.3. We say an input-activated obfuscation scheme has completely inactive program
security if for every polynomial attacker A, there exists a negligible function negl(λ) such that the
attacker’s advantage in the Completely Inactive Program Security Game is ≤ negl(λ), for any valid
settings of M,P, P ∗, j.

Single-input Program Switching Security Game. This game is parameterized by a security
parameter λ, a n× `× 2 input-activated matrix M , an ordered set of programs P = (P1, . . . , P`),
an alternate program P ∗, and an index j ∈ [`] such that the jth column of M corresponds to a
point function fj evaluating to 1 on a single input x∗ (and evaluating to 0 on all other inputs), with
P ∗(x∗) = Pj(x

∗). All of these parameters are given both to the challenger and to the attacker.
The challenger samples a uniformly random bit b ∈ {0, 1}. If b = 0, it runs Create(λ,M,P) to

produce T . If b = 1, it forms P ′ by modifying P to replace the jth program with P ∗, and then runs
Create(λ,M ′, P ′) to produce T . It gives T to the attacker, who must then guess the value of the
bit b.

Definition 3.4. We say an input-activated obfuscation scheme has single-input program switching
security if for every polynomial attacker A, there exists a negligible function negl(λ) such that the

14

attacker’s advantage in the Single-input Program Switching Security Game is ≤ negl(λ), for any
valid settings of M,P, P ∗, j.

4 iaO =⇒ Positional Indistinguishability Obfuscation

We now describe how to build a positional indistinguishability obfuscation scheme from an input-
activated obfuscation scheme.

To encode the position t, we will use two input-activated matrices, M t−1
L and M t

R. The matrix
M t−1
L will “activate” on inputs x > t− 1, meaning that for an input x ≥ t, at least one column of

M t−1
L will evaluate to 1 on input x. For inputs x < t, all columns of M t−1

L will evaluate to 0. M t
R

will have the complementary property that it is activated for inputs x < t and not for inputs x ≥ t.
We will refer to M t−1

L as a “left encoding” of the position t and to M t
R as a “right” encoding of the

position t.
To form a right encoding M t

R, we can use the same encoding procedure used in [GLW14]: We
consider the position t as a binary string t = (t1, t2, . . . , tn) ∈ {0, 1}n. We define an n × n × 2
input-activated matrix M t

R by specifying how to fill in the jth column for each j ∈ [n]:

To Set Column j:

• For i < j,
(M t

R)i,j,0 = 1,

(M t
R)i,j,1 =

{
0, if ti = 0;
1, if ti = 1.

• For i = j,

(M t
R)i,j,0 =

{
0, if ti = 0;
1, if ti = 1.

(M t
R)i,j,1 = 0

• For i > j,
(M t

R)i,j,0 = 1 = (M t
R)i,j,1.

We note some relevant properties of M t
R. We observe that for every boolean string y < t, there

is some column index j such that the associated boolean function evaluates to 1 on y, i.e. fj(y) = 1.
For every y ≥ t, fj(y) = 0 for all j ∈ [n]. Here, we use “<” and “≥” to denote the order induced
by the usual ordering of integers, when we think of t, y as binary expansions with t1, y1 being the
most significant bits. These observations are captured by the following lemmas, that are also in
[GLW14], though we restate and prove them here for completeness.

Lemma 4.1. If y < t, then fj(y) = 1 for some j ∈ [n].

Proof. Since y < t, there must be some index j ∈ [n] such that ti = yi for all i < j and tj = 1 while
yj = 0. We consider the jth column of M t

R. We claim that for all i, (M t
R)i,j,yi = 1. To see this, we

can consult our description of the jth column of M t
R above, noting that for i < j, whenever yi = 1,

then ti = 1 as well (by definition of j). Thus, fj(y) = 1.

Lemma 4.2. If y ≥ t, then fj(y) = 0 for all j.

15

Proof. We let k ∈ [n] denote an index such that yi = ti for all i ≤ k, and yk+1 = 1, tk+1 = 0, if
k + 1 ≤ n. For a column j where j ≤ k, we observe that (M t

R)j,j,yj = 0, since yj = tj . For any
column j where j > k, we observe that (M t

R)k+1,j,yk+1
= 0. This is because tk+1 = 0 and yk+1 = 1.

Hence, fj(y) = 0 for all j.

This defines an effective right encoding of positions t from 0 to 2n − 1 (considering t as an
integer). It will also be useful to have a right encoding of 2n. For simplicity in our proof, we
define the right encoding matrix of 2n to be a small change from the right encoding of 2n − 1 that
will ensure that the corresponding f will also evaluate to 1 on the position 2n − 1. Note that for
t = 2n−1, only the diagonal entries of M t

R are not completely filled with 1 slots. So we define M2n

R

to be the same as M2n−1
R , except that the first diagonal entry has both slots equal to 1.

We now construct a left encoding matrix M t
L. This will also be a n × n × 2 input-activated

matrix, but will be active on inputs > t.

To Set Column j:

• For i < j,

(M t
L)i,j,0 =

{
1, if ti = 0;
0, if ti = 1.

(M t
L)i,j,1 = 1,

• For i = j,
(M t

L)i,j,0 = 0

(M t
L)i,j,1 =

{
1, if ti = 0;
0, if ti = 1.

• For i > j,
(M t

L)i,j,0 = 1 = (M t
L)i,j,1.

We now prove the relevant properties of M t
L:

Lemma 4.3. If y ≤ t, then fj(y) = 0 for all j ∈ [n].

Proof. For columns j such that tj = 1, it is clear that fj(y) = 0 for all y, since both diagonal slots
of column j are 0. For a column j such that tj = 0, if yj = 0 as well, we will have fj(y) = 0 due to
the diagonal slot. If yj = 1, then since y ≤ t, there must be some row index i < j such that ti = 1
and yi = 0. This leads to fj(y) = 0 due to the slot at row i.

Lemma 4.4. If y > t, then fj(y) = 1 for some j ∈ [n].

Proof. There must be some index j such that yj = 1 and tj = 0, while for all i < j, yi = 1 whenever
ti = 1. We then have fj(y) = 1 for the corresponding column j.

This defines an effective left encoding of positions t from 0 to 2n−1 (considering t as an integer).
It will also be useful to have a left encoding of −1. For simplicity in our proof, we define the left
encoding matrix of −1 to be a small change from the left encoding of 0 that will ensure that some
corresponding fj will evaluate to 1 for every y ≥ 0. Note that for t = 0, only the diagonal entries
of M t

L are not completely filled with 1 slots. So we define M−1
L to be the same as M0

L, except that
the first diagonal entry has both slots equal to 1.

16

4.1 Construction

With these definitions in place, we are now prepared to present our construction.

ObfuscatePIO(1λ, C0, C1, t): This algorithm first forms a n × (2n + 1) × 2 input-activated ma-
trix by forming M t−1

L as above, a n × 2 “scratch column” S containing all 0 entries, and M t
R

as above. It concatenates these as M := M t−1
L |S|M t

R. It creates an ordered list of programs as
P = (P1, . . . , P2n+1) where Pi = C0 for all i ≤ n+ 1, and Pi = C1 for all i > n+ 1. (This means C0

will be associated with the columns of M t−1
L and S, while C1 will be associated with the columns

of M t
R.) It then calls Create(1λ,M, P) to form an input-activated obfuscation, and outputs the

resulting object T .

EvalPIO(T, x): This algorithm simply runs Eval(T, x), the evaluation algorithm for the input-
activated obfuscation.

Correctness. For any security parameter λ, any pair of programs C0, C1 ∈ {Cλ}, and for any
input x ∈ {0, 1}n we have that EvalPIO

(
ObfuscatePIO(1λ, C0, C1, t), x

)
= Eval(Create(1λ,M, P)).

If x ≥ t, then M t−1
L will have at least one column evaluating to 1 on x, but M t

R will not. Hence
Eval(Create(1λ,M, P)) = C0(x) follows from the correctness of the input-activated obfuscation
scheme. Similarly, it x < t, then M t

R will have at least one column evaluating to 1 on x and
M t−1
L will not. In this case, Eval(Create(1λ,M, P)) = C1(x) follows from the correctness of the

input-activated obfuscation scheme.

4.2 Security

We first prove position indistinguishability.

Theorem 4.5. Position Indistinguishability for our Positional Obfuscation Scheme in Section 4.1
follows from inter-column security, intra-column security, completely inactive program security, and
single-input program switching security of the underlying input-activated obfuscation scheme.

Our proof of theorem 4.5 will proceed as a hybrid argument, gradually changing the position
encoding matrices to accommodate an increment of t. At the highest level, we organize our hybrid
proof into five phases. We begin with the underlying input-activated matrix M = M t−1

L |S|M t
R

and program list P = (C0, . . . , C0, C1, . . . , C1), where the first n + 1 programs are C0 and the
remaining n programs are C1. Recall here that the scratch column contains all 0’s. We let Game0

denote this setting, in which the attacker is given a positional obfuscation scheme derived from the
input-activated obfuscation scheme for this matrix and programs.

We next define Game1. In this game, the attacker will be given an input-activated obfuscation
scheme for an adjusted input-activated matrix, though the list of associated programs remains the
same as in Game0. The new input-activated matrix will be M t

L|St|M t
R, where St is a column with

entries Si,ti = 1 and Si,1−ti = 0 for all i. Note that this new scratch column St will be activated
(i.e. have fn+1 evaluate to 1) if and only if the input is equal to t.

We next define Game2. In this game, the underlying input-activated matrix is the same as in
Game1, but the affiliated program Pn+1 for the scratch column is now C1 instead of C0. Crucially,
transitioning to Game2 will rely on the fact that C0(t) = C1(t). We then define Game3, in which
the list of programs is the same as Game2, but the underlying input-activated matrix is now

17

M t
L|S|M

t+1
R , where S is once again filled with all 0’s (though still affiliated with C1). We finally

define Game4, where the underlying input-activated matrix is as in Game3, but the associated list
of programs has reverted to Pi = C0 for all i ≤ n+1 and Pi = C1 for all i > n+1. (In other words,
the program associated to the scratch column is back to being C0.)

For each adjacent pair of games, we will prove that the security properties of the underlying
input-activated obfuscation scheme imply that no PPT attacker can distinguish between the two
games with non-negligible advantage. Since Game0 corresponds to a proper distribution for position
t and Game4 corresponds to a proper distribution for position t+1, we observe that these proofs in
combination imply Theorem 4.5. The proofs of Lemmas 4.6 and 4.8 below are very similar in spirit
(and often in detail) to the proofs in [GLW14], so we defer them to appendices B and C. Here we
present the proofs of Lemmas 4.7 and 4.9, which are of a new flavor.

Lemma 4.6. If the input-activated obfuscation scheme has inter-column and intra-column security,
then any PPT attacker can attain only a negligible advantage in distinguishing Game0 from Game1.

Lemma 4.7. If the input-activated obfuscation scheme has single-input program switching security,
then any PPT attacker can attain only a negligible advantage in distinguishing between Game1 and
Game2.

Proof. We suppose we have a PPT attacker A that can distinguish between Game1 and Game2 with
non-negligible advantage. We will use this to create a PPT attacker B that achieves non-negligible
advantage in the single-input program switching security game.

We employ the single-input program switching security game with input-activated matrix M =
M t
L|St|M t

R, where St is the column corresponding to the characteristic function of t. We have the
list of programs (P1, . . . , P2n+1) with Pi = C0 for i ≤ n + 1 and Pi = C1 for i > n + 1. The value
of j will be n + 1, and the alternate program P ∗ will be C1. Note that C0(t) = C1(t), so we have
fulfilled all the requirements to apply the single-input program switching game.
B is given an input-activated obfuscation scheme T , and it must guess whether the alternate

program was used. It passes T to A as the positional obfuscation scheme. If the original program
list was used, this is properly distributed for Game1. If the alternate program was used, this is
properly distributed for Game2. Hence B can leverage A’s ability to distinguish these games to
obtain a non-negligible advantage in the single-input program switching security game.

Lemma 4.8. If the input-activated obfuscation scheme has inter-column and intra-column security,
then any PPT attacker can attain only a negligible advantage in distinguishing Game2 from Game3.

Lemma 4.9. If the input-activated obfuscation scheme has completely inactive program security,
then any PPT attacker can attain only a negligible advantage in distinguishing Game3 from Game4.

Proof. We suppose we have a PPT attacker A that can distinguish between Game3 and Game4 with
non-negligible advantage. We will use this to create a PPT attacker B that achieves non-negligible
advantage in the completely inactive program security game.

We employ the completely inactive program security game with input-activated matrixM t
L|S|M

t+1
R ,

where S is a column of all 0s. We have the list of programs (P1, . . . , P2n+1) with Pi = C0 for i ≤ n
and Pi = C1 for i ≥ n+ 1. The value of j will be n+ 1, and the alternate program P ∗ will be C0.
B is given an input-activated obfuscation scheme T , and it must guess whether the alternate

program was used. It passes T to A as the positional obfuscation scheme. If the original program
list was used, this is properly distributed for Game3. If the alternate program was used, this is

18

properly distributed for Game4. Hence B can leverage A’s ability to distinguish these games to
obtain a non-negligible advantage in the completely inactive program security game.

We next prove Program Description Hiding A Security.

Theorem 4.10. Program Description Hiding A Security for our Positional Obfuscation Scheme
in section 4.1 follows from intra-column security and completely inactive program security of the
underlying input-activated obfuscation scheme.

We begin with the underlying input-activated matrix M = M−1
L |S|M0

R and program list
P = (C0, . . . , C0, C1, . . . , C1), where the first n+ 1 programs are C0 and the remaining n programs
are C1. We let Game0 denote this setting, in which the attacker is given a positional obfuscation
scheme derived from the input-activated obfuscation scheme for this matrix and programs. For
each z from 1 to n, we define Gamez to be a game where the input-activated matrix is the same,
but the first n+ 1 + z programs are C0 and the remaining ones are C1. Note that when we reach
Gamen, C1 no longer appears.

Theorem 4.10 then follows from the following lemma:

Lemma 4.11. If intra-column and completely inactive program security hold for the underlying
input-activated obfuscation scheme, then any PPT attacker has only a negligible advantage in dis-
tinguishing Gamez from Gamez−1, for each z from 1 to n.

Proof. The transition from Gamez−1 to Gamez can be accomplished in three steps. First, we
observe that column z of M0

R has 0s in both of its slot on row z. Thus we can invoke the intra-
column security property to change this column to all 0s in all other rows as well. We can then
invoke completely inactive program security to change the affiliated program from C1 to C0. Finally
we can invoke intra-column security again to reset the other rows of this column to their proper
values in M0

R.

We last prove Program Description Hiding B Security with a similar argument.

Theorem 4.12. Program Description Hiding B Security for our Positional Obfuscation Scheme
in section 4.1 follows from intra-column security and completely inactive program security of the
underlying input-activated obfuscation scheme.

We begin with the underlying input-activated matrix M = M2n−1
L |S|M2n

R and program list
P = (C0, . . . , C0, C1, . . . , C1), where the first n+ 1 programs are C0 and the remaining n programs
are C1. We let Game0 denote this setting, in which the attacker is given a positional obfuscation
scheme derived from the input-activated obfuscation scheme for this matrix and programs. For each
z from 1 to n + 1, we define Gamez to be a game where the input-activated matrix is the same,
but the first z programs are also C1. Note that when we reach Gamen+1, C0 no longer appears.

Theorem 4.12 then follows from the following lemma:

Lemma 4.13. If intra-column and completely inactive program security hold for the underlying
input-activated obfuscation scheme, then any PPT attacker has only a negligible advantage in dis-
tinguishing Gamez from Gamez−1, for each z from 1 to n+ 1.

19

Proof. The transition from Gamez−1 to Gamez can be accomplished in three steps. First, we
observe that for z ≤ n, column z of M2n−1

L has 0s in both of its slot on row z. Thus we can invoke
the intra-column security property to change this column to all 0s in all other rows as well. We can
then invoke completely inactive program security to change the affiliated program from C0 to C1.
Finally we can invoke intra-column security again to reset the other rows of this column to their
proper values in M2n−1

L . For z = n+ 1, we can just apply completely inactive program security to
change from C0 to C1, as the scratch column contains all 0s.

5 An Instantiation in a Model of Composite Order Multilinear
Groups

We now present an instantiation of input-activated obfuscation in a model of composite order
multilinear groups. Our construction will produce “program-carrying” group elements that reflect
the matrices of the associated branching programs in their exponents, as well as “enforcing” group
elements which will play a role in enforcing that the input bits used in the evaluation of the
branching program are consistent, and also for enforcing the input activation properties implied
by the input-activated matrix. For oblivious matrix branching programs of width 5 and length z,
there will be 5 ·5 ·2 ·z program-carrying group elements, naturally corresponding to the 2z matrices
of dimension 5 × 5 that form such a branching program. For inputs of the length n, there will be
2n enforcing elements (each indexed by an i ∈ [n] and a bit b). Our group will be (z + n)-linear.

An honest evaluation of the construction will first take the program-carrying elements corre-
sponding to the matrices that match the desired input and multiply them in the exponent of the
multilinear group. It will then extract a single entry that will be zero or nonzero depending on
the program output. It then further applies the multilinear map with the n enforcing elements
corresponding to the input (i.e. one for each i, with the bit value matching the ith bit of the input).

We will use many subgroups of distinct prime orders to serve separate purposes in our construc-
tion. There will be a prime qj for each column index j ∈ [`], and the evaluation of the program Pj
will happen in the exponent of this subspace. There will also be primes p1, . . . , pz+n that will add
randomness to the partial computations of the construction, preventing an attacker from learning
anything that it should not learn by putting together certain combinations of elements that would
never occur in an honest evaluation. More precisely, we can partition the group elements into z+n
classes - z classes of program-carrying elements, one for each step of the branching program, and n
classes of enforcing elements (one for each input bit). An honest evaluation always performs z + n
multilinear computations that respect this class structure. These additional primes p1, . . . , pz+n
will prevent a meaningful result with deviation from this structure occurs, for example when two
elements of the same class are used together in the multilinear map.

Finally, there are primes rs,b for each s ∈ [z] and b ∈ {0, 1}. Essentially, the prime rs,b will be
used to enforce that if an evaluation uses the bit value b at step s of the branching program, then
it must use the same bit value b for the corresponding input-enforcing element, otherwise there
will be a random contribution from the subgroup of order rs,b that is never canceled out, hence
obscuring the final evaluation result.

Before proceeding to the details of our construction, we give a quick review of the formal model
for composite order multilinear groups.

20

5.1 An Abstract Model of Composite Order Multilinear Groups

In this section, we will work with an abstract model of symmetric, composite order multilinear
groups. We let G denote a cyclic group of composite order N = p1p2 · · · pr (where p1, . . . , pr
are distinct primes). We suppose that G comes equipped with an efficiently computable, non-
degenerate k-linear map E : Gk → GT , that is actually implemented in a graded manner. We let
1G, 1GT denote the respective identity elements in G and GT . For each prime pi, we let gpi denote
a generator of the subgroup of order pi inside G. We note that whenever h ∈ G belongs to the
subgroup of order p1 · · · pi−1pi+1 · · · pr inside G and g2, . . . , gk−1 ∈ G are arbitrary, we have that

E(h, g2, . . . , gk−1, gpi) = 1GT .

More generally, the various prime order subgroups inside G are “orthogonal” under the multilinear
map, meaning that a particular prime order subgroup only contributes to the result of E if there
are non-trivial components in this subgroup on every input to E. This is a simple consequence of
the definition of multilinearity.

We let G(λ, r, k) denote a group generation algorithm that takes in a security parameter λ,
a number of prime factors r, and a level of multilinearity k and outputs a description of such a
group G. We assume the description includes the group order N , the individual primes p1, . . . , pr,
a generator g of G, and efficient algorithms for the group operations in G and GT as well as E.
We note that with g and the individual primes, one can produce a generator for any particular
subgroup of G.

5.2 Construction

We now construct an input-activated obfuscation scheme in this setting. Our construction will
proceed in two phases. First we construct a preliminary scheme that we prove satisfies inter-column
security, single-input program switching security, and completely inactive program security. Next
we apply a simple transformation (analogous to the one described in [GLW14]) to obtain a variant
that also satisfies intra-column security. Our preliminary scheme is:

Createlite(λ,M,P): This algorithm takes in a security parameter λ, an n× `× 2 input-activated
matrix M , and an ordered set P = (P1, . . . , P`) of programs from Pλ. We require that all Pj are
oblivious matrix branching programs of length z for inputs of length n, represented as z pairs of 5×5
matrices Aj,t,b (where t ∈ [z] and b ∈ {0, 1}). The only differences between the Pj ’s are expressed in
the matrix contents, not the length or the mapping of input bits to steps of the branching program
(this is guaranteed by the obliviousness property). For each t in [z], we let α(t) ∈ [n] denote the
index of the input bit being referenced at that step.

It first generates a (z + n)-linear group G of composite order

N = q1 · · · q` · p1 · · · pz+n
z∏
s=1

rs,0 · rs,1.

These are all distinct primes, and we let gqj , for example, denote a random generator of the

subgroup of order qj . We choose uniformly random matrices R1, . . . , Rz−1 in Z5×5
N . We note

that these are distributed uniformly and independently modulo each prime factor of N by the
Chinese Remainder Theorem. We also note that these are invertible modulo each prime with all

21

but negligible probability. For each j ∈ [`], t ∈ [z], and b ∈ {0, 1}, we define Bj,t,b = R−1
t−1Aj,t,bRt,

where R0, Rz are defined to be the identity matrix. We note, for use later, that for any setting
of j, k ∈ [`], with any t ∈ [z] and b ∈ {0, 1}, that if Aj,t,b = Ak,t,b, then Bj,t,b = Bk,t,b. This is
true since the Ri matrices are defined globally over ZN , even though this choice induces a set of
independent random matrices over each prime factor of N .

We will produce an input-activated obfuscation T containing 5 · 5 · 2z + 2n elements of G,
each corresponding to an entry of a matrix in the branching program or to an index (y, b) where
y ∈ [n], b ∈ {0, 1}. We will refer to the group elements corresponding to matrix entries as “program-
carrying elements” and those corresponding to indices (y, b) as “enforcing elements.”

To generate a program-carrying group element gw,v,t,b for the (w, v) entry of the matrix at a step
t ∈ [z] in the branching program, corresponding to bit value b ∈ {0, 1}, and input index i = α(t) ∈
[n], we proceed as follows. For each j from 1 to `, we compute a group element uj = g

Bj,t,b(w,v)
qj . We

also sample random elements γ1, . . . , γt−1, γt+1, . . . , γz+n, where for all i ∈ [z + n] \ {t}, we sample
γi from the subgroup of order pi.

Finally, for each s ∈ [z], b′ ∈ {0, 1}, we sample a group element ds,b′ randomly in the subgroup
of order rs,b′ , except when s = t and b′ = 1− b. In this case, we set dt,1−b = 1.

We then define

gw,v,t,b = γ1 · · · γt−1γt+1 · · · γz+n
∏̀
j=1

uj
∏
s,b′

ds,b′ .

To generate an enforcing group element gy,b for y ∈ [n] and b ∈ {0, 1}, we first sample random
elements γ1, . . . , γz+y−1, γz+y+1, . . . , γz+n, where for all i ∈ [z+ n] \ {z+ y}, we sample γi from the
subgroup of order pi.

For each j from 1 to `, we sample a group element uj as follows. If My,j,b = 1, we sample uj
uniformly at random from the subgroup of order qj . If My,j,b = 0, we set uj = 1. For each s, b′, we
sample ds,b′ as follows. If α(s) 6= y or b′ 6= b, then ds,b′ is sampled uniformly at random from the
subgroup of order rs,b′ . Otherwise, when α(s) = y, b′ = b, we set ds,b := 1.

We then define

gy,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏̀
j=1

uj
∏
s,b′

ds,b′ .

We output the collections of elements gw,v,t,b and gy,b as the input-activated obfuscation T .

Evallite(T, x): For an input x ∈ {0, 1}n and an input-activated obfuscation T = {gw,v,t,b, gy,b}, we
evaluate as follows. For each t, b, we let kt,b denote the 5×5 collection of elements {gw,v,t,b}, as w, v
range over [5]. We view kt,b as a 5× 5 matrix of group elements. We extend the multilinear map to
matrices of group elements in the natural way, by computing the matrix product in the exponent.
We can then compute:

e(k1,xα(1) , k2,xα(2) , . . . , kz,xα(z)), (1)

which will be a 5× 5 collection of group elements in Gz.
We will then choose a single non-diagonal entry. We choose this entry so that it is non-zero as

an entry of the product Aj,1,xα(1)Aj,2,xα(2) · · ·Aj,z,xα(z) whenever the branching program outputs 0
(i.e. whenever this matrix product is not the identity matrix). We call this single group element
k. We then compute:

e(k, g1,x1 , . . . , gn,xn) ∈ GT . (2)

22

We apply the zero test to the result of (2). If the zero test detects a zero, we output 1. Otherwise,
we output 0.

Correctness. We first observe that the subgroups of order p1, . . . , pz do not contribute to the
result of (1), since each subgroup of order pt is absent from the matrix elements in kt,xα(t) . Similarly,
the subgroups of order pz+1, . . . , pz+n do not contribute to the result of (2). For each (s, b), if
b 6= xα(s), then the subgroup of order rs,b does not contribute because it is absent from the matrix
elements in ks,xα(s) . If b = xα(s), then the subgroup of order rs,b does not contribute because it is
absent from the element gα(s),xα(s) .

Thus the only potential contributions to the value of (1) come from the subgroups of order
q1, . . . , q`. For each qj , we observe that we will get precisely the matrix product
Aj,1,xα(1)Aj,2,xα(2) · · ·Aj,z,xα(z) modulo qj in the exponent of (1). If the input-activated matrix has
a 0 in the slot corresponding to xi on some row i in column j, then one of the included enforcing
elements will cause the qj subgroup to be absent, and hence we will ultimately not get a contribution.
If instead the jth column is activated by the input x, this contribution in (1) will be multiplied by
non-zero terms in (2), and this will be 0 in the tested entry if and only if the branching program
Pj outputs 0 on the input x.

We will prove in the following subsection that the scheme Createlite, Evallite satisfies inter-
column, completely inactive program switching, and single-input program switching security. To
obtain a scheme that also satisfies intra-column security, we define algorithms:

Create(λ,M,P): This algorithm takes in a security parameter λ, an n × ` × 2 input-activated
matrix M , and an ordered set P = (P1, . . . , P`) of programs from Pλ. It forms an input-activated
matrix M ′ that is n× (`+ n`)× 2 by appending n` new columns to M . For each j ∈ [`], there will
be n new columns appended (all with associated program Pj), with the ith one having 0’s in both
slots of row i and 1’s everywhere else. We let P ′ denote the resulting (expanded) ordered program
list. Then Createlite(λ,M

′, P ′) is called to produce the output T .

Eval(T, x): For an input x ∈ {0, 1}n and an input-activated obfuscation T = {gw,v,t,b, gy,b}, we
simply run Evallite(T, x).

We note that correctness for Create and Eval follows immediately from correctness for Createlite
and Evallite, as the additional columns are not activated on any inputs.

5.3 The Multilinear Subgroup Elimination Assumption

We now describe our computational assumption, which was previously used in [GLW14].

The (µ, ν)-multilinear subgroup elimination assumption This assumption is parameterized
by positive integers µ, and ν. It concerns a µ-linear group of order N = a1 . . . aµb1 . . . bνc, where
a1, . . . , aµ, b1, . . . , bν , c are µ+ν+1 distinct primes. We give out generators ga1 , . . . , gaµ , gb1 , . . . , gbν
for each prime order subgroup except for the subgroup of order c. For each i ∈ [µ], we also give out
a group element hi sampled uniformly at random from the subgroup of order ca1 · · · ai−1ai+1 · · · aµ.
The challenge term is a group element T ∈ G that is either sampled uniformly at random from the
subgroup or order ca1 · · · aµ or uniformly at random from the subgroup of order a1 · · · aµ. The task
is to distinguish between these two distributions of T .

23

5.4 Security Properties

Lemma 5.1. For µ := z + n and ν := ` + 2z − 1, the (µ, ν)-multilinear subgroup elimination
assumption implies inter-column security for our algorithms Createlite, Evallite in Section 5.2.

Proof. We suppose there exists a PPT attacker A who achieves a non-negligible advantage in
the inter-column game for some valid setting of M,P, j, k, i, β. We will create a PPT attacker B
that achieves a non-negligible advantage in breaking the (µ, ν)-multilinear subgroup elimination
assumption. B is given ga1 , . . . , gaµ , gb1 , . . . , gbν , h1, . . . , hµ, and a challenge term T . Its task is
to guess whether T was sampled from the subgroup of order ca1 · · · aµ or the subgroup of order
a1 · · · aµ.
B implicitly sets qk = c, and pt = at for every t 6= z+ i. It sets qj = az+i. It bijectively maps the

remaining pz+i, qj′ ’s and rs,b’s to the primes b1, . . . , bν . Then B samples the randomized matrices
Bj,t,b for all j ∈ [`], t ∈ [z], and b ∈ {0, 1}.

To make a group element gw,v,t,b, B proceeds as follows. It can use the subgroup generators at
its disposal to sample γ1, . . ., γt−1, γt+1, . . ., γz+n, uj′ for all j′ 6= j, k, and all of the ds,b′ elements
appropriately. It computes:

gw,v,t,b := h
Bj,t,b(w,v)
t γ1 · · · γt−1γt+1 · · · γz+n

∏
j′ 6=j,k

uj′
∏
s,b′

ds,b′ ,

where the matrix Bj,t,b = Bk,t,b (modulo N) because Aj,t,b = Ak,t,b. Note that ht is nontrivial in
both the subgroup of order c = qk and the subgroup of order az+i = qj , and thus this term is
distributed as it should be.

To make a group element gy,b, B proceeds as follows. It can directly sample γ1, . . ., γz+y−1,
γz+y+1, . . ., γz+n and ds,b′ elements appropriately by using the given subgroup generators. It can
similarly sample elements uj′ for j′ 6= j, k. When y 6= i, one of two cases must occur. In the first
case, My,k,b = 0, and thus we can set uk = 1. We sample uj appropriately, using the given generator
gaz+i if My,j,b = 1. Then, B can compute:

gy,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏̀
j′=1

uj′
∏
s,b′

ds,b′ .

In the second case, My,k,b = 1, which implies that My,j,b = 1 by the conditions underlying the
inter-column game. In this case, B selects a random exponent α ∈ ZN and computes:

gy,b = hαz+yγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j,k

uj′
∏
s,b′

ds,b′ .

Recall that hz+y is nontrivial in both the subgroup of order c = qk and the subgroup of order
az+i = qj , since y 6= i. Thus, since the random choice of α ∈ ZN induces independent random
values (α mod c) and (α mod az+i), these terms are distributed correctly.

When y = i and b = 1− β, there are two cases to consider. If Mi,k,b = 0, then we first sample
uj appropriately, using the given generator gaz+i if My,j,b = 1. Then, B computes:

gi,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=k

uj′
∏
s,b′

ds,b′ .

24

On the other hand, if Mi,k,b = 1, then B selects a random exponent α ∈ ZN and samples uj
appropriately according to Mi,j,b. It then computes:

gi,b = hαz+iγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=k

uj′
∏
s,b′

ds,b′ .

Recall that hz+i is trivial in the subgroup of order az+i = qj , and thus the hαz+i term does not
disturb the correctly sampled uj term.

Finally, when y = i and b = β, we must have Mi,j,β = 1, and B computes:

gi,β = Tγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j,k

uj′
∏
s,b′

ds,b′ .

If T was sampled from the subgroup of order ca1 · · · aµ, this will be distributed as if Mi,k,β = 1.
Otherwise, it will be distributed as if Mi,k,β = 0. Thus, B can leverage A’s non-negligible advantage
in the inter-column game to achieve a non-negligible advantage against the multilinear subgroup
elimination assumption.

In our proof of single-input program switching security, we will use an information-theoretic
lemma due to Kilian [Kil88]:

Lemma 5.2. [Kil88] Let x denote a single input to a matrix branching program {At,b}. Then if
matrices R1, . . . , Rz−1 are chosen to be random invertible matrices, the distribution of the matrices
{R−1

t−1At,xα(t)Rt} depends only on the output of the branching program evaluated on x.

Essentially, this means that when what the attacker sees only involves one matrix from each
position in the branching program, only the final output is information-theoretically revealed.

Lemma 5.3. For µ := z + n and ν := ` + 2z − 1, the (µ, ν)-multilinear subgroup elimination
assumption implies single-input program switching security for our algorithms Createlite, Evallite in
Section 5.2.

Proof. We will prove this via a hybrid argument that incrementally “erases” the branching program
matrices not corresponding to the single relevant input (we will call it x∗) in the relevant subgroup
using the subgroup elimination assumption. Once we have done this, we can argue information-
theoretically to switch the programs and then reverse the hybrid to insert the new matrices. To
execute this strategy, we begin by defining the following hybrid experiments. Exp0 will denote
the original game with the challenge bit set to 0 (here the original program Pj is used for the
jth column). For f from 1 to z, we define Expf to be like Exp0, except for the first f positions
of the branching program, the corresponding program-carrying group elements for the bit values
disagreeing with x∗ will have no components in the qj subgroup. (Note that in Expz, only one
matrix will appear in the qj subgroup per slot.)

We first argue that for each such f , Expf is indistinguishable from Expf−1, under the multilinear
subgroup elimination assumption. We suppose there is some f ∈ [z] such that some PPT attacker
A has a non-negligible advantage in distinguishing Expf from Expf−1. We will use A to build a
PPT attacker B to break the multilinear subgroup elimination assumption.
B is given ga1 , . . . , gaµ , gb1 , . . . , gbν , h1, . . . , hµ, and a challenge term T . Its task is to guess

whether T was sampled from the subgroup of order ca1 · · · aµ or the subgroup of order a1 · · · aµ. It

25

implicitly sets qj = c, and pt = at for all t 6= f . It sets rf,b∗ = af , where b∗ is the bit indicating
the matrix to be erased (so b∗ is the complement of the activated input bit for the f th step of the
branching program). The remaining primes, namely pf , the qj′ for j′ 6= j, and the remaining rs,b′

are mapped bijectively to the primes b1, . . . , bν . Then, B samples the randomized matrices Bj,t,b
for all j ∈ [`], t ∈ [z], and b ∈ {0, 1}.

For any fixed w, v ∈ [5], t ∈ [z], and b ∈ {0, 1}, to make the group element gw,v,t,b, the
reduction B proceeds as follows. It can use the subgroup generators at its disposal to sample
γ1, . . . , γt−1, γt+1, . . . , γz+n, together with the uj′ for all j′ 6= j, and all of the ds,b′ elements appro-
priately.

If b = x∗α(t), or if b = 1− x∗α(t) but t > f , then B sets:

gw,v,t,b = h
Bj,t,b(w,v)
t γ1 · · · γt−1γt+1 · · · γz+n

∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

Recall that when setting gw,v,t,b, it should be that only dt,1−b = 1, while all other ds,b′ should be
random in the subgroup of order rs,b′ . Therefore, we observe that our setting of gw,v,t,b is properly
distributed when t 6= f because the component in subgroup rf,b∗ should be random here, since
f 6= t (so it’s acceptable that this component appears in ht). To see it is also properly distributed
when t = f , we note that when t = f then to be in this case it must be that b = 1 − b∗, and
therefore the component in subgroup rf,b∗ should be, and is, 1 here (as this component is missing
from hf).

The other case when t = f is when b = b∗. To make gw,v,f,b∗ , B computes:

gw,v,f,b∗ = TBj,f,b∗ (w,v)γ1 · · · γf−1γf+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

We note the random component in the subgroup of order rf,b∗ appearing in the challenge term T
is acceptable, as the df,b∗ is supposed to be random for this group element.

Finally, if b = 1− x∗α(t) and t < f , then B simply sets

gw,v,t,b = γ1 · · · γt−1γt+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

Recall that for t < f , previous hybrids have already eliminated the qj terms, and thus this is the
correct distribution.

To make a group element gy,b, the reduction B proceeds as follows. It can directly sample
γ1, . . . , γz+y−1, γz+y+1, . . . , γz+n and ds,b′ elements appropriately by using the given subgroup gen-
erators. It can similarly sample elements uj′ for j′ 6= j. If My,j,b = 0, then since uj should equal 1,
it can then set

gy,b = γ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

If My,j,b = 1, it must be the case that either α(f) 6= y or b∗ 6= b. This is because column j,
row y of M can only have one entry equal to 1 (since exactly one input is activated), and the entry
Mα(f),j,1−b∗ = 1 by definition of b∗. This means that for these y, b, the reduction B can choose a
random exponent α ∈ ZN and set

gy,b = hαz+yγ1 · · · γz+y−1γz+y+1 · · · γz+n
∏
j′ 6=j

uj′
∏
s,b′

ds,b′ .

26

The presence of an random rf,b∗ component on hz+y is not problematic here, as α(f) 6= y or b∗ 6= b
holds. Recall that in the enforcing elements gy,b, the rs,b′ components are to be random if α(s) 6= y
or b′ 6= b.

Thus, if T has a random c = qj component, then B has properly simulated Expf−1. If not, it has
properly simulated Expf . This allows us to argue that under this multilinear subgroup elimination
assumption, Exp0 is computationally indistinguishable from Expz.

Next, we argue that the distribution of Expz is statistically close to the distribution of an Exp∗z
with Pj replaced by P ∗, where P ∗ is any other branching program of the same length and input
access pattern that agrees with Pj on the single activated input. We stress that this transition from
Expz to Exp∗z is information-theoretic (does not rely on any computational assumption).

First, we note that the uniform distribution of the randomizing matrices R1, . . . , Rz−1 (reduced
modulo qj) in Expz is only a negligible statistical distance from the distribution required for Lemma
5.2, where they are sampled to be invertible (this is because a random matrix modulo qj is invertible
with all but negligible probability). So up to this negligible statistical distance, we have that the
distribution of the randomized branching program matrices Bj,t,b depends only on Pj(x

∗) = P ∗(x∗).
This means that the distribution of Exp∗z is negligibly close to the distribution of Expz.

Once we are at Exp∗z, we can apply the same hybrid steps in reverse to restore the matrices
in the qj subgroup of the program-carrying group elements, this time with P ∗ instead of Pj . This
completes our proof of single-input program switching security.

Lemma 5.4. For µ := z + n and ν := ` + 2z − 1, the (µ, ν)-multilinear subgroup elimination
assumption implies completely inactive program security for algorithms Createlite, Evallite in Section
5.2.

Proof. This follows from the same hybrid argument used in the proof of Lemma 5.3, except that
we “erase” the qj subgroup components on all of the program-carrying group elements. (We note
that the case in the above proof where My,j,b = 1 no longer arises.) Once we have erased all such
components, we can reverse the process and iteratively insert the new program P ∗. Here we do
not need the information-theoretic argument from Killian, as we are able to erase all the matrices,
leaving no distribution that needs to be matched.

Theorem 5.5. For µ := z + n and ν := ` + n` + 2z − 1, the (µ, ν)-multilinear subgroup elimina-
tion assumption implies intra-column security, inter-column security, completely inactive program
switching security, and single-input program switching security for our algorithms Create, Eval in
Section 5.2.

Proof. We note that inter-column security, completely inactive program switching security, and
single-input program switching security for Create, Eval follow immediately from Lemmas 5.1, 5.3,
and 5.4, as the columns of the matrix M ′ that is input to Createlite are a superset of the columns
of the original M input to Create.

For intra-column security of Create, Eval, we will derive this as a consequence of the inter-
column security of Createlite, Evallite. We consider an instance of the intra-column game where
column j of M has a row i∗ with both slots set to 0 and we seek to replace this column C (which
also has 0’s in row i∗). For this, we use the appended column of M ′ that has the same program Pj
and has 0’s in row i∗ and 1’s everywhere else. Note that the changes we need to make to reach C
are in slots where this appended column has 1’s, and moreover its 1’s cover all the 1’s of the current

27

jth column as well as C. Thus, by iteratively applying inter-column security, we can change the jth

column of M to C.

6 Implementing Our Scheme with Graded Encodings

We instantiate our iO scheme with an extension of the graded encoding scheme described by Coron,
Lepoint and Tibouchi (CLT) [CLT13]. The adapted encodings are the same as in [GLW14], and
indeed we re-use their (µ, ν)-multilinear subgroup elimination assumption over these encodings.

We very briefly review some of the graded encoding procedures. (See Appendix D for a thorough
review of these procedures, along with other aspects of the extended CLT encodings described in
[GLW14].) InstGen(λ, κ, σ) takes as input the security parameter λ, the multilinearity parameter
κ, and a ring dimension parameter σ, and generates parameters params for the graded encoding
system. These parameters include a composite modulus Q =

∏
i∈[σ],θ∈[Θ]Qi,θ, a product of “big”

primes, and a zero test parameter pzt. They also include a composite modulus N =
∏
i∈[σ],θ∈[Θ] pi,θ,

a product of “small” primes. The actual encoded values will be modulo N , whereas addition and
multiplication of encodings will be modulo Q. The value σ corresponds to the number of prime
divisors needed in our composite-order group iO scheme. Each of the σ primes in the original
scheme is associated to Θ = Θ(λ, κ) primes in the CLT moduli. Our iO scheme’s Create algorithm
will use the procedure SubRGen(esk, i, S), a private randomized algorithm that takes as input a
secret encoding parameter esk, a parameter i indicating an encoding level, and a subset S ⊂ [σ].
This procedure then generates a number modulo m ∈ ZN that is random modulo pi,θ for all i ∈ S
and is 0 modulo pi,θ for all i ∈ [σ] \ S. Finally, it outputs a level-i encoding E(m)

i of m. (We will
only need it to output level-1 encodings, and please see the Appendix for details on how encoding
works.) Create will also use the ReRand(params, u) procedure, which works by adding a random

encoding in E(0)
1 to u ∈ E(m)

1 to generate a new statistically random encoding u′ ∈ E(m)
1 . Our iO

scheme’s Eval algorithm will use the addition and multiplication procedures + and ×, as well as
the zero test IsZero(params, pzt, u) that uses the zero-tester pzt to distinguish whether u encodes 0
at level κ.

There are some minor differences with extended CLT encodings as described in [GLW14], since
the GLW setting was somewhat simpler. In GLW, decryption works by a simple application of the
multilinear map that directly maps level-1 encodes to level-κ without really using any intermediate
levels. By contrast, as we multiply matrices (which requires additions and multiplications of indi-
vidual entries) we need to exploit the additive structure of intermediate groups – i.e., we need a true
graded encoding. Another difference is that GLW only needed to encode values that were either 0
or random modulo various primes. In contrast, we need to encode particular values – e.g., we need
to ensure that the particular Kilian randomizing matrices are used consistently in our randomized
branching programs. Thus, while N was not explicitly included in the GLW parameters since it
was not needed, we include it in params in our system. (Including it does not appear to lead to
attacks, and of course the prime factors of N and Q remain secret.) Also, we include a level-1
encoding c∗ of 1 in params.

Now, we describe the “lite” version of our iO scheme in terms of the extended CLT graded
encoding system. (The “lite” to “final” transformation is straightforward and analogous to that in
Section 5.)

28

Createlite(λ,M,P): This algorithm takes in a security parameter λ, an n× `× 2 input activated
matrix M , and an ordered set P = (P1, . . . , P`) of programs from Pλ of length z represented by 5×5
matrices {Aj,t,b : j ∈ [`], t ∈ [z], b ∈ {0, 1}}. It then calls (params, pzt)← InstGen(λ, z+n, 3z+n+`)
to produce a (z + n)-graded encoding system for σ = 3z + n+ `. To mirror the description our iO
scheme in Section 5, the CLT modulus is

N =
∏
θ∈[Θ]

q1,θ · · · q`,θ · p1,θ · · · pz+n,θ ·
z∏
s=1

rs,0,θ · rs,1,θ.

For convenience, we let Q \ {i} denote the set of indices corresponding to the q primes, except
qi,1, . . . , qi,θ, and use similar notation P \ {i} and R \ {i} for the p primes and r primes.

To generate the “program carrying encodings” for our iO scheme – that is, encodings of the
entries in the 5× 5 matrices of the branching program used in our scheme – we proceed as follows.
First, we choose uniformly random matrices R1, . . . , Rz−1 in Z5×5

N , and let R0, Rz be the identity
matrix. For each t ∈ [z] and b ∈ {0, 1}, we define Bt,b to be the matrix equal to R−1

t−1Aj,t,bRt
modulo

∏
θ∈[Θ] pj,θ for j ∈ [`], but equal to 0 modulo the other primes. We compute an individual

encoding cw,v,t,b – with w, v ∈ [5], t ∈ [z], b ∈ {0, 1} – as follows. Set c0 ← SubRGen(esk, 1,P \ {t}),
set c1 ← SubRGen(esk, 1,R \ {(t, 1 − b)}), set c2 ← c∗ × Bt,b[w, v], and finally output cw,v,t,b ←
ReRand(params, c0 + c1 + c2).

To generate an enforcing encoding cy,b for y ∈ [n] and b ∈ {0, 1}, set c0 ← SubRGen(esk, 1,P \
{z+y}), set c1 ← SubRGen(esk, 1,R\{(s, b′) : α(s) = y∧ b′ = b}), set c2 ← SubRGen(esk, 1,Q\{j :
My,j,b = 0}), and finally output cy,b ← ReRand(params, c0 + c1 + c2).

The encodings {cw,v,t,b}, {cy,b}, with params, constitute the input-activated obfuscation T .

Eval(T, x): On input x ∈ {0, 1}n, we evaluate T as follows. We compute:

C1,xα(1) × · · · × Cz,xα(z) ,

where Ct,b is the matrix of encodings {cw,v,t,b}, and matrix multiplication is computed over the
encodings using + and × in the natural way.

We will then choose a single encoding off the diagonal. We choose this entry so that it is non-zero
as an entry of the product Aj,1,xα(1)Aj,2,xα(2) · · ·Aj,z,xα(z) whenever the branching program outputs
0 (i.e. whenever this matrix product is not the identity matrix). We call this single encoding u.
We then compute:

e(u, c1,x1 , . . . , cn,xn). (3)

We apply the zero test to the result of (3). If the zero test detects a zero, we output 1. Otherwise,
we output 0.

Correctness and Security The correctness analysis here is not substantially different from
that in Section 5, aside from the fact that the noise level and parameters need to be set to ensure
correctness. These issues are discussed in Appendix D.

The (µ, ν)-multilinear subgroup elimination assumption over extended CLT encodings is as
follows. (The assumption refers to a procedure SubRSamp described in Appendix D.)

29

(µ, ν)-multilinear subgroup elimination assumption for graded encodings The challenger
runs (params, pzt) ← InstGen(λ, µ + ν + 1) to obtain a graded encoding system. For S equal to
{1}, . . . , {µ + ν}, and {µ + ν + 1} ∪ [µ] \ {1}, . . . , {µ + ν + 1} ∪ [µ] \ {µ}, it populates a set of
encodings GS by running the procedure SubRGen(esk, 1, S) enough times to obtain a “generating
set” (that could later be used in SubRSamp). The challenge term u∗ is an encoding that is the
output of SubRGen(esk, 1, S∗), where S∗ equals either {µ + ν + 1} ∪ [µ] or [µ]. The task is, given
the GS ’s and u∗, to distinguish which distribution u∗ comes from.

This is directly analogous to the assumption described in Section 5, with the minor difference
that, in the context of groups, the generating set is a single group element, whereas we cannot
assume that this works in general for graded encoding systems.

The security reductions to the (µ, ν)-multilinear subgroup elimination assumption for graded
encodings are directly analogous to the proofs given in Section 5, with the difference that the
SubRSamp and ReRand procedures are needed to ensure that certain distributions are statistically
identical.

References

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. IACR Cryp-
tology ePrint Archive, 2001:69, 2001.

[BGK+13] Boaz Barak, Sanjam Garg, Yael Tauman Kalai, Omer Paneth, and Amit Sahai. Pro-
tecting obfuscation against algebraic attacks. Cryptology ePrint Archive, Report
2013/631, 2013. http://eprint.iacr.org/.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts.
In TCC, pages 325–341, 2005.

[BR13] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. Cryptology ePrint Archive, Report 2013/563, 2013. http:
//eprint.iacr.org/.

[BSW06] Dan Boneh, Amit Sahai, and Brent Waters. Fully collusion resistant traitor tracing
with short ciphertexts and private keys. In EUROCRYPT, 2006.

[BW06] Dan Boneh and Brent Waters. A fully collusion resistant broadcast, trace, and revoke
system. In ACM Conference on Computer and Communications Security, pages 211–
220, 2006.

[BZ13] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing,
and more from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/642, 2013. http://eprint.iacr.org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In CRYPTO (1), pages 476–493, 2013.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In EUROCRYPT, pages 1–17, 2013.

30

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In FOCS, pages 40–49, 2013.

[GGHR13] Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round se-
cure mpc from indistinguishability obfuscation. Cryptology ePrint Archive, Report
2013/601, 2013. http://eprint.iacr.org/.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In STOC, pages 467–476, 2013.

[GLW14] Craig Gentry, Allison Bishop Lewko, and Brent Waters. Witness encryption from
instance independent assumptions. Cryptology ePrint Archive, Report 2014/273, 2014.
http://eprint.iacr.org/.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Jour. of Computer and System
Science, 28(2):270–299, 1984.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[PST13] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation
from semantically-secure multilinear encodings. Cryptology ePrint Archive, Report
2013/781, 2013. http://eprint.iacr.org/.

[SW13] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: Deniable
encryption, and more. Cryptology ePrint Archive, Report 2013/454, 2013. http:

//eprint.iacr.org/.

31

A Definition of Indistinguishability Obfuscation

Definition A.1 (Indistinguishability Obfuscator (iO)). A pair of uniform PPT machines (iO,Eval)
is called an indistinguishability obfuscator for a circuit class {Cλ} with inputs of size n(λ) if the
following conditions are satisfied:

• For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x ∈ {0, 1}n(λ), we have that

Pr
[
Eval

(
iO(λ,C), x

)
= C(x)

]
= 1

• There exists a negligible function α such that the following holds: For any (not necessarily
uniform) PPT adversaries Samp, D, where Samp(1λ) outputs a tuple (C0, C1, σ), where
C0, C1 ∈ Cλ, we have that:

If for all λ, it is true that Pr[∀x ∈ {0, 1}n(λ), C0(x) = C1(x) : (C0, C1, σ) ← Samp(1λ)] >
1− α(λ), then we have:

∣∣∣Pr
[
D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)

]
−Pr

[
D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)

]∣∣∣ ≤ α(λ)

B Proof of Lemma 4.6

For this game transition, the list of programs is fixed, and we are going from an underlying input-
activated matrix of M t−1

L |S|M t
R to a matrix of M t

L|St|M t
R. We will preform this transition gradually

over several steps. These steps are all very similar to the hybrid proof for positional witness
encryption in [GLW14].

We let M0 := M t−1
L |S|M t

R denote our starting input-activated matrix, and we recall Game0 is
the security game corresponding to this. We first consider t > 0. We then have that 0 ≤ t − 1 <
2n − 1, so if we consider the bits of t− 1 in order from most significant to least significant, there is
some bit index r such that the rth bit is 0 and the remaining bits are all equal to 1. The bits of t
will then have a 1 in the rth position and 0s following. We observe by our definition of M t

L that is
is only the bottom right submatrix of M t−1

L corresponding to columns and rows ≥ r that changes
as we move from M t−1

L to M t
L.

As a first step, we will transition to M1 := M t−1
L |S̃t|M t

R, where S̃t is a column that matches the
rth column of M t−1

L (note that this column activates on t). We let Game0.1 denote a variant of the
security game using M1 in place of M0.

Lemma B.1. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing Game0 from Game0.1.

Proof. We can invoke the inter-column security game repeatedly, once for each entry of the scratch
column that we to change from a 0 to a 1 in order to make it match the rth column of M t−1

L .
Throughout this process, that rth column “dominates” the scratch column, in that it contains
a 1 in every slot where the scratch column contains a 1, thus all of our invocations satisfy the
constraints of the inter-column security game.

32

We next define M2,z for each z from 0 to n − r as follows. The scratch column and rightmost
matrix M t

R will the same for each M2,z as in M1. In M2,0, the left matrix will differ from M t−1
L only

in columns and rows ≥ r. In these entries, all non-diagonal entries will match their specification in
M t
L, while all diagonal entries will continue to match their specifications in M t−1

L . For z = 1 through
n− r, the diagonal entries of M2,z for indices r + 1 to r + z will also match their specifications in
M t
L. This means that once we arrive at M2,n−r, all but the rth column of the left matrix will match

M t
L. We let Game0.2,z denote the variant of the security game corresponding to the input-activated

matrix M2,z.

Lemma B.2. If the input-activated obfuscation scheme has intra-column security, then any PPT
attacker has only a negligible advantage in distinguishing Game0.1 from Game0.2,0.

Proof. We observe that for each column r + 1 to n in M t−1
L , the diagonal row has 0s in both

slots. This allows us to apply the intra-column security property n− r times in order to adjust the
remaining rows of these columns to match their specifications in M t

L.

Lemma B.3. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing Game0.2,z from Game0.2,z−1, for each z
from 1 to n− r.

Proof. We apply the inter-column security game with k = r + z, j = r, i∗ = r + z, and β = 1. To
see that the required constraints are satisfied, observe that the rth column always has a 1 in row i∗

and slot β, because this is a below diagonal entry for column r. Also observe that column r and
column r + z match in all of their entries at or above row r, and below row r column r has all
1s.

We next define M3, which will differ from M2,n−r in that the rth column will now match its
specification in M t

L (note that this only requires a change to the diagonal entry in slot 1). We let
Game0.3 denote the variant of the security game with M3 used as the underlying input-activated
matrix.

Lemma B.4. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing Game0.2,n−r from Game0.3.

Proof. Here we apply the inter-column security game with k = r, j = n + 1, i∗ = r, β = 1. We
note that coming into this transition, column r and the scratch column (column j), have all the
same values. Additionally, they have a 1 in this slot β, row i∗. Thus, this is a valid invocation of
the inter-column game that changes this 1 to 0 in column r. As a result, column r will now match
its specification in M t

L.

What now remains is to make the scratch column match St. For each z from 0 to n, we let
M3,z denote a matrix that is like M3, except that the first z rows of the scratch column (column
n + 1) match St. Note that M3,0 = M3. We let Game0.3,z denote a variant of the security game
with M3,z used as the underlying input-activated matrix.

Lemma B.5. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing Game0.3,z from Game0.3,z−1 for each z
from 1 to n.

33

Proof. We first note that in any row z where tz = 1 (i.e. the zth bit of t is 1, and this can only
occur for z ≤ r), the scratch column already contained the correct slot values (a 0 in the 0 slot,
and a 1 in the 1 slot). So for these values of z, the two games are in fact identical, and there is
nothing to prove.

It thus suffices to consider values of z such that tz = 0. For such a z, note that in Game3,z−1 the
scratch column contains 1s in both slots of row z. We will apply the inter-column security game to
change the value in slot 1 to a 0. This can be done by setting k = n+ 1, j = z, i∗ = z, and β = 1.
To see that this is a valid invocation, note that the jth column of M t

L has a 1 for its value in slot
1 on its diagonal entry (row z). It has a 0 in its slot 0 at this position, but note that position is
exempted from the requirements for the inter-column security game. For rows below the diagonal,
row z has all 1 entries, so it certainly dominates the 1 entries in the scratch below this point. For
any row i above z, if ti = 1 then both column z and the scratch will have 0 in their 0 slots and 1
in their 1 slots for row i. If ti = 0, then column z will have both 1s at this row. This means that
all the requirements for the inter-column game are satisfied, allowing us to transition from M3,z−1

to M3,z.

We now observe that M3,n is equal to the matrix M t
L|St|M t

R that we were working towards, and
hence we have completed this transition for all t > 0. To complete the proof of Lemma 4.6, it only
remains to deal with the corner case of t = 0. For this, we must get from M−1

L |S|M0
R to M0

L|S0|M0
R.

We will accomplish this in three steps. We let M0 := M−1
L |S|M0

R denote our starting matrix, with
Game′0 denoting the corresponding security game. We define M1 := M−1

L |S̃|M0
R, where S̃ is a

column of all 1s. We let Game′0.1 denote a variant of the security game where the underlying
input-activated matrix is M1. We next define M2 := M0

L|S̃|M0
R. We let Game′0.2 denote a variant

of the security game where the underlying input-activated matrix is M2. We let M3 := M0
L|S0|M0

R

denote our target matrix, with Game′0.3 being the corresponding security game.

Lemma B.6. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing between Game′0 and Game′0.1.

Proof. We invoke the inter-column security game 2n times to change each entry of the scratch
column from a 0 to 1. Throughout this process, we can set j = 1 and k = n + 1 and iterate over
all of the values of i∗ from 1 to n and β = 0, 1. Each of these invocations is justified by the fact
that column 1 in M−1

L contains all 1 entries.

Lemma B.7. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing between Game′0.1 and Game′0.2.

Proof. Here we invoke the inter-column security game once with j = n + 1, k = 1, i∗ = 1 and
β = 0. This invocation is justified by the fact that the scratch column now contains all 1 entries,
and so can be used to flip the 0-slot entry of the first column to 0.

Lemma B.8. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing between Game′0.2 and Game′0.3.

Proof. This transition can be accomplished by n invocations of the inter-column security game.
For each z from 1 to n, we apply the inter-column security game with j = z, k = n + 1, i∗ = z,
and β = 1. We note that column j = z has 1’s in all entries except for a 0 in the 0-slot of row z.
So when we apply the inter-column game with i∗ = z, this slot is exempted from the requirement

34

that every 1 in column k must be matched by a 1 in column j, thus allowing us to flip the 1-slot
of the scratch column in this row from a 1 to 0. Once we have done this for every z from 1 to n,
the scratch column contains S0.

This concludes our proof of Lemma 4.6.

C Proof of Lemma 4.8

For this game transition, the list of programs is fixed, and we are going from an underlying input-
activated matrix of M t

L|St|M t
R to a matrix of M t

L|S|M
t+1
R . We will perform this transition gradually

over several steps. These steps will only change the values in the St and M t
R portions of the

concatenated matrix - the preceding M t
L portion will just be carried along unchanged throughout.

For notational convenience, we let M1 := M t
L|St|M t

R. We let r be index of the last 0 in t,
assuming for now that t 6= (1, 1, . . . , 1). In other words, r = n if tn = 0, r = n−1 if tn 6= 0, tn−1 = 0,
and so on. For every z from 0 to n− r, we define M1,z to be the same as M1, except the last z rows
of the scratch column have all slots = 1, instead of being St. For each such z, we define Game2.1,z

to be a variant of the security game where the attacker is given an input-activated obfuscation
scheme created from M1,z (where we interpret M1,0 as M1).

Lemma C.1. For each z from 1 to n−r, if the input-activated obfuscation scheme has inter-column
security, then any PPT attacker has only a negligible advantage in distinguishing Game2.1,z from
Game2.1,z−1.

Proof. We will invoke the inter-column security game with k = n + 1, i∗ = n − (z − 1), β =
1− tn−(z−1) = 0, and j = n+1+n− (z−1). To see that this is a valid use of inter-column security,
first note that Mi∗,j,0 = 1 for either M = M1,z or M = M1,z−1, since this is a diagonal position
inside M t

R and tn−(z−1) = 1. Next note that for i > n − (z − 1), Mi,j,0 = Mi,j,1 = 1, since these
entries are below the diagonal in M t

R. For all i < n − (z − 1), Mi,j,ti = 1 holds, by definition of
M t
R. Note that these are the only 1 entries in St that appear for these rows. Lastly, note that the

single slot Mn−(z−1),j,1 is exempted from the condition that column j have a 1 wherever column k
does in the definition of our inter-column security game.

This brings us to the matrix M2 := M1,n−r. Now for z from 0 to r − 1, we define M2,r−1−z to
be the same as M2, except the first (r − 1) − z rows of the scratch column match St, while the
next z rows match column r inside M t

R. For each z from 0 to r− 1, we define Game2.2,r−1−z to be
a variant of the security game where the attacker is given an input-activated obfuscation scheme
created from M2,r−1−z. Note that in this part of the proof we are progressing forward by starting
with M2,r−1 and “counting down” to M2,0.

Lemma C.2. For each z from 0 to r − 2, if the input-activated obfuscation scheme has inter-
column security, then any PPT attacker has only a negligible advantage in distinguishing between
Game2.2,r−z−1 and Game2.2,r−z−2.

Proof. First we consider what the r− 1− z row of St and the rth column of M t
R have in their slots.

If tr−1−z = 0, then St and the rth column of M t
R both have a 1 value in the 0 slot and a 0 value in

the 1 slot on this row. Thus, there is no difference here, and the games are in fact identical.

35

It thus suffices to consider the case where tr−1−z = 1. In this case, St has a 0 in the 0 slot and
a 1 in the 1 slot, while the rth column of M t

R has 1’s in both slots on this row. So we will invoke
the inter-column security game with k = n+ 1, i∗ = r − 1− z, β = 0, and j = n+ 1 + r − 1− z.

To see that this applies, we first observe that Mr−1−z,j,0 = 1, since this is a diagonal position
inside M t

R and tr−1−z = 1. We next need to check that for every 1 that currently appears in the kth

column, we have a 1 in the same position in the jth column. We first consider the rows i > r−1−z.
For these rows, the jth column is full of 1’s in all slots, as these are below diagonal rows of a column
inside M t

R. For rows i < r − 1− z, the kth column currently matches St, and so only has 1 in the
slots corresponding to the ti values. Note that above diagonal entries of a column inside M t

R will
also have 1’s in these slots, so we can indeed apply inter-column security to change the indicated
slot in column k from a 0 to a 1.

We let Game2.3 := Game2.2,0. This brings us to the matrix M3 := M2,0, where the scratch
column of M is now exactly what we would like the rth column inside M t

R to become in order to
switch from M t

R to M t+1
R . We let M4 denote the matrix that is formed by adjusting M3 so that

the n+ 1 + r column matches the rth column in the definition of M t+1
R . We define Game2.4 to be

a variant of the security game where the attacker is given an input-activated obfuscation scheme
created from M4.

Lemma C.3. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing between Game2.3 and Game2.4.

Proof. In fact, the n + 1 + r column inside M3 only differs from this column inside M4 in one
position: namely a 0 that appears in the 0 slot in row r that we would like to change to a 1.
Clearly, since the scratch column has a 1 in this position, we can use the inter-column security
game with j = n+ 1, k = n+ 1 + r, i∗ = r, and β = 0 to make this transition.

We now have the n+ 1 + r column of M4 matching what it should be in M t+1
R . We now must

change columns n+ 1 + r+ z as z ranges from 1 to n− r. For each such z, we let M4,z denote the
matrix which is similar to M4, except that the columns n+ 1 + r up to n+ 1 + r+ z match M t+1

R .
Note that M4,0 = M4. For z from 0 to n − r, we define Game2.4,z to be a variant of the security
game where the attacker is given an input-activated obfuscation scheme created from M4,z.

Lemma C.4. For each z from 1 to n−r, if the input-activated obfuscation scheme has intra-column
and inter-column security, then any PPT attacker has only a negligible advantage in distinguishing
Game2.4,z from Game2.4,z−1.

Proof. To transition from M4,z−1 to M4,z, we consider the r + z column of M t
R. We consider its

diagonal slots, i.e. the slots on row r + z. We wish to change the value in the 0 slot here from
1 to 0. To do this, we invoke inter-column security with i∗ = r + z, β = 0, k = n + 1 + r + z,
and j = n + 1 + r. To see that this applies, note that column j of M4 is equal to the rth column
of M t+1

R , and this has a 1 in the relevant slot because it is a below diagonal entry. Furthermore,
these columns j and k agree in all of their entries above row i∗. Now, once we have we this row
i∗ with both slots having 0 values, we can invoke intra-column security to change the rest of the
n+ 1 + r + z column to the value it should take in M4,z.

We let M5 := M4,n−r. We note that this is almost the same as the desired M6 := M t+1
L |S|M t+1

R ,
except that the scratch column has not been reset to all 0 values. For this last transition, we define

36

Game2.6 as a variant of the security game where the attacker is given an input-activated obfuscation
scheme created from M6, and we let Game2.5 := Game2.4,n−r.

Lemma C.5. If the input-activated obfuscation scheme has intra-column and inter-column security,
then any PPT attacker has only a negligible advantage in distinguishing Game2.5 from Game2.6.

Proof. In M5, the scratch column is still an exact copy of column n + 1 + r, which is where we
left it after using it to perform our switch from M t

R to M t+1
R . Thus, by an easy application of

inter-column security with k = n + 1 and j = n + 1 + r, we can create a row of the final column
that has 0’s in both slots. Then, finally invoking intra-column security, we can set it back to all 0
values in all rows.

In the above argument, we assumed that t < 2n − 1. Finally we must argue that we can
transition from M t

L|St|M t
R to M t

L|S|M
t+1
R when t = 2n − 1 (and t + 1 = 2n). This will be similar

to the argument applied above and will take multiple steps. For notational convenience, we now
set t := 2n − 1 and (re-)define M1 := M t

L|St|M t
R as our starting point.

For every z from 0 to n, we define M1,z to be the same as M1, except the last z rows of the
scratch column have all slots = 1, instead of being St. For each such z, we define Game′2.1,z to be
a variant of the security game where the underlying input-activated matrix is M1,z.

Lemma C.6. For each z from 1 to n, if the input-activated obfuscation scheme has inter-column
security, then any PPT attacker has only a negligible advantage in distinguishing Game′2.1,z from
Game′2.1,z−1.

Proof. This follows identically to the proof of Lemma C.1.

This brings us to the matrix M2 := M1,n, which has a scratch column with all slots = 1. We
define M3 to be the same as M2, except that its n + 2 column also has all slots = 1. We define
Game′2.3 to be the variant of the security game where the underlying input-activated matrix is M3.

Lemma C.7. If the input-activated obfuscation scheme has inter-column security, then any PPT
attacker has only a negligible advantage in distinguishing Game′2.1,n from Game′2.3.

Proof. Here we invoke the inter-column security game with j = n+ 1, k = n+ 2, β = 1, and i∗ = 1.
It is easy to confirm that this applies, as the column j (the scratch column of M2) contains all 1
values.

We have now transitioned to M3, which is almost equal to the desired M4 := M t
L|S|M

t+1
R ,

except we want to reset the scratch column of M3 to be all 0 values instead of being all 1 values.
We will do this with a final application of the inter-column and then intra-column security games.
We let Game′2.4 be a variant of the security game where the underlying input-activated matrix is
M4.

Lemma C.8. If the input-activated obfuscation scheme has inter-column and intra-column security,
then any PPT attacker has only a negligible advantage in distinguishing Game′2.3 from Game′2.4.

Proof. We invoke the inter-column security game twice with j = n+ 2, k = n+ 1, i∗ = 1, for β = 0
and β = 1. We note that column j contains all 1’s, so these invocations allow us to change the first
row of the scratch column to have 0’s in both slots. Then, by a final application of the intra-column
security game, we can change the remaining rows of the scratch column to 0’s as well.

This concludes our proof of Lemma 4.8.

37

D Review of Extended CLT Encodings

We begin abstractly, with the generic graded encoding procedures.

D.1 Graded Encoding Procedures

We recall the definition of a graded encoding system and describe some procedures for graded
encodings, mostly following [GGH13a, CLT13, GLW14]. The encodings are similar to [GLW14],
with minor differences.

Definition D.1 (Graded Encoding System). A κ-graded encoding system for a ring R is a system

of sets E = {E(m)
i ∈ {0, 1}∗ : i ∈ {0, 1, . . . , κ},m ∈ R} with the following properties:

1. For every i, the sets {Emi : m ∈ R} are disjoint.
2. There are binary operations + and − (on {0, 1}∗) such that for every m1,m2 ∈ R, every i,

and every u1 ∈ E(m1)
i and u2 ∈ E(m2)

i , it holds that u1 +u2 ∈ E(m1+m2)
i and u1−u2 ∈ E(m1−m2)

i

where m1 +m2 and m1 −m2 are addition and subtraction in R.
3. There is a binary operation × (on {0, 1}∗) such that for every m1,m2 ∈ R, every i1, i2 with

i1 + i2 ≤ κ, and every u1 ∈ E(m1)
i1

and u2 ∈ E(m2)
i2

, it holds that u1 × u2 ∈ E(m1·m2)
i1+i2

, where
m1 ·m2 is multiplication in R.

CLT (and GGH) encodings do not quite meet the definition of graded encoding systems above,
since the homomorphisms required in the definition eventually fail when the “noise” in the encodings
becomes too large, analogously to how the homomorphisms may eventually fail in lattice-based
homomorphic encryption. However, these noise issues are relatively straightforward (if tedious) to
deal with.

The set E(m)
i of encodings of m in Ei is analogous to the single element gmi ∈ Gi in the algebraic

group setting, which encodes m in group Gi. We sometimes call encodings in E0 “level-0 encodings”.
Now, we define some procedures for graded encoding schemes.

Instance Generation InstGen(λ, κ, σ) takes as input a security parameter λ, the multilinearity
parameter κ, a ring dimension parameter σ, and outputs (params, pzt), where params is a “descrip-
tion” of a κ-graded encoding system for a ring R = R1 × · · · ×Rσ, and pzt is a zero-test parameter
for Eκ. We assume R is chosen such that the density of zero divisors in each Ri is negligible. We let
esk denote a master secret key associated to the graded encoding system (which is not revealed).
A description of R (but not necessarily its decomposition) is included in params.

Ring Sampler Samp(params) is a randomized algorithm that outputs a level-0 encoding of a
statistically uniform element m ∈ R, though the encoding itself need not be uniform.

Re-Randomization ReRand(params, i, u) is a randomized algorithm that takes as input an en-

coding u ∈ E(m)
i for some m, and outputs a new encoding u′ ∈ E(m)

i . The distributional re-

quirement is that, for any encodings u1, u2 ∈ E(m)
i , the distributions of ReRand(params, i, u1) and

ReRand(params, i, u2) are statistically indistinguishable.

Remark 1. Again, due to the noisiness of GGH and CLT encodings, iterative applications of
ReRand will eventually cause the noise to exceed a threshold, after which encodings become garbage.
In that context, it will be understood that ReRand must be be correct only “up to noise”.

38

Addition, Subtraction, and Multiplication These are the +, −, and × procedures of the
graded encoding system.

Zero-test The procedure IsZero(params, pzt, u) takes an encoding u and outputs “true” if u ∈ E(0)
κ

and “false” otherwise.

Like [GLW14], we define a couple of procedures not provided in [GGH13a, CLT13]. These pro-
cedures are directed to graded encoding systems with an encoding space R that can be decomposed
nontrivially as a direct product R1 × · · · ×Rσ.

Subring Generation SubRGen(esk, i, S) is a private randomized algorithm that takes as input
the graded encoding secret key and a subset S ⊂ [σ]. It generates m ∈ R such that m is random

in Rj for j ∈ S but m is 0 in Rj for j ∈ [σ] \ S. It then outputs a random encoding in E(m)
i .

Subring Sampling SubRSamp(params, i, S,GS,i} takes as input the parameters, i ∈ [κ], S ⊂ [σ],
and a “generating set” of encodings GS,i ⊂ ES,i, where ES,i ⊂ Ei denotes the subset of encodings
that encode some m such that m is 0 in Rj for j ∈ [σ] \ S.

Remark 2. The form of the “generating set” will depend on the type of encodings. For “noisy”
encodings, where multiplying/exponentiating by big numbers would blow up the noise, generating
sets instead consist of many random encodings, and we sample by taking a random subset sum of
the encodings, and applying the leftover hash lemma to argue that the result is well-distributed.

D.2 Overview of CLT Encodings

A κ-linear symmetric CLT encoding system uses a “small” inner modulus N = p1 · · · ps that is
the product of s = s(λ, κ) “small” primes, and a “large” outer modulus Q = Q1 · · ·Qs that is the

product of s “large” primes. It uses a random z ← Z∗Q. An encoding c ∈ E(m)
1 is an element of ZQ

such that

c ≡ [m]pi + xi · pi
z

mod Qi for i ∈ [s], (4)

where [m]pi is m reduced modulo pi into a small range such as (−pi/2, pi/2), and the xi’s are
random small integers. An encoding in ET has a similar form, but with zκ in the denominator.

For random small integers h1, . . . , hs, the system includes a zero-testing parameter pzt for level
κ of the form:

pzt =

s∑
i=1

hi · (zκ · p−1
i mod Qi) ·

∏
j 6=i

Qj mod Q. (5)

If c is a level-κ encoding of 0 ∈ ZN – i.e., each [m]pi = 0 – we have:

c · pzt =
s∑
i=1

(xi · pi/zκ) · hi · (zκ · p−1
i mod Qi) ·

∏
j 6=i

Qj mod Q

=

s∑
i=1

xi · hi ·
∏
j 6=i

Qj mod Q

39

which is a number substantially smaller than Q assuming the xi’s and hi’s satisfy certain smallness
constraints – in particular, that each xi · hi � Qi. On the other hand, if c encodes something
other than 0, c · pzt likely will not be a small number, due to uncanceled p−1

i ’s in the expression
above. Thus, pzt enables zero-testing. (Actually, CLT uses a polynomial number of such zero-
testing parameters, and they prove that c encodes 0 if it passes the tests with respect to all of
them, and does not encode 0 otherwise.)

By CRT, we can add and multiply CLT encodings while preserving their form (per Equation
4) as long as the numerators in Equation 4 do not grow too large – i.e., they do not “wrap”
modulo Qi for any i. The Qi’s must be chosen large enough to ensure that such wrapping never
occurs for the functions we will compute over the encodings. These additions and multiplications
induce additions and multiplications on the underlying “messages” that are encoded, much like
homomorphic encryption.

Translating schemes from algebraic multilinear groups to CLT encodings requires some care.
In contrast to encodings over groups, CLT encodings are probabilistic and noisy, and come from a
distribution. We have to define these distributions, and show that they are correct in our scheme
and in the hybrids of our security proof.

Another issue is representing subrings of ZN with CLT encodings. There are two big issues
here: 1) how to give a useful noise-resilient description of subrings, and 2) whether it is secure in
the CLT setting to give descriptions of subrings. The natural way to represent a subring in the
no-noise setting is to give a generator of that subring, which typically can be a single element.
Then, to generate a random element in that subring, one simply multiplies the generator by a
random number. This strategy does not work in the noisy setting, since multiplying an encoding
by a big number also blows up the noise. Instead, our approach is to represent a subring by
a large “generating set” – a bunch of encodings that encode elements of the subring – and to
generate random elements in the subring by taking random subset sums over the generating set
and using the leftover hash lemma. Thus, our CLT-based assumptions end up looking somewhat
more complicated than the analogous assumptions in the group setting, since each subring generator
is expanded into a larger generating set. Regarding security, we have to ask: Is it safe, for example,
to give an encoding of some m that is in the index-pi subring of ZN? Unfortunately, as mentioned in
[GLW14], it is not! As we discuss in more detail in Section D.5, unless one is extremely careful with
the parameter settings, one can use such a CLT encoding to efficiently recover pi! The original CLT
proposal [CLT13] was careful to never give out encodings in which any divisor of N was “isolated”
in this way; for the encodings in the parameters, the encoded values are 0 modulo all of the pi’s
or none of them. To translate our composite-order constructions, we need to use subrings, and
therefore we cannot use CLT’s safe “all-or-nothing” approach. However, we still avoid letting any
pi be “isolated” by giving it many – i.e., poly(λ) – “buddies”: any encoding that an attacker sees
is 0 modulo pi and all of its prime buddies {pj}, or is (whp) nonzero for all of them. As we discuss
in Section D.5, this approach seems resilient to attacks.

Below, we flesh out the overview above. We provide more details on CLT encodings, and on
translating our scheme, assumptions and proofs from the general graded encoding setting to CLT.

D.3 Graded Encoding Procedures for CLT

Here, we describe how the graded encoding procedures from Section D.1 are instantiated in CLT.

40

Instance Generation InstGen(λ, κ, r) takes as input the security parameter λ, the multilinearity
parameter κ, and a ring dimension parameter σ. It generates, for each i ∈ [σ] and θ ∈ [Θ = Θ(λ, κ)],
a ρ = ρ(λ, κ)-bit small prime pi,θ and a η = η(λ, κ)-bit big prime Qi,θ, and sets N =

∏
i,θ pi,θ and

Q =
∏
i,θQi,θ. For i ∈ [σ], we let Ri denote the ring Z∏

θ pi,θ
. The parameter Θ specifies how many

primes are associated to each Ri, and it needs to be set large (but polynomial) for security reasons.
We let R = R1 × · · · × Rσ = ZN . To eventually obtain correctness and security against known
attacks, one can take ρ = O(λ), η = O(λ · (λ+ κ)), and Θ = (ρ · η)1+ε, ε > 0. It generates a value
z ∈ ZQ.

For parameter t = t(λ, κ), InstGen generates t = t(λ, κ) random numbers mj ∈ ZN , and
generates level-0 encodings of them:

cj ≡ [mj]pi,θ + xjiθ · pi,θ mod Qi,θ.

where the xjiθ’s are random numbers in (−2ρ, 2ρ). It also generates t+ s level-1 encodings of 0:

c′j ≡
x′jiθ · pi,θ

z
mod Qi,θ.

The main requirement on t is that it is large enough to allow application of the leftover hash lemma
when we take a subset sum of the cj ’s or c′j ’s.

It generates a vector pzt of zero-test parameters, where each pzt in the vector equals
∑

i,θ hi,θ ·
(zκ · p−1

i,θ mod Qi,θ) ·
∏

(i′,θ′)6=(i,θ)Qi′,θ′ mod Q, where the random hi,θ’s are chosen to have (for

example) 3η/4 bits (so that hi,θ is much smaller than Qi,θ, but h2
i,θ is much bigger).

It outputs (params,pzt) where params includes the basic parameters λ, κ, ρ, η, s, t, Q,N . Certain
values, such as z and the prime divisors of N and Q, remain secret as part of esk.

Ring Sampler Samp(params) generates a random binary vector b1 · · · bt ∈ {0, 1}t and outputs
u ←

∑t
j=1 bj · cj mod Q. The statistical uniformity of the encoded value follows by application of

the leftover hash lemma to R = ZN .

Re-Randomization ReRand(params, u) works by adding a random encoding in E(0)
1 to u ∈ E(m)

1

to generate a new encoding u′ ∈ E(m)
1 . The random encoding of 0 is generated according to a

large-enough distribution to “drown” the distribution of u. In particular, one sets u′ ← u +∑t+s
j=1 bj ·c′j mod Q, where b1, . . . , bt are sampled uniformly from {0, 1} and bt+1, . . . , bt+s are sampled

uniformly from [−2δ, 2δ] for suitable δ = δ(λ, κ), which can be Õ(λ).

Remark 3. Though we omit details, intuitively the subset sum using the first t encodings of 0
randomizes things “locally” – in particular, it is uniform over the certain cosets of a lattice defined
by the last s encodings of 0. The random linear combination over the last s encodings of 0 then
randomizes things “globally” by adding a random lattice point drawn uniformly from a huge paral-
lelepiped. CLT [CLT13] proves a “leftover hash lemma over lattices” to establish that this process
statically induces the desired canonical distribution.

Remark 4. In ReRand, if u itself was the (perhaps indirect) output of such a randomization
procedure, then we would need to make the bi’s even larger to drown the distribution of u.

Addition, Subtraction, and Multiplication These operations are performed in the natural
way via addition, subtraction, or multiplication modulo Q.

41

Zero-test The procedure IsZero(params,pzt, u) takes an encoding u and applies the zero-test

parameter to distinguish whether u ∈ E(0)
T . This procedures works simply by multiplying by each

individual pzt and seeing whether the result is small, as described above.

The following procedures are not included in CLT, except for the case of σ = 1.

Subring Generation SubRGen(esk, S) is a private randomized algorithm that takes as input a
subset S ⊂ [σ] and the graded encoding secret key, which includes z and the factorizations of N
and Q. It generates m ∈ R = ZN such that m is random in Rj for j ∈ S but m is 0 in Rj for
j ∈ [σ] \ S. It sets u0 ∈ ZQ to be [m]pi,θ/z mod Qi,θ. It then sets u1 ← ReRand(params, u0).

Observe that when σ = 1, SubRGen(esk, {1}) outputs an encoding of a random element, while
SubRGen(esk, ∅) outputs an encoding of 0. Both of these functionalities can be performed just using
params (no secret information) in the original version of CLT encodings.

Subring Sampling SubRSamp(params, S,GS} takes as input the parameters, a subset S ⊂ [σ],
and a purported set {vi} of encodings in ES , where ES is the set of encodings that encode that some
m such that m is 0 in Rj for j ∈ [σ]\S. It runs {wi ← Samp(params)}, and outputs u0 ←

∑
wi ?vi.

It then sets u1 ← ReRand(params, u0), which should be a statistically random encoding from ES .

D.4 Comments on Noise Distributions

The bound on the size of the numerator in CLT encodings grows exponentially with κ, but this
can be accommodated by setting the parameters large enough (but still polynomial).

When adapting the security proofs for our constructions to CLT, we need to ensure that the
distributions (in particular, the noise distributions) generated in the security proof are identical to
those generated by the encryption algorithm. However, this is easy to ensure. It is clear that the
distributions of the encoded terms (in R) are statistically indistinguishable. To ensure that the
encodings themselves are statistically indistinguishable, we can modify the encryption procedure
to apply the same ReRand algorithm that is used in the proof, with parameters sufficient to “drown
out” the distribution of the initial encoding output by encryption.

D.5 Discussion of the Assumptions

As mentioned above, the most “natural” way to translate a scheme over groups of composite
order N = p1 · · · pσ to CLT encodings would be to use ZN directly as the CLT encoding space.
Unfortunately, this approach fails for security reasons (or at least the security seems much more
tenuous than for conventional CLT encodings).

Suppose we use the approach above, and we obtain an encoding c in Eκ of some m ∈ ZN such
that [m]pj 6= 0 but [m]pi = 0 for all i 6= j. (We stress that the original CLT proposal [CLT13] does
not give out encodings of this form, and thus is not subject to this attack.) That is,

c =
[m]pj + xj · pj

zκ
mod Qj , c =

xi · pi
zκ

mod Qi for i 6= j

for fairly small xj and {xi}. Set a← c · pzt mod Q. We have that

a = ([m]pj · hj · p−1
j mod Qj) ·

∏
k 6=j

Qk +
∑
i∈[s]

xi · hi ·
∏
k 6=i

Qk mod Q.

42

We do not have pj a priori, but we do know that

b := a · pj = [m]pj · hj ·
∏
k 6=j

Qk +
∑
i∈[s]

pj · xi · hi ·
∏
k 6=i

Qk mod Q.

Furthermore, if the parameters are such that the values [m]pj · hj and {pj · xi · hi} are all small
in relation to the Qi’s, then the value b is small in relation to Q. (Recall that the values {xi · hi}
should be small to allow correct zero testing.) If this value is small enough, we can recover pj via
lattice reduction.

Specifically, let B be an approximation of the value b/pj , based on the distributions of variables.
(Note that B is dominated by the summation

∑
i∈[s] xi ·hi ·

∏
k 6=iQk mod Q, and thus is comparable

in size to the small mod-Q value that one would obtain by zero-testing an encoding that actually
encodes 0.) Consider the two-dimensional lattice L generated by the vectors (B, a) and (0, Q). This
lattice contains the vector ~v := (B·pj , b), of length approximatelyB·pj ·

√
2. (Let us assume its length

is upper-bounded by 2Bpj .) On the other hand, the determinant of the lattice is B · Q, implying
that all vectors in L that are not parallel to ~v must have length at least B ·Q/(2Bpj) = Q/2pj . If
B < Q/4p2

j , then 2Bpj < Q/2pj , and ~v is the unique shortest vector in L, which can be recovered
easily via lattice reduction. Recovery of ~v means recovery of pj , a devastating attack on the
encodings. While in principle the parameters could conceivably be set carefully to ensure that B
is comfortably larger than Q/4p2

j (to avoid this attack) and comfortably smaller than Q (to allow
zero-testing), we note that nothing approaching this amount of care was needed when setting the
parameters of the original CLT scheme.

The attack can be extended, to some extent, to encodings of m ∈ ZN such that m is nonzero
modulo more than one prime divisor of N . For example, suppose that we have an encoding of
m where m has nonzero residues modulo just pj and pk. Then, one can define a as above, b as
[a · pj · pk]Q, B as an approximation of b/pjpk, and reduce the lattice formed by (B, a) and (0, Q).
However, the target vector (B · pj · pk, b) in this lattice will not be as short (it will be about pk
times longer), and thus B needs to be correspondingly smaller for lattice reduction to be effective.
In general, it seems, the greater the nonzero support of m, the harder it is to use an encoding of
m to recover factors of N .

Indeed, this is consistent with the security concept for CLT encodings. Consider a CLT encoding
scheme like [CLT13], but where N and Q are each divisible by only two primes. Such an encoding
scheme would be subject to essentially the same attack as above. CLT eliminates such attacks by
using many primes, only revealing encodings that are zero with respect to all of the primes or none
of them, and gluing together zero-testers for individual primes into an aggregate zero tester. To
extend CLT encodings so that we can reveal encodings of elements that are in subrings, we use a
similar concept: we associate many primes to each subring Ri, and apply CLT’s “all-or-nothing”
approach within each subring: encodings are zero with respect to all of the primes associated to Ri
or none of them.

43

