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1 Introduction

This is the second part of the authors’ article An Applicable Public-Key-Cryptosystem
Based On NP-Complete Problems (cf. [2]), where it was shown that the security of the
proposed PKC mainly relys on the expected hardness of finding a special kind of solution
(x,y,A) € FJ" x FY x IFp, of the equation

Ax + Ay = b, (1)

with, for a prime p > 2, I, being a finite field with p elements, A € ]ngm a matrix and
b e }F{; a vector.

More specifically, it was shown in [2] that a necessary condition for the existence
of an efficient decoding algortihm for the proposed PKC is that a solution (x,y,A) of
equation (1) has level t, for a “small” integer t, and it has been proven that for a
large part of the class of these “low-level solutions”, their computation is in general a
NP-complete task.

The aim of this article is to prove the following two theorems:

Theorem 1 Lett > 0 be an integer constant. Given a primep > 2, positive integers m, m
and a solution (X,y,\) € FoY % ]Fg X IFy having level t. Then there exists an integer ¢, only
depending on t, and a representation of the vectors x and 'y of the form x = Z%ﬂ oG Xi
and'y = Z%:] Biyi, with 1 = [log®(nm)| and oy, i € Fp, x; € {0, 1}™, y; € {0,1}", for
i=1,...,L

Theorem 2 Let ¢ > 0 be an integer constant. Given a prime p > 2, positive integers
n,m, a matrizc A € ngm and a vector b € Fy. Deciding, whether there exists an element
A € Fp and vectors x = 2}21 axi and y = Z%ﬂ Biyi, with 1 = [log®(nm)], i, i € Fp,
x; €{0, 1™, yi € {0, 1}, fori=1,...,1, such that AX + Ay = b, is NP-complete.



2 The Complexity of Low-Level Solutions

We start by fixing some notation. Let Z be the set of integers. For a prime p > 2, the finite
field with p elements will be denoted by [F,, and its subgroup of non-zero elements by Fg.
We will use a representation of elements of Fy, of the form Fp ={—(p—1)/2,...,(p—1)/2}
and we will frequently view integers as elements of F, and vice versa, if the context allows
this. All vectors x € Fy will be viewed as column vectors, the transpose of a vector x
will be denoted by x'. For two vectors x = (xi)iT and y = (yi)iT we denote their (inner)
product by x'y = Y . xiyi. For two integers s and t, with s < t, we will write (s,t)™ to
denote the set of vectors x" = (x1,...,%n) € Z™ with s < x; < t, fori=1,...,n, so, by
abuse of notation, Fj = (—(p —1)/2,(p —1)/2)™. Finally, the number of elements of a
finite set S will be denoted by |S|.

Let us first recall two definitions from [2]: for a vector x € FJ' of finite dimension
m > 0 we define a counting function k via

k(x) = HXTZ Iz e {o,1}m} , 2)

that is the number of different values of sums of all possible subsets of components of x.
It can be shown (cf. [2]) that (for finite dimensions) the computation of the exact value of
Kk is in general NP-hard and coNP-hard, but nevertheless, at least for vectors of a special
kind, its value can be reasonably bounded from above.

Next, we define the level of a solution. For that, let t,m and m denote positive
integers. We say that a solution (x,y,A) € Ff' x F x [}, has level t, if

(nm)*! < max (k(x), k(Ay), k(x)x(Ay)) < (nm)", (3)

Proof of Theorem 1. First we note that it is enough to prove the existence of the
claimed representation for a single vector x € Fy. So let t be a positive integer and
let us assume that n*! < k(x) < nt. Then, by definition of k, there exists an integer
k > 2"/n' and a submatrix M’ € IF]];X“ of the matrix M € F%HX“ of all bit-strings of
length n, and an element y € F,, such that M’x = y1, where 1 denotes the all-one vector.
If v # 0, we build a new matrix M” € IF};X“ by replacing each row of M’ with the vector
obtained by substracting this row from the first row of M/, which yields M”x = 0. Now,
for n large enough, the rank of M” is greater than log(2"/n**!") = n — (t 4+ 1)log(n)
which means that the dimension of its kernel is at most (t + 1)log(n) and therefore
the vector x has a representation of the form x = th(:r 1)log(n)) aixi, with o € [, and
x; € (—m5n*)" for i = 1,...,[(t + 1)log(n)| and some constant s, so, by picking a
basis Bo = 1,81 = 2,..., B|slogm)| = 2lslogM)] for the set {1,...,n*}, Theorem 1 follows. [J



Proof of Theorem 2. The proof of this theorem needs a little bit of prepara-
tion. Let 1 be a positive integer and denote by M a matrix of dimension (L+ 1) x 1 with
entries from the set {0,1}. Further, let d = (d;,...,di1)" € IF}DH be a vector with d; =1
and, fork=1,...,1—1,

K
dpr =1 d;, (4)
=

and finally di1 = 2}21 d;.  We now claim that, for p large enough, a vector
X = (X1,...,x))" € IF%, is a solution of the equation Mx = d if and only if there exists
a permutation 7t on the set {1,...,1} such that x; = dg), for i = 1,...,1. To see this,
denote by M’ the 1 x 1 submatrix of M where the last row has been deleted. Equivalently,
we denote by d’ = (dy,...,d;)". Now, a solution x of the equation M'x = d’ exists if and
only if the rank of M’ = the rank of (M’|d’) and therefore it follows that det(M’) # 0, by
definition of the d;. Please note further that for 1 > 1, the determinant of M’ (viewed over
Z) is clearly less than 1""! and that (again viewed over Z) for every sum 2}21 ajd; = 0,
with |aj| < 1“1, we have a; = 0 for all j. So, we can conclude that the last row of M is
the all-one vector and that M’ has to be a permutation matrix.

For the next step, let F be a Boolean function. It is well known (cf. [4]) that
there exists a function F' that is satisfiable if and only if F is satisfiable, and which can
be written in the following form:

F=xoA(a; & (broc)) A Alag & (broct)), (5)

for a positive integer t, where xg is a variable, ai, by, ¢; are literals and o € {/\,VV}. Clearly,
the two types of terms can be written as

(ae= (bVe)) = (aV-b)A(—aVDbBVe)A(aV —c) (6)
(ae= (bAC)) = (maVb)A(aV—DbV—c)A(—aVc) (7)

and the reason why we recall this rather elementary fact is to point out that if F/ is
satisfiable, then at most two of the literals in each clause can have a TRUE-assignment.
We further assume that each variable of F/ appears at most once in each clause.

Next, we define a matrix A’ of dimension (3t + 1) x t/, where t' is the number of
different variables of F/, such that if the variable “x;” appears in clause i, we put a “1”
at the position (i,j), except when the clause is of the form (x; V —xs V —x{), where we
put a “2” at position (i,j) of A’. Else, if “=x;” is in clause i, we put a “—17 at posi-
tion (1i,j) and if the variable “x;” is not part of clause i, we put a “0” at position (i,j) of A’.



The final matrix A is now of the form

Al 0 ,
A — 0 IH—] c ]Fl()3t+1+1+1+l+1)><(t +l+1]) (8)
0] 0

where I1;1 denotes the identity matrix of dimension 1+ 1 for a positive integer 1. Now,
let d = (dy,...,dw1)" € IF]IDH be the vector from above. We will define our vector
b € F%tHH“H“ as follows. The first 3t + 1 components depend on the shape of the
clauses of F/ in a sense that, if the i-th clause has one of the forms (%), (%} V xs) or
(% V x5 V x¢), for variables xj,xs,x; of F/, then we define the i-th component of b to
be “2di41”. If the i-th clause of F/ has one of the forms (x; V —xs), (=% V x5 V xy)
or (x; V —xs V —x¢), then the i-th component of b is “dy1”. If the i-th clause of
F' has the form (—x; V —x), then the i-th component of b is “0”, and finally, if
the i-th clause of F/ has the form (—x; V —x; V —x;), then the i-th component of b is
defined to be “—d;1”. The last 2(1+1) components of b will be two copies of the vector d.

It is now an easy exercise to verify that the function F' (resp. F) is satisfiable, if
and only if a solution (x,y,A) of the equation Ax + Ay = b and of the required form
exists. If F is satisfiable and the i-th variable has an assignment TRUE (resp. FALSE),
then putting the i-th component of x to be “d1” (resp. “0”) leads to a valid solution. On
the other hand, if (x,y,A) is a solution of the required form, then if the i-th component
of x is in the set {1,...,di;1}, defining the i-th variable of F' to be TRUE (else FALSE)
shows that F is satisfiable. O
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