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Abstract. Simon and Speck are families of lightweight block ciphers
designed by the U.S. National Security Agency and published in 2013.
Each of the families contains 10 variants, supporting a wide range of block
and key sizes. Since the publication of Simon and Speck, several research
papers analyzed their security using various cryptanalytic techniques.
The best previously published attacks on all the 20 round-reduced ciphers
are differential attacks, and are described in two papers (presented at
FSE 2014) by Abed et al. and Biryukov et al.

In this paper, we focus on the software-optimized block cipher family
Speck, and describe significantly improved attacks on all of its 10 vari-
ants. In particular, we increase the number of rounds which can be at-
tacked by 1, 2, or 3, for 9 out of 10 round-reduced members of the family,
while significantly improving the complexity of the previous best attack
on the remaining round-reduced member. Our attacks use an untradi-
tional key recovery technique for differential attacks, which resembles
techniques typically used in attacks based on self-similarity.

Despite our significantly improved attacks, they do not seem to threaten
the security of any member of Speck.

Keywords: Lightweight block cipher, Speck, cryptanalysis, differential attack,
key recovery.

1 Introduction

In 2013 the U.S. National Security Agency published the Simon and Speck fami-
lies of lightweight block ciphers [5]. Each block cipher family contains 10 variants
and supports block sizes ranging from 32 to 128 and key sizes ranging from 64 to
256 bits. Both families of block ciphers have a simple and compact Feistel-like1

design, but are optimized for different applications, where Simon is optimized
for hardware and Speck is optimized for software implementations. Thus, Simon
uses the basic hardware-friendly arithmetic operations of XOR, bitwise AND and
bit rotation, whereas Speck is a pure ARX cipher (i.e., it uses modular addition,
bit rotation and XOR operations).

1 Simon is a Feistel structure, while Speck can be represented as a composition of two
Feistel maps [5].



Since their publication, Simon and Speck received significant media attention,
and were also subjects of extensive research in the cryptographic community, as
several papers analyzed their security and performance [1–3, 7, 20]. In general,
the best published attacks on all 20 round-reduced ciphers are differential at-
tacks, described in the two papers [1, 7]. However, despite the extensive analysis,
all 20 variants seem to have a sufficiently large security margin, and the current
attacks do not threaten their security.

In this paper, we present improved attacks on all 10 members of the Speck
family of block ciphers. In particular, we increase the number of rounds which can
be attacked by 1, 2, or 3, for 9 out of 10 members of the family, while significantly
improving the complexity of the previous attack on the remaining member. More
specifically, we increase the number of rounds which can be attacked by 1 for
4 members, by 2 for 2 members, and by 3 for 3 members. In 3 of these cases,
not only do we attack more rounds, but we also improve the complexity of the
best previous attacks, which were applied to a weaker cipher. Moreover, in all
of these cases, our attacks use less data than the previous attacks, and all of
them require only a few megabytes of memory (typically improving the previous
attack with respect to this parameter as well).

Surprisingly, our attacks do not exploit any newly found differential charac-
teristic of Speck. In fact, our attacks completely reuse the characteristics pre-
sented in [1, 7], but are based on a significantly improved key recovery frame-
work. As the basic idea behind this framework in very simple, at first, it seems
quite strange that it was missed by the previous analysis. However, a closer look
reveals that our key recovery technique is quite different from traditional tech-
niques used in differential cryptanalysis. These key recovery techniques (called
counting techniques) were published with the introduction of differential crypt-
analysis [6]. Counting techniques remain, by far, the most common techniques
to recover the key in differential attacks, and were thus naturally applied in the
previous differential attacks on Speck [1, 7].

One of the main features of counting techniques in differential attacks is
that the key material is typically recovered in chunks (i.e., in a divide-and-
conquer manner) using statistical analysis. In order to recover a chunk of key
material (e.g., some bits of the first and last round-keys), we analyze encrypted
input pairs, each pair suggesting a value (or a few values) for this chunk. Right
pairs (conforming to the characteristic) always suggest the correct value for the
chunk, while wrong pairs suggest an arbitrary value. In order to be able to
distinguish the correct suggestions from the incorrect ones, we require strong
filtering which eliminates a large fraction of the wrong pairs (and the arbitrary
key suggestions). Such a strong filtering requirement places a restriction on the
number of rounds of the iterated block cipher which we can attack with a given
differential characteristic. Namely, in order to attack an (r + a)-round cipher
with an r-round characteristic, a needs to be sufficiently small such that the
characteristic can be extended to deduce some linear constraints on the output
of the cipher (e.g., some bits of the output difference are zero), allowing us to
filter many of the wrong pairs.
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In contrast to standard key recovery techniques (in particular, the ones used
in previous attacks on Speck), in this paper we extend a differential character-
istic by a (relatively) large number of rounds, and thus simple linear filtering
can eliminate only a small fraction of the data. Consequently, we remain with
too many suggestions for the key to mount an efficient attack using counting.
On the other hand, this situation resembles some self-similarity attacks (such
as reflection-based attacks [10, 12, 13]), in which the attacker does not have any
characteristic that allows simple filtering. In such self-similarity attacks, the at-
tacker encrypts multiple plaintexts and awaits a special event to occur (such as
a reflection). The internal properties of the cipher assure that once this event
occurs, the problem of attacking the full cipher is reduced to a simpler problem
of attacking a sub-cipher with fewer rounds. The sub-cipher attack calculates
suggestions for the full secret key, which the attacker tests using trial encryp-
tions on the full cipher.2 Since the attacker cannot detect the occurrence of the
special event, the sub-cipher attack is executed for each plaintext (or plaintext
structure). Thus, the complexity of the full attack is determined by the proba-
bility of the awaited event (which determines how many sub-cipher attacks we
need to execute), and the average complexity of the sub-cipher attack.

In the scenario presented above for self-similarity attacks, the key is recovered
in one chunk by a sub-cipher attack. However, there is nothing that prevents us
from applying similar techniques in differential attacks. In fact, the last a rounds
of the cipher in differential attacks can be viewed as a sub-cipher, and assuming
the event that an encrypted pair conforms to the r-round characteristic (i.e.,
it is a right pair), we can mount a sub-cipher attack to obtain key suggestions
for each encrypted pair, and enumerate each one of them, testing it using trial
encryptions. As a right pair will always suggest the correct key value, the attack
succeeds as soon as we finish executing the sub-cipher attack on this pair.

We call this key recovery framework for differential attacks an enumeration
framework, as it enumerates suggestions for the full key proposed by a sub-cipher
attack. This should be contrasted with counting techniques which extract partial
key material from a few rounds of the cipher using statistical analysis (e.g., the
1, 2 and 3-round attacks of [6]).

In most cases, counting techniques for differential attacks seem to give the
best results. This is perhaps due to the reason that when we extend the char-
acteristic beyond the reach of these techniques, the sub-cipher attack becomes
too expensive (as it needs to analyze dependent round-keys according to the key
schedule), making the full differential attack inefficient. However, as we show in
this paper, in the case of Speck, the sub-cipher attack can be performed very
efficiently and results in significantly improved differential attacks.

There are several methods for key recovery in differential attacks which are
related to our enumeration framework. One of these methods was introduced by
Daemen in [9], and used in several differential attacks (such as [18]) on extensions
of the Even-Mansour scheme [11]. Superficially, the attacks of [9, 18] seem to use

2 Examples of sub-cipher attacks include the meet-in-the-middle and guess-and-
determine attacks on 4-round GOST, described in [10, 12].
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the enumeration framework, as they recover the secret key in one chunk, using
a large table prepared during preprocessing. However, this is not the case, since
in [9, 18], the attacker awaits two events to occur simultaneously: one event is
that an encrypted plaintext pair is a right pair (as in our attacks). The second
event is that the values of the right pair after the r-round characteristic were
analyzed during a preprocessing phase, which computes a large table and allows
simple key recovery in the online phase.

While the attacks of [9, 18] do not use our enumeration framework, it was
(implicitly) used very recently to attack the block cipher Zorro [4], which is an
SP-network with partial non-linear layers (where a non-linear function is applied
only to a part of the state in each round). Although Feistel structures and related
designs (such as Speck and generalized Feistel structures) are also block ciphers
with partial non-linear layers, there seems to be no inherent restriction in the
enumeration framework that prevents its application to standard SP networks.
Consequently, the enumeration framework can be viewed as a generalization of
some of the methods of [4] to Feistel structures and to more general arbitrary
block ciphers.

As Speck is an ARX cipher, our sub-cipher attack on Speck uses techniques
that were developed in the analysis of ARX cryptosystems and similar designs.
In particular, our tools are related to several search algorithms for differential
characteristics on these designs, such as [8, 14, 15, 17, 22]. Furthermore, our tech-
niques are related to various guess-and-determine attacks, such as the one of [10].

The rest of this paper in organized as follows. We introduce our notation in
Section 2, and provide a brief description of Speck in Section 3. The previous
and our new results on the 10 Speck variants are summarized in Section 4.
In Section 5, we describe the auxiliary algorithms used in our attacks (and
in particular, overview the specific sub-cipher attack on Speck), while our full
differential attacks in the enumeration framework are described in Section 6.
Finally, we give the details of the sub-cipher attack in Section 7, and conclude
the paper in Section 8.

2 Notations and Conventions

In this section, we describe the notations and conventions used in the rest of the
paper.

Given a positive integer r, we denote by x≫ i the n-bit word obtained by
rotating x by i bits to the right, and by x≪ i the word obtained by rotating x
by i bits to the left. Similarly, x� i and x� i denote a bitwise shift of x by i
bits to the right and left, respectively. We denote by ¬x the bitwise negation of
x.

Given two n-bit words x and y, we denote by x⊕y their n-bit XOR, by x�y
their n-bit addition over GF (2n), and by x�y their difference over GF (2n). We
further denote by x ∧ y the bitwise AND of x and y.
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Given an n-bit word x, we denote its i’th bit for i ∈ {0, 1, . . . n − 1} by
x[i]. We note that operations on the bit indexes are performed modulo n, e.g.
x[n+5] ≡ x[5].

Conventions Throughout this paper, we use the standard conventions and
calculate the time complexity of our attacks in terms of evaluations of the full
cipher. The memory complexity of the attacks is calculated in terms of bytes.

3 Description of Speck

In this section, we give a short description of Speck. More details can be found
in [5].

Speck is a family of block ciphers containing 10 variants. The variants are
characterized by a block size of 2n bits (where n is the internal word size), and
a key size of mn bits. The 10 variants are identified with a 2n/mn label, and
defined with rotation constants α and β and a number of rounds T , as shown in
Table 1.

The key schedule of Speck expands the initialm-word master key (`m−2, ..., `0, k0)
into T round-key words k0, k1, ..., kT−1 according to the following algorithm:

for i = 0 . . . T − 2 do
`i+m−1 ← (ki � (`i≫ α))⊕ i
ki+1 ← (ki≪ β)⊕ `i+m−1

end for

The encryption function of Speck encrypts a plaintext of two n-bit words
P = (x0, y0), into a ciphertext C = (xT , yT ), using a sequence of T rounds ac-
cording to the following algorithm (see Figure 1 for the round function):

for i = 0 . . . T − 1 do
xi+1 ← ((xi≫ α)� yi)⊕ ki
yi+1 ← (yi≪ β)⊕ xi+1

end for

4 Summary of the Previous and Our New Attacks on
Speck

In this section, we summarize the previous and our new attacks on Speck, re-
ferring to Table 2. As the Speck family contains 10 variants, and each variant
was analyzed by several papers, exhaustively listing all the dozens of previous
attacks is too tedious. Instead, for each Speck variant, we first choose the attacks
which break the most number of rounds, and among these, we only refer to the
attack with the best time complexity. As shown in Table 2, all the best previous
attacks were described in the two papers [1, 7], and we additionally note that all
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Variant 2n/mn Word Size n Key Words M Rounds T α β

32/64 16 4 22 7 2

48/72 24 3 22 8 3

48/96 24 4 23 8 3

64/96 32 3 26 8 3

64/128 32 4 27 8 3

96/96 48 2 28 8 3

96/144 48 3 29 8 3

128/128 64 2 32 8 3

128/192 64 3 33 8 3

128/256 64 4 34 8 3

Table 1. The Speck Family of Block Ciphers

xi yi

≫ α

⊞
≪ β

⊕
⊕ki

xi+1 yi+1

1

Fig. 1. The Round-Function of Speck

of them are based on differential cryptanalysis and related techniques (such as
rectangle attacks).

For each variant of Speck, Table 2 summarizes our attack which breaks the
most number of rounds. We note that for each variant, we can also use our tech-
niques to attack fewer rounds (using a shorter differential characteristic), but
once again, we do not explicitly refer to these numerous attacks in this paper
(with the exception of the 32/64 variant). As our attacks reuse the differen-
tial characteristics of [1, 7], we refer to these characteristics in the table, while
describing them in more detail in Appendix D.

We now highlight some interesting features of the attacks summarized in
Table 2. We first look at the 32/64 variant, on which the best previous attack
could break 11 out of its 22 rounds, with data complexity of about a quarter
of the entire code-book. Compared to this attack, our attack on 11 rounds uses
less than a square root of the code-book (214 plaintexts), requires less memory
and has a slightly better time complexity. Furthermore, we can attack up to 13
rounds in time complexity which is significantly faster than exhaustive search,
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and up to 14 rounds with a marginal attack. For additional 2 variants (48/96
and 64/128), we can attack 3 more rounds than the best previous attack. For
the 2 variants 48/72 and 48/96, we increase the number of rounds that can be
attacked by 2. For 4 variants (96/96, 96/144, 128/128 and 128/256), we can
attack 1 more round than the best previous attack. Note that for the 3 variants
96/96, 96/144 and 128/128, our attacks are also more efficient than the previous
attacks in all complexity parameters (and particularly use much less memory).
Finally, for the 128/192 variant, we attack the same number of rounds as the best
previous attack, but improve it in all complexity parameters, and in particular
use much less memory.

5 Auxiliary Algorithms Used by Our Attacks

In this section, we describe the two auxiliary algorithms that are used by our
attacks in Speck.

5.1 Key-Schedule Inversion

Given a sequence of m key words kj−m, . . . , kj−1 for any j ∈ {m,m+ 1, . . . , T},
we can efficiently invert the key schedule and calculate the master key: first, we
determine kj−m−1 using the following key schedule equalities

`j+m−3 = kj−1 ⊕ (kj−2≪ β)

`j−2 = ((`j+m−3 ⊕ (j − 2))� kj−2)≪ α

kj−m−1 = (kj−m ⊕ `j−2)≫ β.

Next, given kj−m−1, . . . , kj−2, we iteratively continue the inversion of the key
schedule and derive the master key.

5.2 Overview of the 2-Round Attack on Speck

In our basic attacks on Speck, we will use an r-round differential characteristic
with an initial difference, denoted by (∆x0, ∆y0), and a final difference, denoted
by (∆xr, ∆yr). We devise an attack on r + 2 rounds using a 2-round attack.

The enumeration framework poses the following problem: the 2n-bit input
difference (∆xr, ∆yr) to the last 2 rounds is fixed by the final difference of the
differential characteristic, and the output difference (∆xr+2, ∆yr+2) is known
from the output. Furthermore, we are given actual output values (xr+2, yr+2)
and (xr+2 ⊕ ∆xr+2, yr+2 ⊕ ∆yr+2). Our goal is to find all the possible inde-
pendent round keys kr and kr+1, under which the difference of the 2-round
partial decryptions of the pair (xr+2, yr+2) and (xr+2 ⊕ ∆xr+2, yr+2 ⊕ ∆yr+2)
is equal to (∆xr, ∆yr). In general, we have 2n bits of variables and 2n bits of
constraints (derived from the difference (∆xr, ∆yr)). Thus, the equation system
has an average of one solution for an arbitrary pair of outputs (xr+2, yr+2) and
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Variant Rounds Attacked/ Time Data Memory Reference Characteristic

2n/mn Total Rounds (CP) ID

32/64 11/22 246.7 230.1 237.1 [1] -

32/64 11/22 246 214 222 This Paper 1

32/64 12/22 251 219 222 This Paper 2

32/64 13/22 257 225 222 This Paper 3

32/64 14/22 263 231 222 This Paper 4

48/72 12/22 243 243 NA [7] -

48/72 14/22 265 241 222 This Paper 5

48/96 12/23 243 243 NA [7] -

48/96 15/23 289 241 222 This Paper 5

64/96 16/26 263 263 NA [7] -

64/96 18/26 283 261 222 This Paper 6

64/128 16/27 263 263 NA [7] -

64/128 19/27 2125 261 222 This Paper 6

96/96 15/28 289.1 289 248 [1] -

96/96 16/28 285 284 222 This Paper 7

96/144 16/29 2135.9 290.9 294.5 [1] -

96/144 17/29 2133 285 222 This Paper 7

128/128 16/32 2116 2116 264 [1] -

128/128 17/32 2113 2113 222 This Paper 8

128/192 18/33 2182.7 2126.9 2121.9 [1] -

128/192 18/33 2177 2113 222 [1] 8

128/256 18/34 2182.7 2126.9 2121.9 [1] -

128/256 19/34 2241 2113 222 This Paper 8

The “Characteristic ID” column refers to the IDs of the characteristics in
Appendix D, which are used in our attacks. The data is given in chosen plaintexts

(CP).
Table 2. Previous Attacks and Our New Attacks on Speck

(xr+2 ⊕ ∆xr+2, yr+2 ⊕ ∆yr+2), and our goal is to enumerate all the possible
solutions for each given output pair as efficiently as possible.3

We note that the claim that the equation system has an average of one solu-
tion is not trivial, as the pairs of outputs are ciphertexts, whose corresponding
plaintexts have the fixed initial difference (∆x0, ∆y0) to the characteristic. If

3 Recall that we have essentially no (linear) filtering conditions, and thus we must
execute the sub-cipher attack for each encrypted input pair. Consequently, we are
interested in the average time complexity of the algorithm.
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such a plaintext pair diverges from the characteristic at its later rounds, then
the difference after r rounds can potentially be close to (∆xr, ∆yr), which may
result in non-random behavior. In fact, our experiments show that the average
number of solutions is about 4 for characteristic 1 in Appendix D, which has a
relatively high probability of 2−13. However, for the lower probability character-
istics which we could test experimentally, the average number of solutions was
only slightly higher than 1 (and lower than 2).

Our 2-round attack is given in Section 7. This attack exploits the (relative)
simplicity of the Speck round function in order to recover the 2 final round keys
of Speck with very low average time complexity. Indeed, our analysis shows that
for an output pair (xr+2, yr+2) and (xr+2 ⊕ ∆xr+2, yr+2 ⊕ ∆yr+2) (generated
by plaintexts with the fixed initial difference (∆x0, ∆y0)), the 2-round attacks
requires an average time which is smaller than 2 time units (i.e., 2 full encryptions
of round-reduced Speck) for any characteristic that we use in the full differential
attacks on Speck.

6 Details of the Full Differential Attacks

In this section, we describe the details of our full differential attacks on Speck
in the enumeration framework. In all the attacks, we assume that we have a
differential characteristic that covers r-rounds of the cipher with probability p >
2 ·2−2n. The attacks recover the mn-bit secret key of a variant with r+m rounds
using 2 · p−1 chosen plaintexts, in expected time complexity of 2 · p−1 · 2(m−2)n.
In other words, our attacks are faster than exhaustive search by a factor of
p · 22n−1. For example, our attack in 11-round Speck 32/64 (with m = 4) uses a
characteristic for 11− 4 = 7 rounds with p = 2−13. Thus, its time complexity is
2 · 213 · 2(4−2)16 = 246, i.e. it is faster than exhaustive search for the 64-bit key
by a factor of p · 22n−1 = 2−13 · 231 = 218.

The Full Differential Attack for m = 2 We first present the details of our
attack for the Speck instances with m = 2 key words (and m + 2 rounds), and
then extend the attack for the remaining instances, in which m = 3 or m = 4.
We denote the initial difference of the characteristic (at the input of the cipher)
by (∆x0, ∆y0), and its final difference (after r rounds) by (∆xr, ∆yr).

1. Request the encryptions of p−1 plaintext pairs P and P ′ = P ⊕ (∆x0, ∆y0),
and denote the ciphertexts by C and C ′, respectively. For each plaintext pair
P and P ′:
(a) Execute the 2-round attack of Section 7 using (∆xr, ∆yr), C and C ′.
(b) For each returned value of kr and kr+1, iteratively calculate kr−1, . . . , k0

(as described in Section 5.1), while partially decrypting C and C ′, and
verifying that they satisfy the differential characteristic for each round. If
the verification fails for some round, discard the key and continue. Oth-
erwise, obtain the master key, test it using additional trial encryptions,
and return it if the trial encryptions succeed.
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The attack requires 2 · p−1 chosen plaintexts, and given that the r-round
characteristic has probability p, we expect one examined pair C and C ′ to follow
the characteristic, and have a difference of (∆xr, ∆yr) after r rounds. For this
pair, the 2-round attack will find the correct key and return it.

According to the analysis of Section 7, the 2-round attack has an average time
complexity which is smaller than 2 time units, and thus the average processing
time for each analyzed plaintext pair remains about 2. This implies that the
total time complexity of the attack is about 2 · p−1.

The Full Differential Attack for m = 3 and m = 4 For m = 3 and m = 4,
we will attack variants with r + 3 and r + 4 rounds, respectively. The attacks
on m = 3 and m = 4 are trivial extensions of the attack on the m = 2 variants,
and work by guessing the last 1 and 2 round keys, respectively. Then, for each
guess we apply a similar attack to the one applied for m = 2.

The data complexity of the attacks remain 2 ·p−1, while the time complexity
increases to 2 · p−1 · 2n and 2 · p−1 · 22n for m = 3 and m = 4, respectively.

7 The 2-Round Attack

In this section, we present the details of our 2-round attack on Speck. As de-
scribed in Section 5.2, we have an input difference (∆xr, ∆yr) to the two rounds
(which is fixed by a differential characteristic), and we are given the actual
output values (xr+2, yr+2) and (xr+2 ⊕ ∆xr+2, yr+2 ⊕ ∆yr+2). Our goal is to
enumerate all the possible independent round keys kr and kr+1, under which
the difference of the 2-round partial decryptions of the pair (xr+2, yr+2) and
(xr+2 ⊕∆xr+2, yr+2 ⊕∆yr+2) is equal to (∆xr, ∆yr).

The notation we use in our analysis is given in Figure 2, where the XOR
differential notation is given on the left, and the notation of the intermedi-
ate encryption values for (xr+2, yr+2) is given on the right. We further define
(x′i, y

′
i) = (xi ⊕∆xi, yi ⊕∆yi).

Note that ∆yr+1 = (∆xr+2⊕∆yr+2)≫ β and ∆xr+1 = ∆yr+1⊕(∆yr≪ β)
are independent of the keys and can be calculated immediately. Thus, all the
XOR differences in the scheme are completely determined. Similarly, the value
yr+1 = (xr+2 ⊕ yr+2) ≫ β can be calculated from the known (xr+2, yr+2),
whereas (xr, yr) and xr+1 remain unknown. We further note that deriving the
two round-keys is equivalent to deriving xr and xr+1, as their values allows us to
calculate kr+1 = (yr+1 � (xr+1≫ α))⊕ xr+2, and as yr = (xr+1 ⊕ yr+1)≫ β,
then kr = (yr � (xr ≫ α)) ⊕ xr+1 can be calculated as well. Thus, in the
following, we concentrate on deriving the intermediate values xr and xr+1.

7.1 A Basic 2-Round Attack

The problem of solving differential equations of addition (DEA) of the form
(x⊕ δ1)� (y⊕ δ2) = (x�y)⊕ δ3 (where δ1, δ2, δ3 are given and x, y are unknown
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∆xr ∆yr

≫ α

⊞
≪ β

⊕
⊕ki

∆xr+1 ∆yr+1

∆xr+2 ∆yr+2

≫ α

⊞
≪ β

⊕
⊕kr

xr yr

≫ α

⊞
≪ β

⊕
⊕ki

xr+1 yr+1

xr+2 yr+2

≫ α

⊞
≪ β

⊕
⊕kr+1

1

Our notation of differences is given on the left, whereas our notation of values is given
on the right.

Fig. 2. Two Rounds of Speck

variables) is a basic problem in the analysis of ARX cryptosystems, and was ex-
tensively studied in several papers. In particular, [19] described an algorithm for
solving such equations in time complexity which is linear in the total number of
solutions. However, the previous algorithm is not directly applicable in our case,
as we actually have two dependant equation systems (generated by two addition
operations), and we want to efficiently solve them simultaneously. Moreover, the
value of y in the DEA is fixed to yr+1 for one of the addition operations, and
since the solutions vary according to this fixed value, the second equation system
is of a different type than the one analyzed in [19]. Note that a standard DEA
has an average of 2n solutions, whereas our equation system has an average of
only 1 solution.

Given the complications above, it seems difficult to construct a generic al-
gorithm that efficiently solves our type of equation systems for an arbitrarily
large word size n. Thus, we concentrate on the word sizes n ∈ {16, 24, 32, 48, 64}
defined by the Speck family, and describe an algorithm whose complexity is esti-
mated by experiments (rather than by a rigorous theoretical proof). As the full
key recovery attack of Section 6 calls the 2-round attack with a fixed value of
(∆xr, ∆yr) and many values of (xr+2, yr+2), (x′r+2, y

′
r+2), we are interested in

the average complexity of the 2-round attack, where (xr+2, yr+2), (x′r+2, y
′
r+2)

are chosen at random according to the procedure of the full key recovery attack.

In Appendix A, we devise a basic guess-and-determine algorithm which ex-
ploits the limited carry propagation of the addition operation in order to compute
xr and xr+1 bit by bit. It is related to several previous guess-and-determine al-
gorithms such as the one of [10]. The analysis described in Appendix A shows
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that given some randomness assumptions on the problem, its average execution
time is comparable to the execution time of a full Speck encryption.

The problem with this analysis is that the randomness assumptions do not
hold in our case (as in many cases of DEA). In fact (as we show next), although
we expect one solution on average, for almost any value of (∆xr, ∆yr), the
distribution of solutions across the various instances is very far from uniform, and
greatly depends on the values of the output pairs (xr+2, yr+2) and (x′r+2, y

′
r+2).

More specifically, the solutions are distributed among a small fraction of the
output pairs, whereas for the remaining output pairs, there are no solutions at
all. Such non-randomness properties have a negative effect of the performance
of our basic guess-and-determine algorithm, as it can potentially make a large
number of guesses for some bits of xr+1 and xr (i.e., guess partial solutions),
while discarding all (or a large fraction) of them at a later stage.

7.2 Optimizing the Basic 2-Round Attack Using Filters

In order to optimize the basic algorithm, we notice that we can filter out very
quickly a large fraction of the non-useful instances (with no solutions). The idea is
to use efficient “look-ahead” (non-linear) filters that try to find a contradiction in
the equation constraints before actually computing the solutions. The techniques
we use to implement the filters are closely related to various search algorithms
for differential characteristics for ARX-based and related cryptosystems (e.g., [8,
14, 15, 17, 22]).

These filtering techniques allow us to concentrate our efforts on a small frac-
tion of “interesting” instances, and obtain an algorithm whose average time
complexity is estimated (according to our simulations) to be smaller than 2
encryptions of Speck.4

One-Bit Filter This filter can be applied to a standard DEA (x⊕δ1)�(y⊕δ2) =
(x� y)⊕ δ3, as it does not depend on the values of x and y. The filter was first
described in [16], and it checks whether

eq(δ1 � 1, δ2 � 1, δ3 � 1) ∧ (δ1 ⊕ δ2 ⊕ δ3 ⊕ (δ1 � 1)) = 0,

where eq(x, y, z) = (¬x ⊕ y) ∧ (¬x ⊕ z) equals one at position i if and only if
x[i] = y[i] = z[i]. As shown in [16], a DEA for which the n-bit value of the filter
is non-zero has no solutions and can be filtered out immediately.

This filter is called a 1-bit filter since for each bit position i + 1, it only
depends the single bit position i + 1 of the input words (in addition to a 1-bit
XOR difference δ1 ⊕ δ2 ⊕ δ3 at the previous position i). As applying the 1-bit
filter involves only a few simple word operations, it requires much less time than

4 We note that after applying the filters, one can try to apply standard counting
techniques to recover some key bits in few first rounds of Speck. However, as we can
solving the full equation system and test each suggested key efficiently, the counting
techniques are not likely to significantly improve the complexity of the attacks.
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a full Speck encryption, and given that it immediately filters out a large fraction
of instances with no solutions, it can significantly reduce the running time of the
algorithm.

In order to get an estimation of how the filter performs, we assume that all the
values of δ1, δ2, δ3 are chosen at random. In this case, using the formula of [16],
an instance of a DEA will have a solution with probability of q = 1/2 · (7/8)n−1.
Specifically, for n = 16, we have q ≈ 2−4, and for n = 24, 32, 48, 64 we have
q ≈ 2−5.5, 2−7, 2−10, 2−13, respectively.

In the case of Speck, we can immediately apply the filter once for round r
and once for round r+1 (since all the XOR differences at the inputs and outputs
of the addition operations are known). However, as there are clear dependencies
between the various input and output XOR differences in 2 rounds of Speck
(in fact, the input differences ∆xr, ∆yr are fixed by the characteristic), the for-
mula does not apply. Nevertheless, our experiments show that for the values
of ∆xr, ∆yr used in our attacks, the filters actually give slightly better results
than expected from a random instance. This can partially be explained since
∆xr, ∆yr have a relatively low hamming weight, as they are outputs of a high
probability differential characteristic. As a result, the equality predicate in the
filter of round r, eq(δ1 � 1, δ2 � 1, δ3 � 1) = 0, holds with a probability which
is lower than the expected 1/4.

As described above, our simulations show that we remain with less than
a 2−8, 2−11, 2−14, 2−20, 2−26 fraction of the instances for n = 16, 24, 32, 38, 64,
respectively, after applying the two 1-bit filters on rounds r and r+ 1. Although
the fraction of remaining instances is small, our experiments indicate that when
executing the basic algorithm on this small fraction, there are still instances on
which we waste a lot of time computing partial solutions that are later discarded.
For the smaller values of n = 16 and n = 24, the effect of these wasteful instances
on the average complexity of the algorithm seems to be limited. However, for
n ∈ {32, 48, 64}, their effect seems to be more significant, and is also more
difficult to predict, as we can sample only a small fraction of the possible output
pairs after r+2 rounds. Consequently, we use additional filters in order to further
reduce the number wasted partial solutions.

Multiple-Bit Filters These filters are generalizations of the 1-bit filters to
larger blocks. They are built by breaking a system of n constraints into b-bit
blocks of constraints with a relatively small number of parameters (e.g., a few
bits of δ1, δ2, δ3 in a standard DEA), and analyzing each block independently.
Obviously, if we encounter an equation system instance for which a block (with
a certain value of the parameters) has no solutions for any possible values of its
variables (e.g., a few bits of x and y in a standard DEA), then the full system has
no solutions, and we can stop analyzing it. Given that the number of parameters
that appear in a block is sufficiently small, we can exhaustively precompute and
store for each of their possible values, a bit that specifies whether the block can
potentially have a solution of not (by exhaustively trying the solve the system
for all possible values of its variables).
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For a general system of equations, each block will contain many parameters
and variables even for a small value of b, and thus the approach is useless.
However, in our case, we can efficiently implement the b-bit filters, as it is easy
to break simple equation systems based on ARX into blocks which are almost
independent (the only dependency between the blocks are a few bits of carry).

The details of the b-bit filters that we use for our attacks are given in Ap-
pendix B. As described in the appendix, we select b = 6, and constructing the
filters requires negligible precomputation time (compared to the time complexity
of the full differential attacks), while their storage requires only a few megabytes
of memory.

7.3 The Optimized 2-Round Attack

The details of our optimized 2-round attack are give in Appendix C. We im-
plemented the optimized 2-round attack and tested it by running the attack of
Section 5.2 for all the analyzed 10 Speck variants. For Speck variants with m > 2,
we ran 2 types of tests: one type in which we arbitrarily guess the values of round
keys kr+3, kr+2 (or only kr+2 for m = 3), and one type in which we assume that
their correct value is known. In each test, we executed the optimized 2-round
attack for a few randomly chosen keys with 230 arbitrary input pairs that have
the fixed input difference of the corresponding characteristic (∆x0, ∆y0). In all
the tests, the average number of discarded partial solutions for an analyzed pair
(which determines the average running time of the algorithm, as the expected
number of solutions is close to 1) was smaller than 4, and we estimate that the
average time complexity of the 2-round attack is smaller than 2 full encryptions
of Speck. We note that we are somewhat less confidence in the results for Speck
instances with larger word sizes of n ∈ {32, 48, 64}, as we can only sample a
small fraction of the possible input pairs. However, given the very good results
obtained for n ∈ {16, 24}, it seems reasonable to believe that the quality of
our approximations does not degrade significantly, and the performance of the
algorithm is close to what is claimed.

8 Conclusions

In this paper, we presented significantly improved attacks on all 10 variants
of the lightweight block cipher Speck. Our key recovery attacks are based on
an enumeration framework for differential cryptanalysis, which tests suggestions
for the full key that are calculated by a sub-cipher attack. This key recovery
framework generalizes techniques used in previous differential attacks, such as
the attack on Zorro in [4]. The type of attacks presented in this paper can
significantly extend a differential characteristic to an attack on the full cipher,
especially when the cipher uses a secret key which is larger than the block size
(e.g., in our attack on 14-round Speck 32/64, we used a 10-round characteristic
to attack 14 rounds of the cipher). Consequently, such sub-cipher attacks should
be considered by designers when proposing new cryptosystems.
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Since the framework is generic, finding any improved differential character-
istic for a Speck variant would (almost) immediately give an improved attack
on the full cipher (without the need to perform the low-level statistical anal-
ysis, typically required in key recovery attacks based on counting techniques).
Furthermore, designing efficient sub-cipher attacks on more rounds of a Speck
variant, could also lead to improved attacks. However, such an attack would
need to analyze dependencies in the round keys due to the key schedule, and its
design seems more difficult.

Additional future work items include applying the enumeration framework
to improve the best known attacks on more ciphers, and perhaps extending it to
other types of attacks, which are different from attacks based on self-similarity
and differential attacks.
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A Details of the Basic 2-Round Attack

In this section, we give the details of our basic 2-round attack, which computes
xr and xr+1 bit by bit given (xr+2, yr+2), (x′r+2, y

′
r+2), assuming the knowledge

of (∆xr, ∆yr).
In general, we have (for any round r̂)

((xr̂≫ α)� yr̂)⊕ ((x′r̂≫ α)� y′r̂) = ∆xr̂+1,

and we denote by zr̂ the n-bit carry word generated by the addition operation
(xr̂≫ α)� yr̂, and by z′r̂ the carry word generated by (x′r̂≫ α)� y′r̂.

The basic procedure 1RProcedure(r̂, i) analyzes round r̂ of Speck at bit
index i ∈ {0, 1, 2, . . . , n − 1}, and is given below. The procedure assumes that
we know the XOR input/output differences of round r̂ (we actually need only

a few bits of these differences), and requires the additional 1-bit value y
[i]
r̂ , and
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the values of the 2 carry bits z
[i]
r̂ , z

′[i]
r̂ . The procedure guesses the value of the

bit x
[i+α]
r̂ , and computes the next 2 carry bits z

[i+1]
r̂ , z

′[i+1]
r̂ .

1. For of the 2 possible values of x
[i+α]
r̂ :

(a) Compute x
[i+α]
r̂ � y[i]r̂ � z

[i]
r̂ and determine the next carry bit z

[i+1]
r̂ .

(b) Compute x
′[i+α]
r̂ = x

[i+α]
r̂ ⊕∆x[i+α]r̂ .

(c) Compute x
′[i+α]
r̂ � y

′[i]
r̂ � z

′[i]
r̂ and determine the next carry bit z

′[i+1]
r̂ .

(d) Check whether z
[i+1]
r̂ ⊕ z

′[i+1]
r̂ ⊕ ∆x[i+1+α]

r̂ ⊕ ∆y[i+1]
r̂ = ∆x

[i+1]
r̂+1 , and if

equality does not hold, discard the guess. Otherwise, output the current

value of x
[i+α]
r̂ and the computed carry bits z

[i+1]
r̂ , z

′[i+1]
r̂ .

In order to analyze 2-rounds, we assume the we know the values of the XOR
input/output differences of rounds r̂, r̂ − 1, and require the 2 additional 1-bit

values y
[i]
r̂ , y

[i+α]
r̂ , and the values of the 4 carry bits z

[i]
r̂ , z

′[i]
r̂ , z

[i+α−β]
r̂−1 , z

′[i+α−β]
r̂−1 .

The procedure guesses the value of the bits x
[i+α]
r̂ , x

[i+2α−β]
r̂−1 , and computes the

next 4 carry bits z
[i+1]
r̂ , z

′[i+1]
r̂ , z

[i+1+α−β]
r̂−1 , z

′[i+1+α−β]
r̂−1 . The 2RProcedure(r̂, i)

algorithm is given below.

1. Run 1RProcedure(r̂, i) and for each returned solution:

(a) Compute y
[i+α−β]
r̂−1 = x

[i+α]
r̂ ⊕ y[i+α]r̂ .

(b) Run 1RProcedure(r̂ − 1, i+ α− β)

The guess-and-determine algorithm calls 2RProcedure(r̂, i) with r̂ = r + 1
for various indexes i in order to recover the full values of xr+1 and xr. Note that
all the input/output XOR differences to the last 2 rounds of Speck are known,
and the full yr̂ = yr+1 is known as well, and thus we are only missing the value
of the carry bits.

As the carries computed by index j are input to procedure j+ 1, we perform
calls to 2RProcedure(r+1, i) with sequential labels i, i+1, . . . , n−1, 0, . . . , i−1
(from LSB to MSB) in order to recover xr+1 and xr. As a result, we only have
to guess the carries required by the initial procedure. Since there is no carry into

the LSB (i.e., z
[0]
r+1 = z

′[0]
r+1 = 0), then we start with procedure i = 0 to minimize

the number of carry guesses. Furthermore, the value of zr⊕ z′r can be computed
from (∆xr ≫ a) ⊕∆yr ⊕∆xr+1, and thus we actually need to guess only one
carry bit before executing the first procedure. Finally, after the execution of the
last procedure (with index n− 1), we can derive the actual value of this guessed
carry bit and obtain an additional filtering condition.

As the time complexity of the guess-and-determine algorithm is proportional
to the number of guesses it makes, we need to carefully analyze the ratio be-
tween the number of guessed bits, and the number of filtering conditions used
to filter the guesses. The algorithm 2RProcedure(r̂, i) guesses the values of the

two bits x
[i+α]
r̂ , x

[i+2α−β]
r̂−1 and uses two filtering conditions (one in each call to

1RProcedure(r̂, i) at Step 1.(d)). Thus, assuming that the analyzed instance be-
haves randomly, we expect the number of guesses at each stage of the execution
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of the algorithm to remain constant. Such randomness assumptions lead to the
conclusion that the average execution time of the algorithm is comparable to the
execution time of a full Speck encryption (perhaps even smaller, as we analyze
only 2 rounds). However, as noted in Section 7.1, these randomness assumptions
do not hold in our case.

B Details of the Implementation of Multi-Bit Filters

In this section, we describe how to construct the b-bit filters for the differential
equations obtained by the system (x � a) ⊕ ((x ⊕ δ1) � a′) = δ2, where x is
a variable and a, a′, δ1, δ2 are known constants (parameters). This is a general
description of the equation system obtained for round r + 1 of Speck (where
x = (xr+1≫ α), a = yr+1, a

′ = y′r+1, δ1 = (∆xr+1≫ α), δ2 = ∆xr+2).
We denote by z the carry generated by x�a, and by z′ the carry generated by

(x⊕δ1)�a′. We examine the system at indexes i to i+b−1, with the additional
carry into bit i+b. This system has b+2 variables: z[i], z

′[i], x[i,...,i+b−1] (for i = 0
there are only b variables, as the carry bits are 0) and b constraints which depend

on the 4b + 1 parameters a[i,...,i+b−1], a
′[i,...,i+b−1], δ

[i,...,i+b−1]
1 , δ

[i,...,i+b−1]
2 , (δ1 ⊕

δ2 ⊕ a ⊕ a′)[i+b]. However, if we assume that we already executed the 1-bit
filter above on the system, then we know that the XOR of the carries and
differences at bit i is 0. This allows us to remove one parameter, and remain
with 4b parameters.5 The general algorithm for calculating the b-bit filter is
given below:

1. Allocate a bit array A of size 24b.
2. For each value of the 4b parameters j = 0, 1, . . . , 24b − 1:

(a) For each value of the b+ 2 variables:
i. Check whether all the b constraints are satisfied, and if they are, set
A[j] = 1 and increment j by going to Step 2.

(b) Since there is not solution with the current parameters, set A[j] = 0.

Calculating the b-bit filter requires 24b bits of memory and its time complexity
is 25b+2 in the worst case.

For the specific case of Speck, we have an additional dependency between
the parameters, as ∆xr+1 = yr+1 ⊕ y′r+1 ⊕ (∆yr ≪ β), and ∆yr is a fixed
value. Thus, we can reduce the number parameters to 3d, but as a result, the
filter depends on ∆yr, and we need to calculate it separately for each bit index
i ∈ {0, 1, . . . , n− b} for which we want to apply the filter.

In our attacks, we use b = 6, and thus one 6-bit filter requires 218 bits, or 215

bytes. If we want to apply a filter for each index i for Speck with the largest word
size of n = 64, then the memory complexity of the filters is less than 64·215 = 221

bytes, and thus the filters require no more than a few megabytes of storage. In

5 We can additionally reduce the number of parameters by assuming that the 1-bit
filter passed on the b-bit words, but this is more complicated and we do not elaborate
on this possible optimization in this paper.
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order to get an estimation of how the filters perform, we implemented their
general version (with 4b parameters), and calculated that for a random value
of the 4b parameters, the probability to pass both a 1-bit filter and a 6-bit
filter starting from index i > 0 is about 0.285 (whereas the probability that a
6-bit word passes just a 1-bit filter is (7/8)6 ≈ 0.45). However, for larger n-
bit words, we will apply the filters to consecutive indexes, resulting in strong
correlations between their applications, and making it more difficult to estimate
the probability of passing the filters.

We note that it is possible to construct b-bit filters that analyze blocks of
the full equation system for 2-round Speck, rather than just for one round.
However, these filters require a larger amount of memory (of about 26b) and can
only be efficiently used for small values of b. Of course, one can try to combine
several filters of different types and sizes, and it is interesting to study how to
construct efficient algorithms to solve a given system of equations using various
combinations of filters. However, in this paper, we are mainly interested in the
equation systems generated by 2-round Speck. For this specific case, we describe
in Appendix C an algorithm which gives very good results in practice.

C Details of the Optimized 2-Round Attack

The details of the optimized 2-round attack are give below. Recall the the al-
gorithm is given the value of (xr+2, yr+2), (x′r+2, y

′
r+2), while (∆xr, ∆yr) is a

fixed by a differential characteristic. The algorithm recovers all possible values
of xr, xr+1, assuming that we calculated during preprocessing, 6-bit filters for
rounds r and r + 1 of Speck, for all indexes i ∈ {0, 1, . . . , n − 6}. Additionally,
the attack uses the 1RProcedure(r̂, i) algorithm of Appendix A.

1. Apply the 1-round filter of Section 7.2 to rounds r + 1 and r, and if a filter
fails, return NULL.

2. For i ∈ {0, 1, . . . , n − 6}, apply the corresponding 6-bit filter at index i to
round r + 1, and if a filter fails, return NULL.

3. For i ∈ {0, 1, . . . , n− 1}:
(a) Run 1RProcedure(r+ 1, i), iteratively recovering xr+1. For each partial

solution, compute y
[i+α−β]
r (as in Step 1.(a) of 2RProcedure(r + 1, i)).

(b) If i ≥ 6, apply the 6-bit filter to round r at index i − 6 + α − β, and if
the filter fails, discard the partial solution.

4. For each solution for xr+1:
(a) For i ∈ {0, 1, . . . , n− 1}:

i. Run 1RProcedure(r, i), iteratively recovering xr.
(b) Output all the solutions for xr, and the current value of xr+1.
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D Differential Characteristics Used in Our Attacks

In this section, we specify the differential characteristics used in our attacks. For
each characteristic, we only give the input and output differences, and refer the
reader to [1, 7] for their complete specifications.

ID Variant 2n Rounds Probability Reference Input/Output Differences

1 32 7 2−13 [1] 211 a04/850a 9520

2 32 8 2−18 [1] a60 a205/850a 9520

3 32 9 2−24 [1] a60 a205/802a d4a8

4 32 10 2−30 [7] 8054 a900/40 542

5 48 11 2−40 [7] 202040 82921/80a0 2085a4

6 64 15 2−60 [7] 9 1000000/40024 4200d01

7 96 14 2−84 [1] 2a20200800a2 322320680801/

1008004c804 c0180228c61

8 128 15 2−112 [1] 144304280c010420 6402400040024/

180208402886884 80248012c96c80

The n-bit halves in each input/ouput difference are separated by a space.
Table 3. Differential Characteristics Used in Our Attacks
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